WO2001036710A1 - Method and device for electric discharge surface treatment - Google Patents
Method and device for electric discharge surface treatment Download PDFInfo
- Publication number
- WO2001036710A1 WO2001036710A1 PCT/JP1999/006348 JP9906348W WO0136710A1 WO 2001036710 A1 WO2001036710 A1 WO 2001036710A1 JP 9906348 W JP9906348 W JP 9906348W WO 0136710 A1 WO0136710 A1 WO 0136710A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- surface treatment
- workpiece
- hard coating
- discharge surface
- electrode
- Prior art date
Links
- 238000004381 surface treatment Methods 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims description 26
- 239000011248 coating agent Substances 0.000 claims abstract description 72
- 238000000576 coating method Methods 0.000 claims abstract description 72
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000003672 processing method Methods 0.000 claims 1
- 230000003647 oxidation Effects 0.000 abstract 2
- 238000007254 oxidation reaction Methods 0.000 abstract 2
- 230000003746 surface roughness Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000012530 fluid Substances 0.000 description 6
- 238000003754 machining Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000002040 relaxant effect Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
Definitions
- the present invention relates to an improvement in a discharge surface treatment method and apparatus for generating a discharge between a discharge surface treatment electrode and a workpiece and forming a hard film on the surface of the workpiece by the discharge energy. is there. Background art
- FIG. 5 shows an apparatus configuration in a discharge surface treatment method disclosed in Japanese Patent Application Laid-Open No. 9-129237.
- reference numeral 1 denotes a discharge formed by compression-molding T i H 2.
- a green compact electrode which is a surface treatment electrode
- 2 is a workpiece
- 3 is a processing tank
- 4 is a working fluid
- 5 is a switching of voltage and current applied to the green compact electrode 1 and the workpiece 2.
- a switching element, 6 is a control circuit for controlling ON / OFF of the switching element 5
- 7 is a processing power supply
- 8 is a formed hard coating.
- the electrode component melted by the discharge energy or the compound of the electrode component melted by the discharge energy and the working fluid component is deposited on the surface of the workpiece, cooled and solidified to form the workpiece.
- a hard coating is formed on the surface. Therefore, the hard coating formed on the workpiece by the discharge surface treatment has a residual tensile stress of about 700 to 80 OMPa. .
- the surface is finished by grinding or lapping to reduce the surface roughness, a part of the hard coating is removed, so that there is a problem that the durability is reduced. Disclosure of the invention
- the present invention has been made to solve the above-mentioned problems of the prior art, and can remove the residual tensile stress of the formed hard coating, and therefore, can prevent the occurrence of cracks. It is an object of the present invention to obtain a discharge surface treatment method and apparatus capable of performing the above.
- the discharge surface treatment electrode and the workpiece are relatively moved, and the discharge energy is supplied between the discharge surface treatment electrode and the workpiece.
- a pressing tool having a predetermined hardness is pressed against a tip of the hard coating with a predetermined pressure, and the tip is relatively moved on the hard coating. It is to let.
- the discharge surface treatment electrode and the workpiece are relatively moved, and the discharge energy supplied between the discharge surface treatment electrode and the workpiece is determined by:
- a pressing tool having a predetermined hardness is repeatedly moved to a tip portion in a pressing direction of the hard coating. It is a relative move on the top.
- the electrode for discharge surface treatment and the workpiece are relatively moved, and a hard film is formed on the surface of the workpiece by discharge energy supplied between the electrode for discharge surface treatment and the workpiece.
- a pressing tool having a predetermined hardness at a tip portion is relatively moved on the hard coating while being vibrated in a pressing direction of the hard coating by a vibrator.
- the discharge surface treatment apparatus moves the discharge surface treatment electrode and the workpiece relative to each other, and discharges the workpiece with the discharge energy supplied between the discharge surface treatment electrode and the workpiece.
- An electric discharge surface treatment apparatus for forming a hard coating on a surface comprising a pressing tool having a predetermined hardness at a tip end.
- a discharge surface treatment apparatus is provided with a pressing tool having a predetermined hardness at a tip connected to a vibrator.
- the present invention is configured as described above, it is possible to remove the residual tensile stress of the formed hard coating, thereby preventing the occurrence of cracks.
- FIG. 1 is a configuration diagram showing a discharge surface treatment apparatus according to Embodiment 1 of the present invention.
- FIG. 2 is an explanatory diagram of a method for removing or relaxing residual tensile stress of a hard coating according to Embodiment 1 of the present invention.
- FIG. 3 is an explanatory diagram of a method for removing or relaxing residual tensile stress of a hard coating according to Embodiment 1 of the present invention.
- FIG. 4 is an explanatory diagram of a method for removing or relaxing residual tensile stress of a hard coating according to Embodiment 2 of the present invention.
- FIG. 5 is an apparatus configuration diagram showing a conventional discharge surface treatment method. BEST MODE FOR CARRYING OUT THE INVENTION
- FIG. 1 is a configuration diagram showing an electric discharge surface treatment apparatus according to Embodiment 1 of the present invention, in which 2 is a workpiece, 3 is a processing tank, 4 is a working fluid, 8 is a hard coating, 9 is a discharge surface treatment electrode, 10 is a chucking device that supports the discharge surface treatment electrode 9, 11 is an X table, 12 is a Y table, 13 is a spindle connected to the chucking device 10, and 14 Is the X-axis drive that drives the X-table 11, 15 is the Y-axis drive that drives the Y-table 12, 16 is the Z-axis drive that drives the spindle 13, 17 is the DC power supply, switching A processing power supply device including an element and a control circuit, and 18 is a control device.
