WO2001059141A2 - Methods and compositions that utilize barley as a foodstuff for animals - Google Patents
Methods and compositions that utilize barley as a foodstuff for animals Download PDFInfo
- Publication number
- WO2001059141A2 WO2001059141A2 PCT/US2001/004222 US0104222W WO0159141A2 WO 2001059141 A2 WO2001059141 A2 WO 2001059141A2 US 0104222 W US0104222 W US 0104222W WO 0159141 A2 WO0159141 A2 WO 0159141A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- barley
- foodstuff
- glucanase
- malt
- feed
- Prior art date
Links
- 235000007340 Hordeum vulgare Nutrition 0.000 title claims abstract description 194
- 238000000034 method Methods 0.000 title claims abstract description 53
- 241001465754 Metazoa Species 0.000 title claims abstract description 20
- 239000000203 mixture Substances 0.000 title description 9
- 240000005979 Hordeum vulgare Species 0.000 title 1
- 241000209219 Hordeum Species 0.000 claims abstract description 208
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 claims abstract description 92
- 102000004190 Enzymes Human genes 0.000 claims abstract description 87
- 108090000790 Enzymes Proteins 0.000 claims abstract description 87
- 230000009261 transgenic effect Effects 0.000 claims abstract description 73
- 241000287828 Gallus gallus Species 0.000 claims abstract description 46
- 235000013339 cereals Nutrition 0.000 claims abstract description 31
- 150000007523 nucleic acids Chemical class 0.000 claims description 28
- 108020004707 nucleic acids Proteins 0.000 claims description 22
- 102000039446 nucleic acids Human genes 0.000 claims description 22
- 239000013598 vector Substances 0.000 claims description 20
- 230000000593 degrading effect Effects 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 235000012054 meals Nutrition 0.000 claims description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 4
- 125000003275 alpha amino acid group Chemical group 0.000 claims 8
- 235000013330 chicken meat Nutrition 0.000 abstract description 30
- 235000005911 diet Nutrition 0.000 description 84
- 230000037213 diet Effects 0.000 description 83
- 229940088598 enzyme Drugs 0.000 description 62
- 229920002498 Beta-glucan Polymers 0.000 description 43
- 241000196324 Embryophyta Species 0.000 description 34
- 108090000623 proteins and genes Proteins 0.000 description 34
- 230000000694 effects Effects 0.000 description 28
- 210000003608 fece Anatomy 0.000 description 28
- 239000013612 plasmid Substances 0.000 description 28
- 210000004534 cecum Anatomy 0.000 description 26
- 235000018102 proteins Nutrition 0.000 description 23
- 102000004169 proteins and genes Human genes 0.000 description 23
- 108020004414 DNA Proteins 0.000 description 22
- 239000012634 fragment Substances 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 241000271566 Aves Species 0.000 description 18
- 101710130006 Beta-glucanase Proteins 0.000 description 18
- GINJFDRNADDBIN-FXQIFTODSA-N bilanafos Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCP(C)(O)=O GINJFDRNADDBIN-FXQIFTODSA-N 0.000 description 17
- 210000004027 cell Anatomy 0.000 description 17
- 210000002784 stomach Anatomy 0.000 description 17
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 15
- 230000000762 glandular Effects 0.000 description 14
- 210000000936 intestine Anatomy 0.000 description 14
- 239000000835 fiber Substances 0.000 description 13
- 239000008188 pellet Substances 0.000 description 12
- 210000001035 gastrointestinal tract Anatomy 0.000 description 11
- 108010068370 Glutens Proteins 0.000 description 10
- 210000002257 embryonic structure Anatomy 0.000 description 10
- 230000014509 gene expression Effects 0.000 description 9
- 241000252983 Caecum Species 0.000 description 8
- 108091026890 Coding region Proteins 0.000 description 8
- 240000008042 Zea mays Species 0.000 description 8
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 238000010276 construction Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 230000009466 transformation Effects 0.000 description 8
- 108010076504 Protein Sorting Signals Proteins 0.000 description 7
- 108090000637 alpha-Amylases Proteins 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 229940027257 timentin Drugs 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 6
- 150000001413 amino acids Chemical group 0.000 description 6
- 235000005822 corn Nutrition 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 235000016709 nutrition Nutrition 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 241000589158 Agrobacterium Species 0.000 description 5
- 108010059892 Cellulase Proteins 0.000 description 5
- 102000004139 alpha-Amylases Human genes 0.000 description 5
- 229940024171 alpha-amylase Drugs 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229920001282 polysaccharide Polymers 0.000 description 5
- 239000005017 polysaccharide Substances 0.000 description 5
- 150000004804 polysaccharides Chemical class 0.000 description 5
- 230000004584 weight gain Effects 0.000 description 5
- 235000019786 weight gain Nutrition 0.000 description 5
- FYGDTMLNYKFZSV-URKRLVJHSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](OC2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-URKRLVJHSA-N 0.000 description 4
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 4
- 239000005504 Dicamba Substances 0.000 description 4
- 229920002148 Gellan gum Polymers 0.000 description 4
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 4
- 108700019146 Transgenes Proteins 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 150000001720 carbohydrates Chemical class 0.000 description 4
- 235000014633 carbohydrates Nutrition 0.000 description 4
- 108010079058 casein hydrolysate Proteins 0.000 description 4
- 229940106157 cellulase Drugs 0.000 description 4
- 239000003599 detergent Substances 0.000 description 4
- IWEDIXLBFLAXBO-UHFFFAOYSA-N dicamba Chemical compound COC1=C(Cl)C=CC(Cl)=C1C(O)=O IWEDIXLBFLAXBO-UHFFFAOYSA-N 0.000 description 4
- 239000006047 digesta Substances 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 229960000367 inositol Drugs 0.000 description 4
- 238000004890 malting Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000010369 molecular cloning Methods 0.000 description 4
- 108010082527 phosphinothricin N-acetyltransferase Proteins 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000013605 shuttle vector Substances 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- OBMBUODDCOAJQP-UHFFFAOYSA-N 2-chloro-4-phenylquinoline Chemical compound C=12C=CC=CC2=NC(Cl)=CC=1C1=CC=CC=C1 OBMBUODDCOAJQP-UHFFFAOYSA-N 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 108010060309 Glucuronidase Proteins 0.000 description 3
- 102000053187 Glucuronidase Human genes 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- NWBJYWHLCVSVIJ-UHFFFAOYSA-N N-benzyladenine Chemical compound N=1C=NC=2NC=NC=2C=1NCC1=CC=CC=C1 NWBJYWHLCVSVIJ-UHFFFAOYSA-N 0.000 description 3
- 102000003992 Peroxidases Human genes 0.000 description 3
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 3
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 235000013861 fat-free Nutrition 0.000 description 3
- 235000013312 flour Nutrition 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 210000004317 gizzard Anatomy 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 229930027917 kanamycin Natural products 0.000 description 3
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 3
- 229960000318 kanamycin Drugs 0.000 description 3
- 229930182823 kanamycin A Natural products 0.000 description 3
- 108010076363 licheninase Proteins 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 235000013336 milk Nutrition 0.000 description 3
- 239000008267 milk Substances 0.000 description 3
- 210000004080 milk Anatomy 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000035479 physiological effects, processes and functions Effects 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- 229940116269 uric acid Drugs 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- FYGDTMLNYKFZSV-WFYNLLPOSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,3s,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](O[C@@H]2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-WFYNLLPOSA-N 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 2
- 235000019733 Fish meal Nutrition 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 206010020649 Hyperkeratosis Diseases 0.000 description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 2
- 229930182821 L-proline Natural products 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 238000010222 PCR analysis Methods 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 108090000848 Ubiquitin Proteins 0.000 description 2
- 102000044159 Ubiquitin Human genes 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 101150103518 bar gene Proteins 0.000 description 2
- 235000015278 beef Nutrition 0.000 description 2
- 108010047754 beta-Glucosidase Proteins 0.000 description 2
- 102000006995 beta-Glucosidase Human genes 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 210000003555 cloaca Anatomy 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 2
- 229940038472 dicalcium phosphate Drugs 0.000 description 2
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 239000004467 fishmeal Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 235000021192 high fiber diet Nutrition 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 235000009973 maize Nutrition 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 244000144977 poultry Species 0.000 description 2
- 235000013594 poultry meat Nutrition 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229960002429 proline Drugs 0.000 description 2
- 210000001938 protoplast Anatomy 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 239000007974 sodium acetate buffer Substances 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 238000003260 vortexing Methods 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- PRPINYUDVPFIRX-UHFFFAOYSA-N 1-naphthaleneacetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CC=CC2=C1 PRPINYUDVPFIRX-UHFFFAOYSA-N 0.000 description 1
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000701489 Cauliflower mosaic virus Species 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 241000218631 Coniferophyta Species 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 239000004470 DL Methionine Substances 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 101000889680 Hordeum vulgare Alpha-amylase type B isozyme Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 108010044467 Isoenzymes Proteins 0.000 description 1
- 241000209510 Liliopsida Species 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 241000218922 Magnoliophyta Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108010047290 Multifunctional Enzymes Proteins 0.000 description 1
- 102000006833 Multifunctional Enzymes Human genes 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000588701 Pectobacterium carotovorum Species 0.000 description 1
- 108010047320 Pepsinogen A Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 235000019742 Vitamins premix Nutrition 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000003811 acetone extraction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229930183665 actinomycin Natural products 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 108010050181 aleurone Proteins 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229920000617 arabinoxylan Polymers 0.000 description 1
- 150000004783 arabinoxylans Chemical class 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 108010019077 beta-Amylase Proteins 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 238000003967 crop rotation Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 235000019621 digestibility Nutrition 0.000 description 1
- 238000003370 dye binding method Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 241001233957 eudicotyledons Species 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000003736 gastrointestinal content Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 108010046301 glucose peroxidase Proteins 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- FFEARJCKVFRZRR-UHFFFAOYSA-N methionine Chemical compound CSCCC(N)C(O)=O FFEARJCKVFRZRR-UHFFFAOYSA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 235000006109 methionine Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 108010058731 nopaline synthase Proteins 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 238000009928 pasteurization Methods 0.000 description 1
- 230000008855 peristalsis Effects 0.000 description 1
- 229930195732 phytohormone Natural products 0.000 description 1
- 230000037039 plant physiology Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000000751 protein extraction Methods 0.000 description 1
- -1 recombinant (1 Chemical compound 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000012487 rinsing solution Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000003934 vacuole Anatomy 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 230000007279 water homeostasis Effects 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8257—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K10/00—Animal feeding-stuffs
- A23K10/30—Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
- A23K20/189—Enzymes
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K50/00—Feeding-stuffs specially adapted for particular animals
- A23K50/70—Feeding-stuffs specially adapted for particular animals for birds
- A23K50/75—Feeding-stuffs specially adapted for particular animals for birds for poultry
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8205—Agrobacterium mediated transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8206—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated
- C12N15/8207—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated by mechanical means, e.g. microinjection, particle bombardment, silicon whiskers
Definitions
- This invention relates to methods and compositions that utilize barley, and barley malt, as a foodstuff for animals such as chickens.
- Corn is the principal cereal used as feed for raising broiler chickens. Barley is cheaper than corn but is not acceptable as chicken feed because of its low nutritional value for poultry. The main reason why chickens are unable to efficiently utilize barley as an energy source is because chickens do not possess an enzyme in their gut that depolymerizes ⁇ -D-glucan which is one of the major carbohydrates present in the barley endosperm. The undigested ⁇ -D-glucan results in high viscosity of the barley feed in the intestine, a limited uptake of nutrients, a reduced rate of growth of the chicken, and the production of unhygienic, sticky, droppings which adhere to the chicken and to the floor of the production cages.
- the present invention provides methods of utilizing barley grains as a foodstuff for an animal (such as chickens), the methods comprising the step of feeding to an animal a foodstuff comprising barley feed and transgenic barley malt, wherein the transgenic barley malt comprises a recombinant carbohydrate- degrading enzyme comprising a (l,3-l,4)- ⁇ -glucanase portion.
- the present invention provides foodstuffs comprising barley feed and transgenic barley malt, wherein the transgenic barley malt comprises a recombinant carbohydrate-degrading enzyme comprising a (l,3-l,4)- ⁇ -glucanase portion.
- the recombinant carbohydrate-degrading enzyme consists of a (l,3-l,4)- ⁇ -glucanase enzyme that is at least 95% identical to a (1,3- 1 ,4)- ⁇ -glucanase enzyme consisting of the amino acid sequence set forth in SEQ ID NO: 1.
- Representative values for the ratio by weight of barley feed to barley malt are less than or equal to 9:1, or less than or equal to 5:1.
- Representative values for the concentration of the recombinant carbohydrate-degrading enzyme in the foodstuff are from 0.5 ⁇ g/g to 2.0 ⁇ g/g, or from 0.75 ⁇ g/g to 1.0 ⁇ g/g.
- the foodstuffs of the invention are useful, for example, in the practice of the methods of the invention, and in any situation where it is desired to utilize barley as a component of a foodstuff for animals.
- the present invention provides methods of making a foodstuff, the methods comprising the step of mixing barley feed with transgenic barley malt, wherein the transgenic barley malt comprises a recombinant carbohydrate-degrading enzyme comprising a (l,3-l,4)- ⁇ -glucanase portion.
- the present invention provides barley cells and barley plants comprising a vector comprising a nucleic acid molecule that encodes a (l,3-l,4)- ⁇ -glucanase comprising the amino acid sequence set forth in SEQ ID NO:l, wherein the nucleic acid molecule is operably linked to a promoter comprising the nucleic acid sequence set forth in SEQ ID NO:2.
- FIGURE 1 shows a map of plasmid pJH271 described in Example 1.
- FIGURE 2 shows the weight gain over a 21 day period of chickens fed a diet of: corn; barley plus 6.2% transgenic (TL) malt; barley plus 6.2% non-transgenic, Golden Promise (GP) malt; and barley alone.
- TL transgenic
- GP Golden Promise
- FIGURE 3 shows a bar graph that shows the number of chickens, on a given diet, with sticky droppings adhering to their down over the trial period described in Example 3 herein.
- the chicken diets were: corn; barley plus 6.2% transgenic (TL) malt; barley plus 6.2% non-transgenic, Golden Promise (GP) malt; and barley alone.
- FIGURE 4 shows the amounts of soluble and insoluble (l,3-l,4)- ⁇ -glucans in different parts of the gastrointestinal tract and in the excrements of chicks raised on the following diets: barley diet with added transgenic malt including recombinant
- FIGURE 5 shows the presence and amount of recombinant thermotolerant (l,3-l,4)- ⁇ -glucanase activities in different parts of the gastrointestinal tract and in the excrement of chicks fed barley plus barley malt including the recombinant thermotolerant (l,3-l,4)- ⁇ -glucanase.
- barley feed refers to any form of barley grains suitable for incorporation into a foodstuff.
- barley feed includes barley meal made by physically grinding barley grains.
- barley feed also includes whole barley grains and barley that has been ground into pellets.
- barley malt refers to a material made from barley grains by soaking the grains intermittently in water, or an aqueous solution, allowing the grains to germinate in humid air, then drying the germinated grains in a kiln.
- the dried grains are ground to form a powder which may be pressed with other components to form pellets.
- transgenic barley malt has the same definition as “barley malt” except that transgenic barley malt includes a nucleic acid molecule that was introduced (such as by genetic transformation) into the barley, from which the malt was produced, and that expresses a recombinant carbohydrate-degrading enzyme. Transgenic barley malt therefore contains one or more recombinant carbohydrate-degrading enzymes.
- recombinant carbohydrate-degrading enzyme refers to an enzyme that is (a) capable of degrading one or more types of carbohydrate molecules, (b) that is expressed in barley grains, and (c) is encoded by, and expressed from, a nucleic acid molecule that was introduced (such as by genetic transformation) into the barley grains.
- the recombinant carbohydrate-degrading enzyme can be an enzyme that is normally found in barley, or can be an enzyme that is not normally found in barley.
- operably linked refers to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is affected by the other.
- a promoter is operably linked with a coding sequence when it is capable of affecting the expression of the coding sequence (i.e., the coding sequence is under the transcriptional control of the promoter).
- vector refers to a nucleic acid molecule, usually double-stranded DNA, which may have inserted into it another nucleic acid molecule (the insert nucleic acid molecule) such as, but not limited to, a cDNA molecule.
- vector includes the T-DNA of the Ti vector.
- the present invention provides a foodstuff comprising barley feed and transgenic barley malt, wherein the transgenic barley malt comprises a recombinant carbohydrate-degrading enzyme comprising a (l,3-l,4)- ⁇ -glucanase portion.
- the foodstuffs of the invention are useful in any situation where it is desirable to degrade one or more types of carbohydrate molecules present in the barley feed.
- a recombinant carbohydrate-degrading enzyme comprising a (l,3-l,4)- ⁇ -glucanase portion in the barley malt facilitates digestion of the ⁇ -glucans present in the barley feed thereby enhancing the nutritional quality of the foodstuff for animals (such as broiler chickens) that are unable to digest the ⁇ -glucans.
- the foodstuffs are made by any art-recognized means for combining barley feed and transgenic barley malt in a form suitable for consumption by an animal.
- barley meal and powdered, transgenic, barley malt can be compressed (with or without heating) to form pellets, blocks or other shaped articles.
- the foodstuffs can optionally include any ingredient that provides a nutritional, dietary, physiological, or other benefit to an animal, such as vitamins, minerals, fats, proteins, carbohydrates and fiber.
- barley malt is prepared by steeping barley grains for 48 hours at 13°C/14°C (the grains are steeped for 8 hours in water, followed by 16 hours in humid air, followed by 24 hours in water) until the grain reaches a moisture content of 43 per cent.
- the grain is germinated at a temperature in the range of from 11°C to 13°C for 96 hours in humid air.
- the grain is then dried in a kiln for 12 hours (six hours at a temperature of 50°C to 55°C, rising thereafter to 80°C over a 2 hour period, and remaining at 80°C for 4 hours).
- barley feed and barley malt are present in the foodstuffs of the invention in a ratio (by weight) of from 9: 1 to 5: 1.
- Recombinant carbohydrate-degrading enzymes useful in the foodstuffs of the invention include (l,3-l,4)- ⁇ -glucanase.
- An exemplary (l,3-l,4)- ⁇ -glucanase enzyme useful in the practice of the present invention is disclosed in U.S. Patent Serial Number 5,470,725 to Borriss et al., which patent is incorporated herein by reference.
- SEQ ID NO:l herein discloses the amino acid sequence of the (l,3-l,4)- ⁇ - glucanase enzyme (SEQ ID NO:l) disclosed in U.S. Patent Serial Number 5,470,725 to Borriss et al.
- the (l,3-l,4)- ⁇ -glucanase enzyme having the amino acid sequence set forth in SEQ ID NO:l retains at least 50% of its activity after 10 minutes, preferably 15 minutes, more preferably 18 minutes, of incubation in 10 mM CaCl 2 , 40 mM Na-acetate at pH 6.0 and 70°C, the incubated solution having a concentration range from 0.3 to 1 mg (l,3-l,4)- ⁇ -glucanase (SEQ ID NO:l) per ml, the activity of the (l,3-l,4)- ⁇ -glucanase (SEQ ID NO:l) being understood as the ability of the enzyme to hydrolyze- ⁇ -glycosidic linkages in (l,3-l,4)- ⁇ -glucans.
- the thermostability of the (l,3-l,4)- ⁇ -glucanase (SEQ ID NO:l) permits it to undergo the malting process without losing its glucanase activity.
- some representative (l,3-l,4)- ⁇ -glucanase enzymes useful in the practice of the present invention are at least 95% (such as at least 99%) identical to the (l,3-l,4)- ⁇ -glucanase enzyme consisting of the amino acid sequence set forth in SEQ ID NO: 1.
- percent identity or “percent identical”, when used in connection with (l,3-l,4)- ⁇ -glucanase enzymes useful in the practice of the present invention, is defined as the percentage of amino acid residues in a candidate protein sequence, that are identical with a subject protein sequence (such as the sequence of SEQ ID NO:l), after aligning the candidate and subject sequences to achieve the maximum percent identity.
- the candidate protein sequence (which may be a portion of a larger protein sequence) is the same length as the subject protein sequence, and no gaps are introduced into the candidate protein sequence in order to achieve the best alignment.
- Amino acid sequence identity can be determined in the following manner.
- the subject protein sequence is used to search a protein sequence database, such as the GenBank database (accessible at web site http://www.ncbi.nln.nih.gov/blast/), using the BLASTP program.
- the program is used in the ungapped mode. Default filtering is used to remove sequence homologies due to regions of low complexity.
- the default parameters of BLASTP are utilized.
- Recombinant carbohydrate-degrading enzymes useful in the foodstuffs of the invention can include one or more carbohydrate-degrading activities in addition to (l,3-l,4)- ⁇ -glucanase activity.
- Such multifunctional enzymes can be constructed by fusing functional portions of different carbohydrate-degrading enzymes.
- a nucleic acid molecule encoding a (l,3-l,4)- ⁇ -glucanase can be ligated to a nucleic acid molecule encoding a portion of a cellulase using standard DNA manipulation techniques, such as are disclosed in Sambrook et al. supra. Expression of the hybrid nucleic acid molecule yields a carbohydrate-degrading enzyme that possesses both (l,3-l,4)- ⁇ -glucanase and cellulase activities.
- recombinant carbohydrate-degrading enzymes useful for inclusion in the foodstuffs of the invention can include cellulase activity, such as cellulase activity provided by the cellulase enzyme from Erwinia carotovora.
- This multi enzyme has been shown to depolymerize the consecutive (l,4)- ⁇ -linked glucose units that result from the action of the (l,3-l,4)- ⁇ -glucanase (SEQ ID NO:l) on the mixed linked barley ⁇ -glucan (Olsen, O., et al. (1996) Biotechnology 14:71-76).
- recombinant carbohydrate-degrading enzymes useful for inclusion in the foodstuffs of the invention can include a (l,4)- ⁇ -xylanase activity, such as the (l,4)- ⁇ -xylanase activity provided by the (l,4)- ⁇ -xylanase enzyme disclosed in Ay, J., et al., Proc. Natl. Acad. Sci. USA 95:6613-6618 (1998); ⁇ - amylase; ⁇ -amylase and ⁇ -glucosidase.
- Preferred recombinant carbohydrate-degrading enzymes useful in the practice of the present invention do not lose their carbohydrate-degrading enzymatic activity during the malting process.
- preferred recombinant carbohydrate-degrading enzymes are not inactivated by exposure to temperatures of from 55°C to 80°C for a period of from four hours to six hours.
- Recombinant carbohydrate-degrading enzymes that possess the foregoing thermostability properties can be readily produced, for example by the technique of generating polynucleotides having desired characteristics by iterative selection and recombination, as disclosed in U.S. Patent Serial No. 6,180,406 to Stemmer, which patent is incorporated by reference herein.
- the recombinant carbohydrate-degrading enzymes possessing the desired thermostability properties can be identified, for example, by expressing the mutated nucleic acid molecules (produced, for example, by the foregoing iterative selection and recombination) in a population of host cells, such as E. coli cells, or a yeast cells, lysing the cells, and assaying the cell lysate for the presence of a carbohydrate-degrading enzyme that retains its enzymatic activity when incubated at a desired temperature for a specified time period.
- the ⁇ -glucanase assay set forth in Example 2 herein can be used to identify the presence, in a cell extract, of a l,3-l,4)- ⁇ -glucanase having desired thermostability properties.
- the foodstuffs of the invention include barley malt that is produced from barley plants that are genetically modified to include one or more nucleic acid molecules encoding one or more recombinant carbohydrate-degrading enzymes.
- Examples 1 and 4 herein describe transgenic barley lines that include a transgene that encodes a thermostable (l,3-l,4)- ⁇ -glucanase (SEQ ID NO:l) under the control of either a D hordein gene promoter, or an ⁇ -amylase gene promoter.
- Barley plants can be genetically modified to include one or more nucleic acid sequences encoding a carbohydrate-degrading enzyme by any art-recognized technique.
- Transgenic plants can be obtained, for example, by transferring vectors that include a selectable marker gene, e.g., the kan gene encoding resistance to kanamycin, into Agrobacterium tumifaciens containing a helper Ti plasmid as described in Hoeckema et al., Nature, 303:179-181 (1983) and culturing the Agrobacterium cells with leaf slices, or other tissues or cells, of the plant to be transformed as described by An et al., Plant Physiology, 81:301-305 (1986).
- a selectable marker gene e.g., the kan gene encoding resistance to kanamycin
- Transformed plant calli may be selected through the selectable marker by growing the cells on a medium containing, for example, kanamycin, and appropriate amounts of phytohormone such as naphthalene acetic acid and benzyladenine for callus and shoot induction.
- the plant cells may then be regenerated and the resulting plants transferred to soil using techniques well known to those skilled in the art.
- Representative examples include electroporation-facilitated DNA uptake by protoplasts in which an electrical pulse transiently permeabilizes cell membranes, permitting the uptake of a variety of biological molecules, including recombinant DNA (Rhodes et al., Science, 240:204-207 [1988]); treatment of protoplasts with polyethylene glycol (Lyznik et al., Plant Molecular Biology, 13:151-161 [1989]); and bombardment of cells with DNA-laden microprojectiles which are propelled by explosive force or compressed gas to penetrate the cell wall (Klein et al., Plant Physiol. 91:440-444 [1989] and Boynton et al., Science, 240(4858): 1534-1538 [1988]).
- plant viruses can be used as vectors to transfer genes to plant cells.
- Examples of plant viruses that can be used as vectors to transform plants include the Cauliflower Mosaic Virus (Brisson et al., Nature 310:511-514 (1984);
- Other useful techniques include: site-specific recombination using the Crel-lox system (see, U.S. Patent Serial No. 5,635,381); and insertion into a target sequence by homologous recombination (see, U.S. Patent Serial No. 5,501,967).
- plant transformation strategies and techniques are reviewed in Birch, R.G., Ann Rev Plant Phys Plant Mol Biol, 48:297 (1997); Forester et al., Exp. Agric, 33:15-33 (1997).
- Example 4 herein sets forth two representative protocols for stably introducing a nucleic acid molecule into the genome of a barley plant.
- Nucleic acid molecules encoding one or more carbohydrate-degrading enzymes are typically introduced into barley cells as part of a vector.
- Vectors useful in this aspect of the invention typically include regulatory sequences, such as promoters, translation leader sequences, introns, and polyadenylation signal sequences.
- Promoter refers to a DNA sequence involved in controlling the expression of a coding sequence or functional RNA. In general, a coding sequence is located 3' to a promoter sequence.
- the term "promoter” includes a minimal promoter that is a short DNA sequence comprised of a TATA- box and other sequences that serve to specify the site of transcription initiation, to which regulatory elements are added for control of expression.
- Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments.
- promoters useful in this aspect of the invention direct gene expression in barley endosperm cells.
- Representative examples of promoters that are useful in this aspect of the invention include: Bl hordein gene promoter (Brandt, A.A., et al., Carlsberg Res. Comm. 50: 335-345 (1985); C hordein gene promoter (Entwhistle, J., Carlsberg Res. Comm. 53: 247-258 (1988); ⁇ hordein gene promoter (Cameron-Mills, V. and Brandt A., Plant Mol Biol. 11: 449-461 (1988).
- the plant vectors can be constructed using conventional techniques well known to those skilled in the art. The choice of vector is dependent upon the method that will be used to transform host plants and the desired selection markers. The skilled artisan is well aware of the genetic elements that must be present on the plasmid vector in order to successfully transform, select and propagate host cells containing the vector (for details of an exemplary expression vector for transformation of barley, see Example 1 herein).
- shuttle vectors which can be manipulated and selected in both plant and a convenient cloning host such as a prokaryote.
- Such shuttle vectors thus can include a gene for selection in plant cells (e.g., kanamycin resistance) and a gene for selection in a bacterial host (e.g., actinomycin resistance).
- Such shuttle vectors also contain an origin of replication appropriate for the prokaryotic host used and preferably at least one unique restriction site or polylinker containing unique restriction sites to facilitate vector construction.
- shuttle vectors examples include pMON530 (Rogers et al., Methods in Enzymology 153:253-277 [1988]) and pCGN1547 (McBride et al., Plant Molecular Biol. 14:269-276 [1990]).
- suitable vectors containing DNA encoding replication sequences, regulatory sequences, phenotypic selection genes and the DNA of interest utilize standard recombinant DNA procedures. Isolated plasmids and DNA fragments are cleaved, tailored, and ligated together in a specific order to generate the desired vectors, as is well known in the art (see, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press [1989]). The vectors may be prepared by manipulating the various elements to place them in proper orientation. Thus, adapters or linkers may be employed to join the DNA fragments. Other manipulations may be performed to provide for convenient restriction sites, removal of restriction sites or superfluous DNA. These manipulations can be performed by art-recognized methods (see Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press [1989]).
- the present invention provides methods of utilizing barley grains as a foodstuff for animals (such as chickens), the methods comprising feeding to an animal a foodstuff comprising barley feed and transgenic barley malt, wherein the transgenic barley malt comprises a recombinant carbohydrate-degrading enzyme comprising a (l,3-l,4)- ⁇ -glucanase portion.
- the foodstuffs of the invention are useful in the practice of the methods of the invention. The following examples merely illustrate the best mode now contemplated for practicing the invention, but should not be construed to limit the invention.
- EXAMPLE 1 This example describes the construction of transgenic barley plants that express a recombinant, thermostable, (l,3-l,4)- ⁇ -glucanase (SEQ ID NO:l) under the control of either a D hordein gene promoter (SEQ ID NO:2) or an ⁇ -amylase promoter. Malt from the transgenic barley plants that expressed a recombinant, thermostable, (l,3-l,4)- ⁇ -glucanase (SEQ ID NO:l) under the control of an ⁇ - amylase promoter were used in the experiments reported in Examples 2 and 3.
- Plasmid Constructions Methods used for PCR and DNA manipulations were as described (Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab. Press, Plainview, NY)). Plasmid pJH 271 (15.003 kb) was constructed in the binary cloning vector pJH2600, which is derived from pBIN 19 (Bevan, M. (1984) Nucleic Acids Res. 12:8711-8721).
- Plasmid pJH2600 was assembled by cloning a H dlll-Sm ⁇ l fragment containing the bar gene 3' to the ubiquitin promoter and a Smal-EcoRl fragment with the nos terminator from pUBARN (Jensen, L.G., et al. (1998) Hereditas 129:215-225) into H ndlll-EcoRI-digested derivative of the pBIN 19 plasmid by a three-way ligation.
- Plasmid pHor-H(A12-M)Y13-GC-NOS contained a translational fusion between the 434-bp D hordein gene promoter (SEQ ID NO:2) the ATG initiation codon (S ⁇ rensen, M.B., M ⁇ ller, M., Skerritt, J. & Simpson, D. (1996) Mol. Gen. Genet.
- the heat-stable ⁇ - glucanase gene was PCR amplified from plasmid pEII- ⁇ H (A12-M) ⁇ Y13-GC-NOS (Jensen, L.G., et al., (1998) Hereditas 129:215-225) by using primer hor/glu (5'- CGAGATGCAGACCGGCGGCAGCTTC-3') (SEQ ID NO:5) and the M13 reverse primer (S'-GGTTTTCCCAGTCACGAC-S') (SEQ ID NO:6).
- Plasmid pJH271 Plasmid pHsig-H(A12-M) ⁇ Y13-GC-NOS is similar to plasmid pJH270 but also contained the coding sequence for the D hordein signal peptide (NH-MAKRLVLFVAVTVALVALTTA-COO)(SEQ ID NO:7).
- the D hordein gene fragment including the promoter, 5' untranslated leader region, and the signal peptide-coding region was amplified from the Hor3-l genomic clone (S ⁇ rensen, M.B., M ⁇ ller, M., Skerritt, J. & Simpson, D. (1996) Mol. Gen. Genet.
- FIGURE 1 shows a map of pJH271.
- Plasmid pJH271 was introduced into barley variety Golden Promise by Agrobacterium-mediated transformation as described in Example 4.
- This high level of expression required that the ⁇ -glucanase gene was optimized to a C + G content of 63%, and that the ⁇ -glucanase protein had to be synthesized as a precursor with a signal peptide that delivers the protein to storage vacuoles.
- Plasmid constructions Standard methods for PCR and DNA manipulations were as detailed by Sambrook et al. (supra). Plasmid pEmuGN, previously described by LAST et al. (Last DI, et al., Theor. Appl. Genet.
- GUS ⁇ -glucuronidase
- Plasmid pUBARN used for selection of transformed barley tissue on medium containing bialaphos (Meiji Seika Kaisha, Tokyo, Japan), contains the open reading frame of the bar gene specifying phosphinothricin acetyltransferase (PAT) inserted between the maize ubiquitin Ubi-1 promoter/intron 1 and the nos terminator.
- the plasmid was constructed by first amplifying by PCR the sequence for PAT of plasmid pIJ4104, using primers
- pB AR was linearized with S ⁇ cl- Ec RI and ligated with the nos terminator sequence of p ⁇ muGN, yielding pBARN. Fragments spanning bases -859 to +339 and +314 to +1147 of the Ubi-1 sequence (Christensen AH, et al., Plant Mol. Biol. 18: 675-689 (1992)) were amplified from maize genomic DNA (kindly provided by Michael S ⁇ rensen, Carlsberg Laboratory) using two sets of 26-base primers specifying the fragment ends. The PCR fragments were purified, combined, and fused in a second PCR using the outermost primers (Horton RM, et al., Gene 77: 61-68 (1989)).
