WO2001050500A2 - White light source - Google Patents
White light source Download PDFInfo
- Publication number
- WO2001050500A2 WO2001050500A2 PCT/RU2000/000544 RU0000544W WO0150500A2 WO 2001050500 A2 WO2001050500 A2 WO 2001050500A2 RU 0000544 W RU0000544 W RU 0000544W WO 0150500 A2 WO0150500 A2 WO 0150500A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- transformer
- columns
- phosphor
- white light
- Prior art date
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000000758 substrate Substances 0.000 claims description 11
- 238000007654 immersion Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 238000001228 spectrum Methods 0.000 abstract description 2
- 230000005855 radiation Effects 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 241001085205 Prenanthella exigua Species 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
- H10H20/8511—Wavelength conversion means characterised by their material, e.g. binder
- H10H20/8512—Wavelength conversion materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
- H10H20/8511—Wavelength conversion means characterised by their material, e.g. binder
Definitions
- This invention relates to light engineering, microelectronic components, and electron materials science.
- White sources are known, for example, as luminescent lamps where radiation excited by low-pressure gaseous discharge of mercury vapors is transformed into visible (“white”) light by phosphor [1].
- the luminescent lamps have some serious drawbacks:
- White light sources are known as solid-state semiconductor light emited diodes (LED) based on gallium nitride and related compounds [2].
- LED solid-state semiconductor light emited diodes
- gallium nitride and related compounds [2].
- short-wave (blue) light emitted by the diode is partially transformed by a phosphor into longer-wave (for example, yellow) light and then, being mixed with the initial blue light, gives the white radiation.
- Standard phosphors are formed by a set of fine (micron- and submicron) crystalline grains of approximately isometric forms arranged chaotically one on another (Fig. 1).
- 2 :Ce phosphor is used in [2].
- the phosphor is distributed in an organic binder. Such a phosphor absorbs the initial blue radiation of the LED and emits yellow light with wave-length 565 nanometers. By mixing the two radiations, white radiation is formed.
- a white light source includes light emitting diode and phosphor transformer.
- the transformer is implemented as single-crystalline phosphor columns arranged on a transparent substrate. The columns are mutually parallel, forms angles 10° to 90° with the substrate, have cross-sections of various shapes. Heights of the columns exceed their diameter. Gaps exist between the columns, the gaps being filled by high-refractive material.
- the light-emitting diode emits light in the range 440-480 nanometers with the absorption coefficient more than 10 6 m "1 , whereas the transformer emits light with the wave-length in the range 560-590 nanometers at the ratio of yellow-light power, generated by the transformer, to the blue-light power conserved after passing the columns, more than 2: 1.
- the transformer is placed on the output surface of the light-emitting diode being connected with it via an immersion medium that has a refraction coefficient lower than the refraction coefficient of the phosphor.
- the ratio of the height of the columns to their diameter is not less than 2.
- the transformer can be faced to the surface of the light-emitting diode by either its substrate or by the columns.
- the volume of the columns takes more than 90% of the transformer.
- Fig. 1 A scheme of the standard phosphor consisting of approximately isometric crystalline grains: 1 - light or electron beam; 2 - transparent substrate.
- Fig. 2. A scheme for propagation of light in columnar crystals: 1 - light or electron beam; 2 - transparent substrate.
- Fig. 3 A scheme of white light source that contains a light-emitting diode, a phosphor transformer, and an immersion connecting layer: 1 - the light-emitting diode; 2 - the immersion layer; 3 - a transparent substrate; 4 - luminescent (phosphor) columns; 5 - gaps between the columns filled with a low-melting-point light-absorbing material.
- Fig. 4. Two versions of the transformer arrangement: a - by the columns faced to the light-emitting diode; b - by the substrate faced to the light-emitting diode.
- the light is channeled by passing it through elongated phosphor crystalline grains. This is implemented with using phosphor having columnar structure proposed in [3]. In such phosphors, the light propagates along the columns reflecting from their walls according to the full internal reflection Fig. 2). Typically, it is undergoing only a small losses.
- the columnar phosphors contain no organic binder.
- FIG. 3 A scheme of the proposed white light source is depicted in Fig. 3.
- An immersion layer is placed between the light source and the transformer.
- the layer can contain various transparent substances such as silicones, polymers, epoxies, low- melting point eutectics such as KCl+NaCl+LiCl+MgCl etc.
- the light from the light-emitting diode arrives through the immersion layer to butt-ends of the columns.
- the blue light propagates along the columns, it is transformed into yellow light that is a "complementary" to the blue one.
- phosphor columns are created that are able a part of the blue light arriving from the light-emitting diode to transform into yellow light.
- the ratio of the formed yellow light to the remaining part of the blue light (after passing the columns) should be (in power or, better, in the number of quantums) about or slightly more than 2:1.
- Phosphor columns are formed of light-c.onductive thermal-conductive inorganic material. They are attached to an inorganic (glass) substrate by a large contact area.
- the good thermal conductivity provides an advantage to the phosphor transformer and, in such a way, to all the light source. This advantage is ensured also by the fact that total volume of the columns takes more than 90% of the transformer. Remaining part of the phosphor, namely gaps between the columns, are filled with electroconductive (accordingly, good-thermal-conductive) high-refractive material.
- the white light source is ensured by the fact that it is characterized by a good spectral matching between the wavelength of the light-emitting diode (450-480 nm) and the maximum exciting spectrum of the phosphor transformer used (440-475 nm).
- High absorption coefficient of the phosphor used (10 6 - 5.10 6 m "1 ) allows to reach a high (more than 50-60%) level abso ⁇ tion of gallium nitride light-emitting diode even at a small (about several micrometers) height of the phosphor columns.
- the yellow light formed contains about 70% quantums; together with 30% remaining quantums of the blue light bright white light is generated.
- the columnar phosphor is produced of a solid solution of ZnS:CdS having the proportion 70:30 to 50:50 doped with copper at concentration 1.10 " to 1.10 " gram/gram (gram Cu/gram ZnS+CdS).
- the columnar phosphor is prepared by vapor deposition according to the patent application [3].
- the structure obtained is filled by a high-refractive low-melting-point material, such as Bi 2 O 3 -B O 3 , is ground and polished.
- a high-refractive low-melting-point material such as Bi 2 O 3 -B O 3
- the white light sources have numerous applications: light sources of domestic and industrial applications;
Landscapes
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU25623/01A AU2562301A (en) | 1999-12-30 | 2000-12-29 | White light source |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU99127926/09A RU2214073C2 (en) | 1999-12-30 | 1999-12-30 | White light source |
RU99127926 | 1999-12-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2001050500A2 true WO2001050500A2 (en) | 2001-07-12 |
WO2001050500A3 WO2001050500A3 (en) | 2001-12-20 |
Family
ID=20228919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2000/000544 WO2001050500A2 (en) | 1999-12-30 | 2000-12-29 | White light source |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2562301A (en) |
RU (1) | RU2214073C2 (en) |
WO (1) | WO2001050500A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2219622C1 (en) * | 2002-10-25 | 2003-12-20 | Закрытое акционерное общество "Светлана-Оптоэлектроника" | Semiconductor white light source |
US6933502B2 (en) * | 2001-08-27 | 2005-08-23 | Canon Kabushiki Kaisha | Radiation detection device and system, and scintillator panel provided to the same |
US7125501B2 (en) | 2003-04-21 | 2006-10-24 | Sarnoff Corporation | High efficiency alkaline earth metal thiogallate-based phosphors |
US7368179B2 (en) | 2003-04-21 | 2008-05-06 | Sarnoff Corporation | Methods and devices using high efficiency alkaline earth metal thiogallate-based phosphors |
WO2009119034A1 (en) | 2008-03-26 | 2009-10-01 | Panasonic Corporation | Semiconductor light-emitting apparatus |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101209488B1 (en) | 2004-07-06 | 2012-12-07 | 라이트스케이프 머티어리얼스, 인코포레이티드 | Efficient, green-emitting phosphors, and combinations with red-emitting phosphors |
EP1801840A4 (en) * | 2004-09-20 | 2010-06-02 | Givargizov Mikhail Evgenievich | Columnar structure, method for the production thereof and devices based thereon |
RU2418340C2 (en) * | 2004-09-29 | 2011-05-10 | Михаил Евгеньевич Гиваргизов | Column structure and device based on said structure |
WO2006049533A2 (en) * | 2004-11-05 | 2006-05-11 | Mikhail Evgenjevich Givargizov | Radiating devices and method for the production thereof |
RU2359362C2 (en) * | 2004-12-22 | 2009-06-20 | Сеул Семикондактор Ко., Лтд. | Light-emitting device |
US7276183B2 (en) | 2005-03-25 | 2007-10-02 | Sarnoff Corporation | Metal silicate-silica-based polymorphous phosphors and lighting devices |
US8906262B2 (en) | 2005-12-02 | 2014-12-09 | Lightscape Materials, Inc. | Metal silicate halide phosphors and LED lighting devices using the same |
RU2301475C1 (en) * | 2005-12-09 | 2007-06-20 | Общество с ограниченной ответственностью Научно-производственное предприятие "Экосвет" | Light-emitting assembly, method for creating fluorescence of light-emitting assembly, and device implementing this method |
KR20090089384A (en) * | 2006-11-10 | 2009-08-21 | 코닌클리즈케 필립스 일렉트로닉스 엔.브이. | Lighting system comprising monolithic ceramic light-emitting converter, composite monolithic ceramic light-emitting converter and method for manufacturing composite monolithic ceramic light-emitting converter |
JP5662141B2 (en) * | 2007-03-30 | 2015-01-28 | ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガン | OLED with improved light outcoupling |
DE202007019100U1 (en) * | 2007-09-12 | 2010-09-02 | Lumitech Produktion Und Entwicklung Gmbh | LED module, LED bulb and LED light for energy-efficient reproduction of white light |
RU2350834C1 (en) * | 2007-11-26 | 2009-03-27 | Юлия Алексеевна Щепочкина | Luminary |
WO2011033431A1 (en) * | 2009-09-17 | 2011-03-24 | Koninklijke Philips Electronics N.V. | Lighting device with off-state white appearance |
RU2555199C2 (en) * | 2010-03-16 | 2015-07-10 | Конинклейке Филипс Электроникс Н.В. | Lighting device |
RU2424598C1 (en) * | 2010-03-30 | 2011-07-20 | Общество с ограниченной ответственностью "Научно-производственный центр оптико-электронных приборов "ОПТЭЛ" (ООО "НПЦ ОЭП "ОПТЭЛ") | Green light-emitting diode using luminophor |
NL2008849C2 (en) * | 2012-05-22 | 2013-11-25 | Robertus Gerardus Alferink | Luminaire for long day-lighting. |
CN105556197B (en) * | 2013-08-01 | 2019-02-01 | 飞利浦照明控股有限公司 | Light emitting device with adapted output spectrum |
RU2549406C1 (en) * | 2013-09-26 | 2015-04-27 | Открытое акционерное общество "Институт пластмасс имени Г.С. Петрова" | Polymer luminescent composite for colourless light production, which is excited by blue light-emitting diode |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58223292A (en) * | 1982-06-19 | 1983-12-24 | 株式会社デンソー | Electroluminescence element |
US5283501A (en) * | 1991-07-18 | 1994-02-01 | Motorola, Inc. | Electron device employing a low/negative electron affinity electron source |
RU2073963C1 (en) * | 1992-03-10 | 1997-02-20 | Куприянов Владимир Дмитриевич | Method for producing flexible electroluminescent light source |
WO1999022394A1 (en) * | 1997-10-27 | 1999-05-06 | Evgeny Invievich Givargizov | Cathodoluminescent screen with a columnar structure, and the method for its preparation |
RU2142661C1 (en) * | 1998-12-29 | 1999-12-10 | Швейкин Василий Иванович | Injection non-coherent light source |
-
1999
- 1999-12-30 RU RU99127926/09A patent/RU2214073C2/en not_active IP Right Cessation
-
2000
- 2000-12-29 WO PCT/RU2000/000544 patent/WO2001050500A2/en active Application Filing
- 2000-12-29 AU AU25623/01A patent/AU2562301A/en not_active Abandoned
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6933502B2 (en) * | 2001-08-27 | 2005-08-23 | Canon Kabushiki Kaisha | Radiation detection device and system, and scintillator panel provided to the same |
US6963070B2 (en) | 2001-08-27 | 2005-11-08 | Canon Kabushiki Kaisha | Radiation detection device and system, and scintillator panel provided to the same |
US6974955B2 (en) | 2001-08-27 | 2005-12-13 | Canon Kabushiki Kaisha | Radiation detection device and system, and scintillator panel provided to the same |
RU2219622C1 (en) * | 2002-10-25 | 2003-12-20 | Закрытое акционерное общество "Светлана-Оптоэлектроника" | Semiconductor white light source |
WO2004038815A1 (en) * | 2002-10-25 | 2004-05-06 | 'svetlana-Optoelektronika' | Semiconductor white light source |
US7125501B2 (en) | 2003-04-21 | 2006-10-24 | Sarnoff Corporation | High efficiency alkaline earth metal thiogallate-based phosphors |
US7368179B2 (en) | 2003-04-21 | 2008-05-06 | Sarnoff Corporation | Methods and devices using high efficiency alkaline earth metal thiogallate-based phosphors |
WO2009119034A1 (en) | 2008-03-26 | 2009-10-01 | Panasonic Corporation | Semiconductor light-emitting apparatus |
US8337032B2 (en) | 2008-03-26 | 2012-12-25 | Panasonic Corporation | Semiconductor light-emitting apparatus |
CN101960619B (en) * | 2008-03-26 | 2013-06-26 | 松下电器产业株式会社 | semiconductor light emitting device |
Also Published As
Publication number | Publication date |
---|---|
WO2001050500A3 (en) | 2001-12-20 |
RU2214073C2 (en) | 2003-10-10 |
AU2562301A (en) | 2001-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001050500A2 (en) | White light source | |
US6417019B1 (en) | Phosphor converted light emitting diode | |
US11050003B2 (en) | Narrow-band red phosphors for LED lamps | |
US11781065B2 (en) | Narrow-band red photoluminescence materials for solid-state light emitting devices and filaments | |
TWI741532B (en) | Led-filaments and led-filament lamps | |
US7083490B2 (en) | Light-emitting devices utilizing nanoparticles | |
RU2526809C2 (en) | Luminescent converter for phosphor-enhanced light source comprising organic and inorganic phosphors | |
RU2422945C2 (en) | Fluorescent illumination, generating white light | |
US10568172B2 (en) | Dimmable solid-state light emitting devices | |
JP5628394B2 (en) | Phosphor conversion semiconductor light emitting device | |
JP5566423B2 (en) | Phosphorescence conversion light emitting device | |
US6294800B1 (en) | Phosphors for white light generation from UV emitting diodes | |
JP5432435B2 (en) | Phosphor conversion light emitting device | |
US20160377262A1 (en) | System and method for providing color light sources in proximity to predetermined wavelength conversion structures | |
US9293668B2 (en) | Phosphor-converted single-color LED including a long-wavelength pass filter | |
US20180204984A1 (en) | Narrow-band red phosphors for led lamps | |
CN1675781A (en) | Saturated phosphor solid state emitter | |
JP2007527118A (en) | Efficient light source using phosphor-converted LED | |
CN1719633A (en) | Apparatus and method for emitting output light using phosphor materials based on group IIA/IIB element selenium sulfide | |
JP4401264B2 (en) | Phosphor, method for manufacturing the same, and light emitting device | |
JP5957464B2 (en) | Illumination system comprising a light source, a radiation conversion element, and a filter | |
JP5795971B2 (en) | Phosphor and light emitting device | |
US12369438B2 (en) | System and method for providing color light sources in proximity to predetermined wavelength conversion structures | |
RU196203U1 (en) | Lighting device | |
US20220174795A1 (en) | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AT AU BG BR BY CA CH CN CZ DE DK EE ES FI GB HU IL IN JP KR LT LU LV PL RU SE SG SI SK UA US VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AT AU BG BR BY CA CH CN CZ DE DK EE ES FI GB HU IL IN JP KR LT LU LV PL RU SE SG SI SK UA US VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |