[go: up one dir, main page]

WO2001033146A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2001033146A1
WO2001033146A1 PCT/JP2000/007369 JP0007369W WO0133146A1 WO 2001033146 A1 WO2001033146 A1 WO 2001033146A1 JP 0007369 W JP0007369 W JP 0007369W WO 0133146 A1 WO0133146 A1 WO 0133146A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
indoor
temperature
air conditioner
air
Prior art date
Application number
PCT/JP2000/007369
Other languages
French (fr)
Japanese (ja)
Inventor
Tooru Suzuki
Takashi Tsuchino
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to DE60041649T priority Critical patent/DE60041649D1/en
Priority to AU79536/00A priority patent/AU7953600A/en
Priority to EP00969980A priority patent/EP1227286B1/en
Publication of WO2001033146A1 publication Critical patent/WO2001033146A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0083Indoor units, e.g. fan coil units with dehumidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • F25B2313/02341Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • F25B2313/02343Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements during dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • F25B2313/02344Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0254Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/02Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment

Definitions

  • the present invention relates to an air conditioner capable of reheating dry operation (
  • FIG. 1 As an air conditioner capable of reheating dry operation, an air conditioner generally having a refrigerant circuit as shown in FIG. 1 is known.
  • This air conditioner document 1 is a heat pump type air conditioner equipped with a compressor 2, an outdoor heat exchanger m ⁇ 3, a pressure reducing mechanism 4, and an indoor heat exchanger 5, and the refrigerant from the compressor 2 is circulated so that the refrigerant from the compressor 2 is circulated.
  • the circuit is configured.
  • the discharge side and the suction side of the compressor 2 are connected to the primary port of the four-way switching valve 6, respectively.
  • one of the secondary ports of the four-way switching valve 6 passes through the outdoor heat exchanger 3 having the outdoor fan 7, the pressure reducing mechanism 4, and the indoor heat exchanger 5 having the indoor fan 8.
  • the refrigerant circuit leading to the other secondary port of the four-way switching valve 6 is constituted by a refrigerant pipe. Note that the four-way switching valve 6 returns to the suction side of the compressor 2 via the accumulator 9.
  • the indoor heat exchanger 5 is composed of a first heat exchange 10 and a second heat exchange 11 connected in series, and a force.
  • a pressure reducing mechanism 1 is provided between the heat exchanges 10 and 11. Two are interposed.
  • the types of air-conditioning operation using the refrigerant circuit include cooling operation, heating operation, and reheating dry operation.
  • the pressure reducing mechanism 12 of the indoor heat exchanger 5 is fully opened, the pressure reducing mechanism 4 is adjusted to a predetermined opening degree, and the outdoor fan 7 and the indoor fan 8 are further controlled to the predetermined degree. Drive at the rotation speed of.
  • the refrigerant discharged from the compressor 2 is circulated as shown by a solid line arrow, so that the outdoor heat exchanger 3 functions as a condenser and the indoor heat exchanger functions as an evaporator. This cools the indoor air.
  • the refrigerant discharged from the compressor 2 is circulated as shown by the dashed arrow, so that the indoor heat exchange 5 functions as a condenser and the outdoor heat exchange 3 functions as an evaporator. Indoor The air is heated.
  • the pressure reducing mechanism 12 of the indoor heat exchanger 5 is adjusted to a predetermined opening degree, the pressure reducing mechanism 4 is fully opened, and the indoor fan 8 is rotated at a predetermined rotation speed. And the outdoor fan 7 is stopped. Then, by circulating the refrigerant discharged from the compressor 2 in a cooling cycle as shown by a solid line arrow, the first heat exchanger 10 of the indoor heat exchanger 5 functions as a condenser, and 2 Heat exchange ⁇ ⁇ 1 Let 1 function as an evaporator.
  • the room air is cooled and dehumidified by the second heat exchanger 11 functioning as an evaporator, and then heated again by the first heat exchanger functioning as a condenser and returned to the room. Reheat dry operation is performed.
  • the evaporation temperature of the second heat exchange 1 becomes higher, the difference from the dew point temperature of the indoor air becomes smaller, and if the amount of dehumidification is extremely reduced, the following problem occurs.
  • the present invention has been made in order to solve the above-mentioned conventional disadvantages.
  • the purpose of the present invention is to control the temperature of the evaporator to control the amount of dehumidification even when dehumidification is performed while heating the room. It is an object of the present invention to provide an air conditioner capable of reliably performing a dry operation with reheating. Disclosure of the invention
  • the air conditioner according to the present invention includes an air conditioner formed between a first heat exchanger ⁇ 10 and a second heat exchanger 11 connected in series, and a heat exchanger between the heat exchangers 10 and 11.
  • the temperature of the second heat exchange 1 that functions as an evaporator during the reheat dry operation This is characterized in that control means 13 for controlling the control is provided.
  • the indoor unit is provided with control means 13 for controlling the temperature of the second heat exchange m ⁇ i 1 functioning as an evaporator.
  • control means 13 for controlling the temperature of the second heat exchange m ⁇ i 1 functioning as an evaporator.
  • the air conditioner of one embodiment is provided with an indoor temperature sensor 27 and a humidity sensor 28, and calculates the dew point temperature from the temperature and humidity measured by the sensors 27 and 28.
  • the temperature control of the second heat exchange 11 is performed based on the dew point temperature.
  • the indoor temperature sensor 27 and the humidity sensor 28 are provided to measure the indoor temperature and humidity, and from the dew point temperature obtained from the measurement results, the second heat exchanger 1
  • the temperature of 1 is controlled using the control means 13 described above. As a result, accurate dehumidification control can be performed. As a result, the reheat dry operation according to the indoor environment required by the user can be performed more reliably.
  • control means 13 includes an air volume control means for controlling an air volume to the second heat exchanger 11.
  • the temperature of the second heat exchanger 11 can be controlled by reducing the passing air flow using the air flow control means. As a result, the amount of dehumidification can be reliably increased with a simple configuration.
  • control means 13 includes a pressure control means configured by variably opening the pressure reducing mechanism 12.
  • the temperature of the second heat exchanger 11 can be controlled by controlling the amount of pressure reduction to the second heat exchanger 11 using the pressure control means. As a result, the amount of dehumidification can be reliably increased with a simple configuration.
  • FIG. 1 is a refrigerant circuit diagram showing a configuration of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of an indoor unit showing an embodiment of the air conditioner.
  • FIG. 3 is a longitudinal sectional view of an indoor unit showing another embodiment of the air conditioner.
  • FIG. 4 is a perspective view of the indoor unit of the air conditioner.
  • FIG. 5 is a flowchart for explaining the control operation of the air conditioner. BEST MODE FOR CARRYING OUT THE INVENTION
  • a refrigerant circuit of an air conditioner according to an embodiment of the present invention is basically configured the same as the refrigerant circuit of the general air conditioner 1 shown in FIG. 1, but has improved control. . That is, as shown in FIG. 1, the air conditioner 1 is a heat pump type air conditioner including a compressor 2, an outdoor heat exchanger 3, a pressure reducing mechanism 4, and an indoor heat exchanger 5, and the refrigerant from the compressor 2 A refrigerant circuit is configured to be circulated. The discharge side and the suction side of the compressor 2 are connected to the primary port of the four-way switching valve 6, respectively. Then, one of the secondary ports of the four-way switching valve 6 passes through the outdoor heat exchanger 3 having the outdoor fan 7, the pressure reducing mechanism 4, and the indoor heat exchanger 5 having the indoor fan 8.
  • the refrigerant circuit leading to the other secondary port of the four-way switching valve 6 is constituted by a refrigerant pipe. Note that the four-way switching valve 6 returns to the suction side of the compressor 2 via the accumulator 9.
  • the indoor heat exchanger 5 is composed of a first heat exchanger 10 and a second heat exchanger 11 connected in series, and a decompression mechanism 12 is provided between each of the heat exchangers 10 and 11. Is interposed.
  • FIG. 1 The operation of the air conditioner 1 as a whole is shown in FIG.
  • controller 13 provided in 4.
  • the types of air-conditioning operation using the refrigerant circuit include cooling operation, heating operation, and reheating dry operation.
  • the pressure reducing mechanism 12 of the indoor heat exchanger 5 is fully opened, the pressure reducing mechanism 4 is adjusted to a predetermined opening degree, and The fan 7 and the indoor fan 8 are driven at a predetermined rotation speed.
  • the refrigerant discharged from the compressor 2 is circulated as indicated by a solid line arrow, so that the outdoor heat exchanger 3 functions as a condenser and the indoor heat exchange functions as an evaporator. This cools the indoor air.
  • the refrigerant discharged from the compressor 2 is circulated as shown by a broken line arrow, so that the indoor heat exchange ⁇ 5 functions as a condenser and the outdoor heat exchange 3 functions as an evaporator. This heats the room air.
  • the pressure reducing mechanism 12 of the indoor heat exchanger 5 is adjusted to a predetermined opening degree, the pressure reducing mechanism 4 is fully opened, and the indoor fan 8 is rotated at a predetermined rotation speed. And the outdoor fan 7 is stopped. Then, by circulating the refrigerant discharged from the compressor 2 as shown by a solid line arrow, the first heat exchanger 10 of the indoor heat exchange 5 functions as a condenser, and the second heat exchange 1 functions as an evaporator. Let it work.
  • the room air is cooled and dehumidified by the second heat exchanger 11 functioning as an evaporator, and then heated again by the first heat exchanger 10 functioning as a condenser and returned to the room. Dry operation is performed.
  • the outdoor heat exchanger 3 can also function as a condenser, but by stopping the outdoor fan 7 as described above, the outside air around the outdoor heat exchanger 3 is prevented from flowing. In the outdoor heat exchanger 3, heat is not exchanged as much as possible.
  • the controller 13 shown in FIG. 4 works as a control means to control the temperature of the second heat exchanger 11 functioning as an evaporator.
  • FIG. 2 shows a longitudinal sectional view of an indoor unit showing an embodiment of the air conditioner 1.
  • the casing 15 of the indoor unit has a grid-shaped top surface suction port 17 formed almost entirely on the top panel 16, and a grid-shaped front suction port almost entirely on the front panel 18. Mouth 19 is formed.
  • the indoor heat exchanger 5 arranged in the casing 15 has a rear heat exchanger 10 (first heat exchanger) and a front heat exchanger 11 (second heat exchanger). It is divided into alternating and these are combined in an inverted V-shape.
  • a cross flow fan 8 is disposed inside the inverted V-shaped indoor heat exchanger 5 as an indoor fan.
  • a scroll portion 20 is formed behind the cross opening-fan 8 and is smoothly connected to an air outlet 21 opening at a lower portion on the front side of the casing 15 of the indoor unit.
  • the air conditioner 1 the air cooled and dehumidified in the front heat exchanger 0 and the air heated in the rear heat exchanger m ⁇ i 1 are mixed in the machine, and the air is blown from the outlet 21. By doing so, reheat dry operation can be performed.
  • the indoor unit of the air conditioner 1 is provided with an air volume control means for controlling the air volume supplied from the front suction port 19 in cooperation with the controller 13.
  • the air volume control means moves the shutter 22 that can open and close the front suction port 19 and the shutter 22 along the inside of the front panel 18.
  • a winding device 25 for winding the shutter 22. More specifically, in the upper part of the casing 15 on the side of the front panel 18, a rod-shaped winding device 25 is arranged so that its longitudinal direction is substantially parallel to the longitudinal direction of the casing 15. Are located. An upper end portion of a substantially rectangular shutter 22 is attached to the winding device 25, and the shutter 22 is wound on the winding device 25.
  • a gear 23 provided with a motor rotation shaft 24 at the center is arranged, and between the above-mentioned gear 23 and the front panel 18 is provided. It is arranged so that the shutter 22 is located.
  • the shutter 22 has an inner surface, that is, a surface facing in the direction facing the gear 23, formed with concavities and convexities having the same pitch as the gear 23, and the concave and convex formed on the shutter 22.
  • FIG. 1 a perspective view of the indoor unit of the air conditioner 1 is shown in FIG.
  • a slit 29 is provided at the lower part of the side surface of the indoor unit main body 14, and a temperature sensor 27 for measuring the indoor temperature and a humidity sensor 28 for measuring the indoor humidity are provided behind the slit 29.
  • the above sensors 27 and 28 are provided to determine the dew point temperature from the indoor temperature and humidity, and the air flow control means can be used based on the dew point temperature. It is determined whether or not to perform the temperature control of 1.
  • the above sensors 27 and 28 are driven by the force provided inside the indoor unit, and the indoor air enters and exits from the slit 29 provided in front of each sensor 27 and 28.
  • FIG. 5 is a flowchart for explaining a control operation using the air volume control means.
  • step S1 the temperature of the front-side heat exchanger 11 functioning as an evaporator is obtained from the room temperature and humidity measured by the sensors 27, 28. A determination is made as to whether the temperature is lower than the dew point temperature. At this time, if the temperature of the front-side heat exchanger 11 is higher or equal, it means that the dehumidifying capacity may be insufficient.
  • the air volume distribution control using the shutter 22 is started, and the opening of the front inlet 19 is narrowed. Thereafter, the process proceeds to step S3, and this state is maintained until the operating condition at the above opening degree is stabilized (about 10 minutes). After the above-mentioned predetermined time has elapsed, the process returns to step S1 to return to the air flow.
  • step S1 if the dew point temperature is higher, it means that there is sufficient dehumidification capability, so that the air flow distribution control using the shutter 22 is not performed, and the current state is maintained (step S1). S 4). Then, after a certain time has elapsed, the flow returns to step S1 again.
  • a normal reheating dry operation is started so that the ratio of the amount of air passing through each of the heat exchangers 10 and 11 becomes basically constant.
  • the reason why the air volume control is not performed from the beginning is to prevent the overall operation capability from being reduced by reducing the air volume to the front-side heat exchanger 11 from the beginning.
  • the front inlet is automatically opened by the shutter 22. The opening of 19 is narrowed and adjusted to reduce the intake air volume.
  • the heat exchange in the front-side heat exchange m3 ⁇ 4 i 1 is restricted, and the temperature of the front-side heat exchange ⁇ : 11 can be reduced, and as a result, the amount of dehumidification can be increased.
  • the opening adjustment of the front inlet 19 by the shutter 22 can be performed continuously, and the air volume distribution control is repeatedly performed until the reheat dry operation is performed while the room is being heated. Is performed. Further, the configuration is such that the determination and the control are performed at regular intervals so that the state is always maintained even when the operation is performed.
  • the front-side heat exchanger 1 functioning as an evaporator is controlled by the air volume control means. Since the temperature of the fuel cell can be lowered or the temperature rise can be suppressed, the reheat dry operation can be executed reliably without reducing the amount of dehumidification. As a result, the indoor environment desired by the user can be realized, and the comfort is improved. Controlling the temperature of the front-side heat exchanger 11 as described above has an advantage that a reliable dehumidifying effect can be obtained even during a normal reheating dry operation.
  • the temperature is determined by comparing the temperature of the front-side heat exchanger 11 as an evaporator with the dew point temperature. The determination may be made by comparing whether or not the temperature of the heat exchanger 11 is an evaporation temperature necessary for reducing the indoor humidity to 50% or less. In this case, the required evaporating temperature can be obtained by using a sensor or the like, but a specific temperature may be set in advance in consideration of the actual use and the like. Further, in the above embodiment, the shutter 22 is used as the air volume control means, and the front suction port is used.
  • the above-mentioned indoor unit was provided with a front lid 30 capable of covering the front air inlet 19 from the outside, thereby controlling the air volume.
  • the front cover 30 has a shape in which a substantially rectangular plate is slightly curved in the vertical direction, and the concave portion faces inward. And a lower end thereof is rotatably attached to a casing 15 below the front suction port 19.
  • a motor shaft 32 is provided at the center of the mounting portion 31 to which the front cover 30 is mounted, and the front cover 30 is mounted by driving the motor. It is configured to rotate inward and outward about a rotation shaft 32 of 31. Therefore, the opening of the front suction port 19 can be adjusted by the rotation of the front cover 30 to control the suction air volume.
  • the evaporation temperature of the front heat exchanger 11 1 was reduced by controlling the pressure of the refrigerant flowing into the front heat exchanger 11 1. It is also possible to increase the amount of dehumidification.
  • the indoor temperature sensor and the humidity sensor are provided in the indoor unit main body 14, but they may be provided anywhere as long as the indoor temperature and humidity can be measured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

An air conditioner (1), comprising an indoor heat exchanger (5) having a first heat exchanger (10) and a second heat exchanger (11) connected, in series, to each other, and a decompressing mechanism (12) provided between the heat exchangers (10) and (11), wherein refrigerant from a compressor (2) is circulated to an outdoor heat exchanger (3), a decompressing mechanism (4), and the indoor heat exchanger (5) in that order, and a reheating dry operation is performed allowing the first heat exchanger (10) and second heat exchanger (11) to function as a condenser and an evaporator, respectively, so as to cool and dehumidify indoor air before reheating and returning to the indoor, the temperature of the second heat exchanger (11) functioning as the evaporator being controlled by control means (13), whereby, even when the indoor is dehumidified while being heated slightly, the dehumidified amount can be increased by controlling the temperature of the evaporator and the reheating dry operation can be surely performed.

Description

技術分野 Technical field
この発明は、 再熱ドライ運転が可能な空調装置に関する ( The present invention relates to an air conditioner capable of reheating dry operation (
 Light
背景技術 Background art
再熱ドライ運転が可能な空調装置としては、 一般に図 1に示すような冷媒回路 を有するものが知られている。 この空調装置書 1は、 圧縮機 2、 室外熱交 m^ 3、 減圧機構 4、 室内熱交換器 5を備えるヒートポンプ式の空調装置であり、 圧縮機 2からの冷媒が循環されるように冷媒回路が構成されている。 圧縮機 2の吐出側 と吸込側とは、 それぞれ四路切換弁 6の 1次ポートに接続されている。 そして、 四路切換弁 6の 2次ポートの一方から、 室外ファン 7を付設している室外熱交換 器 3、 減圧機構 4、 室内ファン 8を付設している室内熱交換器 5をそれぞれ経由 して四路切換弁 6の他方の 2次ポートへ至る冷媒回路が冷媒配管によって構成さ れている。 なお、 四路切換弁 6からは、 アキュムレータ 9を介して圧縮機 2の吸 込側に戻るようになつている。 また室内熱交換器 5は、 直列に接続された第 1熱 交難 1 0と第 2熱交纏1 1と力 ら成り、 上記各熱交觸1 0、 1 1の間には 減圧機構 1 2が介設されている。  As an air conditioner capable of reheating dry operation, an air conditioner generally having a refrigerant circuit as shown in FIG. 1 is known. This air conditioner document 1 is a heat pump type air conditioner equipped with a compressor 2, an outdoor heat exchanger m ^ 3, a pressure reducing mechanism 4, and an indoor heat exchanger 5, and the refrigerant from the compressor 2 is circulated so that the refrigerant from the compressor 2 is circulated. The circuit is configured. The discharge side and the suction side of the compressor 2 are connected to the primary port of the four-way switching valve 6, respectively. Then, one of the secondary ports of the four-way switching valve 6 passes through the outdoor heat exchanger 3 having the outdoor fan 7, the pressure reducing mechanism 4, and the indoor heat exchanger 5 having the indoor fan 8. The refrigerant circuit leading to the other secondary port of the four-way switching valve 6 is constituted by a refrigerant pipe. Note that the four-way switching valve 6 returns to the suction side of the compressor 2 via the accumulator 9. The indoor heat exchanger 5 is composed of a first heat exchange 10 and a second heat exchange 11 connected in series, and a force. A pressure reducing mechanism 1 is provided between the heat exchanges 10 and 11. Two are interposed.
上記冷媒回路による空調運転の種類には、 冷房運転、 暖房運転、 再熱ドライ運 転等がある。 冷房運転及び暖房運転の際には、 室内熱交換器 5の減圧機構 1 2を 全開状態とする一方で、 減圧機構 4を所定の開度に調整し、 さらに室外ファン 7 及び室内ファン 8を所定の回転数で駆動する。 そして、 冷房運転の場合は、 圧縮 機 2からの吐出冷媒を実線矢印に示すように循環させることによって、 室外熱交 § 3を凝縮器として機能させると共に、 室内熱交 を蒸発器として機能さ せることで室内空気が冷却される。 また暖房運転の場合は、 圧縮機 2からの吐出 冷媒を破線矢印に示すように循環させることによって、 室内熱交 5を凝縮器 として機能させると共に、 室外熱交 3を蒸発器として機能させることで室内 空気が加熱される。 The types of air-conditioning operation using the refrigerant circuit include cooling operation, heating operation, and reheating dry operation. During the cooling operation and the heating operation, while the pressure reducing mechanism 12 of the indoor heat exchanger 5 is fully opened, the pressure reducing mechanism 4 is adjusted to a predetermined opening degree, and the outdoor fan 7 and the indoor fan 8 are further controlled to the predetermined degree. Drive at the rotation speed of. In the case of the cooling operation, the refrigerant discharged from the compressor 2 is circulated as shown by a solid line arrow, so that the outdoor heat exchanger 3 functions as a condenser and the indoor heat exchanger functions as an evaporator. This cools the indoor air. In the case of the heating operation, the refrigerant discharged from the compressor 2 is circulated as shown by the dashed arrow, so that the indoor heat exchange 5 functions as a condenser and the outdoor heat exchange 3 functions as an evaporator. Indoor The air is heated.
一方、 再熱ドライ運転の際には、 室内熱交換器 5の減圧機構 1 2を所定の開度 に調整する一方で、 減圧機構 4を全開状態とし、 さらに室内ファン 8を所定の回 転数で駆動する一方で、 室外ファン 7を停止状態とする。 そして、 圧縮機 2から の吐出冷媒を実線矢印に示すように冷房サイクルでもって循環させることによつ て、 室内熱交^ 5の第 1熱交換器 1 0を凝縮器として機能させると共に、 第 2 熱交^ § 1 1を蒸発器として機能させる。 これによつて、 室內空気を蒸発器とし て機能する第 2熱交換器 1 1で冷却して除湿した後に、 凝縮器として機能する第 1熱交^! 1 0で再び加熱して室内に戻す再熱ドライ運転が行われる。  On the other hand, during the reheating dry operation, the pressure reducing mechanism 12 of the indoor heat exchanger 5 is adjusted to a predetermined opening degree, the pressure reducing mechanism 4 is fully opened, and the indoor fan 8 is rotated at a predetermined rotation speed. And the outdoor fan 7 is stopped. Then, by circulating the refrigerant discharged from the compressor 2 in a cooling cycle as shown by a solid line arrow, the first heat exchanger 10 of the indoor heat exchanger 5 functions as a condenser, and 2 Heat exchange ^ § 1 Let 1 function as an evaporator. As a result, the room air is cooled and dehumidified by the second heat exchanger 11 functioning as an evaporator, and then heated again by the first heat exchanger functioning as a condenser and returned to the room. Reheat dry operation is performed.
上記再熱ドライ運転では、 室内機に凝縮器としての機能を備えた第 1熱交 m¾§ In the reheat dry operation, the first heat exchange m¾§
1 0と、 蒸発器としての機能を備えた第 2熱交換器 1 1を有しているため、 室内 温度を略一定に保ったまま除湿することが可能である。 しかし肌寒い季節等にお いて室内を暖房ぎみにしながら除湿を行いたい場合には、 凝縮器である第 1熱交 換器 1 0における凝縮温度を高くする必要があるが、 上記凝縮温度が高くなるよ うに制御すれば、 これに伴って蒸発温度も高くなつてしまう。 そしてこのように、 上記第 2熱交 1の蒸発温度が高くなると、 室内空気の露点温度との差が小 さくなるため、 除湿量が極端に減少してしまうとレ、う問題が生じる。 10 and the second heat exchanger 11 having a function as an evaporator, it is possible to dehumidify while keeping the room temperature substantially constant. However, when it is desired to perform dehumidification while heating the room in a chilly season, etc., it is necessary to increase the condensation temperature in the first heat exchanger 10, which is the condenser, but the above condensation temperature increases If such control is performed, the evaporation temperature will increase accordingly. As described above, when the evaporation temperature of the second heat exchange 1 becomes higher, the difference from the dew point temperature of the indoor air becomes smaller, and if the amount of dehumidification is extremely reduced, the following problem occurs.
この発明は上記従来の欠点を解決するためになされたものであり、 その目的は、 室内を暖房ぎみにしながら除湿を行うような場合においても、 蒸発器の温度を制 御することによって除湿量を高め、 再熱ドライ運転を確実に行うことができる空 調装置を提供することにある。 発明の開示  The present invention has been made in order to solve the above-mentioned conventional disadvantages. The purpose of the present invention is to control the temperature of the evaporator to control the amount of dehumidification even when dehumidification is performed while heating the room. It is an object of the present invention to provide an air conditioner capable of reliably performing a dry operation with reheating. Disclosure of the invention
この発明の空調装置は、 直列に接続された第 1熱交^^ 1 0と第 2熱交換器 1 1とから成る室內熱交 と、 上記各熱交 « 1 0、 1 1の間に介設された減 圧機構 1 2とを有する空調装置であって、 上記第 1熱交 m^ i 0を凝縮器として 機能させる一方、 第 2熱交換器 1 1を蒸発器として機能させて、 室内空気を冷却 して除湿した後に再び加熱して室内に戻す再熱ドライ運転が可能な空調装置にお いて、 上記再熱ドライ運転時に、 蒸発器として機能する第 2熱交 1の温度 を制御する制御手段 1 3を設けたことを特徴としている。 The air conditioner according to the present invention includes an air conditioner formed between a first heat exchanger ^ 10 and a second heat exchanger 11 connected in series, and a heat exchanger between the heat exchangers 10 and 11. An air conditioner having a pressure reducing mechanism 12 provided therein, wherein the first heat exchange m ^ i 0 functions as a condenser while the second heat exchanger 11 functions as an evaporator, In an air conditioner capable of reheating dry operation, in which air is cooled, dehumidified, heated again, and returned to the room, the temperature of the second heat exchange 1 that functions as an evaporator during the reheat dry operation This is characterized in that control means 13 for controlling the control is provided.
この空調装置では、 室内機に、 蒸発器として機能する第 2熱交 m^ i 1の温度 を制御する制御手段 1 3を設けている。 これより、 室内を暖房ぎみにしながら再 熱ドライ運転を行うような場合において、 凝縮器として機能する第 1熱交換器 1 0の凝縮温度を上昇させても、 上記制御手段 1 3を用いて第 2熱交換器 1 1の温 度を低下させたり、 あるいは温度上昇を抑制することができるため、 除湿量を減 少させることなく確実に再熱ドライ運転を実行することができる。 この結果、 ュ —ザが求める室内環境を実現でき、 快適性が向上する。 なおこのように第 2熱交 換器 1 1の温度を制御すれば、 通常の再熱ドライ運転時においても、 確実な除湿 効果を得られるという利点がある。  In this air conditioner, the indoor unit is provided with control means 13 for controlling the temperature of the second heat exchange m ^ i 1 functioning as an evaporator. Thus, in a case where the reheat dry operation is performed while the room is being heated, even if the condensing temperature of the first heat exchanger 10 functioning as a condenser is increased, the first control unit 13 uses the control unit 13 to perform the second process. (2) Since the temperature of the heat exchanger 11 can be lowered or the rise in temperature can be suppressed, the reheat dry operation can be executed reliably without reducing the amount of dehumidification. As a result, the indoor environment desired by the user can be realized, and the comfort is improved. Controlling the temperature of the second heat exchanger 11 as described above has an advantage that a reliable dehumidifying effect can be obtained even during a normal reheating dry operation.
また一実施形態の空調装置は、 室内温度センサ 2 7と、 湿度センサ 2 8とを設 け、 上記各センサ 2 7、 2 8によって測定された温度と湿度とから露点温度を求 めると共に、 上記露点温度から第 2熱交 1 1の温度制御を行うことを特徴と している。  In addition, the air conditioner of one embodiment is provided with an indoor temperature sensor 27 and a humidity sensor 28, and calculates the dew point temperature from the temperature and humidity measured by the sensors 27 and 28. The temperature control of the second heat exchange 11 is performed based on the dew point temperature.
この空調装置では、 室内温度センサ 2 7と湿度センサ 2 8とを設けたことによ つて、 室内の温度と湿度とを測定し、 この測定結果より求めた露点温度から、 第 2熱交換器 1 1の温度を上記制御手段 1 3を用いて制御する。 この結果、 精度の よい除湿制御が行える。 この結果、 ユーザが求める室内環境に応じた再熱ドライ 運転を一段と確実に行うことが可能となる。  In this air conditioner, the indoor temperature sensor 27 and the humidity sensor 28 are provided to measure the indoor temperature and humidity, and from the dew point temperature obtained from the measurement results, the second heat exchanger 1 The temperature of 1 is controlled using the control means 13 described above. As a result, accurate dehumidification control can be performed. As a result, the reheat dry operation according to the indoor environment required by the user can be performed more reliably.
さらに一実施形態の空調装置は、 上記制御手段 1 3は、 第 2熱交換器 1 1への 風量を制御する風量制御手段を含むことを特徴としている。  Further, the air conditioner of one embodiment is characterized in that the control means 13 includes an air volume control means for controlling an air volume to the second heat exchanger 11.
この空調装置では、 風量制御手段を用いて通過風量を減少させることによって、 第 2熱交換器 1 1の温度を制御することができる。 この結果、 簡素な構成でもつ て確実に除湿量を高めることができる。  In this air conditioner, the temperature of the second heat exchanger 11 can be controlled by reducing the passing air flow using the air flow control means. As a result, the amount of dehumidification can be reliably increased with a simple configuration.
また一実施形態の空調装置は、 上記制御手段 1 3は、 上記減圧機構 1 2を開度 可変に構成して成る圧力制御手段を含むことを特徴としている。  Further, the air conditioner of one embodiment is characterized in that the control means 13 includes a pressure control means configured by variably opening the pressure reducing mechanism 12.
この空調装置では、 上記圧力制御手段を用いて上記第 2熱交換器 1 1への減圧 量を制御することによって、 第 2熱交換器 1 1の温度を制御することができる。 この結果、 簡素な構成でもって確実に除湿量を高めることができる。 図面の簡単な説明 In this air conditioner, the temperature of the second heat exchanger 11 can be controlled by controlling the amount of pressure reduction to the second heat exchanger 11 using the pressure control means. As a result, the amount of dehumidification can be reliably increased with a simple configuration. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の一実施の形態である空調装置の構成を示す冷媒回路図である。 図 2は上記空調装置の一実施の形態を示す室内機の縦断面図である。  FIG. 1 is a refrigerant circuit diagram showing a configuration of an air conditioner according to an embodiment of the present invention. FIG. 2 is a longitudinal sectional view of an indoor unit showing an embodiment of the air conditioner.
図 3は上記空調装置の他の実施形態を示す室内機の縦断面図である。  FIG. 3 is a longitudinal sectional view of an indoor unit showing another embodiment of the air conditioner.
図 4は上記空調装置の室内機の斜視図である。  FIG. 4 is a perspective view of the indoor unit of the air conditioner.
図 5は上記空調装置の制御動作を説明するためのフローチャートである。 発明を実施するための最良の形態  FIG. 5 is a flowchart for explaining the control operation of the air conditioner. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 この発明の空調装置の具体的な実施の形態について、 図面を参照しつつ 詳細に説明する。  Next, specific embodiments of the air conditioner of the present invention will be described in detail with reference to the drawings.
本発明の一実施の形態である空調装置の冷媒回路は、 図 1に示した一般的な空 調装置 1の冷媒回路と基本的に同様に構成されているが、 制御を改良したもので ある。 すなわち、 図 1に示すように、 空調装置 1は、 圧縮機 2、 室外熱交換器 3、 減圧機構 4、 室内熱交換器 5を備えるヒートポンプ式の空調装置であり、 圧縮機 2からの冷媒が循環されるように冷媒回路が構成されている。 圧縮機 2の吐出側 と吸込側とは、 それぞれ四路切換弁 6の 1次ポートに接続されている。 そして、 四路切換弁 6の 2次ポートの一方から、 室外ファン 7を付設している室外熱交換 器 3、 減圧機構 4、 室内ファン 8を付設している室内熱交換器 5をそれぞれ経由 して四路切換弁 6の他方の 2次ポートへ至る冷媒回路が冷媒配管によって構成さ れている。 なお、 四路切換弁 6からは、 アキュムレータ 9を介して圧縮機 2の吸 込側に戻るようになつている。 また室内熱交換器 5は、 直列に接続された第 1熱 交換器 1 0と第 2熱交換器 1 1とから成り、 上記各熱交 § 1 0、 1 1の間には 減圧機構 1 2が介設されている。  A refrigerant circuit of an air conditioner according to an embodiment of the present invention is basically configured the same as the refrigerant circuit of the general air conditioner 1 shown in FIG. 1, but has improved control. . That is, as shown in FIG. 1, the air conditioner 1 is a heat pump type air conditioner including a compressor 2, an outdoor heat exchanger 3, a pressure reducing mechanism 4, and an indoor heat exchanger 5, and the refrigerant from the compressor 2 A refrigerant circuit is configured to be circulated. The discharge side and the suction side of the compressor 2 are connected to the primary port of the four-way switching valve 6, respectively. Then, one of the secondary ports of the four-way switching valve 6 passes through the outdoor heat exchanger 3 having the outdoor fan 7, the pressure reducing mechanism 4, and the indoor heat exchanger 5 having the indoor fan 8. The refrigerant circuit leading to the other secondary port of the four-way switching valve 6 is constituted by a refrigerant pipe. Note that the four-way switching valve 6 returns to the suction side of the compressor 2 via the accumulator 9. The indoor heat exchanger 5 is composed of a first heat exchanger 10 and a second heat exchanger 11 connected in series, and a decompression mechanism 12 is provided between each of the heat exchangers 10 and 11. Is interposed.
この空調装置 1の動作は全体として、 図 4中に示す空調装置 1の室内機本体 1 The operation of the air conditioner 1 as a whole is shown in FIG.
4内に設けられたコントローラ 1 3によって制御される。 It is controlled by a controller 13 provided in 4.
上記冷媒回路による空調運転の種類には、 冷房運転、 暖房運転、 再熱ドライ運 転等がある。 上記冷房運転及び暖房運転の際には、 室内熱交換器 5の減圧機構 1 2を全開状態とする一方で、 減圧機構 4を所定の開度に調整し、 さらに室外ファ ン 7及び室内ファン 8を所定の回転数で駆動する。 そして、 冷房運転の場合は、 圧縮機 2からの吐出冷媒を実線矢印に示すように循環させることによって、 室外 熱交換器 3を凝縮器として機能させると共に、 室内熱交 を蒸発器として機 能させることで室内空気が冷却される。 また暖房運転の場合は、 圧縮機 2からの 吐出冷媒を破線矢印に示すように循環させることによって、 室内熱交^^ 5を凝 縮器として機能させると共に、 室外熱交 3を蒸発器として機能させることで 室内空気が加熱される。 The types of air-conditioning operation using the refrigerant circuit include cooling operation, heating operation, and reheating dry operation. During the cooling operation and the heating operation, while the pressure reducing mechanism 12 of the indoor heat exchanger 5 is fully opened, the pressure reducing mechanism 4 is adjusted to a predetermined opening degree, and The fan 7 and the indoor fan 8 are driven at a predetermined rotation speed. In the case of the cooling operation, the refrigerant discharged from the compressor 2 is circulated as indicated by a solid line arrow, so that the outdoor heat exchanger 3 functions as a condenser and the indoor heat exchange functions as an evaporator. This cools the indoor air. In the case of the heating operation, the refrigerant discharged from the compressor 2 is circulated as shown by a broken line arrow, so that the indoor heat exchange ^^ 5 functions as a condenser and the outdoor heat exchange 3 functions as an evaporator. This heats the room air.
一方、 再熱ドライ運転の際には、 室内熱交換器 5の減圧機構 1 2を所定の開度 に調整する一方で、 減圧機構 4を全開状態とし、 さらに室内ファン 8を所定の回 転数で駆動する一方で、 室外ファン 7を停止状態とする。 そして、 圧縮機 2から の吐出冷媒を実線矢印に示すように循環させることによって、 室内熱交 5の 第 1熱交換器 1 0を凝縮器として機能させると共に、 第 2熱交 1を蒸発器 として機能させる。 これによつて、 室内空気を蒸発器として機能する第 2熱交換 器 1 1で冷却して除湿した後に、 再び凝縮器として機能する第 1熱交換器 1 0で 加熱して室内に戻す再熱ドライ運転が行われる。 なお、 再熱ドライ運転では室外 熱交換器 3も凝縮器として機能し得るが、 上記のように室外フアン 7を停止状態 とすることによつて室外熱交換器 3の周囲の外気が流通しないようにして室外熱 交換器 3ではできる限り熱交換が行われなレ、ようにしている。  On the other hand, during the reheating dry operation, the pressure reducing mechanism 12 of the indoor heat exchanger 5 is adjusted to a predetermined opening degree, the pressure reducing mechanism 4 is fully opened, and the indoor fan 8 is rotated at a predetermined rotation speed. And the outdoor fan 7 is stopped. Then, by circulating the refrigerant discharged from the compressor 2 as shown by a solid line arrow, the first heat exchanger 10 of the indoor heat exchange 5 functions as a condenser, and the second heat exchange 1 functions as an evaporator. Let it work. As a result, the room air is cooled and dehumidified by the second heat exchanger 11 functioning as an evaporator, and then heated again by the first heat exchanger 10 functioning as a condenser and returned to the room. Dry operation is performed. In the reheat drying operation, the outdoor heat exchanger 3 can also function as a condenser, but by stopping the outdoor fan 7 as described above, the outside air around the outdoor heat exchanger 3 is prevented from flowing. In the outdoor heat exchanger 3, heat is not exchanged as much as possible.
ところで、 上記再熱ドライ運転時に室内を暖房ぎみにしながら除湿を行う場合、 凝縮器である第 1熱交 « 1 0での凝縮温度を高くし、 充分に熱交換 (加熱) を 行う必要があるが、 これに伴って蒸発温度も高くなるため、 除湿量が極端に減少 してしまうことがある。 このため、 図 4中に示すコントローラ 1 3が制御手段と して働いて、 蒸発器として機能する第 2熱交換器 1 1の温度を制御する。  By the way, when performing dehumidification while heating the room during the reheating dry operation, it is necessary to increase the condensation temperature in the first heat exchanger 10, which is the condenser, and perform sufficient heat exchange (heating). However, the evaporation temperature increases with this, and the amount of dehumidification may decrease extremely. For this reason, the controller 13 shown in FIG. 4 works as a control means to control the temperature of the second heat exchanger 11 functioning as an evaporator.
以下にその具体的な制御方法にっレ、て述べる。  The specific control method will be described below.
まず、 図 2に上記空調装置 1の一実施の形態を示す室内機の縦断面図を示す。 図において、 室内機のケーシング 1 5には、 その天面パネル 1 6のほぼ全面に格 子状の天面吸込口 1 7が形成され、 前面パネル 1 8のほぼ全面に格子状の前面吸 込口 1 9が形成されている。 また、 上記ケーシング 1 5内に配置された室内熱交 換器 5は、 背面側熱交換器 1 0 (第 1熱交換器) と前面側熱交換器 1 1 (第 2熱 交 « とに分割され、 これらを逆 V字状に組み合わせて構成されている。 また 逆 V字状の室内熱交換器 5の内側には、 室内ファンとしてクロスフローファン 8 が配設されている。 そしてこのクロスフ口—ファン 8の背後にスクロール部 2 0 が形成され、 室内機のケ一シング 1 5の前面側下部に開口する吹出口 2 1になめ らかに連設されている。 この空調装置 1においては、 前面側熱交 0におい て冷却 ·除湿した空気と、 背面側熱交 m^ i 1において加熱した空気とを機内に おいて混合し、 これを吹出口 2 1から吹出すことによって再熱ドライ運転が行え るようになっている。 First, FIG. 2 shows a longitudinal sectional view of an indoor unit showing an embodiment of the air conditioner 1. In the figure, the casing 15 of the indoor unit has a grid-shaped top surface suction port 17 formed almost entirely on the top panel 16, and a grid-shaped front suction port almost entirely on the front panel 18. Mouth 19 is formed. The indoor heat exchanger 5 arranged in the casing 15 has a rear heat exchanger 10 (first heat exchanger) and a front heat exchanger 11 (second heat exchanger). It is divided into alternating and these are combined in an inverted V-shape. A cross flow fan 8 is disposed inside the inverted V-shaped indoor heat exchanger 5 as an indoor fan. A scroll portion 20 is formed behind the cross opening-fan 8 and is smoothly connected to an air outlet 21 opening at a lower portion on the front side of the casing 15 of the indoor unit. In the air conditioner 1, the air cooled and dehumidified in the front heat exchanger 0 and the air heated in the rear heat exchanger m ^ i 1 are mixed in the machine, and the air is blown from the outlet 21. By doing so, reheat dry operation can be performed.
また上記空調装置 1の室内機には、 コントローラ 1 3と協働して、 前面吸込口 1 9から供給される風量を制御するための風量制御手段が設けられている。 すな わちこの実施形態の場合、 上記風量制御手段は、 前面吸込口 1 9を開閉すること が可能なシャッタ一 2 2と、 上記シャッター 2 2を前面パネル 1 8の内側に沿つ て移動させるモータ付ギア 2 3と、 上記シャッター 2 2を卷取る卷取り用器具 2 5とから構成されている。 さらに詳しく説明すると、 上記ケーシング 1 5内の前 面パネル 1 8側の上方部には、 棒状の巻取り用器具 2 5力 その長手方向が上記 ケーシング 1 5の長手方向と略平行になるように配置されている。 上記卷取り用 器具 2 5には、 略長方形のシャッター 2 2の上端部が取付けられており、 上記卷 取り用器具 2 5に上記シャッター 2 2を卷取ることができるように構成されてい る。 さらに、 上記巻取り用器具 2 5より下方側の位置には、 中心にモータの回転 軸 2 4を備えたギア 2 3が配置されており、 上記ギア 2 3と前面パネル 1 8との 間にシャッター 2 2が位置するように配置されている。 また上記シャッター 2 2 には、 その内側の面、 すなわち上記ギア 2 3と向かい合う方向にある面に、 ギア 2 3と同じピッチの凹凸が形成されており、 上記シャッター 2 2に形成された凹 凸とギア 2 3とを嚙み合わせることによって、 ギア 2 3の回転を上記シャッター 2 2に伝えることができるように構成されている。 そして上記構成により、 前面 パネル 1 8の内側に沿って上記シャッター 2 2を上下方向にスライドさせること により、 前面吸込口 1 9の開閉を行うことができ、 前面吸込口 1 9から供給され る風量の制御を行うことが可能となる。  Further, the indoor unit of the air conditioner 1 is provided with an air volume control means for controlling the air volume supplied from the front suction port 19 in cooperation with the controller 13. In other words, in the case of this embodiment, the air volume control means moves the shutter 22 that can open and close the front suction port 19 and the shutter 22 along the inside of the front panel 18. And a winding device 25 for winding the shutter 22. More specifically, in the upper part of the casing 15 on the side of the front panel 18, a rod-shaped winding device 25 is arranged so that its longitudinal direction is substantially parallel to the longitudinal direction of the casing 15. Are located. An upper end portion of a substantially rectangular shutter 22 is attached to the winding device 25, and the shutter 22 is wound on the winding device 25. Further, at a position below the above-mentioned winding device 25, a gear 23 provided with a motor rotation shaft 24 at the center is arranged, and between the above-mentioned gear 23 and the front panel 18 is provided. It is arranged so that the shutter 22 is located. The shutter 22 has an inner surface, that is, a surface facing in the direction facing the gear 23, formed with concavities and convexities having the same pitch as the gear 23, and the concave and convex formed on the shutter 22. By combining the gear 23 with the gear 23, the rotation of the gear 23 can be transmitted to the shutter 22. With the above configuration, the front suction port 19 can be opened and closed by sliding the shutter 22 vertically along the inside of the front panel 18, and the air volume supplied from the front suction port 19 Can be controlled.
次に、 上記空調装置 1の室内機の斜視図を図 4に示す。 図に示すように、 上記 室内機本体 1 4の側面下方部にはスリット 2 9が設けられており、 その奥に室内 温度を測定する温度センサ 2 7と、 室内湿度を測定する湿度センサ 2 8とが設け られている。 上記各センサ 2 7、 2 8は、 室内の温度と湿度とから露点温度を求 めるために設けられたもので、 この露点温度から上記風量制御手段を用レ、た前面 側熱交換器 1 1の温度制御を行うか否かの判断を行っている。 このとき、 上記各 センサ 2 7、 2 8は室内機内部に設けられている力 各センサ 2 7、 2 8の前に 設けられたスリット 2 9から室内空気の出入りが行われるため、 室内の湿度と温 度とを正確に測定することができ、 これより、 正確な露点温度が求められる。 以上に述べた上記各センサ 2 7、 2 8と風量制御手段を用いてコントローラ 1 3が前面吸込口 1 9の風量制御を行い、 室内を暖房ぎみにしながら除湿を行う際 の制御方法について述べる。 図 5は上記風量制御手段を用いた制御動作を説明す るためのフローチヤ一トである。 Next, a perspective view of the indoor unit of the air conditioner 1 is shown in FIG. As shown in the figure, A slit 29 is provided at the lower part of the side surface of the indoor unit main body 14, and a temperature sensor 27 for measuring the indoor temperature and a humidity sensor 28 for measuring the indoor humidity are provided behind the slit 29. The above sensors 27 and 28 are provided to determine the dew point temperature from the indoor temperature and humidity, and the air flow control means can be used based on the dew point temperature. It is determined whether or not to perform the temperature control of 1. At this time, the above sensors 27 and 28 are driven by the force provided inside the indoor unit, and the indoor air enters and exits from the slit 29 provided in front of each sensor 27 and 28. And temperature can be measured accurately, and an accurate dew point temperature can be obtained. A control method when the controller 13 controls the air volume of the front suction port 19 by using the sensors 27 and 28 and the air volume control means described above, and performs dehumidification while heating up the room is described. FIG. 5 is a flowchart for explaining a control operation using the air volume control means.
まず、 再熱ドライ運転中において、 ステップ S 1では、 蒸発器として機能して いる前面側熱交換器 1 1の温度が、 各センサ 2 7、 2 8によって測定された室内 温度と湿度とから求めた露点温度より低いか否かについての判断を行う。 このと き、 前面側熱交換器 1 1の温度の方が高いか、 あるいは等しい場合は、 除湿能力 が不足する可能性があるということであるから、 ステップ S 2に移行して、 風量 制御手段であるシャッター 2 2を用いた風量分配制御が開始され、 前面吸込口 1 9の開度を狭くする。 この後、 ステップ S 3に進み、 上記開度での運転状態が安 定するまでこの状態を維持し (約 1 0分間) 、 そして上記一定時間が経過した後、 再びステップ S 1に戻って風量分配制御を行うか否かの判断を行う。 一方ステツ プ S 1において、 露点温度の方が高ければ、 充分な除湿能力があるということで あるから、 上記シャッター 2 2を用いた風量分配制御は行わず、 現状態のまま維 持する (ステップ S 4 ) 。 そして一定時間が経過した後、 再びステップ S 1に戻 る。  First, during the reheating dry operation, in step S1, the temperature of the front-side heat exchanger 11 functioning as an evaporator is obtained from the room temperature and humidity measured by the sensors 27, 28. A determination is made as to whether the temperature is lower than the dew point temperature. At this time, if the temperature of the front-side heat exchanger 11 is higher or equal, it means that the dehumidifying capacity may be insufficient. The air volume distribution control using the shutter 22 is started, and the opening of the front inlet 19 is narrowed. Thereafter, the process proceeds to step S3, and this state is maintained until the operating condition at the above opening degree is stabilized (about 10 minutes). After the above-mentioned predetermined time has elapsed, the process returns to step S1 to return to the air flow. It is determined whether distribution control is to be performed. On the other hand, in step S1, if the dew point temperature is higher, it means that there is sufficient dehumidification capability, so that the air flow distribution control using the shutter 22 is not performed, and the current state is maintained (step S1). S 4). Then, after a certain time has elapsed, the flow returns to step S1 again.
上記方法によれば、 まず始めに各熱交換器 1 0、 1 1への通過風量の比率が基 本的に一定となるように、 通常の再熱ドライ運転が開始される。 このとき、 始め から風量制御を行わないのは、 始めから前面側熱交換器 1 1への風量を少なくす ることによって、 全体の運転能力が低下してしまうのを防ぐためである。 また本 実施形態によれば、 室内温度と湿度とから求めた露点温度より蒸発器である前面 側熱交換器 1 1の温度の方が高いか、 あるいは等しい場合、 自動的にシャッター 2 2によって前面吸込口 1 9の開度が狭められ、 吸込風量が減少するように調整 されている。 これによつて前面側熱交 m¾ i 1での熱交換が制限され、 前面側熱 交^: 1 1の温度を下げることができ、 この結果、 除湿量を高めることができる。 また、 上記前面吸込口 1 9のシャッター 2 2による開度調節は、 連続的に行うこ とが可能であり、 室内を暖房ぎみにしながら再熱ドライ運転が実行されるまで、 繰り返し上記風量分配制御が行われる。 また上記運転が実行された場合でも、 常 にその状態が継続されるように、 一定時間ごとに上記判断及び制御を行うよう構 成されている。 以上のことにより、 室内を暖房ぎみとするために凝縮器として機 能する背面側熱交換器 1 0の凝縮温度を上昇させても、 風量制御手段によって、 蒸発器として機能する前面側熱交 1の温度を低下させたり、 あるいは温度 上昇を抑制することができるため、 除湿量を減少させることなく確実に再熱ドラ ィ運転を実行することができる。 この結果、 ユーザの望む室内環境を実現でき、 快適性が向上する。 なおこのように前面側熱交換器 1 1の温度を制御すれば、 通 常の再熱ドライ運転時においても確実な除湿効果が得られるという利点がある。 以上にこの発明の具体的な実施の形態について説明したが、 この発明は上記実 施の形態に限定されるものではなく、 この発明の範囲内で種々変更して実施する ことが可能である。 まず上記実施形態において、 風量制御手段による風量制御を 行うか否かを判断する際、 蒸発器である前面側熱交換器 1 1の温度と露点温度と を比較することによって判断したが、 前面側熱交換器 1 1の温度が、 室内湿度 5 0 %以下とするために必要な蒸発温度であるか否かを比較することによって判断 してもよい。 この場合に必要とする蒸発温度は、 センサ等を用いて求めることも 可能であるが、 使用実態等を考慮して事前に特定温度を設定しておいてもよい。 また上記実施形態では、 風量制御手段にシャッター 2 2を用いて、 前面吸込口According to the above method, first, a normal reheating dry operation is started so that the ratio of the amount of air passing through each of the heat exchangers 10 and 11 becomes basically constant. At this time, the reason why the air volume control is not performed from the beginning is to prevent the overall operation capability from being reduced by reducing the air volume to the front-side heat exchanger 11 from the beginning. Also book According to the embodiment, when the temperature of the front-side heat exchanger 11 which is the evaporator is higher than or equal to the dew point temperature obtained from the room temperature and the humidity, the front inlet is automatically opened by the shutter 22. The opening of 19 is narrowed and adjusted to reduce the intake air volume. As a result, the heat exchange in the front-side heat exchange m¾ i 1 is restricted, and the temperature of the front-side heat exchange ^: 11 can be reduced, and as a result, the amount of dehumidification can be increased. Also, the opening adjustment of the front inlet 19 by the shutter 22 can be performed continuously, and the air volume distribution control is repeatedly performed until the reheat dry operation is performed while the room is being heated. Is performed. Further, the configuration is such that the determination and the control are performed at regular intervals so that the state is always maintained even when the operation is performed. As described above, even if the condensing temperature of the rear-side heat exchanger 10 functioning as a condenser to increase the room temperature, the front-side heat exchanger 1 functioning as an evaporator is controlled by the air volume control means. Since the temperature of the fuel cell can be lowered or the temperature rise can be suppressed, the reheat dry operation can be executed reliably without reducing the amount of dehumidification. As a result, the indoor environment desired by the user can be realized, and the comfort is improved. Controlling the temperature of the front-side heat exchanger 11 as described above has an advantage that a reliable dehumidifying effect can be obtained even during a normal reheating dry operation. Although the specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and can be implemented with various modifications within the scope of the present invention. First, in the above embodiment, when determining whether or not to perform the air volume control by the air volume control means, the temperature is determined by comparing the temperature of the front-side heat exchanger 11 as an evaporator with the dew point temperature. The determination may be made by comparing whether or not the temperature of the heat exchanger 11 is an evaporation temperature necessary for reducing the indoor humidity to 50% or less. In this case, the required evaporating temperature can be obtained by using a sensor or the like, but a specific temperature may be set in advance in consideration of the actual use and the like. Further, in the above embodiment, the shutter 22 is used as the air volume control means, and the front suction port is used.
1 9から供給される風量を制御したが、 図 3に示すように、 上記室内機において、 前面吸込口 1 9を外側から覆うことが可能な前面蓋 3 0を設けることによって、 吸込風量を制御することも可能である。 すなわち上記前面蓋 3 0は、 略長方形の 板の上下方向をわずかに湾曲させた形を有しており、 その凹部が内側を向くよう に配置されると共に、 その下端部が前面吸込口 1 9下方部のケーシング 1 5に回 動可能に取付けられている。 また、 上記前面蓋 3 0が取付けられた取付部 3 1の 中心には、 モータの回転軸 3 2が設けられており、 モータを駆動することによつ て、 上記前面蓋 3 0が取付部 3 1の回転軸 3 2を中心として内外に回動するよう に構成されている。 従って、 上記前面蓋 3 0の回動によって前面吸込口 1 9の開 度を調節し、 吸込風量を制御することができる。 Although the air volume supplied from 19 was controlled, as shown in FIG. 3, the above-mentioned indoor unit was provided with a front lid 30 capable of covering the front air inlet 19 from the outside, thereby controlling the air volume. It is also possible. That is, the front cover 30 has a shape in which a substantially rectangular plate is slightly curved in the vertical direction, and the concave portion faces inward. And a lower end thereof is rotatably attached to a casing 15 below the front suction port 19. A motor shaft 32 is provided at the center of the mounting portion 31 to which the front cover 30 is mounted, and the front cover 30 is mounted by driving the motor. It is configured to rotate inward and outward about a rotation shaft 32 of 31. Therefore, the opening of the front suction port 19 can be adjusted by the rotation of the front cover 30 to control the suction air volume.
さらに上記方法によれば、 蒸発器として機能する前面側熱交 m^ i 1を通過す る風量を制御すること、 すなわち前面吸込口 1 9からの吸込風量を少なくするこ とによって、 上記前面側熱交換器 1 1の温度を下げ、 除湿量を高めたが、 前面側 熱交換器 1 1に流入する冷媒の圧力を制御することによって、 前面側熱交換器 1 1の蒸発温度を低下し、 除湿量を高めることも可能である。 たとえば、 圧力制御 手段として上記前面側熱交換器 1 1の冷媒経路の入口側に設けた減圧機構 1 2を 利用し、 上記減圧機構 1 2の開度を狭くし減圧量を大きくすることによって、 前 面側熱交換器 1 1での蒸発温度を下げ、 除湿量を高めることもできる。 このよう に構成すれば、 特別な機構を付加することなく実施可能であるので、 構成付加に よるコストァップを抑制できる。 なお上記実施形態では、 室内温度センサと湿度 センサを室内機本体 1 4に設けたが、 室内の温度と湿度を測定することができれ ばどこに設けてもよい。  Further, according to the above method, by controlling the amount of air passing through the front-side heat exchange m ^ i 1 functioning as an evaporator, that is, by reducing the amount of suction air from the front-side suction port 19, Although the temperature of the heat exchanger 11 was lowered and the amount of dehumidification was increased, the evaporation temperature of the front heat exchanger 11 1 was reduced by controlling the pressure of the refrigerant flowing into the front heat exchanger 11 1. It is also possible to increase the amount of dehumidification. For example, by using a pressure reducing mechanism 12 provided on the inlet side of the refrigerant path of the front-side heat exchanger 11 as pressure control means, by narrowing the opening of the pressure reducing mechanism 12 and increasing the pressure reduction amount, It is also possible to lower the evaporation temperature in the front heat exchanger 11 and increase the amount of dehumidification. With such a configuration, the present invention can be implemented without adding a special mechanism, so that cost increase due to the additional configuration can be suppressed. In the above embodiment, the indoor temperature sensor and the humidity sensor are provided in the indoor unit main body 14, but they may be provided anywhere as long as the indoor temperature and humidity can be measured.

Claims

請 求 の 範 囲 The scope of the claims
1. 直列に接続された第 1熱交 m¾ (10) と第 2熱交換器 (1 1) とから成 る室内熱交 (5) と、 上記各熱交 « (10) (1 1) の間に介設された減 圧機構 (12) とを有する空調装置であって、 上記第 1熱交 (10) を凝縮 器として機能させる一方、 第 2熱交換器 (1 1) を蒸発器として機能させて、 室 内空気を冷却して除湿した後に再び加熱して室内に戻す再熱ドライ運転が可能な 空調装置において、 上記再熱ドライ運転時に、 蒸発器として機能する第 2熱交換 器 (1 1) の温度を制御する制御手段 (13) を設けたことを特徴とする空調装 1. The indoor heat exchange (5) composed of the first heat exchange m¾ (10) and the second heat exchanger (1 1) connected in series, and the above heat exchanges (10) (1 1) An air conditioner having a pressure reducing mechanism (12) interposed therebetween, wherein the first heat exchanger (10) functions as a condenser while the second heat exchanger (11) functions as an evaporator. In the air conditioner, which is capable of performing a reheat dry operation by cooling and dehumidifying the indoor air and then reheating and returning the indoor air to the room, the second heat exchanger (which functions as an evaporator during the reheat dry operation) 1) An air conditioner characterized by providing control means (13) for controlling the temperature of (1).
2. 室内温度センサ (27) と、 湿度センサ (28) とを設け、 上記各センサ (27) (28) によって測定された温度と湿度とから露点温度を求めると共に、 上記露点温度から第 2熱交換器 (1 1) の温度制御を行うことを特徴とする請求 項 1の空調装置。 2. Provide an indoor temperature sensor (27) and a humidity sensor (28) to determine the dew point temperature from the temperature and humidity measured by the sensors (27) and (28). The air conditioner according to claim 1, wherein the temperature of the exchanger (11) is controlled.
3. 上記制御手段 (1 3) は、 第 2熱交換器 (11) への風量を制御する風量 制御手段を含むことを特徴とする請求項 1の空調装置。 3. The air conditioner according to claim 1, wherein said control means (13) includes air flow control means for controlling an air flow to the second heat exchanger (11).
4. 上記制御手段 (13) は、 上記減圧機構 (12) を開度可変に構成して成 る圧力制御手段を含むことを特徴とする請求項 1の空調装置。 4. The air conditioner according to claim 1, wherein the control means (13) includes a pressure control means configured to vary the opening of the pressure reducing mechanism (12).
PCT/JP2000/007369 1999-10-29 2000-10-23 Air conditioner WO2001033146A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE60041649T DE60041649D1 (en) 1999-10-29 2000-10-23 AIR CONDITIONING
AU79536/00A AU7953600A (en) 1999-10-29 2000-10-23 Air conditioner
EP00969980A EP1227286B1 (en) 1999-10-29 2000-10-23 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP30854499A JP2001124434A (en) 1999-10-29 1999-10-29 Air conditioner
JP11/308544 1999-10-29

Publications (1)

Publication Number Publication Date
WO2001033146A1 true WO2001033146A1 (en) 2001-05-10

Family

ID=17982316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007369 WO2001033146A1 (en) 1999-10-29 2000-10-23 Air conditioner

Country Status (9)

Country Link
EP (1) EP1227286B1 (en)
JP (1) JP2001124434A (en)
KR (1) KR100491718B1 (en)
CN (1) CN1196902C (en)
AT (1) ATE423949T1 (en)
AU (1) AU7953600A (en)
DE (1) DE60041649D1 (en)
ES (1) ES2321685T3 (en)
WO (1) WO2001033146A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100365359C (en) * 2000-10-19 2008-01-30 佐藤近义 Dehumidification method and dehumidification device
CN115789791A (en) * 2022-10-28 2023-03-14 珠海格力电器股份有限公司 Air conditioning system and control method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100911789B1 (en) 2003-01-15 2009-08-12 엘지전자 주식회사 Dehumidification Air Conditioner
ES2636539T3 (en) * 2004-03-31 2017-10-06 Daikin Industries, Ltd. Air conditioning system
KR100710057B1 (en) * 2006-02-27 2007-04-20 주식회사 대우일렉트로닉스 Cooling system of air conditioner
JP4923794B2 (en) * 2006-07-06 2012-04-25 ダイキン工業株式会社 Air conditioner
JP2008014605A (en) * 2006-07-10 2008-01-24 Matsushita Electric Ind Co Ltd Air conditioner
KR101260418B1 (en) 2012-07-30 2013-05-07 정종인 Dryer and cold storage system using heat pump and method for operating the system
JP2018025344A (en) * 2016-08-09 2018-02-15 パナソニックIpマネジメント株式会社 Air conditioner
JP2018025342A (en) * 2016-08-09 2018-02-15 パナソニックIpマネジメント株式会社 Air conditioner
DE102017109552A1 (en) * 2017-05-04 2018-11-08 Weiss-Doppelbodensysteme GmbH Air conditioner for double floor systems
CN112797657B (en) * 2019-10-28 2024-06-21 广东美的制冷设备有限公司 Air conditioner and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055547A (en) * 1991-01-29 1993-01-14 Mitsubishi Electric Corp Dehumidifer
JPH0526498A (en) * 1991-07-19 1993-02-02 Hitachi Ltd Air conditioner
JPH074724A (en) * 1992-12-22 1995-01-10 Fujitsu Syst Constr Kk Energy-saving control method for air conditioning equipment
JPH08254372A (en) * 1995-03-16 1996-10-01 Hitachi Ltd Air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518630A (en) * 1991-07-10 1993-01-26 Toshiba Corp Air conditioner
US5341650A (en) * 1992-03-13 1994-08-30 Kabushiki Kaisha Toshiba Air conditioning apparatus having a plurality of inlets for taking in indoor air at a plurality of portions of main body thereof
JP3190139B2 (en) * 1992-10-13 2001-07-23 東芝キヤリア株式会社 Air conditioner
JP3410859B2 (en) * 1995-06-28 2003-05-26 東芝キヤリア株式会社 Air conditioner
US5678417A (en) * 1995-06-28 1997-10-21 Kabushiki Kaisha Toshiba Air conditioning apparatus having dehumidifying operation function
JPH11248288A (en) * 1998-03-04 1999-09-14 Sanyo Electric Co Ltd Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055547A (en) * 1991-01-29 1993-01-14 Mitsubishi Electric Corp Dehumidifer
JPH0526498A (en) * 1991-07-19 1993-02-02 Hitachi Ltd Air conditioner
JPH074724A (en) * 1992-12-22 1995-01-10 Fujitsu Syst Constr Kk Energy-saving control method for air conditioning equipment
JPH08254372A (en) * 1995-03-16 1996-10-01 Hitachi Ltd Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100365359C (en) * 2000-10-19 2008-01-30 佐藤近义 Dehumidification method and dehumidification device
CN115789791A (en) * 2022-10-28 2023-03-14 珠海格力电器股份有限公司 Air conditioning system and control method

Also Published As

Publication number Publication date
JP2001124434A (en) 2001-05-11
EP1227286A4 (en) 2003-05-07
CN1384910A (en) 2002-12-11
ATE423949T1 (en) 2009-03-15
ES2321685T3 (en) 2009-06-10
EP1227286A1 (en) 2002-07-31
KR20020070973A (en) 2002-09-11
CN1196902C (en) 2005-04-13
DE60041649D1 (en) 2009-04-09
EP1227286B1 (en) 2009-02-25
KR100491718B1 (en) 2005-05-25
AU7953600A (en) 2001-05-14

Similar Documents

Publication Publication Date Title
JP5591329B2 (en) Ventilation air conditioner and control method thereof
WO2014057617A1 (en) Humidity control and ventilation device
EP1705433A1 (en) Air conditioner
WO2001033146A1 (en) Air conditioner
JP3786090B2 (en) Air conditioner and control method of air conditioner
JP2000158933A (en) Air conditioner for vehicle
KR20180078833A (en) Air conditioner and method for controlling the same
JP3980215B2 (en) Heat exchange ventilator
WO2005010443A1 (en) Multiple room-type air conditioner and method of controlling the same
KR100294342B1 (en) Separate air conditioner and its control method
CN114051574A (en) Indoor unit of air conditioner and air conditioner
JPH08178393A (en) Air conditioning apparatus
JP2651328B2 (en) Method and apparatus for controlling hot gas bypass circuit of refrigeration circuit
KR20090064979A (en) Duct type air conditioning system and control method
JP2000025446A (en) Air conditioner
JP4134434B2 (en) Air conditioner
JPH06143996A (en) Vehicle air conditioner
JPH05248690A (en) Air conditioner
JPH0718570B2 (en) Air purification ventilation air conditioner and control system of the device
CN115654596B (en) Dehumidifier
JPH08276720A (en) Air conditioner for vehicle
JPH03148545A (en) Air conditioner with capacity adjustment
JP3716459B2 (en) Air conditioner for vehicles
WO2022158094A1 (en) Humidity adjustment device
JPH1163586A (en) Air conditioner with humidifier

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN KR SG

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020027005192

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 008149356

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2000969980

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000969980

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027005192

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020027005192

Country of ref document: KR