- an 860-bp fragment containing promoter and signal peptide coding region for a barley ⁇ -amylase high-pi isoform was amplified by PCR using genomic DNA of barley, cv Carlsberg II, with primers 5'-TAGAAACTTTCTGAATCTGCTGTGTCCAGT-3' (SEQ ID NO: 12) and 5'-GGTACATACAGAATCTGAAGATAGGACAAG-3' (SEQ ID NO:13) specifying bases -679 to -650 and +151 to +180 of the gene sequence (Khursheed B and Rogers JC, J. Biol. Chem.
- a final PCR introduced the sequence for barley high-pi ⁇ -amylase signal sequence, including the site for Sf ⁇ , in frame with that for H(A12-M) ⁇ Y13, while a site for S ⁇ cl was introduced immediately 3' to the stop codon.
- the amplified product was digested with S ⁇ cl, and ligated with Smal- S ⁇ cl linearized plasmid pUC18-wo_s, harboring the nos terminator Sacl-EcoRl fragment of pEmuGN, giving plasmid pUC18- ⁇ H(A12-M) ⁇ Y13-GC-N.
- DNA for plant transformation was prepared by digesting pAMY- ⁇ H(A12-M) ⁇ Y13- GC-N and pUBARN with BamHL which linearizes either plasmid in the polylinker immediately upstream of the plant promoter sequence, while Ec ⁇ RI was used to linearize pEmuGN downstream of the nos terminator.
- Gold particles (1 ⁇ m diameter) were coated with linearized plasmid DNA and accelerated into immature embryos of barley, cv Golden Promise, using a particle gun (BioRad), as described in Example 4 herein. Thereafter, transgenic tissue was selected as described (Jensen LG, et al., Proc. Natl. Acad. Sci. USA.
- Putative transgenic barley plants were screened by PCR for the presence or absence of transgene sequences. Genomic DNA for PCR analysis was purified from leaves of primary regenerated plants (defined as generation To) and offspring plants (generations Ti, T 2 , T 3 ) using the method detailed by Edwards K, et al., Nucleic Acids Res. 19: 1349 (1991).
- Control amplifications included the relevant plasmid DNA, and the quality of genomic DNA for PCR was evaluated by amplifying a fragment within the promoter of the barley gene Amy6-4 (Khursheed B and Rogers JC, J. Biol. Chem. 263: 18953-18960 (1988)), specified by primer set 5'-TAGAAACTTTCTGAATCTGCTGTGTCCAGT-3' (SEQ ID NO:20) and 5'-GTACATACAGAATCTGAAGATAGGACAAG-3' (SEQ ID NO:21).
- transgenic plants were allowed to self-pollinate.
- the transgene genetics were assessed by scoring the seedlings and grains by PCR analysis and enzyme assays, respectively, as described below.
- EXAMPLE 2 This example sets forth the materials and methods used to conduct the experiments and generate the data set forth in Example 3 herein.
- mice and conditions were performed with 240 Hubbard High Yield broilers (Fors Farms Inc., Puyallup, WA). One day-old chicks were transferred to electrically heated Petersime Brood-units with raised floors (Petersime Incubator Co., OH). Each of the four experimental diets was randomly distributed among 12 pens and 5 birds randomly assigned to a pen. Feed and water were available ad libitum and 16-hour daylight was maintained. Diet composition and preparation. Chickens were fed 4 diets with the composition given in Table 1: com basal, barley basal (cv.
- Additional ingredients fishmeal, 5%; beef tallow, 5%; dicalcium phosphate, 1.60%; limestone, 1.70%; iodized sodium chloride, 0.20; DL- methionine, 0.20%; vitamin premix, 0.25; trace mineral mix, 0.05%, in each diet.
- Moisture and ash contents were determined according to AOAC methods 930.15 and 942.05, respectively (Association of Official Analytical Chemists (1990) Official methods of Analysis, 15 th ed. AOAC Inc., VA.). Protein content (N x 5.7) was determined with a Leco FP-428 nitrogen analyzer (Leco Corporation, St. Joseph, MI). Neutral and acid detergent soluble fiber, comprising nonstarch polysaccharides and Klason lignin was determined on an Ankom 200 fiber analyzer (Ankom Technology Corporation, Fairport, NY). Flour (0.5 g) was placed in filter bags and extracted sequentially in the reaction vessel with neutral and acid detergent solution under positive pressure at 99°C.
- Starch was digested with ⁇ -amylase in the rinsing solution after draining the neutral detergent. Fiber content is calculated as the difference between dry-weights before and after extraction. Activity of endogenous and heat-stable ⁇ -glucanase was measured with azo- ⁇ -glucan substrate (Megazyme, Australia). Soluble protein was determined with the detergent compatible Lowry phosphomolybdic reagent (D c , Bio-Rad Laboratories, CA) and enzyme activity expressed as ⁇ g enzyme g "1 soluble protein. Average ⁇ -glucanase activity for malts of Golden Promise and line 5607 were 0.054 ⁇ g g "1 and 4.647 ⁇ g g " ', respectively.
- ⁇ -glucan contents of diets and malts were estimated according to McCleary and Mugford (McCleary, V.B. & Mugford, D.C. (1997) /. AOAC Internat. 80:580-583) using the Megazyme kit. Water-soluble ⁇ -glucans were determined according to J ⁇ rgensen (J ⁇ rgensen, K.G. (1988) Carlsberg. Res. Commun. 53:277-285).
- Viscosity and ⁇ -glucanase measurements One gram of glandular stomach, small intestine, caeca content or excreta was weighed out into a centrifuge tube and one ml water added. The contents was mixed thoroughly and centrifuged at 18,000 rpm for 20 min. The supernatant was collected in 2 ml-Eppendorf tubes and recentrifuged (13,000 rpm, 5 min). Supematants free of particles were collected and used for measurements at 30°C with a Brookfield Viscometer fitted with the CP-40 cone (Brookfield Engineering Laboratories, Inc. Massachusetts).
- the samples were then analyzed for heat-stable (l,3-l,4)- ⁇ -glucanase activity as follows: the sample (50 ⁇ l) was mixed with buffer containing 40 mM sodium acetate and 40 mM sodium phosphate, pH 4.6, and incubated for 30 min at 65°C. An aliquot of this was used to monitor the hydrolysis of azo- ⁇ -glucan (Megazyme, Australia) at 65°C for 30 min. Soluble protein in the extract was measured with the Bio-Rad Dc method. Activity of recombinant enzyme was expressed in ⁇ g g "1 soluble protein.
- Soluble ⁇ -glucans were isolated by three extractions with water as follows: the pellet was suspended in 1 ml of water, vortexed vigorously and incubated in boiling water for 10 min. Contents were cooled to room temperature, vortexed, and centrifuged (6,000 rpm, 10 min). Supernatant was collected into graduated tube. Pellet was resuspended in another 1 ml water, vortexed, and centrifuged (6,000 rpm, 10 min). Supernatant was collected and added to the graduate tube. The pellet was resuspended in 0.5 ml water, vortexed, centrifuged (6,000 rpm, 10 min), the supernatant pooled to the graduate tube and the pellet saved.
- the volumes of supematants in the graduate tubes were adjusted to 2.5 ml with water and 20 ⁇ l of a 2 M sodium phosphate buffer (pH 6.5) was added.
- Insoluble ⁇ -glucans are retrieved from the pellet remaining after extraction of the soluble ⁇ -glucans.
- the pellet was suspended in 1 ml of 50 mM HC1, the lid secured tubes incubated for 10 min in a boiling water bath. After cooling and vortexing the suspension was centrifuged at 4000 rpm for 10 min and the supernatant collected in a graduated tube. The extraction was repeated and the combined supematants adjusted to 2 ml and 0.5 ml 2 M Na-PO 4 -buffer (pH 6.5) added.
- Digestion of soluble and insoluble ⁇ -glucans with lichenase was performed by adding 30 ml ( ⁇ 1U) of lichenase to the graduated tubes, mixing contents well, and incubating tubes in a water bath with shaking at 50°C for 1 hr. After lichenase digestion, aliquots (0.1 ml) were accurately dispensed on the bottom of 3 Eppendorf tubes. Fifty ⁇ l of ⁇ -glucosidase was added to the two of these tubes and to the third, the blank, 50 ⁇ l of sodium acetate buffer (50 mM, pH 4.0) was added.
- sodium acetate buffer 50 mM, pH 4.0
- Tubes were incubated at 50°C for 30 min, and 1 ml of glucose oxidase/peroxidase reagent (Megazyme) was added to all tubes and incubated for further 30 min. Blank (sodium acetate buffer+water) and glucose standards (15 ⁇ l and 30 ⁇ l) were included in each set of samples analyzed. Amount of ⁇ -glucans was estimated from absorbance of glucose at 510 nm. Calculations of amount of ⁇ - glucans were done according to McCleary and Glennie-Holmes (Association of Official Analytical Chemists (1990), Official Methods of Analysis, 15 th Ed., AOAC Inc., VA).
- acetone powders were suspended in 300 ⁇ l of a solution containing 0.1 M Tris-HCl pH 8.8, 1% SDS, 0.1% ⁇ -mercaptoethanol and the capped tubes incubated for 5 min in a boiling water bath. After cooling and centrifugation at 13000 rpm (10 min) the supematants were collected. The proteins were separated by electrophoresis in a 15% polyacrylamide gel, containing 1% SDS, and transferred on to a nitrocellulose membrane using a BioRad semidry blotter and a solution containing 2.93 g 1 _1 glycine 5.81 g l -1 Tris and 200 ml methanol. Electroblotting was performed for 45 min at 15V.
- the membrane was incubated for 1 h in a solution of 20 mM Tris-HCl pH 7.5, 0.5 M NaCl, 0.05% Tween-20 and 5% non-fat milk to block reacting groups. It was then incubated in the above solution overnight with an antibody raised against the heat-stable (l,3-l,4)- ⁇ -glucanase expressed in E. coli (dilution 1:2000). Excess antibody was removed by three successive washes with 20 mM Tris-HCl pH 7.5 containing 0.5 M NaCl, 0.05% Tween 20 and 5% non-fat milk.
- the blots were incubated with the secondary antibody (peroxidase-linked goat-antirabbit monoclonal IgG, Sigma Chemical Co., St. Louis, MO) at 1:20000 dilution in the non-fat milk solution, excess antibody removed and stained for peroxidase activity in a solution of 0.01% H 2 O 2 , 0.5 mg ml "1 4-chloro- ⁇ -naphtol in Tris-HCl pH 7.5.
- the secondary antibody peroxidase-linked goat-antirabbit monoclonal IgG, Sigma Chemical Co., St. Louis, MO
- EXAMPLE 3 This example shows the effect of malt made from genetically altered barley, that expresses a heat-stable (l,3-l,4)- ⁇ -glucanase (SEQ ID NO:l), on the nutritional quality of chicken feed made from barley.
- the barley diet had considerable more fiber extractable with neutral and acid detergent than the corn diet and the difference is accentuated by the addition of malt.
- the amount of heat-stable (l,3-l,4)- ⁇ -glucanase in the malt of the transgenic line was 4.28 ⁇ g g "1 soluble protein, which resulted in a content of 0.47 ⁇ g g "1 soluble protein in the barley diet with the transgenic malt. No ⁇ -glucanase was detected in the diet containing Golden Promise malt. Table 2. Analyses of diets and ingredients
- the dry matter of the excreta (Table 3) increased on all diets as the broiler chicks grew with limited differences at a given day.
- transgenic malt addition to normal barley reduced the occurrence of the sticky dropping to a frequency of 2 to 7 among the 60 chicks on this diet at a given day.
- a further increase of the amount of transgenic barley added, is likely to eliminate the undesirable droppings completely.
- a reduction of the limited amount of soluble ⁇ -glucans by the enzyme is also seen in the glandular stomach and the caecum.
- the amount of insoluble ⁇ -glucans in the digesta from the glandular stomach and intestine and in the excrements of the chicks on barley diet is low (1.2, 0.9, 0.6 mg g " ').
- An effect of the enzyme is only evident in the intestine.
- the amount of ⁇ -glucans in the caecum of the broilers on barley diet is below 1 mg g ⁇ ⁇ but the enzyme addition in the malt decreased both the soluble and insoluble ⁇ -glucan content.
- the caeca which are enlarged in broilers on barley diet compared to the size seen in the chicks on com diet, concentrate the enzyme to an activity of 5.2 ⁇ g g "1 and also the excreta accumulate high amounts of active heat-stable (l,3-l,4)- ⁇ - glucanase. This matches with a strong reduction of the ⁇ -glucans in the caeca and excrements (FIGURE 4).
- the heat-stable ⁇ -glucanase was characterized by SDS- PAGE, followed by Western blotting and decoration with a specific antibody. Purified, unglycosylated enzyme expressed in E. coli, and purified, glycosylated enzyme from transgenic barley were employed as standards.
- Glycosylated, recombinant (l,3-l,4)- ⁇ -glucanase was present in the extracts from the intestine, excreta and caeca, but is absent in the caeca of the birds fed co , barley, or barley with Golden Promise malt.
- the limited amount of enzyme present in the glandular stomach was not revealed in the Western blot.
- the presence of the glycosylated enzyme in the caeca testifies to its origin from the transgenic barley, and excludes the possibility that the (l,3-l,4)- ⁇ -glucanase is produced by the uric acid decomposing anaerobic bacteria of the caeca.
- Viscosity of digesta in the gastrointestinal tract The measurements confirm that a barley diet leads to a higher viscosity in the glandular stomach and intestine than a com diet.
- the addition of barley malt or transgenic malt reduces the viscosity in these two parts of the digestive tract.
- Co diet resulted in a higher viscosity of the caecum contents than the barley diet and the barley diet with an addition of normal malt.
- Transgenic malt increased the viscosity towards and above that observed for com diet.
- the high viscosity in the caeca is due to accumulation of volatile fatty acids, an important nutrient for chickens.
- transgenic malt not to be toxic.
- the chicks did not develop the extensive unhygienic sticky droppings characteristic for chickens fed on barley diets.
- Advantages in using the transgenic malt containing the thermostable (1,3- 1 ,4)- ⁇ -glucanase (SEQ ID NO:l) for chicken feed are several.
- the required malt corresponding in amount to the feed ingredients such as fish meal, beef tallow or dicalcium phosphate can be added to any normal barley grown in a given area and constituting the major basis of the feed. It provides an alternative to the use of grain com, which is more extensively used and needed as food for humans than barley. Co grain is also 30-50% more expensive.
- the barley feed used in this study contained 8 mg g "1 water-soluble and 22 mg g "1 insoluble (l,3-l,4)- ⁇ -glucan (Table 4).
- the barley diet including the transgenic malt had a somewhat higher soluble (12 mg g "1 ) and a lower insoluble (14 mg g "1 ) (l,3-l,4)- ⁇ -glucan content.
- Table 4 Water-extractable and total ⁇ -glucan content in diets and malts
- the concentration of the insoluble and soluble (l,3-l,4)- ⁇ -glucans in the glandular stomach was reduced to 5 and 25% of that in the diet, respectively.
- a reduction to 13% was also registered in the chickens fed the diet with transgenic malt. This reduction is possibly effected by the HC1 secreted with 93 mM l "1 in the stomach together with pepsinogen. (Denbow, M. (2000) in Sturkie 's Avian Physiology, ed. Whittow, G.C. (Acad. Press, New York) 5 th Ed. pp. 299-325; Long, J.F. (1967) Am. J. Physiol.
- the pH of the gastric secretions in the gizzard and glandular stomach is 2 to 3, although the contents of the stomach has usually a higher pH due to the presence of ingesta (Denbow, M. (2000) in Sturkie' s Avian Physiology, ed. Whittow, G.C. (Acad.Press, New York) 5 th ed. pp. 299-325).
- ingesta Denbow, M. (2000) in Sturkie' s Avian Physiology, ed. Whittow, G.C. (Acad.Press, New York) 5 th ed. pp. 299-325.
- This depolymerization of the soluble (l,3-l,4)- ⁇ -glucan was carried out by the heat-stable (l,3-l,4)- ⁇ -glucanase present in the intestine with an activity corresponding to that in the diet.
- caeca Development of longer caeca is observed in birds on high fiber diets (McLelland, J. (1989) J. Exp. Zool. Suppl. 3:2-9). In agreement therewith a larger size of the caeca was observed in the chickens on barley diets with the high fiber content than in the birds on co diet with the lower fiber content.
- the main function of caeca in birds is nutritional. They take part in the digestion of fine particulate matter, food fiber, and in the production of volatile fatty acids, mainly acetate, propionate and butyrate (Braun, E.J. & Duke (1989) "Function of the Avian Cecum,” J. Exp. Zool. Suppl. 3:1-130; Goldstein, D.L.
- CIM medium contains Murashige and Skoog medium (Murashige and Skoog, Physiol. Plant 15:473-497 (1962)) supplemented with 30 g/L" 1 maltose, 1.0 mg/L thiamine- HCL, 0.25 g/L my ⁇ -inositol, 1.0 g/L casein hydrolysate, 0.69 g/L L-proline, and 2.5 mg/L" 1 dicamba, solidified by 3.5 g/L phytagel.
- SGM medium (pH 5.6) consists of Murashige and Skoog medium with the ammonium nitrate concentration changed to 165 mg/L supplemented with 62 g/L maltose, 0.4 mg/L thiamine-HCL, 0.1 g/L my ⁇ -inositol, 1.0 g/L casein hydrolysate, 0.75 g/L glutamine, and 1 mg/L 6-benzyl- amino purine, solidified with 3.5 g/L phytagel.
- RGM medium is CIM medium without any dicamba added. Immature zygotic embryos (1.5 - 2.5 mm) are excised from barley, such as barley variety Golden Promise, and bisected longitudinally.
- the cut embryos are placed, scutellum-side down, onto CIM medium without bialaphos and incubated at 24°C in the dark for 12 to 24 hours.
- the immature embryos are then transferred to CIM medium without bialaphos, but which includes 0.4 M mannitol for 4 to 6 hours, then bombarded with gold particles bearing linearized plasmid DNA.
- One day after bombardment the embryos are transferred to CIM medium containing 5 mg/L bialaphos.
- calli are kept on CIM medium including bialaphos for two weeks at 24°C in the dark.
- the calli are transferred to fresh CIM medium containing bialaphos and incubated at 24°C in the dark for two weeks.
- the third round of selection calli are transferred to fresh CIM medium containing bialaphos and incubated for two weeks at 24°C in the dark.
- calli are transferred to fresh CIM medium containing bialaphos and incubated for two weeks at 24°C in the dark.
- calli are transferred to shoot generation medium (SGM medium) containing 1 mg/L bialaphos, and incubated at 24°C (16 hours light/8 hours dark) for 4 weeks.
- the resulting plantlets are transferred to root generation medium (RGM medium) containing 1 mg/L bialaphos, and incubated at 24°C (16 hours light/8 hours dark) for 2 weeks.
- the resulting plants are transferred to soil and grow into maturity under a light regime of 16 hours light (16°C) and 8 hours dark (12°C). Mature seed can be harvested approximately three to four months later.
- a representative method for genetically transforming barley plants using Asrobacterium contains 5 ⁇ m copper sulfate.
- Callus induction medium (CIM, pH 5.8, contains Murashige and Skoog medium supplemented with 30 g/L -1 maltose, 1 mg/L thiamine-HCL, 0.25 g/L my ⁇ -inositol, 1.0 g/L casein hydrolysate, 0.69 g/L L-proline, and 2.5 mg/L dicamba, solidified by 3.5 g/L phytagel.
- Plant generation medium (SGM), pH 5.6, consists of Murashige and Skoog medium with the ammonium nitrate concentration changed to 165 mg/L supplemented with 62 g/L maltose, 0.4 mg/L thiamine-HCL, 0.1 g/L my ⁇ -inositol, 1 g/L casein hydrolysate, 0.75 g/L glutamine, and 1 mg/L 6-benzyl-amino purine, solidified with 3.5 g/L phytagel.
- Root generation medium (RGM) is CIM without any dicamba added. Immature zygotic embryos (1.5 - 2.5 mm) from a barley variety, such as Golden Promise, are excised and bisected longitudinally.
- the cut embryos are placed on CIM medium without bialaphos, and incubated at 24°C for two days in the dark.
- a culture of Agrobacterium containing the nucleic acid molecule to be transferred into the barley genome, is added dropwise to the zygotic embryos and cocultivated at 24°C in the dark for 48 hours.
- the Agrobacterium cells are then washed off with LB medium until no more bacteria are visible, then the embryos are washed once more with LB medium containing 200 mg/L timentin and excess liquid is allowed to drain off onto sterile filter paper.
- Individual embryos are transferred to CIM medium containing 4 mg/L bialaphos and 200 mg/L timentin.
- calli are kept on CIM medium containing bialaphos and timentin for two weeks at 24°C in the dark.
- the calli are transferred to fresh CIM medium containing bialaphos and timentin and incubated at 24°C for two weeks in the dark.
- the third round of selection calli are transferred to fresh CIM medium containing bialaphos and timentin and incubated at 24°C for two weeks in the dark.
- Calli are then transferred to shoot generation medium (SGM) containing timentin and 3 mg/L bialaphos, and incubated at 24°C (16 hours light/8 hours dark) for four weeks.
- SGM shoot generation medium
- the resulting plantlets are transferred to RGM medium containing timentin and 3 mg/L bialaphos, and incubated at 24°C (16 hours light/8 hours dark) for four weeks.
- the resulting plants are transferred to soil and grown to maturity under a light regime of 16 hours light (16°C) and 8 hours dark (12°C). Approximately three to four months later, mature seeds can be harvested. While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Animal Husbandry (AREA)
- Birds (AREA)
- Mycology (AREA)
- Physiology (AREA)
- Botany (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Fodder In General (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2001236826A AU2001236826A1 (en) | 2000-02-10 | 2001-02-09 | Methods and compositions that utilize barley as a foodstuff for animals |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18147300P | 2000-02-10 | 2000-02-10 | |
US60/181,473 | 2000-02-10 | ||
US24712600P | 2000-11-09 | 2000-11-09 | |
US60/247,126 | 2000-11-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2001059141A2 true WO2001059141A2 (en) | 2001-08-16 |
WO2001059141A3 WO2001059141A3 (en) | 2001-12-06 |
Family
ID=26877204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/004222 WO2001059141A2 (en) | 2000-02-10 | 2001-02-09 | Methods and compositions that utilize barley as a foodstuff for animals |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2001236826A1 (en) |
WO (1) | WO2001059141A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013136069A2 (en) * | 2012-03-14 | 2013-09-19 | The University Of Birmingham | Dietary supplement and assay method |
WO2022136889A1 (en) * | 2020-12-24 | 2022-06-30 | Pepsis Limited | Avian food additive |
WO2023225459A2 (en) | 2022-05-14 | 2023-11-23 | Novozymes A/S | Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD275704A1 (en) * | 1988-09-23 | 1990-01-31 | Akad Wissenschaften Ddr | PROCESS FOR PRODUCING BARLEY PLANTS |
WO1990009436A1 (en) * | 1989-02-16 | 1990-08-23 | Carlsberg A/S | A THERMOSTABLE (1,3-1,4)-β-GLUCANASE |
EP0449376A2 (en) * | 1990-03-23 | 1991-10-02 | Gist-Brocades N.V. | Production of enzymes in seeds and their use |
DD296407A5 (en) * | 1990-07-10 | 1991-12-05 | Industrieforschungszentrum Biotechnologie Gmbh,De | METHOD OF DRY FEED PROCESSING |
WO1995002042A1 (en) * | 1993-07-07 | 1995-01-19 | Biomolecular Research Institute Ltd | (1 → 3, 1 → 4)-β-GLUCANASE OF ENHANCED STABILITY |
WO1995014099A2 (en) * | 1993-11-16 | 1995-05-26 | The Regents Of The University Of California | Process for protein production in plants |
WO1997032986A2 (en) * | 1996-03-05 | 1997-09-12 | Friedrich Weissheimer Malzfabrik | Process for the production of degradation and/or conversion products of storage substances present in transgenic plant material with the help of a malting process |
WO1998003655A2 (en) * | 1996-07-23 | 1998-01-29 | Sapporo Breweries Ltd. | Gene expression regulatory dna, expression cassette, expression vector and transgenic plant |
WO1998003627A1 (en) * | 1996-07-23 | 1998-01-29 | Cargill France N.V. Doing Business As Cargill Malt Division N.V. | Process for the preparation of malted cereals |
WO1998005788A1 (en) * | 1996-08-05 | 1998-02-12 | Mogen International N.V. | Improved process for the production of alcoholic beverages using maltseed |
WO1999016890A2 (en) * | 1997-09-30 | 1999-04-08 | The Regents Of The University Of California | Production of proteins in plant seeds |
-
2001
- 2001-02-09 WO PCT/US2001/004222 patent/WO2001059141A2/en active Application Filing
- 2001-02-09 AU AU2001236826A patent/AU2001236826A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD275704A1 (en) * | 1988-09-23 | 1990-01-31 | Akad Wissenschaften Ddr | PROCESS FOR PRODUCING BARLEY PLANTS |
WO1990009436A1 (en) * | 1989-02-16 | 1990-08-23 | Carlsberg A/S | A THERMOSTABLE (1,3-1,4)-β-GLUCANASE |
EP0449376A2 (en) * | 1990-03-23 | 1991-10-02 | Gist-Brocades N.V. | Production of enzymes in seeds and their use |
DD296407A5 (en) * | 1990-07-10 | 1991-12-05 | Industrieforschungszentrum Biotechnologie Gmbh,De | METHOD OF DRY FEED PROCESSING |
WO1995002042A1 (en) * | 1993-07-07 | 1995-01-19 | Biomolecular Research Institute Ltd | (1 → 3, 1 → 4)-β-GLUCANASE OF ENHANCED STABILITY |
WO1995014099A2 (en) * | 1993-11-16 | 1995-05-26 | The Regents Of The University Of California | Process for protein production in plants |
WO1997032986A2 (en) * | 1996-03-05 | 1997-09-12 | Friedrich Weissheimer Malzfabrik | Process for the production of degradation and/or conversion products of storage substances present in transgenic plant material with the help of a malting process |
WO1998003655A2 (en) * | 1996-07-23 | 1998-01-29 | Sapporo Breweries Ltd. | Gene expression regulatory dna, expression cassette, expression vector and transgenic plant |
WO1998003627A1 (en) * | 1996-07-23 | 1998-01-29 | Cargill France N.V. Doing Business As Cargill Malt Division N.V. | Process for the preparation of malted cereals |
WO1998005788A1 (en) * | 1996-08-05 | 1998-02-12 | Mogen International N.V. | Improved process for the production of alcoholic beverages using maltseed |
WO1999016890A2 (en) * | 1997-09-30 | 1999-04-08 | The Regents Of The University Of California | Production of proteins in plant seeds |
Non-Patent Citations (11)
Title |
---|
BLOM SORENSEN M ET AL: "HORDEIN PROMOTER METHYLATION AND TRANSCRIPTIONAL ACTIVITY IN WILD-TYPE AND MUTANT BARLEY ENDOSPERM" MOLECULAR AND GENERAL GENETICS,DE,SPRINGER VERLAG, BERLIN, vol. 250, no. 6, 10 April 1996 (1996-04-10), pages 750-760, XP002054426 ISSN: 0026-8925 * |
D VON WETTSTEIN: "Breeding of Value-Added Barley by Mutation and Protein Engineering" PROCEEDINGS INTERNATIONAL SYMPOSIUM CROP IMPROVEMENTS,XX,XX, 1995, pages 67-76, XP002082302 * |
HESSELMANN, K., ET AL.: "Influence of increasing levels of beta-glucanase on the productive value of barley diets for broiler chickens" ANIMAL FEED SCIENCE AND TECHNOLOGY, vol. 7, 1982, pages 351-358, XP001010456 * |
HORVATH HENRIETTE ET AL: "The production of recombinant proteins in transgenic barley grains." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 97, no. 4, 15 February 2000 (2000-02-15), pages 1914-1919, XP002173225 Feb. 15, 2000 ISSN: 0027-8424 * |
JENSEN L G ET AL: "TRANSGENIC BARLEY EXPRESSING A PROTEIN-ENGENEERED, THERMOSTABLE (1,3-1,4)-BETA-GLUCANASE DURING GERMINATION" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA,US,NATIONAL ACADEMY OF SCIENCE. WASHINGTON, vol. 93, no. 8, 1 April 1996 (1996-04-01), pages 3487-3491, XP002024710 ISSN: 0027-8424 * |
JENSEN LISBETH GATH ET AL: "Inheritance of a codon-optimized transgene expressing heat stable (1,3-1,4)-beta-glucanase in scutellum and aleurone of germinating barley." HEREDITAS (LUND), vol. 129, no. 3, December 1998 (1998-12), pages 215-225, XP001010587 ISSN: 0018-0661 * |
OLSEN O ET AL: "HYBRID BACILLUS (1-3,1-4)-B-GLUCANASES: ENGINEERING THERMOSTABLE ENZYMES BY CONSTRUCTION OF HYBRID GENES" MOLECULAR AND GENERAL GENETICS,DE,SPRINGER VERLAG, BERLIN, vol. 225, no. 2, 1 February 1991 (1991-02-01), pages 177-185, XP000175172 ISSN: 0026-8925 * |
PHILLIPSON B A: "EXPRESSION OF A HYBRID (1-3,1-4)-BETA-GLUCANASE IN BARLEY PROTOPLASTS" PLANT SCIENCE,IE,LIMERICK, vol. 91, no. 2, 1993, pages 195-206, XP000567223 ISSN: 0168-9452 * |
RICKES, E.L., ET AL.: "The isolation and biological properties of a beta-glucanase from Bacillus subtilis" ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, vol. 69, 1962, pages 371-375, XP001010473 * |
ROSE, R.J., ET AL.: "Use of barley in high-efficiency broiler rations" POULTRY SCIENCE, vol. 41, 1962, pages 124-130, XP001010605 * |
VON WETTSTEIN DITER ET AL: "Improved barley broiler feed with transgenic malt containing heat-stable (1,3-1,4)-beta-glucanase." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 97, no. 25, 5 December 2000 (2000-12-05), pages 13512-13517, XP002173224 December 5, 2000 ISSN: 0027-8424 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013136069A2 (en) * | 2012-03-14 | 2013-09-19 | The University Of Birmingham | Dietary supplement and assay method |
WO2013136069A3 (en) * | 2012-03-14 | 2014-01-30 | The University Of Birmingham | Animal feed supplement and assay method |
WO2022136889A1 (en) * | 2020-12-24 | 2022-06-30 | Pepsis Limited | Avian food additive |
GB2604026B (en) * | 2020-12-24 | 2025-01-15 | Pepsis Ltd | Avian food additive |
WO2023225459A2 (en) | 2022-05-14 | 2023-11-23 | Novozymes A/S | Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections |
Also Published As
Publication number | Publication date |
---|---|
AU2001236826A1 (en) | 2001-08-20 |
WO2001059141A3 (en) | 2001-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3471795B2 (en) | Phytase expression in plants | |
RU2129609C1 (en) | Method of catalysis of a substrate fermentation reaction, a method of improvement of food ration intake by animal, plasmid pmog413, plasmid pmog429 and plasmid pmog227 | |
US6127600A (en) | Methods of increasing accumulation of essential amino acids in seeds | |
US5850024A (en) | Reduction of endogenous seed protein levels in plants | |
US20060282917A1 (en) | Modified starch, uses, methods for production thereof | |
PL171271B1 (en) | Method for the production of a fungal polypeptide with PL PL PL xylanase activity | |
US6022846A (en) | Expression of phytase in plants | |
PL194895B1 (en) | Methods of and compositions for modifying the levels of secondary metabolic compounds in plants | |
CN102851306B (en) | Transgenic aloe plants for protein production and methods related thereto | |
US20120090231A1 (en) | Transgenic cover plants containing hemicellulase and cellulase which degrade lignin and cellulose to fermentable sugars | |
WO2001059141A2 (en) | Methods and compositions that utilize barley as a foodstuff for animals | |
US8076534B2 (en) | Chlamydomonas glucan dikinase gene, enzyme and modified starch, uses, methods for production thereof | |
JP2002209462A (en) | Protein production in transgenic plant seeds | |
Han et al. | Over‐expression of (1, 3; 1, 4)‐β‐D‐glucanase isoenzyme EII gene results in decreased (1, 3; 1, 4)‐β‐D‐glucan content and increased starch level in barley grains | |
US7541515B2 (en) | Method of increasing expression of heterologous proteins in plants | |
CN102876694A (en) | Optimized glucanase gene and recombination plant expression vector and application thereof | |
EP1164194A2 (en) | Protein production in transgenic plant seeds | |
CN109486841B (en) | Method for producing feed complex enzyme by using rice and wheat seeds | |
JP3600614B6 (en) | Expression of phytase in plants | |
AU728203B2 (en) | Stable compositions comprising transgenic plant material | |
JP3600614B2 (en) | Phytase expression in plants | |
Tamás | Molecular farming, using the cereal endosperm as bioreactor | |
Ponstein et al. | Transgenic Plants for Production of Enzymes | |
JP2001204284A (en) | Transgenic rice plant containing non-rice plant amylose synthase gene | |
CA2309342A1 (en) | Protein production in transgenic plant seeds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase in: |
Ref country code: JP |