- the workpiece 2 is fixed to the machining tank 3 on the X table 1 1, and the relative movement between the workpiece 2 and the discharge surface treatment electrode 9 is controlled by a command from the control device 18.
- the driving is performed by controlling the driving of the Y-axis driving device 15 and the Z-axis driving device 16.
- the discharge surface treatment electrode 9 is made of a material that forms a predetermined hard coating 8, and a gap between the discharge surface treatment electrode 9 and the workpiece 2 is formed.
- FIG. 2 is an explanatory diagram showing an example of this method, and the same reference numerals as in FIG. 1 indicate the same or corresponding parts.
- Reference numeral 19 denotes a pressing tool having a ball or roller 19a of a predetermined hardness at the tip, and the chucking device 10 holds the pressing tool 19 in place of the discharge surface treatment electrode 9 in FIG. .
- the control device 18 By controlling the drive of the X-axis drive device 14, the Y-axis drive device 15 and the Z-axis drive device 16 in FIG. 1 by the control device 18, the pressing tool 19 and the workpiece 2 are relatively moved.
- the residual tensile stress of the hard coating 8 can be removed or reduced.
- a pressing force acts on the convex portion of the hard coating 8 surface, and the stress generated in the convex portion is a yield stress. Therefore, the surface roughness of the hard coating 8 can be reduced.
- the hardness of the ball or roller at the tip of the pressing tool 19a and the pressure applied to the hard coating 8 depend on the desired conditions such as the degree of residual tensile stress removal of the hard coating and the surface roughness required for the hard coating. It can be determined in advance by experiment.
- the hardness of the ball or roller 19 a at the tip of the pressing tool 19 is higher than the hardness of the hard coating 8.
- the hard coating 8 is mainly composed of T i C and the ball or roller 19a is a cemented carbide, the ball or roller 19a has a lower hardness than the hard coating 8 but the hard coating 8 Surface It was effective in improving the roughness.
- the pressing tool 19 is directly connected to the chucking device 10 .
- the pressing tool 19 is connected to the chucking device 10 via the spring 20. You may comprise so that it may be connected.
- the spring 20 may be another elastic body.
- FIGS. 2 and 3 show the case where the pressing tool 19 and the workpiece 2 are pressed and moved relative to each other in the machining fluid 4, but after the machining fluid 4 is discharged, the The pressing tool 19 and the workpiece 2 may be pressed and moved relative to each other.
- the pressing force by the pressing tool 19 is sensed by a pressure sensor, by the current sensing of the actuator of the Z-axis drive unit 16 or by the spring displacement when the spring 20 is used. Can be sensed based on the Z-axis position, and the product of the displacement and the spring constant can be calculated.
- the ball or roller 19a of the predetermined hardness of the pressing tool 19 is moved on the hard coating 8 while pressing the hard coating 8 with the predetermined pressure.
- the ball or roller 19 a having a predetermined hardness of 19 may be moved on the hard coating 8 while repeatedly moving in the Z-axis direction. In this case, the hard coating 8 can be pressed more efficiently by using the inertial force of the pressing tool 19 or the like.
- a ball or roller 19 a having a predetermined hardness of the pressing tool 19 is vibrated in the Z-axis direction by a vibrator 21 such as an ultrasonic vibrator. It may be moved on the hard coating 8 while moving. In this case, the hard coating 8 can be pressed more efficiently by the impact force of the pressing tool 19. For example, the surface roughness of the hard coating 8 can be reduced from about 10 xmRmax to about 3 to 4 zmRmax.
- the residual tensile stress of the formed hard coating can be removed or alleviated, and the surface roughness of the formed hard coating can be further reduced.
- the discharge surface treatment method and apparatus according to the present invention are suitable for being used in the surface treatment related industry for forming a hard coating on the surface of a workpiece.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
An electrode (9) for electric discharge surface treatment and an object (2) to be machined are relatively moved, and discharge energy is supplied between the electrode (9) and the object (2) so as to form a hard anodic oxidation coating (8) on the surface of the object (2). A pressing tool (19) whose tip has a predetermined hardness is applied at a predetermined pressure to the hard anodic oxidation coating (8) and moved relatively on the coating (8). Thus, the residual tensile stress of the coating (8) is removed or relaxed, and the roughness of the surface of the coating (8) is smaller.
