WO2001027915A1 - Thin film magnetic head and magnetic recording medium drive device - Google Patents
Thin film magnetic head and magnetic recording medium drive device Download PDFInfo
- Publication number
- WO2001027915A1 WO2001027915A1 PCT/JP1999/005521 JP9905521W WO0127915A1 WO 2001027915 A1 WO2001027915 A1 WO 2001027915A1 JP 9905521 W JP9905521 W JP 9905521W WO 0127915 A1 WO0127915 A1 WO 0127915A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pole
- magnetic
- pole layer
- upper sub
- layer
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 18
- 230000004907 flux Effects 0.000 claims description 13
- 230000005415 magnetization Effects 0.000 abstract description 12
- 230000000740 bleeding effect Effects 0.000 abstract description 4
- 230000001939 inductive effect Effects 0.000 description 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 12
- 239000010408 film Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- 238000007747 plating Methods 0.000 description 7
- 238000009713 electroplating Methods 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 241000282376 Panthera tigris Species 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3109—Details
- G11B5/313—Disposition of layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3109—Details
- G11B5/3116—Shaping of layers, poles or gaps for improving the form of the electrical signal transduced, e.g. for shielding, contour effect, equalizing, side flux fringing, cross talk reduction between heads or between heads and information tracks
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/02—Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
- G11B5/09—Digital recording
Definitions
- the present invention relates to a thin-film magnetic head employed in a magnetic recording medium drive such as a magnetic disk drive and a magnetic tape drive, and more particularly, to an upper sub-pole which faces a medium facing surface at a front end and extends in a front-rear direction along a reference surface
- the intermediate pole layer which extends along the reference plane from the rear end of the upper sub-pole and is larger in the track width direction than the upper sub-pole, is received by the surface of the intermediate pole layer and faces the medium facing surface.
- the present invention relates to a thin-film magnetic head having an upper magnetic pole layer projecting in the track width direction from an upper sub magnetic pole at a tip.
- a thin-film magnetic head including a narrow upper sub-pole and a lower sub-pole facing each other with a gap layer therebetween at a medium facing surface is widely known.
- the upper pole protruding from the upper sub-pole in the track width direction on the medium facing surface.
- An extra stray field is created at the edge of the layer.
- Such a leakage magnetic field affects a recording track adjacent to a target recording track during writing. For example, when the leakage magnetic field increases, magnetization reversal occurs in a recording track adjacent to the target recording track. Unless such magnetization reversal is prevented, the recording density of the recording medium cannot be increased as expected.
- the coil pattern is formed on a molding surface including a partly inclined surface after the coil pattern is formed, it is considered difficult to further narrow the upper pole layer from about 1.2 m along the track width direction. Can be On the other hand, it is expected that the upper sub pole will be further narrowed in the future. As a result, the overhang of the upper pole layer increases. When the amount of overhang increases, the above-mentioned leakage magnetic field is expected to increase. Disclosure of the invention
- the present invention has been made in view of the above situation, and has been developed to provide a thin-film magnet that can suppress an extra leakage magnetic field generated at the edge of the upper magnetic pole layer to a specified value or less even if the amount of overhang of the upper magnetic pole layer increases.
- the purpose is to provide a code.
- an upper sub-magnetic pole facing the medium facing surface at the front end and extending in the front-rear direction with a predetermined thickness along the reference plane, and a rear end of the upper sub-magnetic pole from the rear end An intermediate pole layer that extends along the reference plane and is defined in the track width direction larger than the upper sub-pole, and is received by the surface of the intermediate pole layer and has a track width from the upper sub-pole at the tip facing the medium facing surface. And a top pole layer extending in a direction by a predetermined amount. At this time, the thickness of the upper sub pole is set to be at least 2.5 times the overhang of the upper pole layer.
- an extra leakage magnetic field that is, an edge magnetic field generated at the edge of the upper magnetic pole layer projecting from the track width direction of the upper sub magnetic pole depends on the thickness of the upper sub magnetic pole. .
- the thickness of the upper sub-pole is set to 2.5 times or more the overhang of the upper pole layer. Is desirable.
- a magnetic field strength for example, about 470 kAZm or more
- the thickness of the upper sub-pole is set to 3.17 times or more the overhang amount of the upper pole layer.
- a magnetic field intensity sufficient for information recording for example, about 470 kAZm
- the edge magnetic field below the threshold (for example, about 135 kA / m) that causes recording bleeding and magnetization reversal while maintaining the above.
- the upper sub-pole which faces the medium facing surface at the front end and extends in the front-rear direction at a predetermined thickness along the reference plane, and extends from the rear end of the upper sub-pole along the reference plane.
- a middle pole layer defined to be larger in the track width direction than the upper sub pole, and an upper pole layer facing the medium facing surface at the front end and received on the surface of the middle pole layer.
- a head is provided. At this time, the saturation flux density of the upper sub pole is set to 1.4 T or more.
- an extra leakage magnetic field i.e., an edge magnetic field generated by an edge of an upper magnetic pole layer projecting from a track width direction of an upper auxiliary magnetic pole depends on a magnetic flux saturation density of the upper auxiliary magnetic pole.
- a magnetic field strength sufficient for information recording between the upper sub-pole and the lower pole layer (including the lower sub-pole) for example, about 4
- a threshold value for example, about 135 kA / m
- the intermediate pole layer is defined to be larger in the track width direction than the upper pole layer. According to such an intermediate magnetic pole layer, a larger joint surface can be secured between the intermediate magnetic pole layer and the upper magnetic pole layer as compared with the narrow upper sub magnetic pole. The magnetic saturation that occurs at the junction is relaxed, resulting in the upper secondary pole The extra leakage magnetic field generated at the edge of the upper magnetic pole layer projecting in the track width direction is reduced.
- the upper magnetic pole layer includes a front end piece facing the air bearing surface at the front end and extending in the front-rear direction, and a main body connected to the rear end of the front end piece and gradually spreading in the track width direction as the distance from the front end piece increases. Is also good. At this time, it is desirable that the tip of the main body is received on the surface of the intermediate magnetic pole layer. As a result, magnetic saturation can be reliably reduced between the tip of the tapered main body and the intermediate magnetic pole layer.
- the thin-film magnetic head as described above can be employed in a magnetic recording medium drive such as a hard disk drive (HDD), a magnetic disk drive, or a magnetic tape drive.
- a magnetic recording medium drive such as a hard disk drive (HDD), a magnetic disk drive, or a magnetic tape drive.
- FIG. 1 is a plan view schematically showing the internal structure of a hard disk drive (HDD).
- HDD hard disk drive
- FIG. 2 is an enlarged perspective view showing a specific example of the flying head slider.
- FIG. 3 is a plan view schematically showing the structure of the inductive write head element (thin film magnetic head).
- FIG. 4 is a partial cross-sectional view taken along line 414 of FIG.
- FIG. 5 is a front view showing the state of the air bearing surface observed from the direction of arrow 5 in FIG.
- FIG. 6 is an enlarged plan view of the inductive write head element viewed from the direction of arrow 6 in FIG.
- 7A and 7B are graphs showing the relationship between the overhang amount ⁇ ⁇ PW of the upper pole layer and the magnetic field strength of the recording magnetic field and the edge magnetic field.
- FIG. 8 is a graph showing the relationship between the core width CW and the magnetic field strength of the recording magnetic field and the edge magnetic field.
- FIG. 11 is a graph showing the relationship between the saturation magnetic flux density B s of the upper sub pole and the magnetic field strength of the recording magnetic field and the edge magnetic field.
- FIG. 12 is a partially enlarged plan view of the wafer 1 showing voids defined by the photoresist film.
- FIGS. 13A to 13C are diagrams schematically showing a process of manufacturing an inductive write head element until an upper auxiliary magnetic pole is formed.
- FIG. 14 is an enlarged plan view schematically showing the slimming-processed upper magnetic pole layer.
- FIG. 1 shows an internal structure of a hard disk drive (HDD) 10 as a specific example of a magnetic recording medium drive.
- the housing 11 of the HDD 10 accommodates, for example, a magnetic disk 13 mounted on a spindle 12 of a spindle motor and a flying head slider 14 facing the magnetic disk 13.
- the flying head slider 14 is fixed to the tip of a carriage arm 16 that can swing around a swing axis 15.
- the carriage arm 16 is oscillated by the actuator 17, which is composed of a magnetic circuit.
- the flying head slider 14 is placed on the magnetic disk 13. Is positioned on the desired recording track.
- the internal space of the housing 11 is closed by a cover (not shown).
- FIG. 2 shows a specific example of the flying head slider 14.
- the flying head slider 14 is joined to a slider body 21 made of Al 2 ⁇ 3 — TiC (Altic) and an air outflow end of the slider body 21, and a read / write head 2 2 and a a 1 2 0 3 (alumina) manufactured head protection layer 2 3 having a built-in.
- a medium facing surface that is, a flying surface 24 facing the magnetic disk 13 spreads.
- two rails 25 are formed on the top surface to define ABS (air bearing surface).
- the flying head slider 14 utilizes the airflow 26 received on the flying surface 24 (especially ABS) during the rotation of the magnetic disk 13. It can fly from the surface of the magnetic disk 13.
- the read / write head 22 includes an inductive write head element 29 for recording information on the magnetic disk 13 using a magnetic field generated by the spiral conductive coil pattern 28.
- This inductive write head element 29 functions as the thin-film magnetic head according to the present invention.
- the magnetic core 30 includes a lower magnetic pole layer 31 facing the air bearing surface 24 at the tip.
- the lower magnetic pole layer 31 extends from the air bearing surface 24 at, for example, a depth of 25 m.
- a magnetic piece 32 penetrating through the center of the conductive coil pattern 28 and communicating with the lower magnetic pole layer 31 is connected to the lower magnetic pole layer 31.
- the distance from the air bearing surface 24 to the magnetic piece 32 is set to, for example, about 15 m.
- the upper magnetic pole layer 33 sandwiching the conductive coil pattern 28 between the lower magnetic pole layer 31 and the lower magnetic pole layer 31 extends from the upper end of the magnetic piece 32 toward the floating surface 24, and the front end faces the floating surface 24.
- the upper pole layer 33 and the lower pole layer 31 may be made of, for example, NiFe.
- the film thickness of the upper magnetic pole layer 33 and the lower magnetic pole layer 31 is set to, for example, about 3.0 m.
- Such an inductive write head element 29 is formed on an alumina layer 36 in which a magnetic resistance (MR) element 35 used for reading information is embedded.
- the lower magnetic pole layer 31 of the induction writing head element 29 has an alumina layer 36 sandwiched between the lower shield layer 37 of FeN and NiFe.
- the lower magnetic pole layer 31 functions as an upper shield layer of the MR element 35.
- the lower magnetic pole layer 31 is wider than the upper magnetic pole layer 33.
- other read elements such as giant magnetoresistive (GMR) elements may be used instead of the MR element 35, and the inductive write head element 29 is used alone without using the read element. Is also good.
- GMR giant magnetoresistive
- the lower pole layer 31 is formed with a lower auxiliary pole 38 which faces the air bearing surface 24 at the front end and extends in the front-rear direction along the surface of the lower pole layer 31. Is done.
- the thickness of the lower sub pole 38 that is, from the surface of the lower pole layer 3 1 Is set to, for example, about 0.3 m.
- the lower sub pole 38 may be formed integrally with the lower pole layer 31.
- the upper sub-pole 40 faces the lower sub-pole 38 with a gap layer 39 having a thickness of about 0.25 zim.
- the upper sub-pole 40 faces the air bearing surface 24 at the front end and extends in the front-rear direction with a predetermined thickness SL along the reference surface 41.
- the lower sub-pole 38 and the upper sub-pole 40 spread with a prescribed core width CW in the track width direction.
- the upper pole layer 33 extends from the upper sub-pole 40 along the air bearing surface 24 in the track width direction by a predetermined extension amount APW.
- the magnetic pole lines transmitted through the magnetic core 30 pass between the narrow upper sub-pole 40 and the lower sub-pole 38 while bypassing the gap layer 39.
- the magnetic disk 13 facing the floating surface 24 is magnetized by the narrow gap magnetic field (recording magnetic field) leaking from the floating surface 24. Therefore, the track width on the recording medium can be reduced as compared with the case where the gap layer formed by the upper magnetic pole layer 33 and the lower magnetic pole layer 31 is simply used. It is considered that the track density is increased and the areal recording density on the magnetic disk 13 is further increased.
- the upper magnetic pole layer 33 can protrude in the track width direction from the upper sub magnetic pole 40 along the air bearing surface 24, and good overwrite characteristics can be obtained.
- the intermediate pole layer 4 which extends along the reference plane 41 and is larger in the track width direction than the upper sub-pole 40, is provided. 2 is connected.
- the intermediate magnetic pole layer 42 and the upper auxiliary magnetic pole 40 may be formed integrally.
- the tips of the upper pole layer 33 are received on the surfaces of the upper sub pole 40 and the intermediate pole layer 42.
- a larger joint surface can be secured between the intermediate magnetic pole layer 42 and the upper magnetic pole layer 33 as compared with the narrow upper sub magnetic pole 40.
- the magnetic saturation generated at the junction surface is reduced, and as a result, an extra leakage magnetic field generated at the edge of the upper pole layer 33 extending from the upper sub pole 40 in the track width direction is reduced.
- the middle pole layer 42 is connected to the front layer 43 that gradually widens in the track width direction as it moves away from the upper sub pole 40 toward the rear, and connected to the rear end of the front layer 43 to form the upper pole layer 3.
- a rear layer which is defined to be larger in the track width direction than the rear layer.
- the upper magnetic pole layer 33 has a front end piece 45 facing the air bearing surface 24 at the front end and extending forward and rearward.
- a main body 46 that gradually widens in the track width direction as the distance from the main body increases.
- the tip of the main body 46 is received on the surface of the rear layer 44 of the intermediate pole layer 42. As a result, magnetic saturation can be reliably reduced between the tip of the tapered main body 46 and the intermediate magnetic pole layer 42.
- the magnetic field characteristics of the inductive write head element 29 described above will be considered.
- the magnetic flux of the upper sub-pole 40 is guided toward the medium surface of the magnetic disk 13 by the narrow gap layer 39.
- the magnetic flux of the upper magnetic pole layer 33 leaks toward the medium surface of the magnetic disk 13 due to the edge of the upper magnetic pole layer 33 projecting from the upper auxiliary magnetic pole 40 in the track width direction.
- the former is called a recording magnetic field
- the latter is called an edge magnetic field.
- a simulation result as shown in FIG. 7 is obtained, for example.
- the recording magnetic field passing between the upper sub-pole 40 and the lower sub-pole 38 over the narrow gap layer 39 generally has a recording magnetic field of, for example, about 470 kAZm or more (coercive force He of 1 (About 5 times to 2 times).
- a magnetic field of 135 kAZm or more about 1 Z2 of coercive force Hc
- the edge magnetic field increases.
- a sufficient recording magnetic field exceeding 470 kAZm is secured, and at the same time, the edge magnetic field is reduced to less than 135 kAZm.
- the overhang amount APW can be tolerated in a wide range such as 0 ⁇ PW ⁇ 4.5 m.
- the upper pole layer 33 which is relatively wider than the upper sub-pole 40, may be realized, and the desired magnetic pole layer can be formed relatively easily without being restricted by manufacturing. It is possible to realize the overhang amount A PW. It is considered that such an increase in the allowable range is caused by relaxation of magnetic saturation caused by the intermediate magnetic pole layer 42.
- the intermediate pole layer 42 is interposed between the upper pole layer 33 and the upper sub pole 40, as shown in FIG. 8, for example. Meanwhile, the recording magnetic field decreases and the edge magnetic field increases. According to these trends, it will become difficult to reduce the core width CW of the upper sub pole 40 while maintaining the recording magnetic field of more than 470 kAZm and the edge magnetic field of less than 135 kAZm. It is expected to be.
- the upper pole layer 33 is formed by electrolytic plating using a photoresist as in the past, the upper pole layer 33 is reduced to about 1.2 or less along the track width direction. It is difficult to narrow. Therefore, as the core width CW of the upper sub-pole 40 is reduced, the overhang A PW of the upper pole layer 33 is inevitably increased. As described above, the edge magnetic field increases as the overhang A PW of the upper magnetic pole layer 33 increases.
- the recording field Observe the magnetic field strength of the ridge magnetic field.
- the magnetic field strength was calculated using commercially available three-dimensional magnetic field analysis software as described above. The calculated simulation results are shown in FIG. 9 and FIG.
- the thickness SL of the upper sub-magnetic pole 40 may be set to, for example, more than 0.5 / m.
- the thickness SL of the upper sub pole 40 is set in this way, it is possible to suppress the edge magnetic field to less than 135 kAZm while securing sufficient magnetic field strength (about 470 kA / m or more) with the recording magnetic field. It becomes possible. Therefore, in recording information on the magnetic disk 13, problems such as blurring of recording of a recording track and magnetization reversal of a recording track adjacent to a target recording track can be eliminated. A narrow recording track is realized.
- the thickness SL of the upper sub-pole 40 may be set to 0.95 m or more, for example.
- 3 um should be set to about 3.17 times or more. If the thickness SL of the upper sub-pole 40 is set in this way, it is possible to suppress the edge magnetic field to less than 135 kAZm while securing a sufficient magnetic field strength (about 470 kA / m or more) with the recording magnetic field. It becomes possible. Therefore, when recording information on the magnetic disk 13, problems such as blurring of recording on a recording track and magnetization reversal of a recording track adjacent to a target recording track can be eliminated. As described above, a narrow recording track is realized.
- the magnetic field strength was calculated using commercially available three-dimensional magnetic field analysis software as described above. Figure 11 shows the calculated simulation results.
- the saturation magnetic flux density Bs of the upper auxiliary magnetic pole 40 may be set to, for example, 1.4 T or more.
- the saturation magnetic flux density B s of the upper sub pole 40 is set. If it is determined, it is possible to suppress the edge magnetic field to less than 135 kAZm while ensuring a sufficient magnetic field strength (about 470 kAZm or more) with the recording magnetic field. Therefore, when recording information on the magnetic disk 13, problems such as blurring of recording of a recording track and magnetization reversal of a recording track adjacent to a target recording track can be solved.
- an Altic wafer having a lower pole layer 31 formed on the surface is prepared.
- the lower magnetic pole layer 31 is laminated on the surface of the alumina layer in which the MR element 35 is embedded.
- a non-magnetic layer is subsequently laminated on the surface of the lower magnetic pole layer 31.
- a photoresist film 51 is formed on the surface of the nonmagnetic layer.
- voids 52a and 52b are formed, which form the upper sub-pole 40 and the intermediate pole layer 42.
- the plating metal grows in the voids 52a and 52b.
- the upper sub pole 40 and the middle pole layer 42 are formed simultaneously.
- the plating metal grows along the plating base film laminated on the surface of the nonmagnetic layer prior to the formation of the photoresist film 51.
- a plating liquid reservoir 53 may be added to the voids 52a and 52b. According to such a plating solution reservoir 53, the plating solution can be surely made to enter the gap 52a that represents the narrow upper sub-pole 40.
- the floating surface 24 is exposed.
- the surface of the lower magnetic pole layer 31 is coated with an alumina overcoat (insulating layer) 54.
- alumina overcoat insulating layer
- Such coatings include, for example, sputtering Processing may be used.
- a flattening treatment is performed from the surface of the alumina cover 54.
- a polishing process may be used.
- the upper sub pole 40 is cut off from the tip together with the bulge 55, and as a result, the upper sub pole 40 buried in the aluminum bar coat 54 is exposed on the flat surface 56.
- the above-described conductive coil pattern 28 is formed on the flat surface 56 of the alumina overcoat 54 formed by such a flattening process.
- a dense and accurate conductive coil pattern 28 can be realized.
- the conductive coil pattern 28 is newly coated with an alumina overcoat (not shown), and as a result, is embedded in the alumina film.
- the above-mentioned upper magnetic pole layer 33 is formed on the surface of the alumina film.
- a step surface 58 may be formed on the tip piece 45 of the upper magnetic pole layer 33, for example, as shown in FIG.
- a stepped surface 58 can be formed by, for example, ion milling using a resist film.
- the overhang amount APW of the upper pole layer 33 overhanging in the track width direction of the upper sub-pole 40 can be significantly reduced. If the overhang amount ⁇ PW is reduced in this way, the edge magnetic field is reduced.
- the stepped surface 58 reduces the bonding area between the upper magnetic pole layer 33 and the upper auxiliary magnetic pole 40, the stepped surface 58 is formed near the contour of the intermediate magnetic pole layer 42. It is desirable to be interrupted.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Magnetic Heads (AREA)
Abstract
A thin film magnetic head provided with an upper sub-magnetic pole (40) facing a medium opposing surface at the front end thereof and extending in a longitudinal direction and with a specified thickness along a reference surface (41). An intermediate magnetic pole layer which extends along the reference surface and is defined to be larger in a track width direction than the upper sub-magnetic pole is connected to the rear end of the upper sub-magnetic pole. An upper magnetic pole layer (33) supported on the front surface of the intermediate magnetic pole layer projects at the tip end thereof facing the medium opposing surface from the pole (40) by a specified distance ΔPW in the track width direction. For example, when the core width CW of the pole (40) is set to at least 0.7 νm, the thickness SL of the pole (40) is set to at least 2.5 times the projecting distance ΔPW of the upper magnetic pole layer (33). Setting the thickness SL of pole (40) ensures a sufficient magnetic field intensity (e.g., at least 470 kA/m) for an information record between the pole (40) and a lower sub-magnetic pole (38), whereas, a magnetic field intensity at the edge of the upper magnetic pole layer (33) projecting in the track width direction is suppressed to below a threshold value (e.g., 135 kA/m) at which recording bleeding and magnetization inversion may be encountered.
Description
明細書 薄膜磁気へッドおよび磁気記録媒体駆動装置 技術分野 Description Thin film magnetic head and magnetic recording medium drive
本発明は、 磁気ディスク駆動装置や磁気テープ駆動装置といった磁気記録媒体 駆動装置に採用される薄膜磁気ヘッドに関し、 特に、 前端で媒体対向面に臨み、 基準面に沿って前後方向に延びる上部副磁極と、 上部副磁極の後端から基準面に 沿って広がり、 上部副磁極に比べてトラック幅方向に大きく規定される中間磁極 層と、 中間磁極層の表面に受け止められるとともに、 媒体対向面に臨む先端で上 部副磁極からトラック幅方向に張り出す上部磁極層とを備える薄膜磁気へッドに 関する。 背景技術 The present invention relates to a thin-film magnetic head employed in a magnetic recording medium drive such as a magnetic disk drive and a magnetic tape drive, and more particularly, to an upper sub-pole which faces a medium facing surface at a front end and extends in a front-rear direction along a reference surface The intermediate pole layer, which extends along the reference plane from the rear end of the upper sub-pole and is larger in the track width direction than the upper sub-pole, is received by the surface of the intermediate pole layer and faces the medium facing surface. The present invention relates to a thin-film magnetic head having an upper magnetic pole layer projecting in the track width direction from an upper sub magnetic pole at a tip. Background art
媒体対向面でギヤップ層を挟んで対向する狭小な上部副磁極および下部副磁極 を備える薄膜磁気ヘッドは広く知られる。 こういった薄膜磁気ヘッドでは、 狭小 な上部副磁極および下部副磁極で形成される幅狭なギャップ磁界 (記録磁界) に 加えて、 媒体対向面で上部副磁極からトラック幅方向に張り出す上部磁極層のェ ッジに余分な漏洩磁界が生じてしまう。 こうした漏洩磁界は、 書き込み中の目標 記録トラックに隣接する記録トラックに影響を及ぼしてしまう。 例えば漏洩磁界 が大きくなると、 目標記録トラックに隣接する記録トラックで磁化反転が引き起 こされる。 こうした磁化反転が阻止されない限り、 記録媒体の記録密度は期待ど おりに高められることはできない。 A thin-film magnetic head including a narrow upper sub-pole and a lower sub-pole facing each other with a gap layer therebetween at a medium facing surface is widely known. In such a thin-film magnetic head, in addition to the narrow gap magnetic field (recording magnetic field) formed by the narrow upper sub-pole and the lower sub-pole, the upper pole protruding from the upper sub-pole in the track width direction on the medium facing surface. An extra stray field is created at the edge of the layer. Such a leakage magnetic field affects a recording track adjacent to a target recording track during writing. For example, when the leakage magnetic field increases, magnetization reversal occurs in a recording track adjacent to the target recording track. Unless such magnetization reversal is prevented, the recording density of the recording medium cannot be increased as expected.
漏洩磁界の低減を実現するにあたって、 例えば日本国特開平 1 1 一 1 6 7 7 0 5号公報に記載の薄膜磁気へッドでは、 上部副磁極に比べてトラック幅方向に大 きく規定される中間磁極層が上部副磁極の後端に接続される。 こうした中間磁極 層によれば、 狭小な上部副磁極に比べて、 上部磁極層との間に大きな接合面が確 保されることができる。 接合面で生じる磁気飽和は緩和される。 こうして磁気飽 和力 S緩和されると、 上部磁極層のエッジに生じる余分な漏洩磁界は減少する。
いまのところ、 上部磁極層は電解めつき法によって形成されることが多い。 し かも、 コイルパターンの形成後に一部に傾斜面を含む成形面上に形成されること から、 トラック幅方向に沿って 1 . 2 m程度からさらに上部磁極層を狭めてい くことは難しいと考えられる。 その一方で、 今後、 さらに上部副磁極は狭小化さ れていくことが予想される。 その結果、 上部磁極層の張り出し量は増大する。 張 り出し量が増大すると、前述の漏洩磁界は大きくなつてしまうことが予想される。 発明の開示 In realizing the reduction of the leakage magnetic field, for example, in the thin-film magnetic head described in JP-A-11-167705, it is specified to be larger in the track width direction than the upper sub-pole. An intermediate pole layer is connected to the rear end of the upper sub-pole. According to such an intermediate magnetic pole layer, a larger joint surface can be secured between the intermediate magnetic pole layer and the upper magnetic pole layer as compared with the narrow upper sub magnetic pole. Magnetic saturation occurring at the junction surface is reduced. When the magnetic saturation force S is relaxed in this way, the extra leakage magnetic field generated at the edge of the upper pole layer is reduced. At present, the upper magnetic pole layer is often formed by an electrolytic plating method. However, since the coil pattern is formed on a molding surface including a partly inclined surface after the coil pattern is formed, it is considered difficult to further narrow the upper pole layer from about 1.2 m along the track width direction. Can be On the other hand, it is expected that the upper sub pole will be further narrowed in the future. As a result, the overhang of the upper pole layer increases. When the amount of overhang increases, the above-mentioned leakage magnetic field is expected to increase. Disclosure of the invention
本発明は、 上記実状に鑑みてなされたもので、 上部磁極層の張り出し量が増大 しても、 上部磁極層のエッジで生じる余分な漏洩磁界を規定値以下に抑え込むこ とができる薄膜磁気へッドを提供することを目的とする。 The present invention has been made in view of the above situation, and has been developed to provide a thin-film magnet that can suppress an extra leakage magnetic field generated at the edge of the upper magnetic pole layer to a specified value or less even if the amount of overhang of the upper magnetic pole layer increases. The purpose is to provide a code.
上記目的を達成するために、 第 1発明によれば、 前端で媒体対向面に臨み、 基 準面に沿つて所定の厚みで前後方向に延びる上部副磁極と、 上部副磁極の後端か ら基準面に沿って広がり、 上部副磁極に比べてトラック幅方向に大きく規定され る中間磁極層と、 中間磁極層の表面に受け止められるとともに、 媒体対向面に臨 む先端で上部副磁極からトラック幅方向に所定の張り出し量で張り出す上部磁極 層とを備えることを特徴とする薄膜磁気ヘッドが提供される。 このとき、 上部副 磁極の厚みは上部磁極層の張り出し量の 2 . 5倍以上に設定される。 In order to achieve the above object, according to the first invention, an upper sub-magnetic pole facing the medium facing surface at the front end and extending in the front-rear direction with a predetermined thickness along the reference plane, and a rear end of the upper sub-magnetic pole from the rear end An intermediate pole layer that extends along the reference plane and is defined in the track width direction larger than the upper sub-pole, and is received by the surface of the intermediate pole layer and has a track width from the upper sub-pole at the tip facing the medium facing surface. And a top pole layer extending in a direction by a predetermined amount. At this time, the thickness of the upper sub pole is set to be at least 2.5 times the overhang of the upper pole layer.
本発明者らによれば、 上部副磁極のトラック幅方向から張り出す上部磁極層の エッジで生じる余分な漏洩磁界すなわちエッジ磁界は上部副磁極の厚みに依存す ることが新たに見出された。 例えば、 トラック幅方向に測定される上部副磁極の コア幅が 0 . 7 m以上に設定される場合には、 上部副磁極の厚みは上部磁極層 の張り出し量の 2 . 5倍以上に設定されることが望ましい。 こうして上部副磁極 の厚みが設定されると、 上部副磁極および下部磁極層 (下部副磁極を含む) の間 で情報記録に十分な磁界強度 (例えば約 4 7 0 k AZm以上) を確保しつつ、 記 録にじみや磁化反転を引き起こす閾値 (例えば約 1 3 5 k AZm) 未満にエッジ 磁界を抑え込むことが可能となる。 したがって、 磁気記録媒体に対する情報の記 録にあたって、 記録トラックの記録にじみや、 目標記録トラックに隣接する記録 トラックの磁化反転といつた不具合は解消されることができる。 幅狭な記録トラ
ックは実現されることができる。 According to the present inventors, it has been newly found that an extra leakage magnetic field, that is, an edge magnetic field generated at the edge of the upper magnetic pole layer projecting from the track width direction of the upper sub magnetic pole depends on the thickness of the upper sub magnetic pole. . For example, if the core width of the upper sub-pole measured in the track width direction is set to 0.7 m or more, the thickness of the upper sub-pole is set to 2.5 times or more the overhang of the upper pole layer. Is desirable. When the thickness of the upper sub-pole is set in this manner, a magnetic field strength (for example, about 470 kAZm or more) sufficient for information recording between the upper sub-pole and the lower pole layer (including the lower sub-pole) is secured. However, it is possible to suppress the edge magnetic field below a threshold (for example, about 135 kAZm) that causes recording blurring and magnetization reversal. Therefore, when recording information on the magnetic recording medium, it is possible to eliminate the problems such as the recording bleeding of the recording track and the magnetization reversal of the recording track adjacent to the target recording track. Narrow recording tiger The lock can be realized.
さらに、 上部副磁極のコア幅が 0 . 5 以上に設定される場合には、 上部副 磁極の厚みは上部磁極層の張り出し量の 3 . 1 7倍以上に設定されることが望ま しい。 こうして上部副磁極の厚みが設定されると、 前述と同様に、 上部副磁極お よび下部磁極層 (下部副磁極を含む) の間で情報記録に十分な磁界強度 (例えば 約 4 7 0 k AZm以上) を確保しつつ、 記録にじみや磁化反転を引き起こす閾値 (例えば約 1 3 5 k A/m) 未満にエッジ磁界を抑え込むことが可能となる。 また、 第 2発明によれば、 前端で媒体対向面に臨み、 基準面に沿って所定の厚 みで前後方向に延びる上部副磁極と、 上部副磁極の後端から基準面に沿って広が り、 上部副磁極に比べてトラック幅方向に大きく規定される中間磁極層と、 前端 で媒体対向面に臨み、 中間磁極層の表面に受け止められる上部磁極層とを備える ことを特徴とする薄膜磁気ヘッドが提供される。 このとき、 上部副磁極の飽和磁 束密度は 1 . 4 T以上に設定される。 Further, when the core width of the upper sub-pole is set to 0.5 or more, it is desirable that the thickness of the upper sub-pole is set to 3.17 times or more the overhang amount of the upper pole layer. When the thickness of the upper sub-pole is set in this manner, a magnetic field intensity sufficient for information recording (for example, about 470 kAZm) between the upper sub-pole and the lower pole layer (including the lower sub-pole) is set as described above. It is possible to keep the edge magnetic field below the threshold (for example, about 135 kA / m) that causes recording bleeding and magnetization reversal while maintaining the above. Further, according to the second invention, the upper sub-pole which faces the medium facing surface at the front end and extends in the front-rear direction at a predetermined thickness along the reference plane, and extends from the rear end of the upper sub-pole along the reference plane. A middle pole layer defined to be larger in the track width direction than the upper sub pole, and an upper pole layer facing the medium facing surface at the front end and received on the surface of the middle pole layer. A head is provided. At this time, the saturation flux density of the upper sub pole is set to 1.4 T or more.
本発明者らによれば、 上部副磁極のトラック幅方向から張り出す上部磁極層の ェッジで生じる余分な漏洩磁界すなわちェッジ磁界は上部副磁極の磁束飽和密度 に依存することが新たに見出された。例えば上部副磁極の飽和磁束密度 B sが 1 . 4 T以上に設定されると、 上部副磁極および下部磁極層 (下部副磁極を含む) の 間で情報記録に十分な磁界強度 (例えば約 4 7 0 k AZm以上) を確保しつつ、 記録にじみや磁化反転を引き起こす閾値 (例えば約 1 3 5 k A/m) 未満にエツ ジ磁界を抑え込むことが可能となる。 したがって、 磁気記録媒体に対する情報の 記録にあたって、 記録トラックの記録にじみや、 目標記録トラックに隣接する記 録トラックの磁化反転といった不具合は解消されることができる。 こういった飽 和磁束密度 B sを実現するにあたって、 上部副磁極は、 例えば 5 O N i 5 0 F e ( B s = 1 . 4 T) や 4 5 N i 5 5 F e ( B s = 1 . 6 T) といった素材から形 成されればよい。 According to the present inventors, it has been newly found that an extra leakage magnetic field, i.e., an edge magnetic field generated by an edge of an upper magnetic pole layer projecting from a track width direction of an upper auxiliary magnetic pole depends on a magnetic flux saturation density of the upper auxiliary magnetic pole. Was. For example, when the saturation magnetic flux density B s of the upper sub-pole is set to 1.4 T or more, a magnetic field strength sufficient for information recording between the upper sub-pole and the lower pole layer (including the lower sub-pole) (for example, about 4 It is possible to keep the edge magnetic field below a threshold value (for example, about 135 kA / m) that causes recording bleeding and magnetization reversal, while maintaining 70 kAZm or more. Therefore, in recording information on the magnetic recording medium, it is possible to solve the problems such as blurring of recording of a recording track and magnetization reversal of a recording track adjacent to a target recording track. In order to realize such a saturation magnetic flux density B s, the upper auxiliary magnetic pole is, for example, 5 ON i 50 F e (B s = 1.4 T) or 45 N i 55 F e (B s = 1 6 T).
第 1および第 2発明に係る薄膜磁気へッドでは、 中間磁極層は上部磁極層に比 ベてトラック幅方向に大きく規定されること力望ましい。 こうした中間磁極層に よれば、 狭小な上部副磁極に比べて、 上部磁極層との間に大きな接合面が確保さ れることができる。 接合面で生じる磁気飽和は緩和され、 その結果、 上部副磁極
からトラック幅方向に張り出す上部磁極層のエッジに生じる余分な漏洩磁界は減 少する。 In the thin-film magnetic head according to the first and second aspects of the present invention, it is desirable that the intermediate pole layer is defined to be larger in the track width direction than the upper pole layer. According to such an intermediate magnetic pole layer, a larger joint surface can be secured between the intermediate magnetic pole layer and the upper magnetic pole layer as compared with the narrow upper sub magnetic pole. The magnetic saturation that occurs at the junction is relaxed, resulting in the upper secondary pole The extra leakage magnetic field generated at the edge of the upper magnetic pole layer projecting in the track width direction is reduced.
前記上部磁極層は、 前端で浮上面に臨み前後方向に延びる先端片と、 この先端 片の後端に接続されて、 先端片から遠ざかるに従って徐々にトラック幅方向に広 がる本体とを備えてもよい。 このとき、 本体の先端は前記中間磁極層の表面に受 け止められることが望ましい。 その結果、 先細る本体の先端と中間磁極層との間 では確実に磁気飽和は緩和されることができる。 The upper magnetic pole layer includes a front end piece facing the air bearing surface at the front end and extending in the front-rear direction, and a main body connected to the rear end of the front end piece and gradually spreading in the track width direction as the distance from the front end piece increases. Is also good. At this time, it is desirable that the tip of the main body is received on the surface of the intermediate magnetic pole layer. As a result, magnetic saturation can be reliably reduced between the tip of the tapered main body and the intermediate magnetic pole layer.
以上のような薄膜磁気ヘッドは、 ハードディスク駆動装置 (H D D) を始めと する磁気ディスク駆動装置や磁気テープ駆動装置といった磁気記録媒体駆動装置 に採用されることができる。 図面の簡単な説明 The thin-film magnetic head as described above can be employed in a magnetic recording medium drive such as a hard disk drive (HDD), a magnetic disk drive, or a magnetic tape drive. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 ハードディスク駆動装置 (HD D) の内部構造を概略的に示す平面図 である。 FIG. 1 is a plan view schematically showing the internal structure of a hard disk drive (HDD).
図 2は、 浮上ヘッドスライダの一具体例を示す拡大斜視図である。 FIG. 2 is an enlarged perspective view showing a specific example of the flying head slider.
図 3は、 誘導書き込みヘッド素子 (薄膜磁気ヘッド) の構造を概略的に示す平 面図である。 FIG. 3 is a plan view schematically showing the structure of the inductive write head element (thin film magnetic head).
図 4は、 図 3の 4一 4線に沿った一部断面図である。 FIG. 4 is a partial cross-sectional view taken along line 414 of FIG.
図 5は、 図 4の矢印 5方向から観察される浮上面の様子を示す正面図である。 図 6は、 図 5の矢印 6方向から観察される誘導書き込みヘッド素子の拡大平面 図である。 FIG. 5 is a front view showing the state of the air bearing surface observed from the direction of arrow 5 in FIG. FIG. 6 is an enlarged plan view of the inductive write head element viewed from the direction of arrow 6 in FIG.
図 7 Aおよび図 7 Bは、 上部磁極層の張り出し量△ P Wと記録磁界およびェッ ジ磁界の磁界強度との関係を示すグラフである。 7A and 7B are graphs showing the relationship between the overhang amount 張 り PW of the upper pole layer and the magnetic field strength of the recording magnetic field and the edge magnetic field.
図 8は、 コア幅 CWと記録磁界およびエッジ磁界の磁界強度との関係を示すグ ラフである。 FIG. 8 is a graph showing the relationship between the core width CW and the magnetic field strength of the recording magnetic field and the edge magnetic field.
図 9は、 コア幅 CW= 0 . 7 /x m時に導き出される上部副磁極の厚み S Lと記 録磁界およびェッジ磁界の磁界強度との関係を示すグラフである。 FIG. 9 is a graph showing the relationship between the thickness S L of the upper sub-magnetic pole derived when the core width CW = 0.7 / x m and the magnetic field strength of the recording magnetic field and the edge magnetic field.
図 1 0は、 コア幅 CW= 0 . 5 / m時に導き出される上部副磁極の厚み S と 記録磁界およびェッジ磁界の磁界強度との関係を示すグラフである。
図 1 1は、 上部副磁極の飽和磁束密度 B sと記録磁界およびエッジ磁界の磁界 強度との関係を示すグラフである。 FIG. 10 is a graph showing the relationship between the thickness S of the upper sub-magnetic pole derived when the core width CW = 0.5 / m and the magnetic field strength of the recording magnetic field and the edge magnetic field. FIG. 11 is a graph showing the relationship between the saturation magnetic flux density B s of the upper sub pole and the magnetic field strength of the recording magnetic field and the edge magnetic field.
図 1 2は、 フォトレジスト膜で区画される空隙を示すウェハ一の一部拡大平面 図である。 FIG. 12 is a partially enlarged plan view of the wafer 1 showing voids defined by the photoresist film.
図 1 3 A〜図 1 3 Cは、 上部副磁極が形成されるまでに誘導書き込みへッド素 子の製造工程を概略的に示す図である。 FIGS. 13A to 13C are diagrams schematically showing a process of manufacturing an inductive write head element until an upper auxiliary magnetic pole is formed.
図 1 4は、 スリミング処理が施された上部磁極層を概略的に示す拡大平面図で ある。 発明を実施するための最良の形態 FIG. 14 is an enlarged plan view schematically showing the slimming-processed upper magnetic pole layer. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照しつつ本発明の一実施形態を説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
図 1は磁気記録媒体駆動装置の一具体例としてのハードディスク駆動装置 (H D D) 1 0の内部構造を示す。 HD D 1 0のハウジング 1 1には、 例えばスピン ドルモー夕の回転軸 1 2に装着される磁気ディスク 1 3と、 磁気ディスク 1 3に 対向する浮上ヘッドスライダ 1 4とが収容される。 浮上ヘッドスライダ 1 4は、 揺動軸 1 5回りで揺動することができるキヤリッジアーム 1 6の先端に固着され る。 磁気ディスク 1 3に対する情報の書き込みや読み出しにあたっては、 磁気回 路から構成されるァクチユエ一夕 1 7によってキャリッジアーム 1 6が揺動駆動 され、 その結果、 浮上へッドスライダ 1 4は磁気ディスク 1 3上の所望の記録卜 ラックに位置決めされる。 ハウジング 1 1の内部空間は、 図示しないカバーによ つて閉鎖される。 FIG. 1 shows an internal structure of a hard disk drive (HDD) 10 as a specific example of a magnetic recording medium drive. The housing 11 of the HDD 10 accommodates, for example, a magnetic disk 13 mounted on a spindle 12 of a spindle motor and a flying head slider 14 facing the magnetic disk 13. The flying head slider 14 is fixed to the tip of a carriage arm 16 that can swing around a swing axis 15. When writing and reading information to and from the magnetic disk 13, the carriage arm 16 is oscillated by the actuator 17, which is composed of a magnetic circuit. As a result, the flying head slider 14 is placed on the magnetic disk 13. Is positioned on the desired recording track. The internal space of the housing 11 is closed by a cover (not shown).
図 2は浮上へッドスライダ 1 4の一具体例を示す。 この浮上へッドスライダ 1 4は、 A l 2 〇3 — T i C (アルチック) 製のスライダ本体 2 1と、 このスライ ダ本体 2 1の空気流出端に接合されて、 読み出し書き込みへッド 2 2を内蔵する A 1 2 03 (アルミナ) 製のヘッド素子内蔵膜 2 3とを備える。 スライダ本体 2 1およびへッド素子内蔵膜 2 3には、 磁気ディスク 1 3に対向する媒体対向面す なわち浮上面 2 4が広がる。 浮上面 2 4には、 頂上面で A B S (空気軸受け面) を規定する 2筋のレール 2 5が形成される。 浮上ヘッドスライダ 1 4は、 磁気デ イスク 1 3の回転中に浮上面 2 4 (特に A B S ) に受ける空気流 2 6を利用して
磁気ディスク 1 3の表面から浮上することができる。 FIG. 2 shows a specific example of the flying head slider 14. The flying head slider 14 is joined to a slider body 21 made of Al 2 〇 3 — TiC (Altic) and an air outflow end of the slider body 21, and a read / write head 2 2 and a a 1 2 0 3 (alumina) manufactured head protection layer 2 3 having a built-in. In the slider body 21 and the head element built-in film 23, a medium facing surface, that is, a flying surface 24 facing the magnetic disk 13 spreads. On the floating surface 24, two rails 25 are formed on the top surface to define ABS (air bearing surface). The flying head slider 14 utilizes the airflow 26 received on the flying surface 24 (especially ABS) during the rotation of the magnetic disk 13. It can fly from the surface of the magnetic disk 13.
図 3を参照しつつ読み出し書き込みへッド 2 2の構造を詳述する。 この読み出 し書き込みへッド 2 2は、 渦巻き状の導電コイルパターン 2 8で生成される磁界 を利用して磁気ディスク 1 3に情報を記録する誘導書き込みへッド素子 2 9を備 える。 この誘導書き込みヘッド素子 2 9は本発明に係る薄膜磁気ヘッドとして機 能する。 導電コイルパターン 2 8で磁界が生成されると、 導電コイルパターン 2 8の中心を貫通する磁性コア 3 0内で磁力線は伝わる。 The structure of the read / write head 22 will be described in detail with reference to FIG. The read / write head 22 includes an inductive write head element 29 for recording information on the magnetic disk 13 using a magnetic field generated by the spiral conductive coil pattern 28. This inductive write head element 29 functions as the thin-film magnetic head according to the present invention. When a magnetic field is generated in the conductive coil pattern 28, the lines of magnetic force propagate in the magnetic core 30 that passes through the center of the conductive coil pattern 28.
この磁性コア 3 0は、 先端で浮上面 2 4に臨む下部磁極層 3 1を備える。 下部 磁極層 3 1は浮上面 2 4から例えば深さ 2 5 mで広がる。 この下部磁極層 3 1 には、 図 4から明らかなように、 導電コイルパターン 2 8の中心を貫通して下部 磁極層 3 1に通じる磁性片 3 2が接続される。 浮上面 2 4から磁性片 3 2までの 距離は例えば 1 5 m程度に設定される。 下部磁極層 3 1との間に導電コイルパ ターン 2 8を挟み込む上部磁極層 3 3は、 磁性片 3 2の上端から浮上面 2 4に向 かって延び、 先端を浮上面 2 4に臨ませる。 上部磁極層 3 3や下部磁極層 3 1は 例えば N i F eから構成されればよい。 上部磁極層 3 3や下部磁極層 3 1の膜厚 は例えば 3 . 0 m程度に設定される。 The magnetic core 30 includes a lower magnetic pole layer 31 facing the air bearing surface 24 at the tip. The lower magnetic pole layer 31 extends from the air bearing surface 24 at, for example, a depth of 25 m. As shown in FIG. 4, a magnetic piece 32 penetrating through the center of the conductive coil pattern 28 and communicating with the lower magnetic pole layer 31 is connected to the lower magnetic pole layer 31. The distance from the air bearing surface 24 to the magnetic piece 32 is set to, for example, about 15 m. The upper magnetic pole layer 33 sandwiching the conductive coil pattern 28 between the lower magnetic pole layer 31 and the lower magnetic pole layer 31 extends from the upper end of the magnetic piece 32 toward the floating surface 24, and the front end faces the floating surface 24. The upper pole layer 33 and the lower pole layer 31 may be made of, for example, NiFe. The film thickness of the upper magnetic pole layer 33 and the lower magnetic pole layer 31 is set to, for example, about 3.0 m.
こうした誘導書き込みへッド素子 2 9は、 情報の読み取りに用いられる磁気抵 抗効果 (M R) 素子 3 5が埋め込まれたアルミナ層 3 6上に形成される。 誘導書 き込みへッド素子 2 9の下部磁極層 3 1は、 F e Nや N i F eの下部シールド層 3 7との間にアルミナ層 3 6を挟み込む。 ここでは、 下部磁極層 3 1は M R素子 3 5の上部シールド層として機能する。 その結果、 例えば図 3から明らかなよう に、 浮上面 2 4に臨む誘導書き込みヘッド素子 2 9の先端では、 上部磁極層 3 3 に比べて下部磁極層 3 1が広範囲に広がっている。 ただし、 こうした M R素子 3 5に代えて巨大磁気抵抗効果 (GMR) 素子といったその他の読み取り素子が採 用されてもよく、 読み取り素子を採用せずに誘導書き込みヘッド素子 2 9が単独 で使用されてもよい。 Such an inductive write head element 29 is formed on an alumina layer 36 in which a magnetic resistance (MR) element 35 used for reading information is embedded. The lower magnetic pole layer 31 of the induction writing head element 29 has an alumina layer 36 sandwiched between the lower shield layer 37 of FeN and NiFe. Here, the lower magnetic pole layer 31 functions as an upper shield layer of the MR element 35. As a result, as apparent from FIG. 3, for example, at the tip of the inductive write head element 29 facing the air bearing surface 24, the lower magnetic pole layer 31 is wider than the upper magnetic pole layer 33. However, other read elements such as giant magnetoresistive (GMR) elements may be used instead of the MR element 35, and the inductive write head element 29 is used alone without using the read element. Is also good.
図 5を併せて参照すると明らかなように、 下部磁極層 3 1には、 前端で浮上面 2 4に臨むとともに下部磁極層 3 1の表面に沿って前後方向に延びる下部副磁極 3 8が形成される。 この下部副磁極 3 8の膜厚すなわち下部磁極層 3 1表面から
の突出量は例えば 0 . 3 m程度に設定される。 下部副磁極 3 8は下部磁極層 3 1に一体に形成されればよい。 下部副磁極 3 8には、 膜厚 0 . 2 5 zi m程度のギ ャップ層 3 9を挟んで上部副磁極 4 0が向き合う。 この上部副磁極 4 0は、 同様 に、 前端で浮上面 2 4に臨むとともに基準面 4 1に沿って所定の厚み S Lで前後 方向に延びる。 こうした下部副磁極 3 8および上部副磁極 4 0はトラック幅方向 に規定のコア幅 CWで広がる。 上部磁極層 3 3は、 浮上面 2 4に沿って上部副磁 極 4 0からトラック幅方向に所定の張り出し量 A PWで張り出す。 As is apparent from FIG. 5 as well, the lower pole layer 31 is formed with a lower auxiliary pole 38 which faces the air bearing surface 24 at the front end and extends in the front-rear direction along the surface of the lower pole layer 31. Is done. The thickness of the lower sub pole 38, that is, from the surface of the lower pole layer 3 1 Is set to, for example, about 0.3 m. The lower sub pole 38 may be formed integrally with the lower pole layer 31. The upper sub-pole 40 faces the lower sub-pole 38 with a gap layer 39 having a thickness of about 0.25 zim. Similarly, the upper sub-pole 40 faces the air bearing surface 24 at the front end and extends in the front-rear direction with a predetermined thickness SL along the reference surface 41. The lower sub-pole 38 and the upper sub-pole 40 spread with a prescribed core width CW in the track width direction. The upper pole layer 33 extends from the upper sub-pole 40 along the air bearing surface 24 in the track width direction by a predetermined extension amount APW.
こうした誘導書き込みへッド素子 2 9では、磁性コア 3 0内を伝わる磁極線は、 ギヤップ層 3 9を迂回しながら狭小な上部副磁極 4 0および下部副磁極 3 8の間 で行き交う。 その結果、 浮上面 2 4から漏れる幅狭のギャップ磁界 (記録磁界) によって、 浮上面 2 4に対向する磁気ディスク 1 3は磁化される。 したがって、 上部磁極層 3 3および下部磁極層 3 1によって形成されるギャップ層が単純に用 いられる場合に比べて記録媒体上のトラック幅は狭められることができる。 トラ ック密度は高められ、 磁気ディスク 1 3上の面記録密度は一層高められると考え られる。 しかも、 上部磁極層 3 3は浮上面 2 4に沿って上部副磁極 4 0からトラ ック幅方向に張り出すこと力、ら良好なオーバーライト特性が得られることができ る。 In such an inductive write head element 29, the magnetic pole lines transmitted through the magnetic core 30 pass between the narrow upper sub-pole 40 and the lower sub-pole 38 while bypassing the gap layer 39. As a result, the magnetic disk 13 facing the floating surface 24 is magnetized by the narrow gap magnetic field (recording magnetic field) leaking from the floating surface 24. Therefore, the track width on the recording medium can be reduced as compared with the case where the gap layer formed by the upper magnetic pole layer 33 and the lower magnetic pole layer 31 is simply used. It is considered that the track density is increased and the areal recording density on the magnetic disk 13 is further increased. In addition, the upper magnetic pole layer 33 can protrude in the track width direction from the upper sub magnetic pole 40 along the air bearing surface 24, and good overwrite characteristics can be obtained.
図 6に示されるように、 上部副磁極 4 0の後端には、 基準面 4 1に沿って広が り、 上部副磁極 4 0に比べてトラック幅方向に大きく規定される中間磁極層 4 2 が接続される。 この中間磁極層 4 2と上部副磁極 4 0とは一体に形成されればよ い。 上部副磁極 4 0および中間磁極層 4 2の表面には上部磁極層 3 3の先端が受 け止められる。 こうした中間磁極層 4 2によれば、 狭小な上部副磁極 4 0に比べ て、 上部磁極層 3 3との間に大きな接合面が確保されることができる。 接合面で 生じる磁気飽和は緩和され、 その結果、 上部副磁極 4 0からトラック幅方向に張 り出す上部磁極層 3 3のエッジに生じる余分な漏洩磁界は減少する。 As shown in FIG. 6, at the rear end of the upper sub-pole 40, the intermediate pole layer 4, which extends along the reference plane 41 and is larger in the track width direction than the upper sub-pole 40, is provided. 2 is connected. The intermediate magnetic pole layer 42 and the upper auxiliary magnetic pole 40 may be formed integrally. The tips of the upper pole layer 33 are received on the surfaces of the upper sub pole 40 and the intermediate pole layer 42. According to such an intermediate magnetic pole layer 42, a larger joint surface can be secured between the intermediate magnetic pole layer 42 and the upper magnetic pole layer 33 as compared with the narrow upper sub magnetic pole 40. The magnetic saturation generated at the junction surface is reduced, and as a result, an extra leakage magnetic field generated at the edge of the upper pole layer 33 extending from the upper sub pole 40 in the track width direction is reduced.
中間磁極層 4 2は、 上部副磁極 4 0から後方に向かって離れるに従って徐々に トラック幅方向に広がる前側層 4 3と、 この前側層 4 3の後端に接続されて、 上 部磁極層 3 3に比べてトラック幅方向に大きく規定される後側層 4 4とを備える。 後側層 4 4は例えばトラック幅方向に規定の幅 WW (= 2 . 0 u m程度) で広が
る。 したがって、 後側層 4 4はトラック幅方向に上部磁極層 3 3からはみ出す。 こういった後側層 4 4によれば、 上部磁極層 3 3との間に確実に最大限の接合面 が確保されることができる。 したがって、 接合面で生じる磁気飽和は確実に緩和 されることができる。 なお、 前後方向に沿った上部副磁極 4 0の長さは例えば D 1 = 1 . 0 mに設定され、 前後方向に沿つた前側層 4 3および後側層 4 4の長 さは例えば D 2 = 1 . 0 mおよび D 3 = 2 . 0 mに各々設定される。 The middle pole layer 42 is connected to the front layer 43 that gradually widens in the track width direction as it moves away from the upper sub pole 40 toward the rear, and connected to the rear end of the front layer 43 to form the upper pole layer 3. And a rear layer which is defined to be larger in the track width direction than the rear layer. The rear layer 4 is widened, for example, with a specified width WW (= about 2.0 um) in the track width direction. You. Therefore, the rear layer 4 4 protrudes from the upper magnetic pole layer 33 in the track width direction. According to such a rear side layer 44, the maximum bonding surface can be reliably secured between the upper magnetic pole layer 33 and the upper magnetic pole layer 33. Therefore, magnetic saturation generated at the junction surface can be reliably reduced. The length of the upper sub pole 40 along the front-back direction is set to, for example, D 1 = 1.0 m, and the length of the front layer 43 and the back layer 44 along the front-back direction is, for example, D 2 = 1.0 m and D 3 = 2.0 m, respectively.
図 6から明らかなように、 上部磁極層 3 3は、 前端で浮上面 2 4に臨み前後方 向に延びる先端片 4 5と、 この先端片 4 5の後端に接続されて、 先端片 4 5から 遠ざかるに従って徐々にトラック幅方向に広がる本体 4 6とを備える。 本体 4 6 の先端は中間磁極層 4 2の後側層 4 4の表面に受け止められる。 その結果、 先細 る本体 4 6の先端と中間磁極層 4 2との間では確実に磁気飽和は緩和されること ができる。 As is apparent from FIG. 6, the upper magnetic pole layer 33 has a front end piece 45 facing the air bearing surface 24 at the front end and extending forward and rearward. A main body 46 that gradually widens in the track width direction as the distance from the main body increases. The tip of the main body 46 is received on the surface of the rear layer 44 of the intermediate pole layer 42. As a result, magnetic saturation can be reliably reduced between the tip of the tapered main body 46 and the intermediate magnetic pole layer 42.
次に、 以上のような誘導書き込みヘッド素子 2 9の磁界特性を考察する。 一般 に、 狭小な上部副磁極 4 0を備える誘導書き込みヘッド素子 2 9では、 幅狭なギ ヤップ層 3 9で上部副磁極 4 0の磁束が磁気ディスク 1 3の媒体面に向けて誘導 されると同時に、 上部副磁極 4 0からトラック幅方向に張り出す上部磁極層 3 3 のェッジで上部磁極層 3 3の磁束が磁気ディスク 1 3の媒体面に向けて漏れ出し てしまう。 以下の説明では、 前者を記録磁界と呼び、 後者をエッジ磁界と呼ぶ。 ここで、 市販の三次元磁界解析ソフトウェアを用いてコンピュータシミュレ一シ ヨンを実施すると、 例えば図 7に示されるようなシミュレーション結果が得られ る。 このとさ、 磁気ディスク 1 3の抗磁力は例えば H c = 2 7 0 k AZmに設定 される。 こうした条件下では、 一般に、 狭小なギャップ層 3 9を跨いで上部副磁 極 4 0および下部副磁極 3 8を行き交う記録磁界には例えば約 4 7 0 k AZm以 上 (抗磁力 H eの 1 . 5倍〜 2倍程度) の磁界強度が要求される。 その上、 記録 磁界以外で 1 3 5 k AZm以上 (抗磁力 H cの 1 Z 2程度) の磁界が磁気ディス ク 1 3に作用すると、 磁化反転は引き起こされてしまう。 したがって、 前述のェ ッジ磁界は 1 3 5 k AZm未満に抑え込まれなければならない。 Next, the magnetic field characteristics of the inductive write head element 29 described above will be considered. In general, in the inductive write head element 29 having the narrow upper sub-pole 40, the magnetic flux of the upper sub-pole 40 is guided toward the medium surface of the magnetic disk 13 by the narrow gap layer 39. At the same time, the magnetic flux of the upper magnetic pole layer 33 leaks toward the medium surface of the magnetic disk 13 due to the edge of the upper magnetic pole layer 33 projecting from the upper auxiliary magnetic pole 40 in the track width direction. In the following description, the former is called a recording magnetic field, and the latter is called an edge magnetic field. Here, when computer simulation is performed using commercially available three-dimensional magnetic field analysis software, a simulation result as shown in FIG. 7 is obtained, for example. At this time, the coercive force of the magnetic disk 13 is set to, for example, Hc = 270 kAZm. Under these conditions, the recording magnetic field passing between the upper sub-pole 40 and the lower sub-pole 38 over the narrow gap layer 39 generally has a recording magnetic field of, for example, about 470 kAZm or more (coercive force He of 1 (About 5 times to 2 times). In addition, when a magnetic field of 135 kAZm or more (about 1 Z2 of coercive force Hc) acts on the magnetic disk 13 other than the recording magnetic field, the magnetization reversal is caused. Therefore, the aforementioned edge magnetic field must be kept below 135 kAZm.
図 7 Aおよび図 7 Bに示されるように、 一般に、 上部副磁極 4 0を備える誘導 書き込みへッド素子では、 上部磁極層 3 3の張り出し量 A PWが増大するにつれ
てエッジ磁界は増大する。 ただし、 本発明に係る誘導書き込みヘッド素子 2 9で は、 図 7 Aから明らかなように、 4 7 0 k AZmを上回る十分な記録磁界を確保 すると同時に、 1 3 5 k AZm未満にエッジ磁界を抑え込むにあたって、 0 <Δ PW≤4. 5 mといった広い範囲で張り出し量 A P Wは許容されることができ る。 こうして大きな張り出し量 A P Wが確保されると、 上部副磁極 4 0に比べて 比較的に幅広の上部磁極層 3 3を実現すればよく、 製造上の制約を受けずに比較 的に簡単に所望の張り出し量 A PWを実現することが可能となる。 こういった許 容範囲の拡大は、 中間磁極層 4 2に起因する磁気飽和の緩和によって引き起こさ れると考えられる。 As shown in FIGS. 7A and 7B, in general, in the inductive write head element having the upper sub-pole 40, as the overhang A PW of the upper pole layer 33 increases, Thus, the edge magnetic field increases. However, in the inductive write head element 29 according to the present invention, as is apparent from FIG. 7A, a sufficient recording magnetic field exceeding 470 kAZm is secured, and at the same time, the edge magnetic field is reduced to less than 135 kAZm. For suppressing, the overhang amount APW can be tolerated in a wide range such as 0 <ΔPW≤4.5 m. When a large overhang APW is secured in this way, the upper pole layer 33, which is relatively wider than the upper sub-pole 40, may be realized, and the desired magnetic pole layer can be formed relatively easily without being restricted by manufacturing. It is possible to realize the overhang amount A PW. It is considered that such an increase in the allowable range is caused by relaxation of magnetic saturation caused by the intermediate magnetic pole layer 42.
その一方で、 図 7 Bから明らかなように、 中間磁極層 4 2が用いられず、 規定 のコア幅 CWで前後方向に延びる上部副磁極が直接に上部磁極層 3 3に接続され る場合には、 張り出し量 A PWは 1 . 5 m〜2 . 5 x mといった狭い範囲でし か許容されることはできない。 上部磁極層と上部副磁極との間では、 磁力線の通 り道が急激に狭められることから、 磁気飽和に起因して大きなエッジ磁界が生じ やすくなると考えられる。 On the other hand, as is clear from FIG. 7B, when the intermediate pole layer 42 is not used and the upper sub pole extending in the front-rear direction with the specified core width CW is directly connected to the upper pole layer 33, The overhang A PW can only be tolerated in a narrow range of 1.5 m to 2.5 xm. Since the path of the magnetic field lines is sharply narrowed between the upper magnetic pole layer and the upper auxiliary magnetic pole, it is considered that a large edge magnetic field is likely to be generated due to magnetic saturation.
今後、 さらに上部副磁極 4 0のコア幅 C Wが狭められると、 上部磁極層 3 3お よび上部副磁極 4 0の間に中間磁極層 4 2を介在させたところで、 例えば図 8に 示されるように、 記録磁界は減少するとともにエッジ磁界は増大していく。 こう した傾向に従えば、 4 7 0 k AZm以上の記録磁界や 1 3 5 k AZm未満のエツ ジ磁界を維持しつつ上部副磁極 4 0のコア幅 CWを狭めていくことは難しくなつ ていくと予想される。 In the future, when the core width CW of the upper sub pole 40 is further reduced, the intermediate pole layer 42 is interposed between the upper pole layer 33 and the upper sub pole 40, as shown in FIG. 8, for example. Meanwhile, the recording magnetic field decreases and the edge magnetic field increases. According to these trends, it will become difficult to reduce the core width CW of the upper sub pole 40 while maintaining the recording magnetic field of more than 470 kAZm and the edge magnetic field of less than 135 kAZm. It is expected to be.
その一方で、 これまでのようにフォトレジストを用いた電解めつき法で上部磁 極層 3 3を形成する場合には、 トラック幅方向に沿って上部磁極層 3 3を 1 . 2 程度以下に狭めていくことは難しい。 したがって、 上部副磁極 4 0のコア幅 CWが狭められるに従って上部磁極層 3 3の張り出し量 A P Wの増大は避けられ ない。 前述のように、 上部磁極層 3 3の張り出し量 A PWが増大すればエッジ磁 界は増大する。 On the other hand, when the upper pole layer 33 is formed by electrolytic plating using a photoresist as in the past, the upper pole layer 33 is reduced to about 1.2 or less along the track width direction. It is difficult to narrow. Therefore, as the core width CW of the upper sub-pole 40 is reduced, the overhang A PW of the upper pole layer 33 is inevitably increased. As described above, the edge magnetic field increases as the overhang A PW of the upper magnetic pole layer 33 increases.
ここで、 例えばトラック幅方向に測定される上部磁極層 3 3の幅 P W= 1 . 1 mを維持しつつ上部副磁極 4 0のコア幅 CWを変化させた場合に記録磁界ゃェ
ッジ磁界の磁界強度を観察してみる。 磁界強度は、 前述と同様に、 市販の三次元 磁界解析ソフトウェアを用いて算出された。 算出されたシミュレーション結果は 図 9および図 1 0に示される。 Here, for example, when the core width CW of the upper sub pole 40 is changed while maintaining the width PW = 1.1 m of the upper pole layer 33 measured in the track width direction, the recording field Observe the magnetic field strength of the ridge magnetic field. The magnetic field strength was calculated using commercially available three-dimensional magnetic field analysis software as described above. The calculated simulation results are shown in FIG. 9 and FIG.
図 9に示されるように、 上部副磁極 40のコア幅 CW= 0. 7 imを実現する にあたって、 上部副磁極 40の厚み S Lは例えば 0. 5 /mを超えて設定されれ ばよい。 言い換えれば、 上部副磁極 40の厚み S Lは張り出し量 APW (=0. As shown in FIG. 9, in realizing the core width CW = 0.7 im of the upper sub-magnetic pole 40, the thickness SL of the upper sub-magnetic pole 40 may be set to, for example, more than 0.5 / m. In other words, the thickness S L of the upper sub pole 40 is the overhang amount APW (= 0.
2 ) の 2. 5倍を超えて設定されればよい。 このように上部副磁極 40の厚 み S Lが設定されれば、 記録磁界で十分な磁界強度 (約 4 70 kA/m以上) を 確保しつつ、 1 3 5 kAZm未満にエッジ磁界を抑え込むことが可能となる。 し たがって、 磁気ディスク 1 3に対する情報の記録にあたって、 記録トラックの記 録にじみや、 目標記録トラックに隣接する記録トラックの磁化反転といった不具 合は解消されることができる。 幅狭な記録トラックは実現される。 It should just be set more than 2.5 times of 2). If the thickness SL of the upper sub pole 40 is set in this way, it is possible to suppress the edge magnetic field to less than 135 kAZm while securing sufficient magnetic field strength (about 470 kA / m or more) with the recording magnetic field. It becomes possible. Therefore, in recording information on the magnetic disk 13, problems such as blurring of recording of a recording track and magnetization reversal of a recording track adjacent to a target recording track can be eliminated. A narrow recording track is realized.
図 1 0に示されるように、 上部副磁極 40のコア幅 CW=0. 5 mを実現す るにあたって、 上部副磁極 40の厚み S Lは例えば 0. 9 5 m以上に設定され ればよい。 言い換えれば、 上部副磁極 40の厚み S Lは張り出し量 APW (= 0. As shown in FIG. 10, in order to realize the core width CW of the upper sub-pole 40 of 0.5 m, the thickness SL of the upper sub-pole 40 may be set to 0.95 m or more, for example. In other words, the thickness S L of the upper sub pole 40 is the overhang amount APW (= 0.
3 um) の約 3. 1 7倍以上に設定されればよい。 このように上部副磁極 40の 厚み S Lが設定されれば、 記録磁界で十分な磁界強度 (約 4 7 0 kA/m以上) を確保しつつ、 1 3 5 kAZm未満にエッジ磁界を抑え込むことが可能となる。 したがって、 磁気ディスク 1 3に対する情報の記録にあたって、 記録トラックの 記録にじみや、 目標記録トラックに隣接する記録トラックの磁化反転といった不 具合は解消されることができる。 前述と同様に、 幅狭な記録トラックは実現され る。 3 um) should be set to about 3.17 times or more. If the thickness SL of the upper sub-pole 40 is set in this way, it is possible to suppress the edge magnetic field to less than 135 kAZm while securing a sufficient magnetic field strength (about 470 kA / m or more) with the recording magnetic field. It becomes possible. Therefore, when recording information on the magnetic disk 13, problems such as blurring of recording on a recording track and magnetization reversal of a recording track adjacent to a target recording track can be eliminated. As described above, a narrow recording track is realized.
さらに、 上部磁極層 3 3の幅 PW (=0. 8 /xm) や上部副磁極 40のコア幅 CW (=0. 5 urn) を維持しつつ上部副磁極 40の飽和磁束密度 B sを変化さ せた場合に記録磁界やエッジ磁界の磁界強度を観察してみる。 磁界強度は、 前述 と同様に、 市販の三次元磁界解析ソフトウェアを用いて算出された。 算出された シミュレーション結果は図 1 1に示される。 Further, the saturation magnetic flux density Bs of the upper sub-pole 40 is changed while maintaining the width PW (= 0.8 / xm) of the upper pole layer 33 and the core width CW (= 0.5 urn) of the upper sub-pole 40. Then, observe the magnetic field strength of the recording magnetic field and the edge magnetic field. The magnetic field strength was calculated using commercially available three-dimensional magnetic field analysis software as described above. Figure 11 shows the calculated simulation results.
図 1 1に示されるように、 上部副磁極 40の飽和磁束密度 B sは例えば 1. 4 T以上に設定されればよい。 このように上部副磁極 40の飽和磁束密度 B sが設
定されれば、 記録磁界で十分な磁界強度(約 4 7 0 k AZm以上) を確保しつつ、 1 3 5 k AZm未満にエッジ磁界を抑え込むことが可能となる。 したがって、 磁 気ディスク 1 3に対する情報の記録にあたって、 記録トラックの記録にじみや、 目標記録トラックに隣接する記録トラックの磁化反転といった不具合は解消され ることができる。 こういった飽和磁束密度 B sを実現するにあたって、 上部副磁 極 4 0は、 例えば 5 0 N i 5 0 F e ( B s = 1 . 4 T) や 4 5 N i 5 5 F e ( B s = 1 . 6 T) といった素材から形成されればよい。 As shown in FIG. 11, the saturation magnetic flux density Bs of the upper auxiliary magnetic pole 40 may be set to, for example, 1.4 T or more. Thus, the saturation magnetic flux density B s of the upper sub pole 40 is set. If it is determined, it is possible to suppress the edge magnetic field to less than 135 kAZm while ensuring a sufficient magnetic field strength (about 470 kAZm or more) with the recording magnetic field. Therefore, when recording information on the magnetic disk 13, problems such as blurring of recording of a recording track and magnetization reversal of a recording track adjacent to a target recording track can be solved. In order to realize such a saturation magnetic flux density B s, the upper sub pole 40 is, for example, 50 N i 50 F e (B s = 1.4 T) or 45 N i 55 F e (B s = 1.6 T).
次に、以上のような誘導書き込みへッド素子 2 9の製造方法を簡単に説明する。 まず、 表面で下部磁極層 3 1が形成されたアルチック製ウェハーが用意される。 下部磁極層 3 1は、 M R素子 3 5が埋め込まれたアルミナ層の表面に積層される。 下部磁極層 3 1の表面には続いて非磁性層が積層される。 Next, a method of manufacturing the above-described inductive write head element 29 will be briefly described. First, an Altic wafer having a lower pole layer 31 formed on the surface is prepared. The lower magnetic pole layer 31 is laminated on the surface of the alumina layer in which the MR element 35 is embedded. A non-magnetic layer is subsequently laminated on the surface of the lower magnetic pole layer 31.
非磁性層の表面には、 図 1 2に示されるように、 フォトレジスト膜 5 1が形成 される。 フォトレジスト膜 5 1には、 上部副磁極 4 0および中間磁極層 4 2を象 つた空隙 5 2 a、 5 2 bが区画される。 電解めつき法が実施されると、 空隙 5 2 a、 5 2 b内でめっき金属は成長する。 上部副磁極 4 0および中間磁極層 4 2は 同時に形作られる。 めっき金属は、 フォトレジスト膜 5 1の形成に先立って非磁 性層の表面に積層されるめつきベース膜に沿って成長する。 こうした電解めつき 法にあたって、空隙 5 2 a、 5 2 bにはめつき液溜まり 5 3が付加されてもよい。 こうしためっき液溜まり 5 3によれば、 狭小な上部副磁極 4 0を象る空隙 5 2 a 内に確実にめっき液を進入させることが可能となる。 めっき液溜まり 5 3側のゥ ェハ一が削り取られると、 浮上面 2 4は露出する。 As shown in FIG. 12, a photoresist film 51 is formed on the surface of the nonmagnetic layer. In the photoresist film 51, voids 52a and 52b are formed, which form the upper sub-pole 40 and the intermediate pole layer 42. When the electroplating method is performed, the plating metal grows in the voids 52a and 52b. The upper sub pole 40 and the middle pole layer 42 are formed simultaneously. The plating metal grows along the plating base film laminated on the surface of the nonmagnetic layer prior to the formation of the photoresist film 51. In such an electrolytic plating method, a plating liquid reservoir 53 may be added to the voids 52a and 52b. According to such a plating solution reservoir 53, the plating solution can be surely made to enter the gap 52a that represents the narrow upper sub-pole 40. When the wafer on the plating solution pool 53 is scraped off, the floating surface 24 is exposed.
こうして上部副磁極 4 0および中間磁極層 4 2が形成されると、 図 1 3 Aに示 されるように、 上部副磁極 4 0および中間磁極層 4 2をマスクに用いてイオンミ ル処理が実施される。 その結果、 上部副磁極 4 0および中間磁極層 4 2の外形に 象られて非磁性層すなわちギャップ層 3 9は削り出される。 このとき、 下部磁極 層 3 1の表面には、 同様に上部副磁極 4 0および中間磁極層 4 2の外形に象られ た下部副磁極 3 8が削り出される。 When the upper sub pole 40 and the middle pole layer 42 are formed in this way, as shown in FIG. 13A, ion milling is performed using the upper sub pole 40 and the middle pole layer 42 as a mask. Is done. As a result, the non-magnetic layer, that is, the gap layer 39 is cut off by the outer shapes of the upper sub pole 40 and the intermediate pole layer 42. At this time, on the surface of the lower magnetic pole layer 31, a lower auxiliary magnetic pole 38 similarly shaped as the outer shape of the upper auxiliary magnetic pole 40 and the intermediate magnetic pole layer 42 is cut out.
その後、 図 1 3 Bに示されるように、 下部磁極層 3 1の表面にアルミナオーバ 一コート (絶縁層) 5 4が被覆される。 こうした被覆には例えばスパッタリング
処理が用いられればよい。 下部磁極層 3 1の表面に均一にアルミナ粒子が降り注 ぐ結果、 下部磁極層 3 1から立ち上がる上部副磁極 4 0はアルミナオ一バーコ一 ト 5 4の表面から盛り上がる膨らみ 5 5に埋もれる。 Thereafter, as shown in FIG. 13B, the surface of the lower magnetic pole layer 31 is coated with an alumina overcoat (insulating layer) 54. Such coatings include, for example, sputtering Processing may be used. As a result of the alumina particles uniformly falling on the surface of the lower magnetic pole layer 31, the upper auxiliary magnetic pole 40 rising from the lower magnetic pole layer 31 is buried in the bulge 55 rising from the surface of the alumina cover 54.
続いて図 1 3 Cに示されるように、 アルミナオ一バーコ一ト 5 4の表面から平 坦化処理が施される。 この平坦化処理には例えば研磨処理が用いられればよい。 上部副磁極 4 0は膨らみ 5 5とともに先端から削り取られていき、 その結果、 ァ ルミナオ一バーコート 5 4に埋もれた上部副磁極 4 0は平坦面 5 6で露出する。 こうした平坦化処理によって形成されたアルミナオーバーコート 5 4の平坦面 5 6上で前述の導電コイルパターン 2 8は形成される。その結果、 周知のとおり、 緻密で精度の高い導電コイルパターン 2 8が実現されることができる。 導電コィ ルパターン 2 8は新たにアルミナオーバーコート (図示せず) に被覆され、 その 結果、 アルミナ膜に埋め込まれる。 アルミナ膜の表面には前述の上部磁極層 3 3 が形成される。 Subsequently, as shown in FIG. 13C, a flattening treatment is performed from the surface of the alumina cover 54. For this flattening process, for example, a polishing process may be used. The upper sub pole 40 is cut off from the tip together with the bulge 55, and as a result, the upper sub pole 40 buried in the aluminum bar coat 54 is exposed on the flat surface 56. The above-described conductive coil pattern 28 is formed on the flat surface 56 of the alumina overcoat 54 formed by such a flattening process. As a result, as is well known, a dense and accurate conductive coil pattern 28 can be realized. The conductive coil pattern 28 is newly coated with an alumina overcoat (not shown), and as a result, is embedded in the alumina film. The above-mentioned upper magnetic pole layer 33 is formed on the surface of the alumina film.
上部磁極層 3 3の先端片 4 5には、 例えば図 1 4に示されるように、 段差面 5 8が形成されてもよい。 こうした段差面 5 8は、 周知のとおり、 例えばレジスト 膜を用いたイオンミル処理によって形成されることができる。 こうした段差面 5 8が形成されると、 上部副磁極 4 0のトラック幅方向から張り出す上部磁極層 3 3の張り出し量 A PWは著しく縮小されることができる。 こうして張り出し量△ PWが縮小されれば、 エッジ磁界は低減される。 ただし、 こういった段差面 5 8 は上部磁極層 3 3と上部副磁極 4 0との間で接合面積を減少させることから、 段 差面 5 8は、 中間磁極層 4 2の輪郭線付近で途切れることが望ましい。 こうした 段差面 5 8の形成によれば、 電解めつき法を用いて幅 PW= 1 2 x m程度で形成 された上部磁極層 3 3の幅 PWは、 前述のシミュレーションで採用された PW= 1 . 1 /i mや PW= 0 . 8 x mまで狭められることが可能となる。
A step surface 58 may be formed on the tip piece 45 of the upper magnetic pole layer 33, for example, as shown in FIG. As is well known, such a stepped surface 58 can be formed by, for example, ion milling using a resist film. When such a step surface 58 is formed, the overhang amount APW of the upper pole layer 33 overhanging in the track width direction of the upper sub-pole 40 can be significantly reduced. If the overhang amount △ PW is reduced in this way, the edge magnetic field is reduced. However, since such a stepped surface 58 reduces the bonding area between the upper magnetic pole layer 33 and the upper auxiliary magnetic pole 40, the stepped surface 58 is formed near the contour of the intermediate magnetic pole layer 42. It is desirable to be interrupted. According to the formation of the step surface 58, the width PW of the upper magnetic pole layer 33 formed with the width PW of about 12 xm using the electrolytic plating method is equal to the PW = 1. 1 / im and PW = 0.8 xm can be reduced.
Claims
1 . 前端で媒体対向面に臨み、 基準面に沿って所定の厚みで前後方向に延びる上 部副磁極と、 上部副磁極の後端から基準面に沿って広がり、 上部副磁極に比べて トラック幅方向に大きく規定される中間磁極層と、 中間磁極層の表面に受け止め られるとともに、 媒体対向面に臨む先端で上部副磁極からトラック幅方向に所定 の張り出し量で張り出す上部磁極層とを備え、 上部副磁極の厚みは上部磁極層の 張り出し量の 2 . 5倍以上に設定されることを特徴とする薄膜磁気へッド。 1. The upper sub-pole, which faces the medium facing surface at the front end and extends in the front-rear direction with a predetermined thickness along the reference surface, An intermediate magnetic pole layer that is largely defined in the width direction and an upper magnetic pole layer that is received on the surface of the intermediate magnetic pole layer and projects a predetermined amount in the track width direction from the upper auxiliary magnetic pole at the tip facing the medium facing surface. A thin-film magnetic head characterized in that the thickness of the upper sub pole is set to be at least 2.5 times the overhang of the upper pole layer.
2 . 請求の範囲第 1項に記載の薄膜磁気ヘッドにおいて、 前記厚みは張り出し量 の 3 . 1 7倍以上に設定されることを特徴とする薄膜磁気へッド。 2. The thin-film magnetic head according to claim 1, wherein the thickness is set to 3.17 times or more of an overhang amount.
3 . 前端で媒体対向面に臨み、 基準面に沿って所定の厚みで前後方向に延びる上 部副磁極と、 上部副磁極の後端から基準面に沿って広がり、 上部副磁極に比べて トラック幅方向に大きく規定される中間磁極層と、 前端で媒体対向面に臨み、 中 間磁極層の表面に受け止められる上部磁極層とを備え、 上部副磁極の飽和磁束密 度は 1 . 4 T以上に設定されることを特徴とする薄膜磁気へッド。 3. The upper sub-pole, which faces the medium facing surface at the front end and extends in the front-rear direction with a predetermined thickness along the reference plane, and the rear end of the upper sub-pole extends along the reference plane from the rear end and has a track compared to the upper sub-pole An intermediate pole layer largely defined in the width direction, and an upper pole layer facing the medium facing surface at the front end and received on the surface of the intermediate pole layer. The saturation magnetic flux density of the upper sub pole is 1.4 T or more. A thin-film magnetic head characterized by being set to:
4 . 前端で媒体対向面に臨み、 基準面に沿って所定の厚みで前後方向に延びる上 部副磁極と、 上部副磁極の後端から基準面に沿って広がり、 上部副磁極に比べて トラック幅方向に大きく規定される中間磁極層と、 中間磁極層の表面に受け止め られるとともに、 媒体対向面に臨む先端で上部副磁極からトラック幅方向に所定 の張り出し量で張り出す上部磁極層とを備え、 上部副磁極の厚みは上部磁極層の 張り出し量の 2 . 5倍以上に設定される薄膜磁気へッドが組み込まれることを特 徴とする磁気記録媒体駆動装置。 4. An upper sub-pole facing the medium facing surface at the front end and extending in the front-rear direction with a predetermined thickness along the reference plane, and a track extending from the rear end of the upper sub-pole along the reference plane to be wider than the upper sub-pole. An intermediate magnetic pole layer that is largely defined in the width direction and an upper magnetic pole layer that is received on the surface of the intermediate magnetic pole layer and projects a predetermined amount in the track width direction from the upper auxiliary magnetic pole at the tip facing the medium facing surface. A magnetic recording medium drive device characterized in that a thin-film magnetic head whose upper sub-pole has a thickness set to be at least 2.5 times the overhang of the upper pole layer is incorporated.
5 . 前端で媒体対向面に臨み、 基準面に沿って所定の厚みで前後方向に延びる上 部副磁極と、 上部副磁極の後端から基準面に沿って広がり、 上部副磁極に比べて トラック幅方向に大きく規定される中間磁極層と、 前端で媒体対向面に臨み、 中
間磁極層の表面に受け止められる上部磁極層とを備え、 上部副磁極の飽和磁束密 度は 1 . 4 T以上に設定される薄膜磁気へッドが組み込まれることを特徴とする
5. The upper sub-pole, which faces the medium facing surface at the front end and extends in the front-rear direction with a predetermined thickness along the reference plane, and the rear end of the upper sub-pole extends along the reference plane from the rear end and has a track compared to the upper sub-pole. An intermediate pole layer that is largely defined in the width direction, and faces the medium facing surface at the front end. And an upper magnetic pole layer received on the surface of the intermediate magnetic pole layer, and a thin-film magnetic head in which the saturation magnetic flux density of the upper auxiliary magnetic pole is set to 1.4 T or more is incorporated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1999/005521 WO2001027915A1 (en) | 1999-10-07 | 1999-10-07 | Thin film magnetic head and magnetic recording medium drive device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1999/005521 WO2001027915A1 (en) | 1999-10-07 | 1999-10-07 | Thin film magnetic head and magnetic recording medium drive device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001027915A1 true WO2001027915A1 (en) | 2001-04-19 |
Family
ID=14236938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1999/005521 WO2001027915A1 (en) | 1999-10-07 | 1999-10-07 | Thin film magnetic head and magnetic recording medium drive device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2001027915A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11110718A (en) * | 1997-07-28 | 1999-04-23 | Read Rite Corp | Magnetic head and its manufacture |
JPH11149620A (en) * | 1997-09-10 | 1999-06-02 | Toshiba Corp | Magnetic head |
JPH11232610A (en) * | 1997-12-12 | 1999-08-27 | Tdk Corp | Thin-film magnetic head |
-
1999
- 1999-10-07 WO PCT/JP1999/005521 patent/WO2001027915A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11110718A (en) * | 1997-07-28 | 1999-04-23 | Read Rite Corp | Magnetic head and its manufacture |
JPH11149620A (en) * | 1997-09-10 | 1999-06-02 | Toshiba Corp | Magnetic head |
JPH11232610A (en) * | 1997-12-12 | 1999-08-27 | Tdk Corp | Thin-film magnetic head |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7328499B2 (en) | Method of manufacturing a thin film magnetic head | |
US8072706B2 (en) | Magnetic head for perpendicular magnetic recording and method of manufacturing same | |
US7551395B2 (en) | Main pole structure coupled with trailing gap for perpendicular recording | |
JP4191913B2 (en) | Thin film magnetic head | |
US7921544B2 (en) | Method of manufacturing a thin film magnetic head structure | |
EP0881627A2 (en) | Thin film magnetic head | |
JP2007220209A (en) | Magnetic head, magnetic recording / reproducing apparatus, and method of manufacturing magnetic head | |
JP2007220208A (en) | Magnetic head, magnetic recording / reproducing apparatus, and method of manufacturing magnetic head | |
US10839829B1 (en) | Magnetic head with a main pole including first and second layers and manufacturing method for the same | |
US7492555B2 (en) | Thin-film magnetic head structure, method of manufacturing the same, and thin-film magnetic head | |
US20050105215A1 (en) | Thin film magnetic head, method of manufacturing the same, and magnetic recording apparatus | |
US20070008649A1 (en) | Thin-film magnetic head structure, method of manufacturing the same, and thin-film magnetic head | |
US8495812B2 (en) | Method of manufacturing magnetic head slider | |
KR20080084622A (en) | Magnetic head | |
US6751052B1 (en) | Thin film magnetic head with short lower magnetic pole piece | |
JP2002208115A (en) | Manufacturing method for thin film magnetic head | |
US20010013992A1 (en) | Thin film magnetic head with tip sub-magnetic pole and method of manufacturing the same | |
US6665144B2 (en) | Thin film magnetic head and method of making wherein the head includes a magnetic layer including an underlayer and a coating layer with each having a uniform width portion and a wider portion | |
US20020048116A1 (en) | Thin film magnetic head | |
WO2001027915A1 (en) | Thin film magnetic head and magnetic recording medium drive device | |
US11495251B1 (en) | Manufacturing method for magnetic head for perpendicular magnetic recording including a pair of first side shields and a pair of second side shields | |
US20180005648A1 (en) | Method of manufacturing perpendicular magnetic recording head | |
US20010043445A1 (en) | Thin film magnetic head with tip sub-magnetic pole and method of manufacturing the same | |
JP2000306214A (en) | Thin film write magnetic head and method of manufacturing the same | |
JP3929926B2 (en) | Manufacturing method of magnetic head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP Ref country code: JP Ref country code: JP Ref country code: JP Ref country code: JP |