WO2001034531A1 - Flat glass to be tempered - Google Patents
Flat glass to be tempered Download PDFInfo
- Publication number
- WO2001034531A1 WO2001034531A1 PCT/JP2000/007881 JP0007881W WO0134531A1 WO 2001034531 A1 WO2001034531 A1 WO 2001034531A1 JP 0007881 W JP0007881 W JP 0007881W WO 0134531 A1 WO0134531 A1 WO 0134531A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- glass
- sum
- tempered
- expressed
- Prior art date
Links
- 239000005357 flat glass Substances 0.000 title claims abstract description 32
- 239000011521 glass Substances 0.000 claims abstract description 81
- 239000000203 mixture Substances 0.000 claims abstract description 47
- 230000035882 stress Effects 0.000 claims abstract description 31
- 239000005341 toughened glass Substances 0.000 claims abstract description 30
- 238000005496 tempering Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 12
- 230000008646 thermal stress Effects 0.000 claims abstract description 8
- 230000006835 compression Effects 0.000 claims abstract description 4
- 238000007906 compression Methods 0.000 claims abstract description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 27
- 238000005728 strengthening Methods 0.000 claims description 23
- 239000006121 base glass Substances 0.000 claims description 21
- 229910052726 zirconium Inorganic materials 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 9
- 230000003014 reinforcing effect Effects 0.000 claims description 9
- 238000002834 transmittance Methods 0.000 claims description 5
- 239000006103 coloring component Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 1
- 239000002689 soil Substances 0.000 claims 1
- 238000004031 devitrification Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000006124 Pilkington process Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- VQCBHWLJZDBHOS-UHFFFAOYSA-N erbium(iii) oxide Chemical compound O=[Er]O[Er]=O VQCBHWLJZDBHOS-UHFFFAOYSA-N 0.000 description 2
- 239000006025 fining agent Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 238000003426 chemical strengthening reaction Methods 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000005329 float glass Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000006058 strengthened glass Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/007—Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/095—Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
Definitions
- a thermal strengthening coefficient [surface compressive stress] Z [thickness) expressed by a quotient obtained by dividing the surface compressive stress value (MPa) of glass by the thickness (mm) of the sheet. ]
- glass fracture starts at the surface, and occurs when the tensile stress that appears on the glass surface due to external forces exceeds the tensile strength of the glass.
- the durability of a glass to tensile stress is greatly affected by microscopic flaws called Griffith flaws on the glass surface. Therefore, in order to increase the strength of glass, it is effective to provide a compressive stress layer on the glass surface to alleviate the tensile stress due to external force and prevent the growth of cracks.
- the compressive stress layer on the glass surface is formed by chemical strengthening and physical strengthening.
- the most widely used physical strengthening method is the air-cooling strengthening method using air cooling.
- the air-cooling tempering method the glass is heated to a temperature near the softening point, and then the surface of the glass is quenched by a pressurized air flow, so that a compressive stress layer is formed on the glass surface, and the inside of the glass is pulled. A stress layer is formed.
- the parameters of thermal conductivity, coefficient of linear expansion, Young's modulus, and Poisson's ratio are values determined by the glass composition.
- the compressive stress value of the glass plate is approximately proportional to the thickness of the glass, dividing this by the plate thickness gives the magnitude of the compressive stress determined by the physical properties of the glass itself. That is, the contribution of the glass composition to the compressive stress value is determined.
- this value is called the thermal strengthening coefficient. Larger heat strengthening coefficients indicate that the glass has a composition that is more easily reinforced.
- the thickness of float glass used for automotive windows was mainly 3.5 to 4.8.
- thinner window glasses to improve fuel efficiency by reducing the weight of automobiles. If the area is the same, the thinner the thickness, the smaller the heat capacity of the glass sheet, and the more difficult it becomes to strengthen. Therefore, several tempered glasses have been proposed to compensate for this.
- the production method of tempered glass described in Japanese Patent Publication No. 6-535992 is essentially expressed in terms of% by weight.
- a 120 3 1. 5 ⁇ 7,
- liquidus temperature of the glass is 110 ° C. or lower.
- the easily strengthened glass composition disclosed in JP-B-4-160059 is expressed in terms of% by weight
- Consists of compositional component ranges, moreover 1 0 9 viscous temperature viscosity temperature becomes Boyes becomes 6 5 0 ⁇ 6 8 5 ° C and 1 0 12 Boys is 55 5 ⁇ 585 ° C, and the temperature difference between the two Is in the range of 96 to 103 ° C.
- there is an example of strengthening the glass with a thickness of 3 mm However, although the strengthening conditions were improved, the surface compressive stress value was insufficient.
- the Kokoku 4 one 6 00 5 9 No. flat glass composition disclosed in Japanese is something to obtain an easy-tempered glass by adjusting the viscosity temperature, 1 0 9 temperature difference Boyes and 1 0 12 Boi's
- the allowable range was only as small as 7 ° C, and the allowable composition range was so narrow that production was difficult. Disclosure of the invention
- the present invention has been made in view of the above-mentioned problems of the related art, and is a glass plate having an actual thickness of 6 mm or less, more preferably 3.1 mm or less, which substantially enhances the capacity of a strengthening process. It is an object of the present invention to provide a thin sheet tempered glass having a sufficient surface compressive stress value, a glass composition constituting the same, and a sheet glass composed of the composition, without requiring the following.
- the tempered glass sheet of the present invention has a heat strengthening coefficient expressed by a quotient obtained by dividing a surface compression stress value (MPa) by a sheet thickness (mm) when the glass sheet is subjected to tempering treatment, of 35 to 75. Becomes Preferred embodiments of the invention
- the glass sheet preferably has an actual thickness of 6 mm or less, more preferably 3.1 mm or less.
- the tempered glass sheet is preferably strengthened by an air-cooling tempering method. More preferably, the thermal strengthening coefficient is 45 to 65.
- the reinforcing plate glass is preferably 5 0 ° C ⁇ 3 5 0 average linear expansion coefficient ° C is 92 X 1 0- 7 ⁇ 1 0 5 X 1 0- 7 ° C- and Young's modulus 7 5-9 2 GPa. More preferably the reinforcing plate glass, the average linear expansion coefficient 9 5 X 10- 7 ⁇ 1 0 0 X 10- 7 ° C- ', and Young's modulus of 77 to 85 GP a.
- the preferred base glass composition of the tempered sheet glass is expressed in mole fraction
- the base glass composition may contain the following coloring components, expressed as a mole fraction, whereby the transmittance of ultraviolet light, infrared light and visible light is adjusted.
- S i 0 2 (silica) is a main component forming the skeleton of glass. 3; 1_Rei 2 is less than 45% decreases the durability of the glass. If S i 0 2 is often to improve the durability, but closely related coefficient of linear expansion to strengthening of the glass is reduced. In order to obtain a sufficient coefficient of linear expansion, Si 2 is preferably 70% or less, more preferably less than 68%.
- B 2 0 3 is for improvement of durability of glass or a Ingredient which is also used as a dissolution aid.
- B 2 0 3 is more than 5%, the upper limit of 5% since inconvenience during molding due to volatilization or the like is generated.
- a 1 2 0 3 improves the durability of the glass, also a component contributing to improvement of the closely related Young's modulus strengthening of the glass. But more than 1 5% if becomes low solubility of the glass frame, also the addition of A 1 2 0 3 is also effective to lower the coefficient of linear expansion.
- the preferred range of A 1 2 0 3 is 0.5 to 1 5%.
- Alkaline earth oxides such as MgO, CaO, Sr0, and Ba ⁇ are added to improve the durability of glass and to adjust the devitrification temperature, viscosity, expansion rate, and Young's modulus during molding. . If the content of MgO is less than 2.5%, the effect of reducing the devitrification temperature does not appear, and if it exceeds 20%, the devitrification temperature rises conversely, causing production problems.
- C a0 is one of particularly important compositions. If CaO is less than 7.5%, the coefficient of linear expansion and the Young's modulus will be small, and sufficient characteristics will not be obtained. If it exceeds 30%, the devitrification temperature rises, causing production problems.
- Sr 0 and Ba 0 are expensive raw materials, using a large amount thereof increases batch costs.
- the addition of Sr0 and Ba0 is preferable because it has the effect of reducing the devitrification temperature, but the amount is preferably not more than 10% in terms of cost.
- L i 2 0, Na 2 0 an alkali oxide such as K 2 0 is Ru promotes the dissolution of the glass.
- L i 2 addition of 0 the dissolution accelerating effect is also significantly pull can reduce the effect of the glass transition temperature. This is not preferable because the operating conditions need to be changed in normal float production.
- the amount of Li 20 added does not exceed 10%.
- N a 2 0 is poor dissolution promotion effect in total less than 1 0% 9% less than or Al force Li oxide amount, N a 2 ⁇ Do exceeds 20%, or total Al force re ⁇ 40% If it exceeds, the durability of the glass decreases. Since the K 2 Ofii often cost Bok increases, K 2 ⁇ is desirably kept to 1 5%.
- Iron oxide is present in glass in the form of F e 2 0 3 and F e 0.
- F e 2 is a component that enhances the ultraviolet ray absorbing ability
- F e 0 is a component that enhances the heat ray absorbing ability.
- T i O 2, C e 0 2 and V 2 0 5 is Ru coloring component der imparting ultraviolet absorptivity to the glass.
- a desired color tone can be imparted to the ground glass. Preferred combinations for obtaining specific colors An example of the adjustment is shown below.
- T—F e 20 In addition to 3 , it is preferable to use a combination of 0.01 to: L i 0% T i ⁇ 2 and 0.05 to 3.0% C e O 2 .
- the glass composition range of the present invention in a range of 0 1% S n 0 2 in a total amount as a fining agents or reducing agents, but it may also be added to the extent that the present invention does not impair the color tone of interest.
- Another preferred base glass composition for tempered sheet glass expressed as a weight fraction
- This base glass composition containing 9.6% by weight or more of CaO gives a high Young's modulus and a coefficient of linear expansion to the sheet glass.
- MgO content By setting the MgO content to 2.2% by weight or more in this composition range, it is possible to suppress the unicoloring which is easily observed when a large amount of CaO is contained. MgO below 8% does not cause devitrification of the glass sheet.
- a more preferred base glass composition of the tempered glass sheet is 60-70% S i 0 2 ⁇ expressed by weight fraction.
- This 2. glass sheet comprising A 1 2 ⁇ 3 of less than 8% by weight, has a high thermal expansion coefficient. 1. A 1 2 0 3 of less than 5 wt% gives a higher expansion coefficient glass sheet.
- MgO content of 2% by weight or more suppresses amber coloring, which is easily seen when a large amount of Ca0 is contained. MgO of less than 8% by weight does not cause devitrification in the sheet glass.
- the base glass composition containing 13% by weight of Na 20 gives a high linear expansion coefficient to the sheet glass.
- Na 2 O less than 25% by weight degrades the durability of the glass.
- Yet another preferred base glass composition of the tempered glass sheet is 60% or more and less than 63% S i 0 2 , expressed by weight fraction,
- the base glass composition expressed as a weight fraction
- the base glass composition expressed as a weight fraction
- the glass sheet of this basic glass composition has excellent chemical durability and high thermal strengthening coefficient.
- the value of the tensile stress received at each point is determined by the following approximation.
- the thermal strengthening coefficient is more preferably 35 to 75, particularly preferably 45 to 65.
- the parameters of thermal conductivity, linear expansion coefficient, Young's modulus, and Poisson's ratio determined by the composition of the glass the ones whose values greatly change depending on the composition are the linear expansion coefficient and the Young's modulus.
- the thermal stress coefficient represented by the product of the coefficient of linear expansion and the Young's modulus is preferably 0.70 to 1.20 MPa / ° C.
- the thermal stress coefficient is between 0.72 and 0.80 MPa / ° C.
- the plate glass of the present invention is preferably produced by a float method, but is not necessarily limited to this. Examples 1-2 1
- the obtained glass plate is 2.:! Polished to ⁇ 4.8 mm thick.