Description
P / 4 P / 4
1 明 細 書 放電表面処理方法及び装置 技術分野 1 Description Discharge surface treatment method and equipment Technical field
この発明は、 放電表面処理用電極と被加工物との極間に放電を発生さ せ、 その放電エネルギにより、 被加工物表面に硬質被膜を形成する放電 表面処理方法及び装置の改良に関するものである。 背景技術 The present invention relates to an improvement in a discharge surface treatment method and apparatus for generating a discharge between a discharge surface treatment electrode and a workpiece and forming a hard film on the surface of the workpiece by the discharge energy. is there. Background art
従来、 被加工物の表面をコーティングして、 耐食性、 耐磨耗性を付与 する技術としては、 例えば特開平 5— 1 4 8 6 1 5号公報により開示さ れた放電表面処理方法がある。 この技術は、 W C粉末と C o粉末等から なる放電表面処理用電極である圧粉体電極を使用して 1次加工 (堆積加 ェ) を行い、 次に銅電極等の比較的電極消耗の少ない電極に交換して 2 次加工 (再溶融加工) を行う、 2つの工程からなる金属材料の表面処理 方法である。 この従来技術は、 高硬度で密着力の大きい硬質被膜を鋼材 に対して形成するものである。 Conventionally, as a technique of coating the surface of a workpiece to impart corrosion resistance and abrasion resistance, for example, there is a discharge surface treatment method disclosed in Japanese Patent Application Laid-Open No. 5-148615. In this technology, primary processing (deposition processing) is performed using a green compact electrode, which is an electrode for discharge surface treatment composed of WC powder and Co powder, etc. This is a surface treatment method for metal materials that consists of two steps, in which the electrode is replaced with a smaller number of electrodes and secondary processing (remelting processing) is performed. In this conventional technique, a hard coating having high hardness and high adhesion is formed on a steel material.
第 5図は、 特開平 9 - 1 9 2 9 3 7号公報により開示された放電表面 処理方法における装置構成を示すものであり、 図において、 1は T i H 2を圧縮成形してなる放電表面処理用電極である圧粉体電極、 2は被加 ェ物、 3は加工槽、 4は加工液、 5は圧粉体電極 1 と被加工物 2に印加 する電圧及び電流のスィツチングを行うスィツチング素子、 6はスィッ チング素子 5のオン · オフを制御する制御回路、 7は加工電源装置、 8 は形成された硬質被膜である。 このような構成による放電表面処理によ り、 鉄鋼、 超硬合金等の表面に強固な密着力を持つ硬質被膜を形成する。
以上のような従来技術においては、 放電エネルギにより溶融した電極 成分又は放電エネルギにより溶融した電極成分と加工液成分との化合物 が被加工物表面に堆積し、 冷却され凝固することにより、 被加工物表面 に硬質被膜が形成される。 従って、 このような放電表面処理により被加 ェ物に形成された硬質被膜には、 7 0 0〜 8 0 O M P a程度の残留引張 応力が存在するため、 クラックが発生しやすいという問題点がある。 ま た、 表面粗さをより小さくするために、 研削又はラッピング等により仕 上げると、 硬質被膜の一部が除去されるため、 耐久性の低下を招くとい う問題点がある。 発明の開示 FIG. 5 shows an apparatus configuration in a discharge surface treatment method disclosed in Japanese Patent Application Laid-Open No. 9-129237. In the figure, reference numeral 1 denotes a discharge formed by compression-molding T i H 2. A green compact electrode which is a surface treatment electrode, 2 is a workpiece, 3 is a processing tank, 4 is a working fluid, and 5 is a switching of voltage and current applied to the green compact electrode 1 and the workpiece 2. A switching element, 6 is a control circuit for controlling ON / OFF of the switching element 5, 7 is a processing power supply, and 8 is a formed hard coating. By the discharge surface treatment with such a configuration, a hard coating having strong adhesion is formed on the surface of steel, cemented carbide, or the like. In the prior art described above, the electrode component melted by the discharge energy or the compound of the electrode component melted by the discharge energy and the working fluid component is deposited on the surface of the workpiece, cooled and solidified to form the workpiece. A hard coating is formed on the surface. Therefore, the hard coating formed on the workpiece by the discharge surface treatment has a residual tensile stress of about 700 to 80 OMPa. . In addition, when the surface is finished by grinding or lapping to reduce the surface roughness, a part of the hard coating is removed, so that there is a problem that the durability is reduced. Disclosure of the invention
この発明は、 前記のような従来技術の問題点を解決するためになされ たものであり、 形成された硬質被膜の残留引張応力を除去することがで き、 従って、 クラックの発生を防止することができる放電表面処理方法 及び装置を得ることを目的とする。 The present invention has been made to solve the above-mentioned problems of the prior art, and can remove the residual tensile stress of the formed hard coating, and therefore, can prevent the occurrence of cracks. It is an object of the present invention to obtain a discharge surface treatment method and apparatus capable of performing the above.
また、 耐久性の低下を招くことなく、 被加工物表面に形成された硬質 被膜の表面粗さをより小さくすることができる放電表面処理方法及び装 置を得ることを目的とする。 ' It is another object of the present invention to provide a discharge surface treatment method and apparatus capable of further reducing the surface roughness of a hard coating formed on the surface of a workpiece without reducing durability. '
この発明に係る放電表面処理方法は、 放電表面処理用電極と被加工物 を相対移動せしめ、 前記放電表面処理用電極と前記被加工物との極間に 供給する放電エネルギにより、 前記被加工物表面に硬質被膜を形成する 放電表面処理方法において、 前記硬質被膜形成後に、 先端部に所定の硬 度を有する押し付け工具を前記硬質被膜に所定の圧力で押圧し、 前記硬 質被膜上を相対移動させるものである。 In the discharge surface treatment method according to the present invention, the discharge surface treatment electrode and the workpiece are relatively moved, and the discharge energy is supplied between the discharge surface treatment electrode and the workpiece. In the electric discharge surface treatment method for forming a hard coating on a surface, after the hard coating is formed, a pressing tool having a predetermined hardness is pressed against a tip of the hard coating with a predetermined pressure, and the tip is relatively moved on the hard coating. It is to let.
また、 放電表面処理用電極と被加工物を相対移動せしめ、 前記放電表 面処理用電極と前記被加工物との極間に供給する放電エネルギにより、
前記被加工物表面に硬質被膜を形成する放電表面処理方法において、 前 記硬質被膜形成後に、 先端部に所定の硬度を有する押し付け工具を前記 硬質被膜の押圧方向に反復移動させながら、 前記硬質被膜上を相対移動 させるものである。 Further, the discharge surface treatment electrode and the workpiece are relatively moved, and the discharge energy supplied between the discharge surface treatment electrode and the workpiece is determined by: In the electric discharge surface treatment method for forming a hard coating on the surface of the workpiece, after the hard coating is formed, a pressing tool having a predetermined hardness is repeatedly moved to a tip portion in a pressing direction of the hard coating. It is a relative move on the top.
また、 放電表面処理用電極と被加工物を相対移動せしめ、 前記放電表 面処理用電極と前記被加工物との極間に供給する放電エネルギにより、 前記被加工物表面に硬質被膜を形成する放電表面処理方法において、 前 記硬質被膜形成後に、 先端部に所定の硬度を有する押し付け工具を振動 子により前記硬質被膜の押圧方向に振動させながら、 前記硬質被膜上を 相対移動させるものである。 Further, the electrode for discharge surface treatment and the workpiece are relatively moved, and a hard film is formed on the surface of the workpiece by discharge energy supplied between the electrode for discharge surface treatment and the workpiece. In the discharge surface treatment method, after the formation of the hard coating, a pressing tool having a predetermined hardness at a tip portion is relatively moved on the hard coating while being vibrated in a pressing direction of the hard coating by a vibrator.
この発明に係る放電表面処理装置は、 放電表面処理用電極と被加工物 を相対移動せしめ、 前記放電表面処理用電極と前記被加工物との極間に 供給する放電エネルギにより、 前記被加工物表面に硬質被膜を形成する 放電表面処理装置において、 先端部に所定の硬度を有する押し付け工具 を備えるものである。 The discharge surface treatment apparatus according to the present invention moves the discharge surface treatment electrode and the workpiece relative to each other, and discharges the workpiece with the discharge energy supplied between the discharge surface treatment electrode and the workpiece. An electric discharge surface treatment apparatus for forming a hard coating on a surface, comprising a pressing tool having a predetermined hardness at a tip end.
また、 放電表面処理用電極と被加工物を相対移動せしめ、 前記放電表 面処理用電極と前記被加工物との極間に供給する放電エネルギにより、 前記被加工物表面に硬質被膜を形成する放電表面処理装置において、 振 動子に連結された先端部に所定の硬度を有する押し付け工具を備えるも のである。 Further, the electrode for discharge surface treatment and the workpiece are relatively moved, and a hard film is formed on the surface of the workpiece by discharge energy supplied between the electrode for discharge surface treatment and the workpiece. A discharge surface treatment apparatus is provided with a pressing tool having a predetermined hardness at a tip connected to a vibrator.
この発明は、 以上説明したように構成されているので、 形成された硬 質被膜の残留引張応力を除去することができるため、 クラックの発生を 防止することができる。 Since the present invention is configured as described above, it is possible to remove the residual tensile stress of the formed hard coating, thereby preventing the occurrence of cracks.
また、 耐久性の低下を招く ことなく形成された硬質被膜の表面粗さを より小さくすることができる。
図面の簡単な説明 Further, the surface roughness of the formed hard coating can be reduced without lowering the durability. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明の実施の形態 1に係る放電表面処理装置を示す構 成図である。 FIG. 1 is a configuration diagram showing a discharge surface treatment apparatus according to Embodiment 1 of the present invention.
第 2図は、 この発明の実施の形態 1に係る硬質被膜の残留引張応力の 除去又は緩和方法の説明図である。 FIG. 2 is an explanatory diagram of a method for removing or relaxing residual tensile stress of a hard coating according to Embodiment 1 of the present invention.
第 3図は、 この発明の実施の形態 1に係る硬質被膜の残留引張応力の 除去又は緩和方法の説明図である。 FIG. 3 is an explanatory diagram of a method for removing or relaxing residual tensile stress of a hard coating according to Embodiment 1 of the present invention.
第 4図は、 この発明の実施の形態 2に係る硬質被膜の残留引張応力の 除去又は緩和方法の説明図である。 FIG. 4 is an explanatory diagram of a method for removing or relaxing residual tensile stress of a hard coating according to Embodiment 2 of the present invention.
第 5図は、 従来の放電表面処理方法を示す装置構成図である。 発明を実施するための最良の形態 FIG. 5 is an apparatus configuration diagram showing a conventional discharge surface treatment method. BEST MODE FOR CARRYING OUT THE INVENTION
実施の形態 1 . Embodiment 1
第 1図は、 この発明の実施の形態 1に係る放電表面処理装置を示す構 成図であり、 図において、 2は被加工物、 3は加工槽、 4は加工液、 8 は硬質被膜、 9は放電表面処理用電極、 1 0は放電表面処理用電極 9を 支持するチヤッキング装置、 1 1は Xテーブル、 1 2は Yテーブル、 1 3はチヤッキング装置 1 0と連結された主軸、 1 4は Xテーブル 1 1を 駆動する X軸駆動装置、 1 5は Yテーブル 1 2を駆動する Y軸駆動装置、 1 6は主軸 1 3を駆動する Z軸駆動装置、 1 7は直流電源、 スィッチン グ素子及び制御回路等からなる加工電源装置、 1 8は制御装置である。 被加工物 2は Xテーブル 1 1上の加工槽 3に固定されており、 被加工物 2と放電表面処理用電極 9との相対移動は、 制御装置 1 8の指令により X軸駆動装置 1 4 、 Y軸駆動装置 1 5及び Z軸駆動装置 1 6を駆動制御 することにより行われる。 放電表面処理用電極 9は所定の硬質被膜 8を 形成する材料からなり、 放電表面処理用電極 9と被加工物 2との極間を
制御しつつ、 加工電源装置 7により加工電力を供給することにより、 被 加工物 2の表面に放電表面処理用電極 9の材料又は放電表面処理用電極 9の材料と加工液 4の成分との化合物からなる硬質被膜 8が形成される。 次に、 被加工物 2に形成された硬質被膜 8の残留引張応力を除去又は 緩和する方法について説明する。 第 2図はこの方法の例を示す説明図で あり、 第 1図と同一符号は同一又は相当部分を示している。 1 9は所定 の硬度の玉又はころ 1 9 aを先端に持つ押し付け工具であり、 チヤツキ ング装置 1 0は第 1図の放電表面処理用電極 9に代えて押し付け工具 1 9を保持している。 第 1図の X軸駆動装置 1 4 、 Y軸駆動装置 1 5及び Z軸駆動装置 1 6を制御装置 1 8により駆動制御することにより、 押し 付け工具 1 9と被加工物 2を相対移動せしめ、 押し付け工具 1 9の所定 の硬度の玉又はころ 1 9 aを硬質被膜 8に所定の圧力で押圧した状態で、 硬質被膜 8上を移動させることにより、 残留引張応力を無くす方向の圧 縮応力を硬質被膜 8に与えることにより、 硬質被膜 8の残留引張応力を 除去又は緩和することができる。 また、 押し付け工具 1 9が硬質被膜 8 の上を所定の圧力で押圧した状態で移動することにより、 まず硬質被膜 8表面の凸部に押し付け力が働き、 この凸部に発生する応力が降伏応力 を超え塑性変形するため、 硬質被膜 8の表面粗さを小さくすることがで きる。 押し付け工具先端の玉又はころ 1 9 aの硬度及び硬質被膜 8に押 圧する圧力は、 硬質被膜の残留引張応力除去の程度及び硬質被膜に要求 される表面粗さ等の所期条件に応じて、 予め実験により決定しておくこ とができる。 FIG. 1 is a configuration diagram showing an electric discharge surface treatment apparatus according to Embodiment 1 of the present invention, in which 2 is a workpiece, 3 is a processing tank, 4 is a working fluid, 8 is a hard coating, 9 is a discharge surface treatment electrode, 10 is a chucking device that supports the discharge surface treatment electrode 9, 11 is an X table, 12 is a Y table, 13 is a spindle connected to the chucking device 10, and 14 Is the X-axis drive that drives the X-table 11, 15 is the Y-axis drive that drives the Y-table 12, 16 is the Z-axis drive that drives the spindle 13, 17 is the DC power supply, switching A processing power supply device including an element and a control circuit, and 18 is a control device. The workpiece 2 is fixed to the machining tank 3 on the X table 1 1, and the relative movement between the workpiece 2 and the discharge surface treatment electrode 9 is controlled by a command from the control device 18. The driving is performed by controlling the driving of the Y-axis driving device 15 and the Z-axis driving device 16. The discharge surface treatment electrode 9 is made of a material that forms a predetermined hard coating 8, and a gap between the discharge surface treatment electrode 9 and the workpiece 2 is formed. By supplying machining power from the machining power supply 7 while controlling, the material of the electrode 9 for discharge surface treatment or the compound of the material of the electrode 9 for discharge surface treatment and the component of the machining fluid 4 on the surface of the workpiece 2. A hard coating 8 consisting of Next, a method for removing or relaxing the residual tensile stress of the hard coating 8 formed on the workpiece 2 will be described. FIG. 2 is an explanatory diagram showing an example of this method, and the same reference numerals as in FIG. 1 indicate the same or corresponding parts. Reference numeral 19 denotes a pressing tool having a ball or roller 19a of a predetermined hardness at the tip, and the chucking device 10 holds the pressing tool 19 in place of the discharge surface treatment electrode 9 in FIG. . By controlling the drive of the X-axis drive device 14, the Y-axis drive device 15 and the Z-axis drive device 16 in FIG. 1 by the control device 18, the pressing tool 19 and the workpiece 2 are relatively moved. The compression stress in the direction of eliminating the residual tensile stress by moving the ball or roller 19a of the predetermined hardness of the pressing tool 19 on the hard coating 8 while pressing the ball or roller 19a on the hard coating 8 with the predetermined pressure. By imparting to the hard coating 8, the residual tensile stress of the hard coating 8 can be removed or reduced. Also, when the pressing tool 19 moves while pressing the hard coating 8 at a predetermined pressure, a pressing force acts on the convex portion of the hard coating 8 surface, and the stress generated in the convex portion is a yield stress. Therefore, the surface roughness of the hard coating 8 can be reduced. The hardness of the ball or roller at the tip of the pressing tool 19a and the pressure applied to the hard coating 8 depend on the desired conditions such as the degree of residual tensile stress removal of the hard coating and the surface roughness required for the hard coating. It can be determined in advance by experiment.
