[go: up one dir, main page]

WO2001021393A1 - Materiaux thermoconducteur d'un compose hydrophobe devant etre soumis a une gestion thermique - Google Patents

Materiaux thermoconducteur d'un compose hydrophobe devant etre soumis a une gestion thermique Download PDF

Info

Publication number
WO2001021393A1
WO2001021393A1 PCT/US2000/025811 US0025811W WO0121393A1 WO 2001021393 A1 WO2001021393 A1 WO 2001021393A1 US 0025811 W US0025811 W US 0025811W WO 0121393 A1 WO0121393 A1 WO 0121393A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
particles
alloys
substituted
boron nitride
Prior art date
Application number
PCT/US2000/025811
Other languages
English (en)
Inventor
Susan E. Bowser
Thomas M. Clere
Original Assignee
Saint-Gobain Ceramics And Plastics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Ceramics And Plastics, Inc. filed Critical Saint-Gobain Ceramics And Plastics, Inc.
Priority to JP2001524797A priority Critical patent/JP2003509578A/ja
Priority to GB0204971A priority patent/GB2370040B/en
Priority to DE10085011T priority patent/DE10085011T1/de
Priority to AU38868/01A priority patent/AU3886801A/en
Publication of WO2001021393A1 publication Critical patent/WO2001021393A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29393Base material with a principal constituent of the material being a solid not provided for in groups H01L2224/293 - H01L2224/29391, e.g. allotropes of carbon, fullerene, graphite, carbon-nanotubes, diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic

Definitions

  • This invention relates to modified thermally conductive powders or particulates having a hydrophobic compound coating on substantially the entire surface thereof which can be used to produce thermally conductive materials.
  • thermally conductive grease typically a silicone grease
  • thermally conductive organic wax to aid in creating a low thermal resistance path between the opposed mating surfaces of the heat source and the heat sink.
  • thermally conductive materials are based upon the use of a binder, preferably a resin binder, such as, a silicone, a thermoplastic rubber, a urethane, or an acrylic, into which one or more thermally conductive fillers are distributed.
  • thermally conductive, electrically insulative or thermally conductive, electrically conductive fillers are one of two major types: thermally conductive, electrically insulative or thermally conductive, electrically conductive fillers.
  • Aluminum oxide, magnesium oxide, zinc oxide, aluminum nitride, and boron nitride are the most often cited types of thermally conductive, electrically insulative fillers used in thermal products. Boron nitride is especially useful in that it has excellent heat transfer characteristics and is relatively inexpensive.
  • thermally conductive fillers have a tendency to be hydroscopic.
  • boron nitride is generally regarded as hydrophobic, but it inherently contains the hydroscopic impurity boric oxide
  • boric oxide contained within the boron nitride powder or particulates adsorbs atmospheric water.
  • the adsorbed water in turn, especially in the presence of heat, reacts with boron nitride to form boric acid, a hydrolytic oxidation product of boron nitride and water.
  • Boric acid is also hydroscopic and adsorbs water from the atmosphere to accelerate degradation of the boron nitride particles through this autocatalytic reaction process. Over time, sufficient boron nitride degradation can occur in the powder or particulates due to boric acid production to cause insufficient thermal conductivity between the heat sink and the integrated circuit chip.
  • the present invention relates to a moisture resistant, thermally conductive material comprising a particulate filler comprising thermally conductive particles having a hydrophobic compound coating, such as, silicone oil, and a binder effective to join together the filler particles.
  • a hydrophobic compound coating such as, silicone oil
  • Another aspect of the present invention includes an electronic apparatus comprising a heat source, a heat sink, and a layer of a moisture resistant, thermally conductive material made in accordance with the present invention disposed between and in contact with the heat source and the heat sink. Still, another aspect of the present invention includes a moisture resistant, thermally conductive material comprising particles of agglomerated boron nitride having a hydrophobic compound coating, such as, a silicone oil coating. Yet, another aspect of the present invention includes a method of removing heat from a heat source comprising providing a heat sink proximate the heat source and disposing a layer of the moisture resistant, thermally conductive interface material of the present invention between and in contact with the heat source and the heat sink.
  • Figure 1 is a partial, perspective view of a layer of a moisture resistant, thermally conductive material made in accordance with the present invention disposed between an integrated circuit chip and a heat sink.
  • the present invention relates to a moisture resistant, thermally conductive material which comprises a particulate filler comprising thermally conductive particles having a hydrophobic compound coating, such as, a silicone compound coating, and a binder effective to join together the filler particles.
  • a moisture resistant, thermally conductive material has a water absorption rate of less than 1.24 parts per million per square centimeter of particle surface area per minute (ppm/cm •min.), preferably less than 0.12 ppm/cm 2 'min., and a thermal conductivity of at least 0.4 watts/meter °K, preferably at least 1 watt/meter °K.
  • thermally conductive material of the present invention can be utilized as a moisture resistant, thermally conductive, and rigid potting compound or circuit board.
  • Such binders include polyesters, silicone resins, polyolefins, epoxies, thermoplastics, thermoplastic rubbers, urethane resins, acrylic resins, polyimides, polyamides, waxes, greases, and combinations thereof.
  • Thermally conductive particulate fillers of the present invention include both thermally conductive, electrically insulative and thermally conductive, electrically conductive powders and particulates.
  • Such fillers comprise various kinds of powders or particulate materials of porous or non- porous inorganic pigments, organic pigments, pearlescent pigments, carbons, metals, mica, mineral silicates, metal oxides, metal hydroxides, metal borides, metal carbides, metal nitrides, ceramics, carbonate minerals, sulfate minerals, phosphate minerals, and combinations thereof.
  • Any conventional particle size may be used.
  • the particles range in size from about 1 ⁇ m to about 500 ⁇ m.
  • the filler may contain a mixture of coarse (greater than about 100 ⁇ m) and fine (about 0.001 ⁇ m to about 100 ⁇ m) particle sizes.
  • a compliant material i.e., flexible or low durometer
  • the proportion of filler coated with the hydrophobic compound is from about 5 volume % to about 40 volume % of the moisture resistant material, preferably from about 12 volume % to about 30 volume %.
  • the proportion of filler coated with the hydrophobic compound is from about 20 volume % to about 70 volume %, preferably from about 50 volume % to about 70 volume %.
  • Thermally conductive materials made in accordance with the present invention can be formed or molded into any desired shape.
  • the thermal conductivity of the thermally conductive material of the present invention has a direct relationship to the amount of filler contained therein. Accordingly, thermal conductivity of the thermally conductive material of the present invention can be tailored with respect to the amount of filler disposed therein.
  • Suitable thermally conductive powders and particulates are described in U.S. Patent Nos. 4,801,445 to Fukui et al., which is incorporated herein by reference. Typical examples of such powder materials are explained below.
  • inorganic pigments capable of being modified in accordance with the present invention include, but are not limited to, ultramarine blue (sodium aluminum silicate containing sulfur), prussian blue (ferri ferocyanide), manganese violet, titanium-coated mica, bismuth oxycloride, iron oxides, iron hydroxide, titanium dioxide, titanium lower oxides, chromium hydroxide, and combinations thereof.
  • Organic pigments capable of being modified in accordance with the present invention include, but are not limited to, C.I. 15850, C.I. 15850:1, C.I. 15585:1, C.I. 15630, C.I. 15880:1, C.I. 73360, C.I. 12085, C.I. 15865:2, C.I. 12075, C.I. 21110, C.I. 21095, C.I. 11680, C.I. 74160 and zirconium, barium, and aluminum lakes of C.I. 45430, C.I. 45410, C.I. 45100, C.I. 17200, C.I. 45380, C.I. 45190, C.I. 14700, C.I. 15510, C.I. 19140, C.I. 15985, C.I. 45350, C.I. 47005, C.I. 42053, and C.I. 42090, and combinations thereof.
  • Pearlescent pigments capable of being modified in accordance with the present invention include, but are not limited to, mica-titanium composite materials containing as a titanium component titanium dioxide, titanium lower oxides, and titanium oxynitride, mica-iron oxide composite materials, bismuth oxychloride, guanine, and combinations thereof. Carbons
  • Examples of carbons capable of being modified in accordance with the present invention include, but are not limited to, activated carbon and carbon black particles conventionally used in, for example, coatings and fillers. Although there are no critical limitations to the sizes of the carbon powder particle, such carbon powders typically have a particle size of 0.001 ⁇ m to 200 ⁇ m.
  • metals capable of being modified in accordance with the present invention include, but are not limited to, iron, cobalt, nickel, copper, zinc, aluminum, chromium, titanium, zirconium, molybdenum, silver, indium, tin, antimony, tungsten, platinum, gold, and alloys thereof.
  • Mineral Silicate
  • Examples of the mineral silicates capable of being modified according to the present invention include, but are not limited to, phyllosilicates, tectosilicates, natrolites, heulandites, and zeolites.
  • Phyllosilicates and tectosilicates include pyrophyllite, talc, chlorite, chrysotile, antigorite, lizardite, kaolinite, dickite, nacrite, halloyxite, montmorillonite, nontronite, saponite, sauconite, and bentonite.
  • Natrolites include natrolite, mesolite, scolecite, and thomsonite.
  • Heulandites include heulandite, stilbite, and epistibite.
  • Zeolites include analcite, harmontone, phillipsite, chabazite, and gmelinite. These silicate minerals may be used alone or in combination thereof.
  • the phyllosilicates may have organic cations at the interface of the layers thereof or may be substituted with alkali metal or alkaline earth metal ions.
  • the tectosilicates may include metallic ions in the fine pores thereof.
  • Metal Oxide, Hydroxide, Nitride and Oxynitride Metal oxides, hydroxides, nitrides, and oxynitrides capable of being modified according to the present invention include, but are not limited to, boron, aluminum, silicon, titanium, zirconium, zinc, chromium, magnesium, calcium, iron, manganese, cobalt, nickel, and molybdenum oxides, hydroxides, nitrides, and oxynitrides.
  • Examples of such compounds are magnesium oxide, magnesium hydroxide, calcium oxide, calcium hydroxides, aluminum oxide, aluminum hydroxide, aluminum nitride, boron nitride, silica, silicon nitride, iron oxides ( ⁇ -Fe 2 O 3 , ⁇ -Fe 2 O 3 , Fe 3 O 4 , FeO), iron hydroxides, titanium dioxide, titanium lower oxides, titanium nitride, zirconium oxide, chromium oxides, chromium hydroxides, chromium nitride, manganese oxides, cobalt oxides, nickel oxides, zinc oxides, boron nitride, Si-Al-O-N compounds, Al-O-N compounds, silicon carbide, titanium carbide and tungsten carbide.
  • oxides, hydroxides, nitrides, and oxynitrides may be used alone or in any mixture thereof.
  • composite oxides and composite hydroxides such as iron titanate, cobalt titanate, cobalt aluminate also can be used in the present invention.
  • Composite materials comprising metal oxides, hydroxides, nitrides, or oxynitrides coated on the core materials (e.g., titanium oxides coated mica, iron oxides coated nylon) can also be used in the present invention.
  • core materials e.g., titanium oxides coated mica, iron oxides coated nylon
  • porous material in addition to the above-mentioned porous silicate minerals, mica, and metal oxides, examples of other porous materials capable of being modified in accordance with the present invention include, but are not limited to, ceramics and ceramic glasses, such as KA1 2 (A1, Si 3 )O] 0 F 2 , KMg(Al, Si 3 ) O] 0 F 2 , K(Mg, Fe 3 )(Al, Si 3 ) O ⁇ oF ; carbonate minerals, such as, CaCO 3 , MgCO 3 , FeCO 3 , MnCO 3 , ZnCO , CaMg(CO 3 ) 2 , Cu(OH) 2 CO 3 , Cu 3 (OH) 2 (CO 3 ) 2 ; sulfate minerals, such as, BaSO 4 , SrSO 4 , PbSO 4 , CaSO 4 , CaSO 4 -2H 2 O, CaSO 2 -5H 2 O, Cu 4 SO 4 (OH) 6 , KAl 3 (OH
  • the preferred thermally conductive particles are boron nitride particles, including porous and bonded boron nitride particles. Particularly preferred are agglomerated boron nitride particles.
  • boron nitride can be produced by direct nitriding of borate compounds, such as, boric oxide, boric acid, calcium borates, sodium borates, etc., with an ammonia compound, such as, ammonia and organic amines (e.g., melamine).
  • borate compounds such as, boric oxide, boric acid, calcium borates, sodium borates, etc.
  • an ammonia compound such as, ammonia and organic amines (e.g., melamine).
  • Boron nitride can also be produced by carbothermic reduction of borate compounds in the presence of nitrogen.
  • boron nitride can be produced by direct nitridation of elemental boron or boron compounds.
  • the boron nitride produced from these methods is typically is in the form of a briquette.
  • Boron nitride powder can thereafter be produced by conventional milling.
  • Low density agglomerated boron nitride particulates can be made by crushing the briquettes and classifying the agglormerates to target particle size distribution.
  • a method of producing high density agglomerated boron nitride particulates is disclosed in U.S. Patent No. 5,898,009 to Shaffer et al, which is incorporated herein by reference.
  • Silicon nitride and aluminum nitride particulates are also particularly useful with the present invention. Like boron nitride, silicon nitride and aluminum nitride can also be produced by respective carbothermic reduction of silicon and aluminum compounds in the presence of nitrogen. Silicon nitride and aluminum nitride can as well be respectively produced by direct nitridation of elemental silicon or aluminum compounds. An example of a process for preparing silicon nitride powder is disclosed in U.S. Patent No. 4,514,370, which is incorporated herein by reference.
  • Hydrophobic compounds utilized in the present invention include silicone compounds, preferably silicone oils.
  • silicone oils are low molecular weight oligomeric siloxanes having the following general structure:
  • n is 0-5
  • each R is independently selected from hydrogen, a substituted or unsubstituted alkyl having 1 to 8 carbon atoms, a substituted or unsubstituted aryl, a substituted or unsubstituted alkene, OR 1 , and OSiR 1 , and each R is independently selected from hydrogen, a substituted or unsubstituted alkyl having 1 to 8 carbon atoms, a substituted or unsubstituted aryl, and a substituted or unsubstituted alkene.
  • the siloxane comprises from about 1 to 4 % by weight of the filler.
  • the amount of siloxane varies proportionally with the surface area of the particles. That is, the greater the surface area of the particles, the greater the amount of siloxane needed to coat the particles.
  • Siloxanes well suited for use with the present invention are polydimethylsiloxane, polymethylhydrogen siloxane, and combinations thereof.
  • polydimethylsiloxane and polymethylhydrogen siloxane preferably comprise about 3 % by weight of the filler when the filler is boron nitride having a particle size of about 5 ⁇ m.
  • the siloxane can be coated on the surface of the boron nitride particles in a blender, such as, a ribbon blender, at a temperature between about 20 °C to about 100 °C under either a partial pressure or an inert gas purge.
  • a blender such as, a ribbon blender
  • the siloxane is introduced into the blender through a spray nozzle, such as, an atomizing nozzle, to produce fine particulates of siloxane.
  • boron nitride contains the hydroscopic impurity boric oxide.
  • boric oxide contained within the boron nitride particles adsorbs water.
  • Boron nitride in turn, especially in the presence of heat, undergoes a hydrolytic oxidation reaction with the adsorbed water to form boric acid.
  • Boric acid is also hydroscopic and further degrades the boron nitride particles through this autocatalytic reaction process through continued water adsorption.
  • the thermally conductive material containing the boron nitride filler sufficiently degrades and fails to satisfactorily conduct heat away from a heat source. This can result in failure of the heat source due to heat build-up therein.
  • aluminum nitride is known to hydrolyze slowly in the presence of atmospheric moisture to form aluminum oxide and/or aluminum hydroxide, materials with a substantially lower thermal conductivity than aluminum nitride. A coating of aluminum oxide and/or aluminum hydroxide on the surface of an aluminum nitride particle can act as a thermal diffusion barrier. For this reason it is desirable to minimize contact between the aluminum nitride particles and atmospheric moisture.
  • the thermal conductivity of the thermally conductive material of the present invention is maintained regardless of the atmospheric relative humidity.
  • agglomerated boron nitride particles are particularly preferred for the present invention.
  • another aspect of the present invention is a moisture resistant, thermally conductive material comprising particles of agglomerated boron nitride having the hydrophobic compound coating.
  • an electronic apparatus made in accordance with the present invention includes a heat source 12, such as, an integrated circuit chip, and a heat sink 14.
  • a layer 16 of a moisture resistant, thermally conductive interface material made in accordance with the present invention is disposed between and in contact with the heat source 12 and the heat sink 14.
  • the layer 16 of the interface material of the present invention can be formed in a variety of shapes and sizes to fill particular needs.
  • the heat source 12 is mounted to a circuit board 18 made of a moisture resistant, thermally conductive material in accordance with the present invention to further assist in conducting heat away from the heat source 12.
  • the heat source 12, or chip is operably connected to an electrical source (not shown) and operates conventionally.
  • the heat is conducted from a heat source outer surface 13 across the layer of thermally conductive interface material of the present invention 16 to a heat sink inner surface 15.
  • the heat is thereafter conventionally dissipated to the atmosphere through the heat sink 14, as known in the art.
  • the layer of material 16 substantially covers the heat source outer surface 13 and the heat sink inner surface 15, thermal contact resistance is minimized.
  • the layer of thermally conductive material 16 is hydrophobic, the thermal conductivity of the layer 16 is maintained regardless of the atmospheric relative humidity, thereby extending the useful life of the material and the apparatus 10.
  • another aspect of the present invention includes an electronic apparatus comprising a heat source, a heat sink, and a layer of the moisture resistant, thermally conductive material of the present invention disposed between and in contact with the heat source and the heat sink. Still, another aspect of the present invention includes an electronic apparatus comprising a heat source and a moisture resistant, thermally conductive circuit board made in accordance with the present invention.
  • another aspect of the present invention includes a method of removing heat from a heat source comprising providing a heat sink proximate the heat source and disposing a layer of the moisture resistant, thermally conductive interface material of the present invention between and in contact with the heat source and the heat sink.
  • Coated and non-coated boron nitride powders were evaluated for hydroscopic affinity in a closed environment at 85 °C, 85 % relative humidity, and ambient pressure for an indicated period of time. The powders were weighted prior to and after moisture exposure to determine the percent increase in weight due to water. The results are reported in Table 1 below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

La présente invention porte sur un matériau thermoconducteur (16) résistant à l'humidité et comprenant une charge particulaire constituée de particules thermoconductrices pourvues d'un enrobage de composé hydrophobe tel qu'un enrobage d'huile de silicone et un liant efficace pour faire adhérer entre elles les particules de la charge. Cette invention porte également sur un appareil électronique comprenant une source de chaleur (12), un puits thermique (14) et une couche d'un matériau d'interface thermoconducteur résistant à l'humidité, disposée entre la source de chaleur (12) et le puits thermique (14) avec lesquels elle est en contact. L'invention porte en outre un matériau thermoconducteur résistant à l'humidité et comprenant des particules de nitrure de bore aggloméré pourvu d'un revêtement de composé hydrophobe. L'invention porte enfin sur un procédé d'élimination de la chaleur provenant d'une source, ce procédé consistant à former un puits thermique à proximité de la source de chaleur et à déposer une couche de matériau thermoconducteur résistant à l'humidité entre la source de chaleur et le puits thermique.
PCT/US2000/025811 1999-09-21 2000-09-20 Materiaux thermoconducteur d'un compose hydrophobe devant etre soumis a une gestion thermique WO2001021393A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001524797A JP2003509578A (ja) 1999-09-21 2000-09-20 熱管理のための疎水性化合物における熱伝導性材料
GB0204971A GB2370040B (en) 1999-09-21 2000-09-20 Thermally conductive materials in a hydrophobic compound for thermal management
DE10085011T DE10085011T1 (de) 1999-09-21 2000-09-20 Wärmeleitfähige Materialien in einer hydrophoben Verbindung für die Handhabung von Wärme
AU38868/01A AU3886801A (en) 1999-09-21 2000-09-20 Thermally conductive materials in a hydrophobic compound for thermal management

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40016999A 1999-09-21 1999-09-21
US09/400,169 1999-09-21

Publications (1)

Publication Number Publication Date
WO2001021393A1 true WO2001021393A1 (fr) 2001-03-29

Family

ID=23582496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/025811 WO2001021393A1 (fr) 1999-09-21 2000-09-20 Materiaux thermoconducteur d'un compose hydrophobe devant etre soumis a une gestion thermique

Country Status (5)

Country Link
JP (2) JP2003509578A (fr)
AU (1) AU3886801A (fr)
DE (1) DE10085011T1 (fr)
GB (1) GB2370040B (fr)
WO (1) WO2001021393A1 (fr)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1568733A1 (fr) * 2004-02-20 2005-08-31 Abb Research Ltd. Particules de charge inorganique poreuses revêtues d'un polyorganosiloxane et leur utilisation pour la fabrication de résines à couler durcissables
JP2006502248A (ja) * 2002-01-14 2006-01-19 ハネウェル・インターナショナル・インコーポレーテッド サーマルインターフェイス材料
US7101565B2 (en) 2002-02-05 2006-09-05 Corpak Medsystems, Inc. Probiotic/prebiotic composition and delivery method
DE102007023555A1 (de) * 2007-05-21 2008-11-27 Siemens Ag Hydrophobe Oberflächenbeschichtung für elektronische und elektrotechnische Komponenten sowie Verwendungen dazu
US7535715B2 (en) 2003-07-09 2009-05-19 Deborah D. L. Chung Conformable interface materials for improving thermal contacts
US7695817B2 (en) 2003-11-05 2010-04-13 Dow Corning Corporation Thermally conductive grease and methods and devices in which said grease is used
US8093713B2 (en) * 2007-02-09 2012-01-10 Infineon Technologies Ag Module with silicon-based layer
WO2013089861A1 (fr) * 2011-12-12 2013-06-20 Texas State University-San Marcos Dispositifs hybrides transistor-varistance
US8618211B2 (en) 2009-03-16 2013-12-31 Dow Corning Corporation Thermally conductive grease and methods and devices in which said grease is used
WO2014065910A1 (fr) * 2012-10-26 2014-05-01 Laird Technologies, Inc. Composites de polymère thermoconducteurs contenant du silicate de magnésium et du nitrure de bore
EP2839507A4 (fr) * 2012-04-17 2015-12-02 Momentive Performance Mat Inc Compositions de polymère thermiquement conductrices destinées à réduire le temps du cycle de moulage
EP2878578A4 (fr) * 2012-07-27 2016-09-28 Hanwha Chemical Corp Nitrure de bore poreux et son procédé de fabrication
CN106385161A (zh) * 2016-10-31 2017-02-08 江苏科岭能源科技有限公司 一种大功率空冷型永磁调速器
US10011700B2 (en) 2014-05-21 2018-07-03 Toyobo Co., Ltd. Polyamide resin composition and method for enhancing thermal aging resistance of polyamide resin
CN108638608A (zh) * 2018-05-09 2018-10-12 苏州明上系统科技有限公司 一种高硬度金属材料
CN109439188A (zh) * 2018-11-15 2019-03-08 北京林业大学 一种超疏水的光热涂层及其制备方法
CN109880043A (zh) * 2019-01-07 2019-06-14 江苏大学 纳米钛酸铁改性聚氨酯预聚体的制备方法及其抗紫外应用
EP3839005A1 (fr) * 2016-10-12 2021-06-23 Honeywell International Inc. Matériaux d'interface thermique comprenant un agent colorant
US11352536B2 (en) 2016-02-01 2022-06-07 Cabot Corporation Thermally conductive polymer compositions containing carbon black
WO2023250071A1 (fr) * 2022-06-22 2023-12-28 Henkel Ag & Co. Kgaa Matériaux d'interface thermique avec dispersions de charge douce
US11984570B2 (en) * 2019-03-06 2024-05-14 Laird Technologies, Inc. Thermal management and/or EMI mitigation materials including coated fillers

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5114112B2 (ja) * 2006-09-07 2013-01-09 日東シンコー株式会社 樹脂組成物、熱伝導シート、金属箔付高熱伝導接着シート、ならびに、金属板付高熱伝導接着シート
JP5114111B2 (ja) * 2006-09-07 2013-01-09 日東シンコー株式会社 樹脂組成物、熱伝導シート、金属箔付高熱伝導接着シート、ならびに、金属板付高熱伝導接着シート
US7527859B2 (en) * 2006-10-08 2009-05-05 Momentive Performance Materials Inc. Enhanced boron nitride composition and compositions made therewith
JP5152108B2 (ja) * 2009-06-18 2013-02-27 Jsr株式会社 熱伝導性樹脂組成物および熱伝導性フィルム
JP5934064B2 (ja) * 2012-09-06 2016-06-15 ダイセルポリマー株式会社 熱可塑性樹脂用添加剤
WO2015105106A1 (fr) * 2014-01-08 2015-07-16 Jnc株式会社 Composition de résine pour une feuille thermoconductrice, feuille thermoconductrice, métal revêtu de résine et dispositif électronique
KR20170002465A (ko) * 2014-04-30 2017-01-06 로저스코포레이션 열전도성 복합체, 이의 제조 방법, 및 상기 복합체를 함유하는 물품
CN106574075B (zh) * 2014-06-19 2019-11-19 Lg伊诺特有限公司 无机填料、包含其的环氧树脂组合物和包含使用所述组合物的绝缘层的发光元件
EP3023456B1 (fr) * 2014-11-18 2019-06-19 Miba Gleitlager Austria GmbH Élément de palier lisse
JP6802527B2 (ja) * 2015-11-19 2020-12-16 東洋紡株式会社 高溶融粘度ポリアミド樹脂組成物
JP7435294B2 (ja) * 2020-06-17 2024-02-21 株式会社豊田中央研究所 高熱伝導性グリース組成物
KR20230156884A (ko) * 2021-03-12 2023-11-15 타츠타 전선 주식회사 열전도성 시트

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869954A (en) * 1987-09-10 1989-09-26 Chomerics, Inc. Thermally conductive materials
US4882225A (en) * 1985-07-29 1989-11-21 Shiseido Company Ltd. Modified powder or particulate material
US5194480A (en) * 1991-05-24 1993-03-16 W. R. Grace & Co.-Conn. Thermally conductive elastomer
US5213868A (en) * 1991-08-13 1993-05-25 Chomerics, Inc. Thermally conductive interface materials and methods of using the same
US5234712A (en) * 1992-06-08 1993-08-10 The Dow Chemical Company Method of making moisture resistant aluminum nitride powder and powder produced thereby

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849284A (en) * 1987-02-17 1989-07-18 Rogers Corporation Electrical substrate material
JPH08183906A (ja) * 1994-12-28 1996-07-16 Shin Etsu Chem Co Ltd 窒化ほう素懸濁液
DE19620942A1 (de) * 1995-06-05 1996-12-12 Gen Electric Effizientes Verfahren zum Hydrophobieren von anorganischem Pulver
JPH11134944A (ja) * 1997-10-28 1999-05-21 Fujikura Ltd 高熱伝導性絶縁材料及び超電導ケーブル
JP3290127B2 (ja) * 1998-01-27 2002-06-10 松下電工株式会社 熱伝導性シリコーンゴム組成物及びこの熱伝導性シリコーンゴム組成物によりなる放熱シート

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882225A (en) * 1985-07-29 1989-11-21 Shiseido Company Ltd. Modified powder or particulate material
US4869954A (en) * 1987-09-10 1989-09-26 Chomerics, Inc. Thermally conductive materials
US5194480A (en) * 1991-05-24 1993-03-16 W. R. Grace & Co.-Conn. Thermally conductive elastomer
US5213868A (en) * 1991-08-13 1993-05-25 Chomerics, Inc. Thermally conductive interface materials and methods of using the same
US5234712A (en) * 1992-06-08 1993-08-10 The Dow Chemical Company Method of making moisture resistant aluminum nitride powder and powder produced thereby

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7867609B2 (en) 1999-12-01 2011-01-11 Honeywell International Inc. Thermal interface materials
JP2006502248A (ja) * 2002-01-14 2006-01-19 ハネウェル・インターナショナル・インコーポレーテッド サーマルインターフェイス材料
US7101565B2 (en) 2002-02-05 2006-09-05 Corpak Medsystems, Inc. Probiotic/prebiotic composition and delivery method
US7535715B2 (en) 2003-07-09 2009-05-19 Deborah D. L. Chung Conformable interface materials for improving thermal contacts
US7695817B2 (en) 2003-11-05 2010-04-13 Dow Corning Corporation Thermally conductive grease and methods and devices in which said grease is used
EP1568733A1 (fr) * 2004-02-20 2005-08-31 Abb Research Ltd. Particules de charge inorganique poreuses revêtues d'un polyorganosiloxane et leur utilisation pour la fabrication de résines à couler durcissables
US8697497B2 (en) 2007-02-09 2014-04-15 Infineon Technologies Ag Module with silicon-based layer
US8093713B2 (en) * 2007-02-09 2012-01-10 Infineon Technologies Ag Module with silicon-based layer
DE102007023555A1 (de) * 2007-05-21 2008-11-27 Siemens Ag Hydrophobe Oberflächenbeschichtung für elektronische und elektrotechnische Komponenten sowie Verwendungen dazu
US8618211B2 (en) 2009-03-16 2013-12-31 Dow Corning Corporation Thermally conductive grease and methods and devices in which said grease is used
WO2013089861A1 (fr) * 2011-12-12 2013-06-20 Texas State University-San Marcos Dispositifs hybrides transistor-varistance
EP2839507A4 (fr) * 2012-04-17 2015-12-02 Momentive Performance Mat Inc Compositions de polymère thermiquement conductrices destinées à réduire le temps du cycle de moulage
US9796595B2 (en) 2012-07-27 2017-10-24 Hanwha Chemical Corporation Porous boron nitride and method of preparing the same
EP2878578A4 (fr) * 2012-07-27 2016-09-28 Hanwha Chemical Corp Nitrure de bore poreux et son procédé de fabrication
WO2014065910A1 (fr) * 2012-10-26 2014-05-01 Laird Technologies, Inc. Composites de polymère thermoconducteurs contenant du silicate de magnésium et du nitrure de bore
US10011700B2 (en) 2014-05-21 2018-07-03 Toyobo Co., Ltd. Polyamide resin composition and method for enhancing thermal aging resistance of polyamide resin
US12180412B2 (en) 2016-02-01 2024-12-31 Cabot Corporation Thermally conductive polymer compositions containing carbon black
US11732174B2 (en) 2016-02-01 2023-08-22 Cabot Corporation Thermally conductive polymer compositions containing carbon black
US11352536B2 (en) 2016-02-01 2022-06-07 Cabot Corporation Thermally conductive polymer compositions containing carbon black
EP3839005A1 (fr) * 2016-10-12 2021-06-23 Honeywell International Inc. Matériaux d'interface thermique comprenant un agent colorant
CN106385161A (zh) * 2016-10-31 2017-02-08 江苏科岭能源科技有限公司 一种大功率空冷型永磁调速器
CN106385161B (zh) * 2016-10-31 2018-10-12 江苏科岭能源科技有限公司 一种大功率空冷型永磁调速器
CN108638608A (zh) * 2018-05-09 2018-10-12 苏州明上系统科技有限公司 一种高硬度金属材料
CN109439188B (zh) * 2018-11-15 2020-09-11 北京林业大学 一种超疏水的光热涂层及其制备方法
CN109439188A (zh) * 2018-11-15 2019-03-08 北京林业大学 一种超疏水的光热涂层及其制备方法
CN109880043B (zh) * 2019-01-07 2021-04-20 江苏大学 纳米钛酸铁改性聚氨酯预聚体的制备方法及其抗紫外应用
CN109880043A (zh) * 2019-01-07 2019-06-14 江苏大学 纳米钛酸铁改性聚氨酯预聚体的制备方法及其抗紫外应用
US11984570B2 (en) * 2019-03-06 2024-05-14 Laird Technologies, Inc. Thermal management and/or EMI mitigation materials including coated fillers
WO2023250071A1 (fr) * 2022-06-22 2023-12-28 Henkel Ag & Co. Kgaa Matériaux d'interface thermique avec dispersions de charge douce

Also Published As

Publication number Publication date
GB2370040A (en) 2002-06-19
GB0204971D0 (en) 2002-04-17
DE10085011T1 (de) 2003-01-16
JP2003509578A (ja) 2003-03-11
GB2370040A8 (en) 2002-06-19
GB2370040B (en) 2003-10-29
JP2006241470A (ja) 2006-09-14
AU3886801A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
WO2001021393A1 (fr) Materiaux thermoconducteur d'un compose hydrophobe devant etre soumis a une gestion thermique
JP2006241470A5 (fr)
KR101261064B1 (ko) 열 전도성 조성물 및 그의 제조 방법
US6040362A (en) Heat-conducting polymer composition
TWI244880B (en) Phase change thermal interface materials including polyester resin
US9045674B2 (en) High thermal conductance thermal interface materials based on nanostructured metallic network-polymer composites
Şimşek et al. Uranium and lead adsorption onto bentonite and zeolite modified with polyacrylamidoxime
EP0913431A3 (fr) Particules composites noires à base de fer, procédé pour leur préparation, peinture et caoutchouc ou résine les contenant
CN111164047A (zh) 六方晶氮化硼粉末及其制造方法、以及使用了该粉末的组合物和散热材料
TW201100479A (en) Process for uniform and higher loading of metallic fillers into a polymer matrix using a highly porous host material
KR20050090419A (ko) 도전성 재료를 형성하기 위한 탄소질 재료 및 그 용도
KR20110013907A (ko) 높은 열전도 효율을 가지는 방열 패드 및 이의 제조방법
CN110959190A (zh) 低介电常数导热性散热构件
JP2000143808A (ja) 熱伝導性・電気絶縁性シリコーンゲル組成物
EP3817535B1 (fr) Composition d'absorption d'ondes électromagnétiques thermoconductrice et sa feuille
WO2001081490A3 (fr) Suspensions boueuses de particules d'oxyde inorganique abrasif et procede permettant de polir des surfaces contenant du cuivre
CN114667319B (zh) 导热性有机硅凝胶组合物、导热性有机硅片材及其制造方法
EP2597114B1 (fr) Matériaux composites organiques-inorganiques contenant des anneaux de triazine et dispositifs électriques les utilisant
JPS6191232A (ja) 樹脂充填用酸化マグネシウムの製造方法
JP3458196B2 (ja) 高熱伝導性樹脂組成物
JP2007532000A (ja) ナノ複合誘電体積層材及びナノ複合はんだレジストを含むマイクロエレクトロニクス・パッケージ
TW200513439A (en) High flow rate coated magnesium oxide powder and resin composition containing such powder
Siddabattuni et al. Impedance spectroscopy studies of surface engineered TiO2 nanoparticles using slurry technique
SG188093A1 (en) Siliceous powder, process for production of the same, and use thereof
WO2014091594A1 (fr) Minéraux argileux en feuillets, vernis et matériau composite organique-inorganique les contenant, et dispositif électrique, dispositif à semi-conducteurs, et bobine pour machine rotative utilisant ledit matériau composite organique-inorganique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 200204971

Country of ref document: GB

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2001 524797

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

RET De translation (de og part 6b)

Ref document number: 10085011

Country of ref document: DE

Date of ref document: 20030116

WWE Wipo information: entry into national phase

Ref document number: 10085011

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607