- the polished sheet glass was held in an electric furnace at 700 ° C. for about 3 minutes, then taken out, blown with compressed air at a pressure of 34 MPa, and air-cooled to obtain a tempered glass.
- a glass ⁇ having a length of about 15 mm and 5 mm0 was cut out.
- the glass plate is heated from room temperature to about 700 ° C at a rate of 5 ° C per minute, and the elongation of the glass is measured using quartz glass as a standard sample to determine the average linear expansion coefficient, glass transition point (Tg), (Td).
- Tg glass transition point
- Td glass transition point
- a 30 x 20 x 6 mm glass block was cut out from the above tempered glass, and the Young's modulus was determined by the sing-around method.
- Tables 2 and 3 show the obtained measurement results and the composition of the tempered glass. Table 2, the value of S i 0 2 in 3 are rounded up to two decimal places.
- each of the sheet glasses of Examples 1 to 21 has a high thermal strengthening coefficient of 35 or more and a high surface compressive stress value.
- Each glass has a thermal stress coefficient E of 0.70 to 1.20 MPa / ° C, and has improved toughness.
- the glass sheets of Examples 1 to 9, 13 to 16 and 18 to 21 all have a preferred range of the base glass composition described in claim 7.
- Table 4 shows a comparative example.
- Comparative Example 1 is a commercially available float plate glass composition, which is out of the range of the present invention.
- the thermal strengthening coefficient of this composition and the surface compressive stress value obtained by air-cooling the composition are shown in the table. It is clear that the reinforcement is inferior to that of the present invention.
- the Comparative Example 2 N a 2 0 is out of range the present invention.
- Comparative Example 3 is a glass disclosed in Japanese Patent Publication No. 6-53592. In each case, the surface stress value is lower than in the examples of the present invention, and the reinforcing performance is inferior.
- a tempered glass having a sufficient surface compressive stress value is provided without substantially increasing the capacity of the tempering process.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Glass Compositions (AREA)
Abstract
A flat glass to be tempered, characterized in that it forms, when it is subjected to thermal tempering treatment, a tempered glass having a thermal tempering coefficient, which is represented by a quotient obtained by dividing a surface compression stress (MPa) by a sheet thickness, of 35 to 75; and a composition of glass for the flat glass. The flat glass has preferably a thermal stress coefficient represented by a product of an average coefficient of linear expansion and a Young's modulus of 0.70 to 1.20 Mpa/?C. The flat glass can be used for producing a thin tempered flat glass which has a real thickness of 6 mm or less, preferably 3.1 mm or less, and exhibits a satisfactory surface compression stress without increasing the capacity of a tempering process to be used.
Description
明細 ΐ 強化用板ガラス 技術分野 Item ΐ Tempered glass sheet Technical field
本発明は、 強化用板ガラスに係り、 特にガラスの表面圧縮応力値 (M P a ) を 板厚味(mm )により除した商で表される熱強化係数(= [表面圧縮応力] Z [厚味] ) が特定範囲にある強化用板ガラスに関する。 背景技術 The present invention relates to a tempered glass sheet, and in particular, relates to a thermal strengthening coefficient (= [surface compressive stress] Z [thickness) expressed by a quotient obtained by dividing the surface compressive stress value (MPa) of glass by the thickness (mm) of the sheet. ]) Relates to a tempered glass sheet having a specific range. Background art
ガラスの破壊は特殊な場合を除き表面から始まり、 外力によってガラス表面に 現れる引張応力がガラスの引張強度を超えることで生じる。 ガラスの引張応力に 対する耐久性は、 ガラス表面に存在するグリフィス傷 (Griffith f law) と呼ばれ る微小傷によって大きく影響される。 従って、 ガラスの強度を高めるには、 ガラ ス表面に圧縮応力層を設けることで外力による引張応力を緩和し、 亀裂の進展を 妨げることが効果的である。 ガラス表面の圧縮応力層は、 化学強化法と物理強化 法により形成される。 Except for special cases, glass fracture starts at the surface, and occurs when the tensile stress that appears on the glass surface due to external forces exceeds the tensile strength of the glass. The durability of a glass to tensile stress is greatly affected by microscopic flaws called Griffith flaws on the glass surface. Therefore, in order to increase the strength of glass, it is effective to provide a compressive stress layer on the glass surface to alleviate the tensile stress due to external force and prevent the growth of cracks. The compressive stress layer on the glass surface is formed by chemical strengthening and physical strengthening.
この物理強化法によれば、 高温のガラスが急冷され、 常温になった状態でガラ スの厚味方向に残留応力を発生させ、 表面に圧縮応力層が形成される。 物理強化 法として最も広く実用化されているのは、 空気によって冷却する風冷強化法であ る。 風冷強化法によれば、 ガラスが軟化点付近の温度まで加熱され、 而る後ガラ スの表面が加圧した空気流によって急冷され、 ガラス表面に圧縮応力層が形成さ れ、 内部に引張応力層が形成される。 According to this physical strengthening method, high-temperature glass is quenched, and at room temperature, residual stress is generated in the thickness direction of the glass, and a compressive stress layer is formed on the surface. The most widely used physical strengthening method is the air-cooling strengthening method using air cooling. According to the air-cooling tempering method, the glass is heated to a temperature near the softening point, and then the surface of the glass is quenched by a pressurized air flow, so that a compressive stress layer is formed on the glass surface, and the inside of the glass is pulled. A stress layer is formed.
風冷強化法により生じるガラス板の表面残留応力は、 冷却中の表面と内部の温 度差に依存することが知られている。 最も簡単な近似として高温状態のガラスの 急冷を考える場合、 ガラスからの放熱量 Qを一定と仮定すると、 ガラス表面と内 部の最大温度差(△ 0 )maxは
(Α Θ )max= t Q/8 k It is known that the surface residual stress of a glass sheet generated by the air-cooling strengthening method depends on the temperature difference between the surface and the inside during cooling. Assuming that the heat dissipation Q from the glass is constant, the maximum temperature difference between the glass surface and the inside (△ 0) max is as follows: (Α Θ) max = t Q / 8 k
[t : ガラス厚味 (m), Q :放熱量( J/m2'h), k :熱伝導率( J /m'h'°C )] と近似される。 歪緩和の時間が十分小さく、 かつ冷却段階で温度勾配の変化が生 じないと仮定すれば、 室温でのガラス表面の圧縮応力 Fは数 1のようになる。 [t: Glass thickness (m), Q: heat radiation amount (J / m 2 'h) , k: thermal conductivity (J / m'h' ° C) ] is approximated with. Assuming that the strain relaxation time is sufficiently short and that no change in the temperature gradient occurs during the cooling stage, the compressive stress F on the glass surface at room temperature is as shown in Equation 1.
α Ξ 2 α Ξ 2
F= (厶 Θ )max F = (厶) max
( 1 - cr ) 3 (1-cr) 3
[ひ :線膨張率, E :ヤング率, び :ポアソン比] [G: coefficient of linear expansion, E: Young's modulus, and: Poisson's ratio]
熱伝導率、 線膨張率、 ヤング率、 ポアソン比の各パラメ一夕は、 ガラスの組成 によって決まる値である。 ここで、 ガラス板の圧縮応力値が、 ガラス厚味に対し て近似的には比例関係にあることから、 これを板厚で除してやることで、 ガラス の持つ物性自体で決まる圧縮応力の大きさ、 すなわち、 ガラス組成の圧縮応力値 に対する寄与が求まる。 ここでは、 この値を熱強化係数と呼ぶことにする。 熱強 化係数の大きい方が、 より強化の入りやすい組成を持つガラスであることを示し ている。 The parameters of thermal conductivity, coefficient of linear expansion, Young's modulus, and Poisson's ratio are values determined by the glass composition. Here, since the compressive stress value of the glass plate is approximately proportional to the thickness of the glass, dividing this by the plate thickness gives the magnitude of the compressive stress determined by the physical properties of the glass itself. That is, the contribution of the glass composition to the compressive stress value is determined. Here, this value is called the thermal strengthening coefficient. Larger heat strengthening coefficients indicate that the glass has a composition that is more easily reinforced.
従来、 自動車用窓に用いられているフロート板ガラスの厚味は、 主に 3.5〜4.8 雇であった。 近年、 自動車の軽量化による燃費向上のため、 窓ガラスにも薄板化 の要請が強い。 面積が同じなら板厚が薄くなるほどガラス板の熱容量は小さくな り、 強化が入りにく くなるため、 これを補うため幾つかの強化ガラスが提案され てきた。 Conventionally, the thickness of float glass used for automotive windows was mainly 3.5 to 4.8. In recent years, there has been a strong demand for thinner window glasses to improve fuel efficiency by reducing the weight of automobiles. If the area is the same, the thinner the thickness, the smaller the heat capacity of the glass sheet, and the more difficult it becomes to strengthen. Therefore, several tempered glasses have been proposed to compensate for this.
特公平 6— 5 3 5 92号公報に記載された強化ガラスの製造方法は、 重量%表 示で実質的に、 The production method of tempered glass described in Japanese Patent Publication No. 6-535992 is essentially expressed in terms of% by weight.
S i 02 : 6 3 -7 5, S i 0 2 : 6 3 -7 5,
A 1203 : 1. 5〜7、 A 120 3: 1. 5~7,
T i 02 : 0〜 6、 T i 0 2 : 0 to 6,
AI2O3 + T i 02 : 3〜7、
C a 0 : 5〜 1 5、 AI2O3 + T i 0 2: 3~7 , C a 0: 5 to 15;
MgO : 0〜: L 0、 MgO: 0-: L 0,
CaO+MgO : 6〜20、 CaO + MgO: 6-20,
N a2〇 : 8〜: 18、 N a 2 〇: 8 to: 18,
K20 : 0〜5、 K 2 0: 0~5,
Na20 + K20 : 1 0〜20 Na 20 + K 20 : 10-20
からなり、 該ガラスの液相温度が 1 1 50°C以下である強化ガラスの製造方法で ある。 Wherein the liquidus temperature of the glass is 110 ° C. or lower.
特公平 4一 600 59号公報に開示された易強化ガラス組成物は、 重量%で表 示して、 The easily strengthened glass composition disclosed in JP-B-4-160059 is expressed in terms of% by weight,
S i 02 : 68. 0〜7 1. 0、 S i 0 2 : 68.0-71.0,
A 1203 : 1. 6〜3. 0、 A 120 3:. 1. 6~3 0 ,
C a 0 : 8. 5- 1 1. 0、 C a 0: 8.5-11.0,
MgO : 2. 0〜4. 0、 MgO: 2.0-4.0,
N a20 : 12. 5〜 1 6. 0、 N a 20 : 12.5 to 16.0,
K2〇 : 0. 9〜 3. 0、 K 2 〇: 0.9 to 3.0,
これらの成分の総和が 97%以上であって、かつ The sum of these components is 97% or more, and
S i O 2 + A 12 O 3 : 70. 0-73. 0、 S i O 2 + A 12 O 3: 70.0-73.0,
C aO+MgO : 1 2. 0〜 1 5. 0、 C aO + MgO: 12.0 to 15.0,
Na20 + K20 : 13. 5〜 1 7. 0 Na 20 + K 20 : 13.5-17.0
の組成成分範囲からなり、 しかも 1 09ボイズになる粘性温度が 6 5 0〜 6 8 5°Cならびに 1 012ボイズになる粘性温度が 55 5〜585 °Cであり、 かつ両者 の温度差が 96〜 1 03°Cになることを特徴とする易強化ガラス組成物である。 前記特公平 6 - 535 92号公報に記載された強化ガラスの製造方法では、 A 1203添加量が多く、 また A l 203 + T i 02量で見れば 3 %以上必要とする。 クリアなガラスを得るためには T i 02の添加を避け多量の A 1203を添加する 必要があり、 非常に溶解しにくい組成となるという不具合があった。 また、 実施
例中では 3 mm厚味のガラスの強化例が示されているが、 強化条件を向上させて いるにも関わらず、 表面圧縮応力値で見れば不十分であった。 Consists of compositional component ranges, moreover 1 0 9 viscous temperature viscosity temperature becomes Boyes becomes 6 5 0~ 6 8 5 ° C and 1 0 12 Boys is 55 5~585 ° C, and the temperature difference between the two Is in the range of 96 to 103 ° C. The Kokoku 6 - In 535 92 JP process for the preparation of tempered glass according to, A 120 3 added amount is large, and requires at least 3% if you look at the A l 2 0 3 + T i 0 2 quantity. To obtain a clear glass, it is necessary to add a large amount of A 1 2 0 3 to avoid the addition of T i 0 2, there is a disadvantage that a very poorly soluble composition. Also implemented In the examples, there is an example of strengthening the glass with a thickness of 3 mm. However, although the strengthening conditions were improved, the surface compressive stress value was insufficient.
また前記特公平 4一 6 00 5 9号公報に開示された平板ガラス組成物は、 粘性 温度を調節することで易強化ガラスを得るものだが、 1 09ボイズと 1 012ボイ ズの温度差として許容される範囲は僅かに 7 °Cと非常に狭く、 従って許容される 組成範囲が非常に狭いため、 生産が困難になると言う不具合があった。 発明の開示 Also the Kokoku 4 one 6 00 5 9 No. flat glass composition disclosed in Japanese is something to obtain an easy-tempered glass by adjusting the viscosity temperature, 1 0 9 temperature difference Boyes and 1 0 12 Boi's However, the allowable range was only as small as 7 ° C, and the allowable composition range was so narrow that production was difficult. Disclosure of the invention
本発明は上記従来技術の問題点に鑑みてなされたものであって、 6 m m以下、 より好ましくは 3. 1 mm以下の実厚味を有するガラス板で、 実質的な強化プロ セスの能力増強を要することなく、 充分な表面圧縮応力値を持つ薄板強化ガラス とこれを構成するガラス組成、 及び該組成から成る板ガラスを提供することを目 的とする。 The present invention has been made in view of the above-mentioned problems of the related art, and is a glass plate having an actual thickness of 6 mm or less, more preferably 3.1 mm or less, which substantially enhances the capacity of a strengthening process. It is an object of the present invention to provide a thin sheet tempered glass having a sufficient surface compressive stress value, a glass composition constituting the same, and a sheet glass composed of the composition, without requiring the following.
本発明の強化用板ガラスは、 該板ガラスに強化処理を施したときに表面圧縮応 力値 (MP a) を板厚味 (mm) により除した商で表される熱強化係数が 3 5〜 75となる。 発明の好ましい形態 The tempered glass sheet of the present invention has a heat strengthening coefficient expressed by a quotient obtained by dividing a surface compression stress value (MPa) by a sheet thickness (mm) when the glass sheet is subjected to tempering treatment, of 35 to 75. Becomes Preferred embodiments of the invention
この板ガラスは、 好ましくは 6 mm以下、 より好ましくは 3. 1 mm以下の実 厚味を有する。 The glass sheet preferably has an actual thickness of 6 mm or less, more preferably 3.1 mm or less.
この、 強化用板ガラスは風冷強化法によって強化されることが好ましい。 前記熱強化係数は 45〜 6 5であることがより好ましい。 The tempered glass sheet is preferably strengthened by an air-cooling tempering method. More preferably, the thermal strengthening coefficient is 45 to 65.
5 0°C;〜 3 5 0°Cにおける平均線膨張率(。 1)とヤング率(GPa)の積で表され る熱応力係数は、 好ましくは 0. 70〜: L . 2 0MP a/°Cより好ましくは 0. 72〜0. 8 OMP a/。Cである。 . 5 0 ° C; ~ 3 5 0 average coefficient of linear expansion in ° C (. 1) and the thermal stress factor you express the product of Young's modulus (GPa) is preferably 0. 70~: L 2 0MP a / ° C, more preferably 0.72 to 0.8 OMP a /. C.
この強化用板ガラスは、 好ましくは 5 0°C〜 3 5 0°Cにおける平均線膨張率が 92 X 1 0— 7〜 1 0 5 X 1 0— 7°C— かつヤング率が 7 5〜9 2 GP aである。
さらに好ましくはこの強化用板ガラスは、 該平均線膨張率が 9 5 X 10— 7〜 1 0 0 X 10— 7°C— '、 かつヤング率が 77〜85 GP aである。 The reinforcing plate glass is preferably 5 0 ° C~ 3 5 0 average linear expansion coefficient ° C is 92 X 1 0- 7 ~ 1 0 5 X 1 0- 7 ° C- and Young's modulus 7 5-9 2 GPa. More preferably the reinforcing plate glass, the average linear expansion coefficient 9 5 X 10- 7 ~ 1 0 0 X 10- 7 ° C- ', and Young's modulus of 77 to 85 GP a.
強化用板ガラスの好ましい基礎ガラス組成は、 モル分率で表して、 The preferred base glass composition of the tempered sheet glass is expressed in mole fraction,
45〜70%の3丄 02ヽ 45〜70% 3 丄 0 2ヽ
0〜5 %の8203ヽ 0-5% of 8 2 0 3ヽ
0. 5〜: L 5 %の八 1203、 0.5 ~: L 5% of 8 1 2 0 3 ,
2. 5〜 20 %の1 g 0、 2.5-20% of 1 g 0,
7. 5〜30%の〇 &0、 7. 5-30% 〇 & 0,
0〜 1 0 %の S r 0、 0 to 10% S r 0,
0〜: L 0 %の8 a 0、 (但し、 MgO, C a 0 , S r 0, B a OSの総和が 1 0 % より多く 50%以下、 ) 0 to: 8 a 0 of L 0% (However, the sum of MgO, C a 0, S r 0, and B a OS is more than 10% and less than 50%)
0〜 10%の L i20、 0 to 10% L i 20 ,
9〜25%の Na20、 9-25% Na 2 0,
0〜 1 5%の1 20、 (但し、 L i20, N a20, K 2〇量の総和が 10 %以上 40-1 5% 1 2 0, (where, L i 2 0, N a 2 0, K 2 〇 amount of total 10% or more 4
0%以下、 ) 0% or less,)
0〜: L 5 %の丫2〇3、 0 ~: L 5% 丫2 〇 3 ,
0〜 1 5 %の1 a 203、 0-1 5% 1 a 2 0 3,
及び 0〜 1 5 %の Z r 02 And 0-15% Zr 0 2
この基礎ガラス組成は、 モル分率で表して、 次の着色成分を含有してもよく、 これにより、 紫外光、 赤外光及び可視光の透過率が調整される。 The base glass composition may contain the following coloring components, expressed as a mole fraction, whereby the transmittance of ultraviolet light, infrared light and visible light is adjusted.
0. 3〜4%の F e 203に換算した全酸化鉄 (T— F e 203) Total iron oxide in terms of 0.3 to 4% of F e 2 0 3 (T- F e 2 0 3)
0. 0 1〜 1 %の丁 i 02ヽ 0.0 1 to 1% tic i 0 2ヽ
0〜3 %の C e〇2 0-3% C e〇 2
0〜0. 0 1 %の S e、 0 to 0.0 1% S e,
0〜0. 05 %の C o、 0-0.05% Co,
0〜0. 2 %のN i 0、 0-0.2% Ni 0,
0〜0. 2%の C r203
を含むことで、 紫外光、 赤外光、 可視光各透過率を調整することができる。 0-0.2% Cr 2 0 3 By containing, the transmittance of each of ultraviolet light, infrared light, and visible light can be adjusted.
好ましい基礎ガラス組成の各成分の限定理由について以下に詳述する。 以下の 組成はモル%で表示したものである。 The reasons for limiting each component of the preferred base glass composition will be described in detail below. The following compositions are expressed in mol%.
S i 02 (シリカ) はガラスの骨格を形成する主成分である。 3 ;1〇2が45 % 未満ではガラスの耐久性が低下する。 S i 02が多い方が耐久性は向上するが、 ガラスの強化性に深く関わる線膨張率は小さくなる。充分な線膨張率を得るため、 S i〇 2が 70 %以下であることが好ましく、 68 %未満であることがより好ま しい。 S i 0 2 (silica) is a main component forming the skeleton of glass. 3; 1_Rei 2 is less than 45% decreases the durability of the glass. If S i 0 2 is often to improve the durability, but closely related coefficient of linear expansion to strengthening of the glass is reduced. In order to obtain a sufficient coefficient of linear expansion, Si 2 is preferably 70% or less, more preferably less than 68%.
B 203はガラスの耐久性向上のため、 あるいは溶解助剤としても使用される成 分である。 B 203が 5 %を超えると、 揮発等による成形時の不都合が生じるので 5 %を上限とする。 B 2 0 3 is for improvement of durability of glass or a Ingredient which is also used as a dissolution aid. When B 2 0 3 is more than 5%, the upper limit of 5% since inconvenience during molding due to volatilization or the like is generated.
A 1203はガラスの耐久性を向上させ、 またガラスの強化性に深く関わるヤン グ率の向上にも寄与する成分である。 しかし 1 5 %を超えるとガラスの溶解が困 難になり、 また A 1203の添加は線膨張率を引き下げる効果もある。 A 1203の 好ましい範囲は 0. 5〜 1 5 %である。 A 1 2 0 3 improves the durability of the glass, also a component contributing to improvement of the closely related Young's modulus strengthening of the glass. But more than 1 5% if becomes low solubility of the glass frame, also the addition of A 1 2 0 3 is also effective to lower the coefficient of linear expansion. The preferred range of A 1 2 0 3 is 0.5 to 1 5%.
MgO、 CaO、 S r 0, B a◦といったアルカリ土類酸化物はガラスの耐久 性を向上させるとともに、 成形時の失透温度、 粘度、 膨張率、 ヤング率を調整す るために添加される。 MgOが 2. 5 %未満では失透温度の低減効果が現れず、 20%を超えると逆に失透温度が上昇し、 生産上の不具合を生じる。 Alkaline earth oxides such as MgO, CaO, Sr0, and Ba◦ are added to improve the durability of glass and to adjust the devitrification temperature, viscosity, expansion rate, and Young's modulus during molding. . If the content of MgO is less than 2.5%, the effect of reducing the devitrification temperature does not appear, and if it exceeds 20%, the devitrification temperature rises conversely, causing production problems.
本発明の高いヤング率と線膨張率をあわせ持つガラスでは、 C a 0は特に重要 な組成の一つである。 C aOが 7. 5 %未満では線膨張率、 ヤング率が小さくな り、 充分な特性が得られなくなる。 また 30%を超えると失透温度が上昇するた め、 生産上の不具合を生じる。 In the glass of the present invention having both a high Young's modulus and a linear expansion coefficient, C a0 is one of particularly important compositions. If CaO is less than 7.5%, the coefficient of linear expansion and the Young's modulus will be small, and sufficient characteristics will not be obtained. If it exceeds 30%, the devitrification temperature rises, causing production problems.
S r 0, B a 0は原料が高価なため、多量の使用はバヅチコストを押し上げる。 S r 0, B a 0の添加は失透温度低減効果があるため好ましいが、 その量はコス ト面からそれそれが 1 0 %を超えないことが好ましい。 Since S r 0 and Ba 0 are expensive raw materials, using a large amount thereof increases batch costs. The addition of Sr0 and Ba0 is preferable because it has the effect of reducing the devitrification temperature, but the amount is preferably not more than 10% in terms of cost.
これらアル力リ土類量の総和が 1 0 %以下では充分な熱強化係数を持つガラス
が得られず、 5 0%を超えると失透温度が上昇し、 生産上の不具合を生じる。When the sum of these earth elements is 10% or less, glass with a sufficient heat strengthening coefficient If it exceeds 50%, the devitrification temperature rises, causing production problems.
L i20、 Na20、 K20といったアルカリ酸化物はガラスの溶解を促進させ る。 このうち L i 20の添加は溶解促進効果の他に、 ガラス転移温度を著しく引 き下げる効果もある。 このことは通常のフロー卜法での生産において操業条件の 変更を要するため好ましくない。 L i 20添加量は 10 %を超えないことが好ま しい。 L i 2 0, Na 2 0 , an alkali oxide such as K 2 0 is Ru promotes the dissolution of the glass. In addition to these, L i 2 addition of 0 the dissolution accelerating effect is also significantly pull can reduce the effect of the glass transition temperature. This is not preferable because the operating conditions need to be changed in normal float production. Preferably, the amount of Li 20 added does not exceed 10%.
N a 20が 9 %未満あるいはアル力リ酸化物量の合計が 1 0 %未満では溶解促 進効果が乏しく、 N a2〇が 20 %を超えるか、 またはアル力リ跫の合計が 40 % を超えるとガラスの耐久性が低下する。 K2Ofiiが多いとコス 卜が高くなるため、 K2〇は 1 5 %以下に留めることが望ましい。 N a 2 0 is poor dissolution promotion effect in total less than 1 0% 9% less than or Al force Li oxide amount, N a 2 〇 Do exceeds 20%, or total Al force re跫40% If it exceeds, the durability of the glass decreases. Since the K 2 Ofii often cost Bok increases, K 2 〇 is desirably kept to 1 5%.
Υ 0 , L a 0 , Z r 02はガラスのヤング率を向上させ、 耐久性も向上さ せる効果がある。 いずれも原料が高価であるため、 1 5 %を超える添加はコス ト を押し上げ、 また多還の添加は失透温度を上昇させるため好ましくない。 Υ 0, L a 0, Z r 0 2 improves the Young's modulus of the glass, the effect of improving the durability. In any case, since the raw materials are expensive, the addition of more than 15% raises the cost, and the addition of polyadditive increases the devitrification temperature, which is not preferable.
酸化鉄は、 ガラス中では F e 203と F e 0の状態で存在する。 ガラスの光学特 性においては、 F e 2 は紫外線吸収能を高める成分であり、 F e 0は熱線吸収 能を高める成分である。 Iron oxide is present in glass in the form of F e 2 0 3 and F e 0. In the optical properties of glass, F e 2 is a component that enhances the ultraviolet ray absorbing ability, and F e 0 is a component that enhances the heat ray absorbing ability.
F e 203に換算した全酸化鉄 (T— F e2〇3) が 0. 3%未満では紫外線及び 赤外線の吸収効果が小さく、 所望の光学特性が ί られない。 一方、 Τ一 F e2C が多すぎると酸化第 1鉄の有する熱線吸収効果により、 その輻射熱により溶融時 に熔解槽天井部の温度が耐熱温度以上になる恐れがあり好ましくない。 さらに、 ガラス溶融窯で連続的に生産を行う場合を考えると、 T_ F e 203が多すぎると 異組成ガラス素地との組成変更に時間を要するため、 T_ F e 203量は 4 %以下 であることが好ましく、 2 %以下であることがより好ましい。 F e 2 0 3 total iron oxide in terms of (T-F e 2 〇 3) 0.5 small effect of absorbing ultraviolet and infrared rays is less than 3%, the desired optical characteristics can not be I. On the other hand, the heat-absorbing effect with Τ one F e 2 C is a too large ferrous oxide, fear not preferable that the temperature of the melting tank ceiling when melted by the radiant heat is more heat-resistant temperature. Furthermore, considering the case of performing continuous production in a glass melting furnace, since it takes T_ F e 2 0 3 times on the composition changes and is too large, different composition the glass base material, the T_ F e 2 0 3 of 4 % Or less, and more preferably 2% or less.
T i O 2 , C e 02及び V205はガラスに紫外線吸収能を付与する着色成分であ る。 N i O, C 00 , S e, Mn 0, C r 2 O 3 , N d 2◦ 3及び E r 203はこれら を単独または組み合わせて添加することで、 主に可視光透過率を調整しガラスに 所望の色調を付与することができる。 具体的な色調を得るための好ましい組み合
わせの例を以下に示す。 T i O 2, C e 0 2 and V 2 0 5 is Ru coloring component der imparting ultraviolet absorptivity to the glass. N i O, C 00, S e, Mn 0, C r 2 O 3, N d 2 ◦ 3 and E r 2 0 3 than adding these alone or in combination, mainly adjusts visible light transmittance A desired color tone can be imparted to the ground glass. Preferred combinations for obtaining specific colors An example of the adjustment is shown below.
例えば、 A光源を用いて測定した可視光透過率 (YA) が 4mm厚味で 70% 以上と高い、 緑色色調を持つガラスの場合、 0. 5〜2. 2%の T— F e 203の 他、 0. 0 1〜: L . 0%の T i〇2、 0. 05〜3. 0 %の C e 02の組み合わせ から成ることが好ましい。 For example, in the case of a glass with a green color tone whose visible light transmittance (YA) measured using the light source A is as high as 70% or more when the thickness is 4 mm, 0.5 to 2.2% T—F e 20 In addition to 3 , it is preferable to use a combination of 0.01 to: L i 0% T i〇 2 and 0.05 to 3.0% C e O 2 .
また、 灰色味がかった緑色 (グレイッシュグリーン) 色調を得るためには 0. 3〜2%の丁一 e 203の他、 0〜0. 2%のN i〇かつ/または 0〜0. 0 1% の S e、 0. 002〜0. 05 %の C o〇及び 0〜 0. 2%の C r2〇3の組み合 わせから成ることが好ましい。 紫外線カッ ト性を付与するため上記 T i 02、 C e 02を組み合わせて用いることができる。 Another of 3-2% 0. Ding one e 2 0 3 in order to obtain a green (Grayish green) color gray tinge tinged, 0-0. 2% N I_〇 and / or 0-0. 0 1% S e, 0. 002~0. it is preferably made 05% C O_〇 and 0 to 0.2% of C r 2 〇 third combination. Can be used in combination of the above T i 0 2, C e 0 2 for imparting ultraviolet cut property.
また、 刺激純度の低い灰色色調を得るためには、 0. 3〜2 %の T_F e2〇3 の他、 0〜0. 2%の N i〇、 0. 002 - 0. 05 %の C o〇、 0. 000 1 〜0. 005 %の S e及び 0〜 0. 2 %の C r 203の組み合わせから成ることが 好ましい。 紫外線力ッ ト性を付与するため上記 T i 02、 C e 02を組み合わせて 用いることができる。 In addition, in order to obtain a gray color with low stimulus purity, 0.3 to 2 % of T_F e 2 〇 3 , 0 to 0.2% of Ni〇, 0.002 to 0.05% of C O_〇, 0.000 1-0. it is preferred that a combination 005 percent S e and from 0 to 0.2% of C r 2 0 3. To impart ultraviolet Chikara' preparative can be used in combination of the above T i 0 2, C e 0 2.
本発明の組成範囲のガラスに、 清澄剤あるいは還元剤として S n 02を合計量 で 0〜 1 %の範囲で、 本発明が目的とする色調を損なわない範囲で添加しても良 い。 The glass composition range of the present invention, in a range of 0 1% S n 0 2 in a total amount as a fining agents or reducing agents, but it may also be added to the extent that the present invention does not impair the color tone of interest.
強化用板ガラスの他の好ましい基礎ガラス組成は、 重量分率で表して、 Another preferred base glass composition for tempered sheet glass, expressed as a weight fraction,
60〜70 %の S i 02、 60-70% S i 0 2 ,
0〜5 %の B2〇3、 0-5% B 2 〇 3 ,
1〜 1 0%の八 12〇3ヽ (但し、 S i〇2, A 1203の和が 70%未満、 ) 0〜 1 5%特に好ましくは 2. 2〜8%の^1 0、 1-1 0% eight 1 2 〇 3ヽ(However, S I_〇 2, A 1 2 0 the sum of 3 is less than 70%) 0-1 5% particularly preferably from 2.2 to 8% of ^ 1 0,
9 6〜25%の C aO、 9 6-25% C aO,
0 5 %の S r 0、 0 5% S r 0,
0 5 %の B a〇、 0 5% B a〇,
0 0 %の1^ i 20、
9〜 2 0 %の N a2◦、 0 0% of 1 ^ i 2 0, 9-2 0% N a 2 ◦,
0〜 1 5 %の1<20、 (但し、 L i20, Na20, K 2〇量の総和が 1 0 %以上 40-1 5% 1 <2 0, (where, L i 2 0, Na 2 0, K 2 〇 amount of sum 1 0% or more 4
◦ %以下、 ) ◦% or less,)
0〜 1 5 %の 203ヽ 0 to 15% 2 0 3ヽ
0〜 1 5 %の1^ a203ヽ 0-1 5 percent of the 1 ^ a 2 0 3ヽ
及び 0〜 1 5 %の Z r 02 And 0-15% Zr 0 2
である。 It is.
この C aOが 9. 6重量%以上含まれるこの基礎ガラス組成は、 板ガラスに高 いヤング率と線膨張率とを与える。 This base glass composition containing 9.6% by weight or more of CaO gives a high Young's modulus and a coefficient of linear expansion to the sheet glass.
この組成範囲において MgO量を 2. 2重量%以上とすることで、 C aOを多 く含む場合に見られ易いァンバ一着色を抑えることができる。 8%以下の MgO は板ガラスの失透を生じさせない。 By setting the MgO content to 2.2% by weight or more in this composition range, it is possible to suppress the unicoloring which is easily observed when a large amount of CaO is contained. MgO below 8% does not cause devitrification of the glass sheet.
強化用板ガラスのさらに好ましい基礎ガラス組成は、 重量分率で表して、 60〜70%の S i 02ヽ A more preferred base glass composition of the tempered glass sheet is 60-70% S i 0 2ヽ expressed by weight fraction.
0〜 5 %の 03ヽ 0-5% of 0 3ヽ
2. 8 %未満特に好ましくは 1. 5 %未満の八 1203、 (但し、 S i O A 12 2. Particularly preferably less than 8% 1. less than 5% eight 1 2 0 3, (where, S i OA 1 2
◦ 3の和が Ί 0 %未満、 ) ◦ The sum of 3 is less than Ί 0%,)
0〜 1 5 %特に好ましくは 2. 2〜8 %のMg〇、 0-15%, particularly preferably 2.2-8% Mg%,
9 %より多く 1 5 %以下の C aO、 More than 9% and less than 15% C aO,
0〜 1 5 %の S r〇、 0-15% S r〇,
0〜 1 5 %の:6 a〇、 0 to 15%: 6 a〇,
0〜; I 0 %の i 20、 0 ~; i 0% i 20,
9〜2 0%の Na20、 9-20% Na 2 0,
0〜 1 5 %の1<20、 (但し、 L i20, Na20, K 20量の総和が 1 0 %以上 4 0%以下、 ) 0-1 5% 1 <2 0, (where, L i 2 0, Na 2 0, K 2 0 content of sum 1 0% to 4 0% or less)
0- 1 5 %の丫203、 0- 15% 丫2 0 3 ,
0- 1 5 %の a2〇3、
及び 0〜 1 5 %の Z r 02 0- 15% of a 2 〇 3 , And 0-15% Zr 0 2
である。 It is.
この 2. 8重量%未満の A 12〇3を含む板ガラスは、 高い熱膨張率を有する。 1. 5重量%未満の A 1203は、 板ガラスにさらに高い膨張率を与える。 This 2. glass sheet comprising A 1 2 〇 3 of less than 8% by weight, has a high thermal expansion coefficient. 1. A 1 2 0 3 of less than 5 wt% gives a higher expansion coefficient glass sheet.
2. 2重量%以上の MgO量は、 C a 0を多く含む場合に見られ易いアンバー 着色を抑える。 8重量%以下の MgOは板ガラスに、 失透を生じさせない。 2. MgO content of 2% by weight or more suppresses amber coloring, which is easily seen when a large amount of Ca0 is contained. MgO of less than 8% by weight does not cause devitrification in the sheet glass.
強化用板ガラスのさらに他の好ましい基礎ガラス組成は、 重量分率で表して、 60〜70%の3 :1〇2、 In yet another preferred base glass composition of the reinforcing plate glass, expressed in terms of weight fraction, 60 to 70% 3: 1_Rei 2,
0〜 5 %の8203ヽ 0 to 5% 8 2 0 3ヽ
2. 8 %未満特に好ましくは 1. 5 %未満の八 1203、 (但し、 S i 02, A 12 ◦ 3の和が Ί 0 %未満、 ) 2. Particularly preferably less than 8% 1. less than 5% eight 1 2 0 3, (where, S i 0 2, A 1 2 ◦ less than the sum of 3 Ί 0%,)
0〜: I 5 %特に好ましくは 2. 2〜8 %の MgO、 0 to: I 5% particularly preferably 2.2 to 8% MgO,
5〜 1 5 %の C a〇、 5-15% C a〇,
0〜 1 5 %の S r〇、 0-15% S r〇,
0〜 1 5 %の8 a 0、 0-15% of 8 a 0,
0〜: L 0 %の i 0、 0 to: L 0% i 0,
1 3%より多く 2 5 %未満特に好ましくは 1 6 %未満のN a20、 1 3% more particularly preferably more than 25% less than 1 6% N a 2 0,
0〜 1 5 %特に好ましくは 0. 9 %未満の K20、 (但し、 L i 20, Na20,0-1 5% particularly preferably 0.9% less than the K 2 0, (where, L i 2 0, Na 2 0,
K20量の総和が 1 3 %以上 40 %以下、 ) K 2 0 of the sum of 1 to 3% to 40%)
0〜 1 5 %の丫2〇3ヽ 0 to 15% of 丫2 〇 3ヽ
0〜: I 5 %の a 203ヽ 0 to: I 5% a 2 0 3ヽ
及び 0〜 1 5 %の Z r 02 And 0-15% Zr 0 2
である。 It is.
この Na20を 1 3重量%ょり多く含む基礎ガラス組成は、 板ガラスに高い線 膨張率を与える。 2 5重量%よりも少ない Na20は、 ガラスの耐久性を悪化さ せる。 The base glass composition containing 13% by weight of Na 20 gives a high linear expansion coefficient to the sheet glass. Na 2 O less than 25% by weight degrades the durability of the glass.
この組成範囲においても MgO量を 2. 2〜 8重量%に限定することで得られ
る効果は同じである。 A 1203量を 1. 5重量%未満に限定する効果も先に述ぺ たとおりである。 Even in this composition range, it can be obtained by limiting the amount of MgO to 2.2 to 8% by weight. The effect is the same. Limiting effect on the A 1 2 0 3 amount 1. to less than 5% by weight are also as was mentioned pair first.
1(2〇量が0. 9重量%未満の基礎ガラス組成は、 K20の量が一般に珪砂等に 含まれる不純物レベルに等しい。 従って、 Κ20原料が不要となり、 板ガラスの 原料コストが低減される。 1 (the basic glass composition of less than 2 〇 weight 0.9% by weight, equal to the impurity levels the amount of K 2 0 is included in the generally silica sand or the like. Therefore, kappa 2 0 material is not necessary, the material cost of the glass sheet Reduced.
1 6 %未満の Na20は、 板ガラスの耐久性を悪化させない。 1 Na 2 0 less than 6%, does not deteriorate the durability of the glass sheet.
強化用板ガラスのさらに他の好ましい基礎ガラス組成は、 重量分率で表して、 60 %以上 63 %未満の S i 02、 Yet another preferred base glass composition of the tempered glass sheet is 60% or more and less than 63% S i 0 2 , expressed by weight fraction,
1 %以上の A 1203 (S i 02, A 1203の和が 70 %未満) At least 1% A 1 2 0 3 ( S i 0 2, A 1 2 0 less than the sum of 3 70%)
0~ 5 %の:6203ヽ 0 ~ 5%: 6 2 0 3ヽ
0〜: L 5 %の MgO、 0 to: L 5% MgO,
5 ~ 1 5 %の C a 0、 5-15% C a 0,
0〜 1 5 %の S r 0、 0-15% S r 0,
0〜; 1 5 %の8 a 0、 0 to; 15% of 8a0,
0〜 1 0 %の i 20、 0-20% i 20,
13 %より多く 25 %未満の N a 20、 More than 13% and less than 25% N a 20 ,
0〜 1 5%の 20、 (但し、 L i2〇, Na20, K 20量の総和が 13 %以上 40 to 15% of 20 ; (However, the sum of Li 2 〇, Na 20 and K 20 is 13% or more 4
0%以下、 ) 0% or less,)
0〜 1 5 %の丫2〇3、 0 to 15% of 丫2 〇 3 ,
0〜 1 5 %の1^ a2〇3、 0-1 5 percent of the 1 ^ a 2 〇 3,
及び 0〜 1 5 %の Z r 02 And 0-15% Zr 0 2
である。 It is.
強化用板ガラスのさらに好ましい基礎ガラス組成は、 Further preferred base glass composition of the tempered glass sheet,
基礎ガラス組成が、 重量分率で表して、 The base glass composition, expressed as a weight fraction,
63%以上 66 %未満の S i〇2、 63% or more and less than 66% S i〇 2 ,
2. 8%未満の 1203、 2.less than 8% 1 2 0 3 ,
0〜5 %の52〇3、
0〜 15 %の1 g 0、 0 5% of 5 2 〇 3 , 0-15% of 1 g 0,
5〜 15 %の C a0、 5-15% C a0,
0〜 15 %の S r 0、 0-15% S r 0,
0〜: L 5 %の8 a 0、 0 to: L 5% 8 a 0,
0〜: L 0 %の i 20、 0 to: L 0% i 20 ,
13%より多く 25 %未満の Na20、 More than 13% and less than 25% Na 20 ,
0〜15%の K20、但し、 L i20, Na20, K20量の総和が 13 %以上 40 % 以下、 ) 0-15% of K 2 0, where, L i 2 0, Na 2 0, K 2 0 content of total 13% to 40%)
0〜 15 %の¥ 203ヽ 0-15% of the ¥ 2 0 3ヽ
0〜 15 %の L a 203、 0-15% of L a 2 0 3,
及び 0〜 15 %の Z r 02 And 0-15% Zr 0 2
である。 It is.
強化用板ガラスのさらに好ましい基礎ガラス組成は、 Further preferred base glass composition of the tempered glass sheet,
基礎ガラス組成が、 重量分率で表して、 The base glass composition, expressed as a weight fraction,
66%〜70%の S i 0 66% -70% S i 0
2%未満の 12〇3 (但し、 S i〇2, 八1203の和が70%以下) 1 2 〇 3 of less than 2% (however, the sum of S i 〇 2 and 8 1 2 0 3 is 70% or less)
0〜 5 %の:62〇3、 0-5%: 6 2 〇 3 ,
0〜 15 %のM g〇、 0-15% Mg〇,
5〜 15%の C aO、 5-15% C aO,
0〜 15 %の S r 0、 0-15% S r 0,
0〜 15 %の8 aO、 0-15% of 8 aO,
0〜 10 %の1^ i 2〇、 0-10% of 1 ^ i 2 〇,
13%より多く 25%未満のNa2◦、 More than 13% and less than 25% Na 2 ◦,
0〜15%の1^20、 (但し、 L i20, Na20, K 20量の総和が 13 %以上 40-15% of 1 ^ 2 0, (where, L i 2 0, Na 2 0, K 2 0 content of total 13% or more 4
0%以下、 ) 0% or less,)
0〜 15 %の¥ 203ヽ 0-15% of the ¥ 2 0 3ヽ
0〜: L 5 %の L a2〇3ヽ
及び 0〜 1 5 %の Z r 02 0 to: L 5% L a 2 〇 3の And 0-15% Zr 0 2
である。 It is.
この基礎ガラス組成の板ガラスは、 化学的耐久性に優れ、 しかも高い熱強化係 数を有する。 The glass sheet of this basic glass composition has excellent chemical durability and high thermal strengthening coefficient.
自動車の走行中、 窓ガラスにかかる力とそれによつてガラスがどのく らい撓む かについては、 次のように評価される。 仮に自動車が時速 1 2 O kmZhで走行 し、 風圧を受ける窓が下辺のみで支持されているとした場合、 各点における窓ガ ラスの変位は次式によって近似される。 The following is the evaluation of the force on the window glass and how much the glass bends during the operation of the vehicle. Assuming that the car is running at 12 O kmZh / h and the window receiving wind pressure is supported only on the lower side, the displacement of the window glass at each point is approximated by the following equation.
d = 4. 38X103 X |Cp|/Et3 d = 4.38X10 3 X | Cp | / Et 3
d:変 immin) d: strange immin)
E:ヤング率(GPa) E: Young's modulus (GPa)
t:板厚(mm) t: Plate thickness (mm)
Cp:圧力係数 (< 0 ) Cp: Pressure coefficient (<0)
自動車側面の窓ガラスの場合、 圧力係数 C pには一般に- 0.3〜- 1.0の値が用いら れる。 上式における |Cp|は、 圧力係数 Cpの絶対値である。 In the case of window glass on the side of an automobile, a value of -0.3 to -1.0 is generally used for the pressure coefficient Cp. | Cp | in the above equation is the absolute value of the pressure coefficient Cp.
各点において受ける引張応力値は次式の近似計 によって求められる。 The value of the tensile stress received at each point is determined by the following approximation.
f = 3qx2/bt2 f = 3qx 2 / bt 2
f :引張応力(MPa) f: Tensile stress (MPa)
q:等分布加重(MPa) q: Uniform distribution weight (MPa)
X: 自由端からの距離(mm) X: Distance from free end (mm)
b:幅 (=1) b: width (= 1)
t:板厚(mm) t: Plate thickness (mm)
上式から各板厚の場合ごとに受ける最大引張応力値は表 1のように求められた。
表 1 From the above formula, the maximum tensile stress value received for each sheet thickness was obtained as shown in Table 1. table 1
板厚 (mm) 最大引張応力値 (MP a) Plate thickness (mm) Maximum tensile stress (MPa)
2 . 1 6 8. 6 2.1.8.6.6
2 . 5 48. 4 2.5 58.4
2 . 8 3 8. 6 2. 8 3 8. 6
3 . 1 3 1. 5 3.1 31.5
3 . 5 24. 7 3.5 5 24. 7
3 . 8 2 1 · 0 3.8.2 1
4 . 8 1 3. 1 従って現在のところ単板での使用下限とされる 2. 1 mm厚味において、 強化 によって少なくとも 70 MP a以上の圧縮応力を付与できれば、 亀裂が進展し、 破壊に至る確率を極めて低く抑えることができる。 よって、 本発明における、 必 要な熱強化係数は 3 5以上と求められた。 4.8 1 3.1 Therefore, it is currently considered the lower limit of use for veneers.2 At a thickness of 1 mm, if a compressive stress of at least 70 MPa can be applied by strengthening, cracks will develop and lead to fracture. The probability can be kept very low. Therefore, the necessary thermal strengthening coefficient in the present invention was determined to be 35 or more.
上記熱強化係数は 35〜 7 5とりわけ 4 5~ 6 5であることがより好ましい。 ガラスの組成によって決まる熱伝導率、 線膨張率、 ヤング率、 ポアソン比の各 パラメ一夕のうち、 特に組成によって値の大きく変わるものは線膨張率とヤング 率である。 上記熱強化係数を得るには、 線膨張率とヤング率の積によって表され る熱応力係数が、 0. 7 0〜 1. 2 0 MP a/°Cであることが好ましい。 The thermal strengthening coefficient is more preferably 35 to 75, particularly preferably 45 to 65. Among the parameters of thermal conductivity, linear expansion coefficient, Young's modulus, and Poisson's ratio determined by the composition of the glass, the ones whose values greatly change depending on the composition are the linear expansion coefficient and the Young's modulus. In order to obtain the above-mentioned thermal strengthening coefficient, the thermal stress coefficient represented by the product of the coefficient of linear expansion and the Young's modulus is preferably 0.70 to 1.20 MPa / ° C.
この熱応力係数は、 0. 7 2〜0. 80 MP a/°Cであることがさらに好まし い。 More preferably, the thermal stress coefficient is between 0.72 and 0.80 MPa / ° C.
上記熱応力係数を得るためには、 5 0°C;〜 3 00°Cにおける平均線膨張率が 9 2 X 1 0— 7〜 1 0 5 x 1 O—^CT1 ヤング率が 7 5〜9 2 GP aであることが好 ましく、 さらに、 上記平均線膨張率が、 9 5 X 1 0— 7°C―1〜 1 00 X 1 0—7° 1、 ヤング率が 77〜8 5 GP a以上であることがさらに好ましい。 To obtain the thermal stress factor, 5 0 ° C; ~ 3 00 average linear expansion coefficient ° C is 9 2 X 1 0- 7 ~ 1 0 5 x 1 O- ^ CT 1 Young's modulus 7 5 9 2 GP a is it is favorable preferred, further, the average linear expansion coefficient, 9 5 X 1 0- 7 ° C- 1 ~ 1 00 X 1 0- 7 ° 1, the Young's modulus 77-8 5 More preferably, it is GPa or more.
本発明の板ガラスは、 フロート法によって生産されることが好ましいが、 必ず しもこれに限定するものではない。
実施例 1〜 2 1 The plate glass of the present invention is preferably produced by a float method, but is not necessarily limited to this. Examples 1-2 1
表 2の組成となるように、 ソーダ石灰シリカガラスバッチ成分に、酸化第二鉄、 酸化チタン、 酸化セリウム、 酸化コバルト、 金属セレン、 酸化ニッケル、 酸化ク ロム、 酸化ネオジム又は酸化エルビウムを添加すると共に、 炭素系還元剤 (具体 的にはコークス粉末等) 、 清澄剤を加えて混合した。 この原料を容量 2 50 ml の白金製坩堝に入れ、 電気炉中で 1 500°Cに加熱、 4時間溶融した。 溶けたガ ラスをステンレス板上に流し出し、 室温まで徐冷してガラス板を得た。 Add ferric oxide, titanium oxide, cerium oxide, cobalt oxide, metallic selenium, nickel oxide, chromium oxide, neodymium oxide, or erbium oxide to the soda-lime-silica glass batch components so that the composition shown in Table 2 is obtained. , A carbon-based reducing agent (specifically, coke powder, etc.) and a fining agent were added and mixed. This raw material was placed in a platinum crucible with a capacity of 250 ml, heated to 1500 ° C in an electric furnace and melted for 4 hours. The melted glass was poured on a stainless steel plate, and gradually cooled to room temperature to obtain a glass plate.
次いで、 得られたガラス板を 2. :!〜 4. 8 mm厚味に研磨した。 研磨された 板ガラスをこれを電気炉中で 700 °C、 約 3分問保持した後、 取り出して気圧 3 4 MP aの圧縮空気を吹き付けて風冷することで強化ガラスを得た。 この強化ガ ラスから、 長さ約 1 5mm、 5 mm0のガラス榉を切り出した。 このガラス板を 室温から約 700°Cまで毎分 5 °Cで昇温し、 石英ガラスを標準サンプルとしてガ ラスの伸びを測定することにより平均線膨張率、 ガラス転移点(Tg)、 降伏点(Td) を求めた。 上記の強化ガラスから 30 x 20 x 6 mmのガラスブロックを切り出 し、 シングアラウンド法によってヤング率を求めた。 Then, the obtained glass plate is 2.:! Polished to ~ 4.8 mm thick. The polished sheet glass was held in an electric furnace at 700 ° C. for about 3 minutes, then taken out, blown with compressed air at a pressure of 34 MPa, and air-cooled to obtain a tempered glass. From this reinforced glass, a glass の having a length of about 15 mm and 5 mm0 was cut out. The glass plate is heated from room temperature to about 700 ° C at a rate of 5 ° C per minute, and the elongation of the glass is measured using quartz glass as a standard sample to determine the average linear expansion coefficient, glass transition point (Tg), (Td). A 30 x 20 x 6 mm glass block was cut out from the above tempered glass, and the Young's modulus was determined by the sing-around method.
表 2 , 3は、 得られた測定結 ¾と強化ガラスの組成を示す。 表 2 , 3中の S i 02の値は、 小数点第 2位で四捨五入されている。
Tables 2 and 3 show the obtained measurement results and the composition of the tempered glass. Table 2, the value of S i 0 2 in 3 are rounded up to two decimal places.
実施例 1〜 2 1の板ガラスは、 表に示したとおり、 いずれも 35以上の高い熱 強化係数と、 高い表面圧縮応力値を持つ。 各ガラスは、 0. 70〜 1. 20MP a/°Cの熱応力計数値ひ · Eを持っており、 強化性が改善されている。 実施例 1 〜9、 13〜 1 6、 18〜2 1の板ガラスは、 すべて請求項 7に示された好まし い範囲の基礎ガラス組成である。 As shown in the table, each of the sheet glasses of Examples 1 to 21 has a high thermal strengthening coefficient of 35 or more and a high surface compressive stress value. Each glass has a thermal stress coefficient E of 0.70 to 1.20 MPa / ° C, and has improved toughness. The glass sheets of Examples 1 to 9, 13 to 16 and 18 to 21 all have a preferred range of the base glass composition described in claim 7.
表 4は比較例を示す。 Table 4 shows a comparative example.
表 4 Table 4
*:計算値 *:Calculated value
**: 20-400°Cの平均値 **: Average value of 20-400 ° C
比較例 1は通常市販されているフロート板ガラス組成であり、 本発明範囲外の 組成である。 この組成の熱強化係数、 及びこれを風冷強化して得られた表面圧縮 応力値を表中に示した。 本発明に比べ強化性に劣るのは明らかである。 また比較 例 2は N a 20が本発明範囲外である。 一方、 比較例 3は特公平 6— 535 9 2 号公報中に示されたガラスである。 いずれも本発明の実施例と比較して表面応力 値が低く、 強化性能に劣る。 Comparative Example 1 is a commercially available float plate glass composition, which is out of the range of the present invention. The thermal strengthening coefficient of this composition and the surface compressive stress value obtained by air-cooling the composition are shown in the table. It is clear that the reinforcement is inferior to that of the present invention. The Comparative Example 2 N a 2 0 is out of range the present invention. On the other hand, Comparative Example 3 is a glass disclosed in Japanese Patent Publication No. 6-53592. In each case, the surface stress value is lower than in the examples of the present invention, and the reinforcing performance is inferior.
以上詳述したとおり、 本発明によれば、 実質的な強化プロセスの能力増強を要 することなく、 充分な表面圧縮応力値を持つ強化ガラスが提供される。
As described above in detail, according to the present invention, a tempered glass having a sufficient surface compressive stress value is provided without substantially increasing the capacity of the tempering process.
Claims
1. 強化用板ガラスであって、該板ガラスに強化処理を施したときに表面圧縮応 力値 (MP a) を板厚味 (mm) により除した商で表される熱強化係数が 35〜 75となることを特徴とする強化用板ガラス。 1. A tempered glass sheet having a thermal strengthening coefficient of 35 to 75, expressed as the quotient obtained by dividing the surface compression stress value (MPa) by the sheet thickness (mm) when the glass sheet is subjected to tempering treatment. A tempered sheet glass characterized by the following.
2. 前記熱強化係数が 45〜6 5であることを特徴とする詰求項 1に記載の強 化用板ガラス。 2. The strengthening sheet glass according to claim 1, wherein the thermal strengthening coefficient is 45 to 65.
3. 50。C〜 3 5 0 °Cにおける平均線膨張率とヤング率の積で表される熱応力 係数が 0. 70〜 1. 2 OMP aZ°Cであることを特徴とする請求項 1または 2 に記載の強化用板ガラス。 3. 50. The thermal stress coefficient represented by the product of the average coefficient of linear expansion and the Young's modulus at C to 350 ° C is 0.70 to 1.2 OMP aZ ° C, according to claim 1 or 2, Glass for tempering.
4. 前記熱応力係数が 0. 72〜0. 8 OMP a/°Cであることを特徴とする詰 求項 1〜 3のいずれか 1項に記載の強化用板ガラス。 4. The tempered glass sheet according to any one of claims 1 to 3, wherein the thermal stress coefficient is 0.72 to 0.8 OMP a / ° C.
5. 前記平均線膨張率が 92 x 1 0— 7°C―1〜 1 05 x 1 0— 7°C 'であり、かつャ ング率が 75 GP a以上であることを特徴とする請求項 1〜 4のいずれか 1項に 記載の強化用板ガラス。 5. is said average coefficient of linear expansion is 92 x 1 0- 7 ° C- 1 ~ 1 05 x 1 0- 7 ° C ', claims, characterized in that Katsuya's modulus is 75 GP a more 5. The tempered glass sheet according to any one of 1 to 4.
6. 前記平均線膨張率が 95 X 1 0— 7°C―1〜 1 00 x 1 0—7°C 1であり、かつャ ング率が 77〜85 GP aであることを特徴とする請求項 1〜 5のいずれか 1項 に記載の強化用板ガラス。 6. The average coefficient of linear expansion is 95 X 1 0- 7 ° C- 1 ~ 1 00 x 1 0- 7 ° C 1, wherein, wherein Katsuya's modulus is 77 to 85 GP a Item 6. The tempered glass sheet according to any one of Items 1 to 5.
7. 基礎ガラス組成が、 モル分率で表して、 7. The base glass composition, expressed in mole fraction,
45〜70%の3102ヽ 45-70% of 310 2ヽ
0. 5〜 1 5 %の八 1203、 0.5 to 15% of 8 1 2 0 3 ,
0〜5 %の8203、 8 2 0 3 of 0-5%,
2. 5〜20%の MgO、 2.5-20% MgO,
7. 5〜30%の〇 &0、 7. 5-30% 〇 & 0,
0〜 1 0 %の S r 0、 0 to 10% S r 0,
0〜 1 0%の:6 &0、 (但し、 MgO, C a 0 , S r 0, B aO量の総和が 10% より多く 50%以下、 )
0~ 10 %の i 20、 0 to 10%: 6 & 0, (However, the sum of the amounts of MgO, Ca0, Sr0, BaO is more than 10% and less than 50%) 0-20% i 20,
9〜25%の Na20、 9-25% Na 2 0,
0〜15%の1 20、 (但し、 L i2〇, Na20, K 20量の総和が 10 %以上 40-15% of 1 2 0, (where, L i 2 〇, Na 2 0, K 2 0 content of total 10% or more 4
0%以下、 ) 0% or less,)
0〜: 15 %の丫 203ヽ 0 to: 15% { 2 0 3 }
0〜15%の L azO 0-15% L azO
及び 0〜 15 %の Z r〇2 And 0 to 15% of the Z R_〇 2
から成ることを特徴とする請求項 1〜 6のいずれか 1項に記載の強化用板ガラスThe tempered glass sheet according to any one of claims 1 to 6, comprising:
8. 着色成分として、 モル分率で表して、 8. As a coloring component, expressed in mole fraction,
0. 3〜4 %の F e 203に換算した全酸化鉄 (T— Fe2〇3) 、 Total iron oxide in terms of 0.3 to 4% of F e 2 0 3 (T- Fe 2 〇 3),
0. 01-1 %の丁 i〇2、 0.01-1% of Ding i〇 2 ,
0〜3 %の C e 02、 0-3% of C e 0 2,
0-0. 01 %の S e、 0-0. 01% S e,
0〜0. 05%の〇00、 0-0.05% 〇00,
0〜0. 2 %のN i 0、 0-0.2% Ni 0,
0〜0. 2 %の C r 203 0-0.2% Cr 2 0 3
を含むことを特徴とし、 紫外光、 赤外光、 可視光各透過率を調整した請求項 1〜 7のいずれか 1項に記載の強化用板ガラス。 The tempered glass sheet according to any one of claims 1 to 7, wherein the glass sheet has a transmittance adjusted to each of ultraviolet light, infrared light, and visible light.
9. 基礎ガラス組成が、 重量分率で表して、 9. The base glass composition, expressed as a weight fraction,
60〜70%の3丄02、 60 丄 70% 3 丄2 ,
1〜 10 %の八 1203、 (但し、 S i〇2 A 1203の和が 60%以上 70 %未 満) 1-10% eight 1 2 0 3, (wherein, S I_〇 70% less than the sum of 2 A 1 2 0 3 is 60%)
0〜 5 %の 03ヽ 、 0-5% of the 0 3ヽ,
0〜 15 %の Mg〇、 0-15% Mg〇,
9. 6〜25%の〇&0、 9. 6-25% 〇 & 0,
0〜 15 %の S r 0、 0-15% S r 0,
0〜: L 5 %の8 a 0、
0〜 1 0 %の L i 2〇、 0 to: L 5% 8 a 0, 0 to 10% L i 2 〇,
9〜 20 %の N a20、 9-20% of N a 2 0,
0〜 1 5%の1<20、 (但し、 L i20, Na20, K 2◦量の総和が 1 0 %以上 4 0%以下、 ) 0-1 5% 1 <2 0, (where, L i 2 0, Na 2 0, K 2 ◦ amount of sum 4 0% inclusive 1 0%)
0〜 1 5 %の丫2〇3、 0 to 15% 丫 2 丫 3,
0〜 1 5 %の L a 203、 0 to 15% La 2 0 3 ,
及び 0〜 1 5 %の Z r 02 And 0-15% Zr 0 2
から成ることを特徴とする請求項 1〜 6のいずれか 1項に記載の強化用板ガラス ( Characterized in that it consists of claims 1 to 6 reinforced glazing as claimed in any one of (
10. 前記 MgO量が 2.2〜8重量%であることを特徴とする請求項 9に記載 の強化用板ガラス。 10. The tempered glass sheet according to claim 9, wherein the MgO content is 2.2 to 8% by weight.
1 1. 基礎ガラス組成が、 重量分率で表して、 1 1. The base glass composition is expressed as a weight fraction,
60〜70%の3土〇2、 60-70% 3 soil 2 ,
2. 8%未満の八 12〇3、 (但し、 S i 02, A 12〇3の和が 70 %未満、 )2.8% less than eight 1 2 〇 3, (where, S i 0 2, A 1 2 〇 sum of 3 is less than 70%)
0〜 5 %の;6203ヽ 0-5% of; 6 2 0 3ヽ
0〜 1 5 %の MgO、 0-15% MgO,
9%より多く 1 5%以下の C aO、 More than 9% and no more than 15% C aO,
0〜 1 5 %の S r 0、 0-15% S r 0,
0〜 1 5 %の8 a 0、 0-15% of 8 a 0,
0〜 1 0 %の]^ i 2〇、 0 ~ 10%] ^ i 2〇,
9〜20%の Na2〇、 9-20% Na 2 〇,
0〜 1 5 %の ◦、 0-15% ◦,
但し、 L i20, Na20, K20量の総和が 10 %以上 40 %以下、 However, L i 2 0, Na 2 0, K 2 0 content of sum 10% to 40% or less,
0〜 1 5 %の丫2〇3、 0-1 5 percent of丫2_Rei 3,
0〜 1 5 %の a2 O s 0-1 5% a 2 O s
及び 0〜 1 5%の Z r 02 And 0 to 15% Zr 0 2
から成ることを特徴とする請求項 1〜 6のいずれか 1項に記載の強化用板ガラス cThe tempered glass sheet c according to any one of claims 1 to 6, characterized by comprising:
1 2. 前記 MgO量が 2.2〜 8重量%であることを特徴とする請求項 1 1に言 3
載の強化用板ガラス。 12. The method according to claim 11, wherein the amount of MgO is 2.2 to 8% by weight. Reinforced glass sheet.
13. 前記 A 1203量が 1. 5重量%未満であることを特徴とする請求項 1 1 又は 1 2に記載の強化用板ガラス。 13. The A 1 2 0 3 weight reinforcing plate glass according to claim 1 1 or 1 2, characterized in that 1. is less than 5 wt%.
14. 基礎ガラス組成が、 重量分率で表して、 14. The base glass composition, expressed as a weight fraction,
60~ 70 %の S i 02ヽ 60-70% S i 0 2ヽ
2. 8%未満の八 1203、 (但し、 S i〇2, A 12〇3の和が 70 %未満、 )2.8% less than eight 1 2 0 3, (wherein, S I_〇 2, A 1 2 〇 sum of 3 is less than 70%)
0〜5 %の82〇3、 0-5% of 8 2 〇 3 ,
0〜 15 %の Mg〇、 0-15% Mg〇,
5〜 1 5 %の C aO、 5-15% CaO,
0〜 1 5 %の S r 0、 0-15% S r 0,
0〜: L 5 %の;8 a 0、 0 to: L 5%; 8 a 0,
0〜 1 0 %の i 20、 0-20% i 20,
13%より多く 25 %未満の Na2〇、 More than 13% and less than 25% Na 2 〇,
0〜 1 5%の1^20、 (但し、 L i20, Na20, K 2〇量の総和が 13 %以上 4 0%以下、 ) 0-1 5% 1 ^ 2 0, (where, L i 2 0, Na 2 0, K 2 〇 amount of total 13% or more 4 0% or less)
0-1 5 %の丫 203、 0-15% of 丫2 0 3 ,
0〜 1 5 %の L a 203ヽ 0 to 15% La 2 0 3ヽ
及び 0 ~ 1 5 %の Z r 02 And 0 to 15% Zr 0 2
から成ることを特徴とする請求項 1〜 6のいずれか 1項に記載の強化用板ガラス ( 15. 前記 MgO量が 2.2〜 8重量%であることを特徴とする請求項 14に記 載の強化用板ガラス。 Reinforcing reinforced glazing (15. the MgO amount according to any one of claims 1 to 6 of the mounting serial to claim 14, characterized in that a 2.2 to 8 wt%, characterized in that it consists of For flat glass.
16. 前記 A 1203量が 1. 5重量%未満であることを特徴とする請求項 14 又は 1 5に記載の強化用板ガラス。 16. The A 1 2 0 3 weight reinforcing plate glass according to claim 14 or 1 5, characterized in that 1. is less than 5 wt%.
17. 前記 K20量が 0. 9重量%未満であることを特徴とする請求項 14~ 1 6のいずれか 1項に記載の強化用板ガラス。 17. The K 2 0 amounts reinforcing plate glass according to any one of claims 14 to 1 6, characterized in that less than 0.9 wt%.
1 8. 前記 N a2〇量が 1 6重量%未満であることを特徴とする請求項 14〜 17のいずれか 1項に記載の強化用板ガラス。
1 8. The N a 2 〇 weight reinforcing plate glass according to any one of claims 14 to 17, characterized in that less than 1 6% by weight.
1 9. 基礎ガラス組成が、 重量分率で表して、 1 9. The base glass composition, expressed as a weight fraction,
60 %以上 63 %未満の S i〇2、 60% or more and less than 63% S i〇 2 ,
1%以上の八 1203 (但し、 S i 02, A 1203の和が 70%未満) 1% or more of eight 1 2 0 3 (where, S i 0 2, A 1 2 0 less than the sum of 3 70%)
0〜5 %の:6203ヽ 0-5%: 6 2 0 3ヽ
0〜 1 5 %の Mg〇、 0-15% Mg〇,
5〜 1 5 %の C aO、 5-15% CaO,
0〜 1 5 %の S r 0、 0-15% S r 0,
0〜 1 5 %の8 a 0、 0-15% of 8 a 0,
0〜 1 0 %の L i 20、 0 to 10% L i 20 ,
13%より多く 25 %未満の Na20、 More than 13% and less than 25% Na 20 ,
0〜 1 5 %の1<2〇、 0 <15% 1 < 2 2 ,
但し、 L i20, N a20, K2〇量の総和が 13 %以上 40 %以下、 However, the sum of L i 20 , N a 20 , K 2 mass is 13% or more and 40% or less,
0〜 1 5 %の丫2〇3ヽ 0 to 15% of 丫2 〇 3ヽ
0〜 1 5 %の a 203、 0-1 5% a 2 0 3,
及び 0〜 1 5 %の Z r 02 And 0-15% Zr 0 2
から成ることを特徴とする請求項 1 ~ 6のいずれか 1項に記載の強化用板ガラスThe tempered glass sheet according to any one of claims 1 to 6, characterized by comprising:
20. 基礎ガラス組成が、 重量分率で表して、 20. The base glass composition, expressed as a weight fraction,
63%以上 66%未満の S i 02、 63% or more and less than 66% S i 0 2 ,
2. 8%未満の 12〇3、 2. Less than 8% 1 2 〇 3 ,
0〜 5 %の82〇3、 0-5% of 8 2 〇 3 ,
0〜; 1 5 %の Mg〇、 0 ~; 15% Mg〇,
5〜: 1 5 %の C aO、 5 ~: 15% CaO,
0〜 1 5 %の S r 0、 0-15% S r 0,
0〜 1 5 %の B aO、 0-15% B aO,
0〜 1 0%の L i2〇、 0 to 10% L i 2 〇,
13%より多く 25 %未満の Na2〇、 More than 13% and less than 25% Na 2 〇,
0〜 1 5%の K20、但し、 L i 20, Na20, K2〇量の総和が 1 3%以上 40 %
以下、 ) 0-1 5% K 2 0, where, L i 2 0, Na 2 0, K 2 〇 amount of sum 1 3% or more 40% Less than, )
0〜 1 5 %の¥203、 0-1 5 percent of ¥ 2 0 3,
0〜 1 5 %の a2〇3、 0 to 15% of a 2 〇 3 ,
及び 0〜 1 5 %の Z r 02 And 0-15% Zr 0 2
から成ることを特徴とする請求項 1 ~ 6のいずれか 1項に記載の強化用板ガラス, The tempered glass sheet according to any one of claims 1 to 6, wherein
2 1. 基礎ガラス組成が、 重量分率で表して、 2 1. The base glass composition is expressed as a weight fraction,
66 %〜70 %の S i 02ヽ 66% to 70% S i 0 2ヽ
2%未満の八 1203 (但し、 S i 02, 八 12〇3の和が70%以下) 1 2 0 3 of less than 2% (however, the sum of S i 0 2 and 8 1 2 〇 3 is 70% or less)
0〜 5 %の:6203、 0 of 5%: 6 2 0 3,
0- 1 5 %の MgO、 0- 15% MgO,
5〜 1 5 %の C aO、 5-15% CaO,
0- 1 5 %の S r〇、 0-15% S r〇,
0〜; I 5 %の8 a 0、 0 to; I 5% of 8 a 0,
0〜 1 0 %の L i 20、 0 to 10% L i 20 ,
13%より多く 2 5 %未満の Na20、 More than 13% and less than 25% Na 20 ,
0〜 1 5%の 20、 (但し、 L i2〇, Na20, K 20量の総和が 13 %以上 40 to 15% of 20 ; (However, the sum of Li 2 〇, Na 20 and K 20 is 13% or more 4
0%以下、 ) 0% or less,)
0~ 1 5 %の丫2〇3、 0 ~ 15% of 丫2 〇 3 ,
0〜 1 5 %の a2〇3、 0 to 15% of a 2 〇 3 ,
及び 0〜 1 5 %の Z r 02 And 0-15% Zr 0 2
から成ることを特徴とする請求項 1〜 6のいずれか 1項に記載の強化用板ガラス c 22. 風冷強化処理が施されていることを特徴とする請求項 1〜 2 1のいずれ か 1項に記載の強化用板ガラス。
The sheet glass for tempering c 22 according to any one of claims 1 to 6, characterized in that it has been subjected to a wind-cooling tempering treatment. 6. The tempered glass sheet as described in the above item.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001536482A JP4951838B2 (en) | 1999-11-11 | 2000-11-09 | Tempered glass |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-320423 | 1999-11-11 | ||
JP32042399 | 1999-11-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2001034531A1 true WO2001034531A1 (en) | 2001-05-17 |
WO2001034531B1 WO2001034531B1 (en) | 2001-10-04 |
Family
ID=18121302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2000/007881 WO2001034531A1 (en) | 1999-11-11 | 2000-11-09 | Flat glass to be tempered |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4951838B2 (en) |
WO (1) | WO2001034531A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2899578A1 (en) * | 2006-04-05 | 2007-10-12 | Saint Gobain Emballage Sa | Silico-sodo-calcic glass composition, useful to make e.g. glass bottles e.g. for cosmetics, comprises optical absorbing agent of titania, vanadium pentoxide, ferric-, chromium-, cerium oxide and titania-vanadium pentoxide-cerium oxide mix |
JP2011502358A (en) * | 2007-10-31 | 2011-01-20 | コーニング インコーポレイテッド | Improved substrate composition and method for forming semiconductor-on-insulator devices |
JP2014508703A (en) * | 2010-03-18 | 2014-04-10 | 楊徳寧 | Sheet glass and blending method |
WO2014196407A1 (en) * | 2013-06-06 | 2014-12-11 | 旭硝子株式会社 | Glass for chemical strengthening, chemically strengthened glass, and method for producing chemically strengthened glass |
WO2014195960A1 (en) * | 2013-06-03 | 2014-12-11 | Council Of Scientific & Industrial Research | Novel soda lime silicate glass composition comprising colemanite and a process for the preparation thereof |
EP2687492A4 (en) * | 2011-03-15 | 2015-03-18 | Dening Yang | Plate glass with colorful glaze layer and manufacuring process thereof |
EP2682374A4 (en) * | 2011-02-28 | 2015-04-29 | Asahi Glass Co Ltd | Tempered glass plate |
JP2015535521A (en) * | 2012-11-21 | 2015-12-14 | コーニング インコーポレイテッド | Ion-exchangeable glass with high hardness and high elastic modulus |
EP2889276A4 (en) * | 2012-08-24 | 2016-03-23 | Asahi Glass Co Ltd | HEAT-TEMPERED GLASS |
WO2019040818A3 (en) * | 2017-08-24 | 2019-04-04 | Corning Incorporated | Glasses with improved tempering capabilities |
JPWO2019017404A1 (en) * | 2017-07-18 | 2020-07-02 | Agc株式会社 | Tempered glass |
US11643355B2 (en) | 2016-01-12 | 2023-05-09 | Corning Incorporated | Thin thermally and chemically strengthened glass-based articles |
US11697617B2 (en) | 2019-08-06 | 2023-07-11 | Corning Incorporated | Glass laminate with buried stress spikes to arrest cracks and methods of making the same |
US11891324B2 (en) | 2014-07-31 | 2024-02-06 | Corning Incorporated | Thermally strengthened consumer electronic glass and related systems and methods |
US12006221B2 (en) | 2017-11-17 | 2024-06-11 | Corning Incorporated | Direct graphene transfer and graphene-based devices |
US12064938B2 (en) | 2019-04-23 | 2024-08-20 | Corning Incorporated | Glass laminates having determined stress profiles and methods of making the same |
US12338159B2 (en) | 2015-07-30 | 2025-06-24 | Corning Incorporated | Thermally strengthened consumer electronic glass and related systems and methods |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9776905B2 (en) | 2014-07-31 | 2017-10-03 | Corning Incorporated | Highly strengthened glass article |
US10611664B2 (en) | 2014-07-31 | 2020-04-07 | Corning Incorporated | Thermally strengthened architectural glass and related systems and methods |
US11795102B2 (en) | 2016-01-26 | 2023-10-24 | Corning Incorporated | Non-contact coated glass and related coating system and method |
TWI785156B (en) | 2017-11-30 | 2022-12-01 | 美商康寧公司 | Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61197444A (en) * | 1985-02-21 | 1986-09-01 | Asahi Glass Co Ltd | How to manufacture tempered glass |
JPS62246839A (en) * | 1986-04-17 | 1987-10-28 | Central Glass Co Ltd | Easily tempering glass composition |
JPS6340743A (en) * | 1986-08-04 | 1988-02-22 | Central Glass Co Ltd | Easy-to-temper glass composition |
JPH08165136A (en) * | 1994-12-14 | 1996-06-25 | Nippon Ita Glass Techno Res Kk | Neutral gray glass composition |
JPH09183626A (en) * | 1995-12-28 | 1997-07-15 | Central Glass Co Ltd | Reinforced thin glass plate |
JPH09208246A (en) * | 1995-10-16 | 1997-08-12 | Central Glass Co Ltd | Fireproof glass |
EP0864546A1 (en) * | 1997-03-13 | 1998-09-16 | Vetrotech Saint-Gobain | Fireproof glazing |
EP0987397A2 (en) * | 1998-09-16 | 2000-03-22 | Vetrotech Saint Gobain (International) AG | Fire resistant element for closing off a room |
-
2000
- 2000-11-09 WO PCT/JP2000/007881 patent/WO2001034531A1/en active Application Filing
- 2000-11-09 JP JP2001536482A patent/JP4951838B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61197444A (en) * | 1985-02-21 | 1986-09-01 | Asahi Glass Co Ltd | How to manufacture tempered glass |
JPS62246839A (en) * | 1986-04-17 | 1987-10-28 | Central Glass Co Ltd | Easily tempering glass composition |
JPS6340743A (en) * | 1986-08-04 | 1988-02-22 | Central Glass Co Ltd | Easy-to-temper glass composition |
JPH08165136A (en) * | 1994-12-14 | 1996-06-25 | Nippon Ita Glass Techno Res Kk | Neutral gray glass composition |
JPH09208246A (en) * | 1995-10-16 | 1997-08-12 | Central Glass Co Ltd | Fireproof glass |
JPH09183626A (en) * | 1995-12-28 | 1997-07-15 | Central Glass Co Ltd | Reinforced thin glass plate |
EP0864546A1 (en) * | 1997-03-13 | 1998-09-16 | Vetrotech Saint-Gobain | Fireproof glazing |
EP0987397A2 (en) * | 1998-09-16 | 2000-03-22 | Vetrotech Saint Gobain (International) AG | Fire resistant element for closing off a room |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2899578A1 (en) * | 2006-04-05 | 2007-10-12 | Saint Gobain Emballage Sa | Silico-sodo-calcic glass composition, useful to make e.g. glass bottles e.g. for cosmetics, comprises optical absorbing agent of titania, vanadium pentoxide, ferric-, chromium-, cerium oxide and titania-vanadium pentoxide-cerium oxide mix |
JP2011502358A (en) * | 2007-10-31 | 2011-01-20 | コーニング インコーポレイテッド | Improved substrate composition and method for forming semiconductor-on-insulator devices |
JP2014508703A (en) * | 2010-03-18 | 2014-04-10 | 楊徳寧 | Sheet glass and blending method |
EP2687491A4 (en) * | 2010-03-18 | 2015-03-18 | Dening Yang | ICE AND METHOD OF MANUFACTURING THE SAME |
EP2682374A4 (en) * | 2011-02-28 | 2015-04-29 | Asahi Glass Co Ltd | Tempered glass plate |
EP2687492A4 (en) * | 2011-03-15 | 2015-03-18 | Dening Yang | Plate glass with colorful glaze layer and manufacuring process thereof |
EP2889276A4 (en) * | 2012-08-24 | 2016-03-23 | Asahi Glass Co Ltd | HEAT-TEMPERED GLASS |
JP2015535521A (en) * | 2012-11-21 | 2015-12-14 | コーニング インコーポレイテッド | Ion-exchangeable glass with high hardness and high elastic modulus |
US10501364B2 (en) | 2012-11-21 | 2019-12-10 | Corning Incorporated | Ion exchangeable glasses having high hardness and high modulus |
CN105246848A (en) * | 2013-06-03 | 2016-01-13 | 科学与工业研究委员会 | Novel soda lime silicate glass compositions containing colemanite and methods for their preparation |
WO2014195960A1 (en) * | 2013-06-03 | 2014-12-11 | Council Of Scientific & Industrial Research | Novel soda lime silicate glass composition comprising colemanite and a process for the preparation thereof |
CN105246848B (en) * | 2013-06-03 | 2019-01-15 | 科学与工业研究委员会 | New sodium-calcium-silicate glass composition containing colemanite and preparation method thereof |
WO2014196407A1 (en) * | 2013-06-06 | 2014-12-11 | 旭硝子株式会社 | Glass for chemical strengthening, chemically strengthened glass, and method for producing chemically strengthened glass |
US11891324B2 (en) | 2014-07-31 | 2024-02-06 | Corning Incorporated | Thermally strengthened consumer electronic glass and related systems and methods |
US12338159B2 (en) | 2015-07-30 | 2025-06-24 | Corning Incorporated | Thermally strengthened consumer electronic glass and related systems and methods |
US11643355B2 (en) | 2016-01-12 | 2023-05-09 | Corning Incorporated | Thin thermally and chemically strengthened glass-based articles |
JPWO2019017404A1 (en) * | 2017-07-18 | 2020-07-02 | Agc株式会社 | Tempered glass |
JP7136100B2 (en) | 2017-07-18 | 2022-09-13 | Agc株式会社 | tempered glass |
WO2019040818A3 (en) * | 2017-08-24 | 2019-04-04 | Corning Incorporated | Glasses with improved tempering capabilities |
US11485673B2 (en) | 2017-08-24 | 2022-11-01 | Corning Incorporated | Glasses with improved tempering capabilities |
US12006221B2 (en) | 2017-11-17 | 2024-06-11 | Corning Incorporated | Direct graphene transfer and graphene-based devices |
US12064938B2 (en) | 2019-04-23 | 2024-08-20 | Corning Incorporated | Glass laminates having determined stress profiles and methods of making the same |
US11697617B2 (en) | 2019-08-06 | 2023-07-11 | Corning Incorporated | Glass laminate with buried stress spikes to arrest cracks and methods of making the same |
US12043575B2 (en) | 2019-08-06 | 2024-07-23 | Corning Incorporated | Glass laminate with buried stress spikes to arrest cracks and methods of making the same |
Also Published As
Publication number | Publication date |
---|---|
JP4951838B2 (en) | 2012-06-13 |
WO2001034531B1 (en) | 2001-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001034531A1 (en) | Flat glass to be tempered | |
US6713180B1 (en) | Improvements in or relating to tempered glazings and glass for use therein | |
JP5108191B2 (en) | Tempered glazing and improvement of glass for use in it | |
JP2003171131A (en) | Glass plate and method for strengthening glass plate | |
CN102351420B (en) | High strength ultrathin float glass | |
KR20010082735A (en) | Glass for cathode-ray tube, strengthened glass, method for the production thereof and use thereof | |
US11834368B2 (en) | Low temperature moldable sheet forming glass compositions | |
JP5178977B2 (en) | Glass composition | |
EP1313674A1 (en) | Soda-lime-silica glass compositions | |
KR101212910B1 (en) | Glass composition | |
WO2023090177A1 (en) | Crystallised glass | |
JP2001316132A (en) | Li2O-Al2O3-SiO2 BASE TRANSPARENT CRYSTALLIZED GLASS ARTICLE AND OPTICAL COMMUNICATION DEVICE USING SAME | |
JP2730138B2 (en) | Easy-forming glass composition | |
JP7335557B2 (en) | tempered glass and tempered glass | |
JPH0460059B2 (en) | ||
JP2003212591A (en) | Matrix glass for cathode-ray tube panel, panel for cathode-ray tube and production method therefor | |
WO2004067462A1 (en) | Glass sheet suitable to toughening and toughened glass using said glass | |
WO2022004808A1 (en) | Glass composition for chemical strengthening and chemically strengthened glass article | |
CN117597320A (en) | Glass plate for strengthening and glass plate for strengthening |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP US VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
AK | Designated states |
Kind code of ref document: B1 Designated state(s): CN JP US VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
B | Later publication of amended claims | ||
122 | Ep: pct application non-entry in european phase |