以上において、 押し付け工具 1 9の先端の玉又はころ 1 9 aの硬度が 硬質被膜 8の硬度よりも高いことは必要条件ではない。 例えば、 硬質被 膜 8が T i Cを主成分とし、 玉又はころ 1 9 aが超硬合金である場合は、 玉又はころ 1 9 aは硬質被膜 8よりも硬度が低いが、 硬質被膜 8の表面
粗さの改善に有効であった。 In the above, it is not a necessary condition that the hardness of the ball or roller 19 a at the tip of the pressing tool 19 is higher than the hardness of the hard coating 8. For example, when the hard coating 8 is mainly composed of T i C and the ball or roller 19a is a cemented carbide, the ball or roller 19a has a lower hardness than the hard coating 8 but the hard coating 8 Surface It was effective in improving the roughness.
以上の説明においては、 押し付け工具 1 9がチヤッキング装置 1 0に 直結している場合を示したが、 第 3図に示すように、 押し付け工具 1 9 がばね 2 0を介してチヤッキング装置 1 0に連結するように構成しても よい。 この場合は、 ばね 2 0のばね定数を所定の値に選定することによ り、 ばね 2 0の変位により、 押し付け工具 1 9の硬質被膜 8への押圧力 を設定することができる。 ここで、 ばね 2 0は他の弾性体であってもよ い。 In the above description, the case where the pressing tool 19 is directly connected to the chucking device 10 is shown. However, as shown in FIG. 3, the pressing tool 19 is connected to the chucking device 10 via the spring 20. You may comprise so that it may be connected. In this case, by selecting the spring constant of the spring 20 to a predetermined value, the pressing force of the pressing tool 19 against the hard coating 8 can be set by the displacement of the spring 20. Here, the spring 20 may be another elastic body.
また、 第 2図及び第 3図においては、 押し付け工具 1 9と被加工物 2 の押圧及び相対移動を加工液 4中で行う場合を示したが、 加工液 4を排 出した後、 気中にて押し付け工具 1 9と被加工物 2の押圧及び相対移動 を行ってもよい。 FIGS. 2 and 3 show the case where the pressing tool 19 and the workpiece 2 are pressed and moved relative to each other in the machining fluid 4, but after the machining fluid 4 is discharged, the The pressing tool 19 and the workpiece 2 may be pressed and moved relative to each other.
また、 押し付け工具 1 9による押圧力のセンシングは、 圧力センサを 用いる方法、 Z軸駆動装置 1 6のァクチユエ一夕の電流センシングによ る方法、 又は、 ばね 2 0を用いる場合は、 ばねの変位を Z軸の位置によ りセンシングし、 この変位とばね定数の積を演算する方法等により行う ことができる。 The pressing force by the pressing tool 19 is sensed by a pressure sensor, by the current sensing of the actuator of the Z-axis drive unit 16 or by the spring displacement when the spring 20 is used. Can be sensed based on the Z-axis position, and the product of the displacement and the spring constant can be calculated.
実施の形態 2 . Embodiment 2
実施の形態 1では、 押し付け工具 1 9の所定の硬度の玉又はころ 1 9 aを硬質被膜 8に所定の圧力で押圧した状態で硬質被膜 8上を移動させ る場合を示したが、 押し付け工具 1 9の所定の硬度の玉又はころ 1 9 a を Z軸方向に反復移動させながら硬質被膜 8上を移動させてもよい。 こ の場合は、 押し付け工具 1 9等の慣性力を利用して、 より効率的に硬質 被膜 8を押圧することができる。 In the first embodiment, the case where the ball or roller 19a of the predetermined hardness of the pressing tool 19 is moved on the hard coating 8 while pressing the hard coating 8 with the predetermined pressure has been described. The ball or roller 19 a having a predetermined hardness of 19 may be moved on the hard coating 8 while repeatedly moving in the Z-axis direction. In this case, the hard coating 8 can be pressed more efficiently by using the inertial force of the pressing tool 19 or the like.
また、 第 4図に示すように、 例えば超音波振動子等の振動子 2 1によ り、 押し付け工具 1 9の所定の硬度の玉又はころ 1 9 a:を Z軸方向に振
動させながら硬質被膜 8上を移動させてもよい。 この場合は、 押し付け 工具 1 9の衝撃力により、 さらに効率的に硬質被膜 8を押圧することが できる。 例えば、 硬質被膜 8の表面粗さを、 1 0 xmRm a X程度から 3〜 4 zmRm a X程度に小さくすることができる。 なお、 この場合の 硬質被膜 8は、 T i Cを主体としたものであり、 硬質被膜 8の硬度は、 ビッカース硬度 HV= 3 00 0以上である。 一方、 押し付け工具 1 9の 先端の玉又はころ 1 9 aの材質は超硬合金工具材料 (WC_C o) を用 いたので、 押し付け工具の硬度は、 ピツカ一ス硬度 HV= 1 5 00〜 2 0 0 0程度である。 この場合においては、 押し付け工具 1 9の先端の玉 又はころ 1 9 aの硬度は、 硬質被膜の硬度よりも低いが、 仕上げ面粗さ の改善に有効であった。 Further, as shown in FIG. 4, a ball or roller 19 a: having a predetermined hardness of the pressing tool 19 is vibrated in the Z-axis direction by a vibrator 21 such as an ultrasonic vibrator. It may be moved on the hard coating 8 while moving. In this case, the hard coating 8 can be pressed more efficiently by the impact force of the pressing tool 19. For example, the surface roughness of the hard coating 8 can be reduced from about 10 xmRmax to about 3 to 4 zmRmax. The hard coating 8 in this case is mainly composed of T i C, and the hardness of the hard coating 8 is Vickers hardness HV = 300 or more. On the other hand, since the material of the ball or roller 19a at the tip of the pressing tool 19 was made of cemented carbide tool material (WC_Co), the hardness of the pressing tool was pits hardness HV = 1500-200. It is about 00. In this case, the hardness of the ball or roller 19a at the tip of the pressing tool 19 was lower than the hardness of the hard coating, but was effective in improving the finished surface roughness.
以上のような方法により、 形成された硬質被膜の残留引張応力を除去 又は緩和することができると共に形成された硬質被膜の表面粗さをより 小さくすることができる。 産業上の利用可能性 By the method as described above, the residual tensile stress of the formed hard coating can be removed or alleviated, and the surface roughness of the formed hard coating can be further reduced. Industrial applicability
以上のように、 この発明に係る放電表面処理方法及び装置は、 被加工 物表面に硬質被膜を形成する表面処理関連産業に用いられるのに適 いる。
INDUSTRIAL APPLICABILITY As described above, the discharge surface treatment method and apparatus according to the present invention are suitable for being used in the surface treatment related industry for forming a hard coating on the surface of a workpiece.
Claims
1 . 放電表面処理用電極と被加工物を相対移動せしめ、 前記放電表面 処理用電極と前記被加工物との極間に供給する放電エネルギにより、 前 記被加工物表面に硬質被膜を形成する放電表面処理方法において、 前記硬質被膜形成後に、 先端部に所定の硬度を有する押し付け工具を 前記硬質被膜に所定の圧力で押圧し、 前記硬質被膜上を相対移動させる ことを特徵とする放電表面処理方法。 1. The electrode for discharge surface treatment and the workpiece are relatively moved, and a hard film is formed on the surface of the workpiece by discharge energy supplied between the electrode for discharge surface treatment and the workpiece. In the discharge surface treatment method, after the formation of the hard coating, a pressing tool having a predetermined hardness at a tip portion is pressed against the hard coating with a predetermined pressure, and relatively moved on the hard coating. Method.
2 . 放電表面処理用電極と被加工物を相対移動せしめ、 前記放電表面 処理用電極と前記被加工物との極間に供給する放電エネルギにより、 前 記被加工物表面に硬質被膜を形成する放電表面処理方法において、 前記硬質被膜形成後に、 先端部に所定の硬度を有する押し付け工具を 前記硬質被膜の押圧方向に反復移動させながら、 前記硬質被膜上を相対 移動させることを特徴とする放電表面処理方法。 2. The electrode for discharge surface treatment and the workpiece are relatively moved, and a hard film is formed on the surface of the workpiece by discharge energy supplied between the electrode for discharge surface treatment and the workpiece. In the discharge surface treatment method, after the hard coating is formed, a pressing tool having a predetermined hardness at a tip portion is relatively moved on the hard coating while repeatedly moving in a pressing direction of the hard coating. Processing method.
3 . 放電表面処理用電極と被加工物を相対移動せしめ、 前記放電表面 処理用電極と前記被加工物との極間に供給する放電エネルギにより、 前 記被加工物表面に硬質被膜を形成する放電表面処理方法において、 前記硬質被膜形成後に、 先端部に所定の硬度を有する押し付け工具を 振動子により前記硬質被膜の押圧方向に振動させながら、 前記硬質被膜 上を相対移動させることを特徵とする放電表面処理方法。 3. Move the electrode for discharge surface treatment and the workpiece relatively, and form a hard coating on the surface of the workpiece by discharge energy supplied between the electrode for discharge surface treatment and the workpiece. The discharge surface treatment method is characterized in that, after the formation of the hard coating, a pressing tool having a predetermined hardness at a tip portion is relatively moved on the hard coating while being vibrated in a pressing direction of the hard coating by a vibrator. Discharge surface treatment method.
4 . 放電表面処理用電極と被加工物を相対移動せしめ、 前記放電表面 処理用電極と前記被加工物との極間に供給する放電エネルギにより、 前 記被加工物表面に硬質被膜を形成する放電表面処理装置において、 先端部に所定の硬度を有する押し付け工具を備えることを特徴とする 放電表面処理装置。 4. The electrode for discharge surface treatment and the workpiece are relatively moved, and a hard film is formed on the surface of the workpiece by discharge energy supplied between the electrode for discharge surface treatment and the workpiece. An electric discharge surface treatment apparatus, comprising: a pressing tool having a predetermined hardness at a tip portion.
5 . 放電表面処理用電極と被加工物を相対移動せしめ、 極前記放電表
面処理用電極と前記被加工物との間に供給する放電エネルギにより、 前 記被加工物表面に硬質被膜を形成する放電表面処理装置において、 振動子に連結された先端部に所定の硬度を有する押し付け工具を備え ることを特徴とする放電表面処理装置。
5. Move the electrode for discharge surface treatment and the workpiece relatively to each other, In the discharge surface treatment apparatus for forming a hard film on the surface of the workpiece by the discharge energy supplied between the electrode for surface treatment and the workpiece, the tip connected to the vibrator has a predetermined hardness. An electric discharge surface treatment apparatus comprising a pressing tool having the same.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1999/006348 WO2001036710A1 (en) | 1999-11-15 | 1999-11-15 | Method and device for electric discharge surface treatment |
TW088120496A TW469194B (en) | 1999-11-15 | 1999-11-24 | Method and apparatus for treating surface by electric discharge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1999/006348 WO2001036710A1 (en) | 1999-11-15 | 1999-11-15 | Method and device for electric discharge surface treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001036710A1 true WO2001036710A1 (en) | 2001-05-25 |
Family
ID=14237277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1999/006348 WO2001036710A1 (en) | 1999-11-15 | 1999-11-15 | Method and device for electric discharge surface treatment |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW469194B (en) |
WO (1) | WO2001036710A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1645659A4 (en) * | 2003-06-11 | 2008-09-17 | Ihi Corp | METHOD FOR REPAIRING A MACHINE COMPONENT, METHOD FOR MAKING A RECYCLED MACHINE COMPONENT, METHOD FOR PRODUCING A MACHINE COMPONENT, GAS TURBINE ENGINE, SPARK EROSION MACHINE, METHOD FOR REPAIRING A TURBINE COMPONENT AND METHOD FOR FORMING RECOVERED TURBINE COMPONENTS |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49107932A (en) * | 1973-02-20 | 1974-10-14 | ||
JPH0770761A (en) * | 1993-08-31 | 1995-03-14 | Res Dev Corp Of Japan | Surface treatment method of aluminum and its alloys by in-liquid discharge |
JPH09192937A (en) * | 1996-01-17 | 1997-07-29 | Res Dev Corp Of Japan | Surface treatment method by in-liquid discharge |
-
1999
- 1999-11-15 WO PCT/JP1999/006348 patent/WO2001036710A1/en active Search and Examination
- 1999-11-24 TW TW088120496A patent/TW469194B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49107932A (en) * | 1973-02-20 | 1974-10-14 | ||
JPH0770761A (en) * | 1993-08-31 | 1995-03-14 | Res Dev Corp Of Japan | Surface treatment method of aluminum and its alloys by in-liquid discharge |
JPH09192937A (en) * | 1996-01-17 | 1997-07-29 | Res Dev Corp Of Japan | Surface treatment method by in-liquid discharge |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1645659A4 (en) * | 2003-06-11 | 2008-09-17 | Ihi Corp | METHOD FOR REPAIRING A MACHINE COMPONENT, METHOD FOR MAKING A RECYCLED MACHINE COMPONENT, METHOD FOR PRODUCING A MACHINE COMPONENT, GAS TURBINE ENGINE, SPARK EROSION MACHINE, METHOD FOR REPAIRING A TURBINE COMPONENT AND METHOD FOR FORMING RECOVERED TURBINE COMPONENTS |
US7723636B2 (en) | 2003-06-11 | 2010-05-25 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method for repairing machine part, method for forming restored machine part, method for manufacturing machine part, gas turbine engine, electric discharge machine, method for repairing turbine component, and method for forming restored turbine component |
Also Published As
Publication number | Publication date |
---|---|
TW469194B (en) | 2001-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Boban et al. | Polishing of additive manufactured metallic components: retrospect on existing methods and future prospects | |
JPH07112329A (en) | Surface treatment method by electric discharge machining and device thereof | |
Chang et al. | Burr size reduction in drilling by ultrasonic assistance | |
JPH0919829A (en) | Surface treatment method and device by electric discharge machining | |
Baghel et al. | Parametric optimization and surface analysis of diamond grinding-assisted EDM of TiN-Al2O3 ceramic composite | |
WO2000029154A1 (en) | Apparatus for discharge surface treatment and method for discharge surface treatment | |
WO2001036710A1 (en) | Method and device for electric discharge surface treatment | |
KR100527459B1 (en) | a micro cutting and grinding machine make use of ultrasonic vibration | |
JP3799962B2 (en) | Surface treatment method for improving chipping resistance | |
Amorim et al. | Performance and surface integrity of wire electrical discharge machining of thin Ti6Al4V plate using coated and uncoated wires | |
WO2001051240A1 (en) | Power supply for discharge surface treatment and discharge surface treatment method | |
WO2004108988A1 (en) | Discharge surface treatment method and discharge surface treatment apparatus | |
WO2000050194A1 (en) | Method and device for discharge surface treatment | |
JP3668519B2 (en) | Processed liquid for powder mixed electric discharge machining and electric discharge machining method using powder mixed processed liquid | |
TW457155B (en) | Method and device for surface treatment by discharging and an electrode therefor | |
JP3884210B2 (en) | Processing method and apparatus using wire electrode | |
JP2000167715A (en) | Honing method, grinding method, and apparatus for implementing these methods | |
JP2002254247A (en) | High efficient hole forming method by diesinking micro electrical discharge machining | |
RU2074796C1 (en) | Method of electric spark coating application | |
JPH0749170B2 (en) | Method of forming surface layer by electrical discharge machining | |
JPWO2002055249A1 (en) | Electric discharge machine | |
JP2005213554A (en) | Discharge surface treatment method and discharge surface treatment apparatus. | |
WO2001036709A1 (en) | Method and device for electric discharge surface treatment | |
RU2072282C1 (en) | Coat applying method | |
JPH0520209B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CH CN DE JP US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |