[go: up one dir, main page]

WO2001011735A1 - Optical amplifier - Google Patents

Optical amplifier Download PDF

Info

Publication number
WO2001011735A1
WO2001011735A1 PCT/JP2000/005233 JP0005233W WO0111735A1 WO 2001011735 A1 WO2001011735 A1 WO 2001011735A1 JP 0005233 W JP0005233 W JP 0005233W WO 0111735 A1 WO0111735 A1 WO 0111735A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplification
optical fiber
signal light
gain
band
Prior art date
Application number
PCT/JP2000/005233
Other languages
French (fr)
Japanese (ja)
Inventor
Hisashi Sawada
Minoru Yoshida
Kazuo Imamura
Original Assignee
Mitsubishi Cable Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries, Ltd. filed Critical Mitsubishi Cable Industries, Ltd.
Publication of WO2001011735A1 publication Critical patent/WO2001011735A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements

Definitions

  • the present invention relates to an optical amplifier provided with an amplifying optical fiber for directly amplifying signal light by the stimulated emission effect as an amplifying element, and particularly to a technique for smoothly performing amplification in wavelength division multiplex communication.
  • an optical amplifier is used to amplify the power of signal light attenuated in the middle of a transmission line and send the amplified signal light to the optical transmission line again.
  • amplification doped with A1 together with Er Optical fibers are effective because the amplification gain wavelength band has a relatively wide range (1531 ⁇ ! ⁇ 156 nm) centered at 150 nm. Academic Fall Meeting (see 199 2) C-263.
  • wavelength-division multiplexing communication especially when using a dispersion-shifted fiber (DSF) in which the zero dispersion is shifted to the 1550 nm band as a silica-based optical fiber for transmission, so-called light wave mixing is used.
  • DSF dispersion-shifted fiber
  • Light of an unnecessary wavelength component is generated, which becomes noise and signal degradation easily occurs. Therefore, in wavelength division multiplexing communication, 157 ⁇ !, which is slightly longer than the 1550 nm band!
  • L-band a wavelength range of up to 16 1 O nm
  • L-band has been studied to suppress the degradation of transmission characteristics due to light wave mixing as described above. Therefore, in order to amplify a signal whose wavelength range is multiplexed, it is necessary to extend the amplifiable range of the amplification optical fiber to the L-band.
  • wavelength gain difference A large gain is obtained in the wavelength band including L-band, • have gain characteristics that are flattened in the wavelength band including the L band so that no gain difference (hereinafter, referred to as wavelength gain difference) occurs in the amplification output of each signal light;
  • the present invention has been made to solve the above problems, and when performing amplification in the L-band, a large gain is obtained for each signal light included in the L-band, and The purpose is to reduce the wavelength gain difference of each signal light.
  • a front-stage amplifier and a rear-stage amplifier are connected in cascade, and each of the front-stage and rear-stage amplifiers includes an amplification optical fiber as an amplification element for amplifying signal light by the stimulated emission effect.
  • the product of the concentration length which is the product of the doping amount of Er and the length of the optical fiber for amplification of the preamplifier, is 4 to 8 kppm ⁇ m.
  • the concentration length product of the amplification optical fiber of the post-amplification section is set to 80 to 10 Oppm ⁇ m. Thereby, the wavelength gain difference of each signal light can be reduced.
  • the preamplifier and the postamplifier are connected via an isolator, and the preamplifier and the postamplifier are each provided with the amplifying optical fiber. It is preferable to provide an excitation light source for bombing.
  • FIG. 1 is a configuration diagram of an optical amplifier according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing experimental results obtained by examining gain characteristics using the optical amplifier having the configuration of FIG.
  • FIG. 3 is a diagram showing an experimental result obtained by examining a gain characteristic using the optical amplifier having the configuration of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram illustrating an overall configuration of an optical amplifier according to an embodiment of the present invention.
  • the optical amplifier 1 of this embodiment has a two-stage amplification configuration. That is, the optical amplifier 1 has a front-stage amplifier 2a and a rear-stage amplifier 2b, and the front and rear amplifiers 2a and 2b are connected to each other via the isolator 4.
  • the preamplifier 2a includes an amplification optical fiber 6a as an amplification element for amplifying signal light by the stimulated emission effect, an excitation light source 7a such as a laser diode for pumping the amplification optical fiber 6a, and An optical power bra 8a for introducing the excitation light from the excitation light source 7a to the amplification optical fiber 6a is provided.
  • the preamplifier 2a is of a forward pump type in which the signal light and the pump light enter the amplification optical fiber 6a from the same direction.
  • the post-amplifying unit 2b includes an amplification optical fiber 6b as an amplification element for amplifying signal light by the stimulated emission effect, an excitation light source 7b such as a laser diode for pumping the amplification optical fiber 6b, and an excitation light source 7b.
  • An optical power bra 8b for introducing the excitation light from the light source 7b into the amplification optical fiber 6b.
  • the post-amplifier 2b is of a post-pump type in which pump light is incident on the amplification optical fiber 6b from the opposite direction with respect to the signal light.
  • Er and A1 are co-doped in the core or in the outer periphery thereof.
  • the amplification optical fiber 6b is set so that the concentration length product, which is the product of the Dop amount of Er in the optical fiber 6b and the length of the optical fiber 6b, is 80 to 10 Oppm ppm. It has been done.
  • the pump light sources 7 that bomb both optical fibers 6a and 6b are used.
  • Appropriate conditions for the pump light powers of a and 7b are also different from each other. For this reason, there is a concern that the excitation light and the fluorescence from the excitation light source 7b of the rear amplification unit 2b may affect the front amplification unit 2a.
  • the isolator 4 is provided between the two amplifying sections 2a and 2b, the excitation light and the fluorescent light from the excitation light source 7b of the subsequent amplifying section 2b are not separated by the isolator 4.
  • the pump light of the former-stage amplifier 2a passes through the isolator 4 and enters, so that the power of the pump light source 7b of the latter-stage optical fiber 6b is changed from the former-stage amplifier 2a.
  • the setting may be made in consideration of the power of the exciting pump light.
  • 10a and 1 Ob are polarization-independent isolators that pass signal light only in one direction to suppress parasitic oscillation and reduce noise
  • 12a and 12b are input / output connectors.
  • Numeral 14 denotes a coupling optical fiber for coupling these elements.
  • the gain wavelength for the front and rear wavelength bands including the L-band is determined. The results of examining the characteristics are shown below.
  • the Er doping amount of 90 0 ⁇ A1 is 10000 ppm
  • the power-off wavelength is 0.92 ⁇
  • the mode field diameter is 4.5 m.
  • the concentration length product CL1 is set to 4 kppm'm, 6 kppm ⁇ m, and 8 kppm ⁇ m, respectively.
  • the pumping light wavelength of the preamplifier 2a is set to 1.48 / m
  • the pumping light power is set to 5 OmW.
  • the amplification optical fiber 6b in the rear amplification section 2b has the same characteristics as the amplification optical fiber 6a in the front amplification section 2a. However, the length of the optical fiber 6b is lengthened, and the concentration length product CL 2 is fixedly set to 4 Okppm ⁇ m. Also, the pumping light wavelength of the post-amplifier 2 b is set to 1.48 And the pump light power is 15 OmW.
  • the concentration-length product CL1 of the amplification optical fiber 6a in the preamplifier 2a in Fig. 1 was set to 4 kppmm, 6 kppm-m, and 8 kppmm.
  • the band where the gain is larger spreads to the longer wavelength side.t
  • the concentration-length product CL 1 is increased, the rising part of the characteristic curve is slightly shifted to the longer wavelength side.
  • the maximum gain is almost unchanged regardless of the signal light input of 1 OdBm, -40 dBm, regardless of the concentration length product CL1.
  • the portion where the gain is flat is in the range of 1550 to 158 Onm, and the gain in that case is about 3 ldB.
  • the maximum gain does not change even if CL 1 is changed even if the concentration length product CL 1 of the amplification optical fiber 6 a in the pre-amplification section 2 a is changed by the concentration length product of the amplification optical fiber 6 b in the post-amplification section 2 b.
  • the reason is that because the CL 2 is large and has a sufficient amplification factor, the amplification effect of the amplification optical fiber 6a in the pre-amplification section 2a does not appear significantly to the gain. Conceivable.
  • Table 1 shows the wavelength band where the amount of decrease in the gain from its maximum value is less than 1 dB when the signal light input is -1 OdBm.
  • the wavelength band in this case is approximately 28 nm when the concentration-length product CL 1 of the amplification optical fiber 6 a is 4 kppmm, 6 kppm-m, or 8 kppnim.
  • Table 2 shows the wavelength band where the gain is 30 dB or more when the signal light input is 11 OdBm. As shown in Table 2, the wavelength band in this case is approximately equal when the concentration-length product CL1 of the amplification optical fiber 6a is 4 kppmm, 6 kppm-m, or 8 kppmm. It has a width of 32 nm.
  • the concentration-length product CL 2 of the amplification optical fiber 6 b in the post-amplifying section 2 b is set to 4 Okppm ⁇ m
  • the gain is L—band (1570 M! ⁇ 16 1 Onm) It is hard to say that it is flat throughout. Therefore, it can be understood that the above conditions alone are not enough to obtain sufficient gain flatness for the L-band.
  • the doping amount of Er is 900 Opm
  • the doping amount of A1 is 100 Oppm
  • the cut-off wavelength is 0.92 ⁇ mode field diameter 4.5. It has the features of 1 and uses the product of concentration length product CL 1 of 8 kppm ⁇ m.
  • the pump light wavelength of the preamplifier 2a is 1.48 // m, and the pump light power is 5 OmW.
  • the amplification optical fiber 6b in the rear amplification unit 2b has the same characteristics as the amplification optical fiber 6b in the front amplification unit 2a. However, for the optical fiber 6b, use four types of optical fiber 6b whose length is made longer and the concentration length product CL2 is 4 Okppmm, 80 kppm-m, 90 kppm-m, 10 Okppm-m. ing. Also, the pump light of the post-amplifier 2b The wavelength is 1.48 zm and the pump light power is 15 OmW.
  • the concentration length product CL 2 of the amplification optical fiber 6 b in the post-amplifier 2 b is set to 40 kppm-m, the signal light wavelength exceeds 158 58 ⁇ .
  • the gain of the characteristic curve gradually decreases, which is insufficient for flattening the gain over the entire L-band (1570 nm to 1610M).
  • the signal light input is -1 OdBm
  • the concentration length product CL 2 of the amplification optical fiber 6b is 8 Okppm ⁇ ⁇ !
  • the gain is flat over the entire L-band, and the gain in that case is about 3 I dB.
  • Table 3 shows the wavelength band where the amount of decrease in the gain from its maximum value is less than 1 dB when the signal light input is 11 OdBm.
  • the wavelength band in this case is as follows:
  • the concentration-length product CL2 of the optical fiber 6b for amplification is 8 Okppm ⁇ m, 90 kppm-in, and 100 kppm ⁇ m. It has a width of about 46 nm including the band.
  • Table 4 shows the wavelength band where the gain is 30 dB or more when the signal light input is 11 OdBm.
  • the wavelength band in this case is either when the concentration length product CL2 of the optical fiber for amplification 6b is 80 kppm ⁇ m, 90 kppm-m, or 100 kppm ⁇ m. Also has a width of about 48 nm including the L-band.
  • Table 5 shows the wavelength band where the gain is 30 dB or more when the signal light input is 4 OdBm. As shown in Table 5, in this case, the concentration band product of the optical fiber for amplification 6b, CL2, is 8 Okppm ⁇ m, 90 kppm-m, and 100 kppm-m. —It has a width of about 56 nm including the band.
  • the conversion efficiency from pump light to signal light in a wavelength band in which the amount by which the gain decreased from the maximum value was less than 1 dB was examined. It was 50-60%. Although this conversion efficiency does not reach the conversion efficiency of 74% in the case of the conventional example, it is a practically sufficient value.
  • the concentration length product CL of the amplification optical fiber 6a in the front amplification unit 2a is set to 8 kppmm
  • the concentration length product CL of the amplification optical fiber 6b in the rear amplification unit 2b is set to 8 kppmm
  • the concentration length product CL of the amplification optical fiber 6b in the rear amplification unit 2b is set to 8 kppmm
  • gain flattening over the entire L-band 570-161 Onm
  • the concentration-length product CL 2 was set to 80 to 10 Okppm ⁇ m, the gain over the entire L-band could be sufficiently flattened.
  • the concentration-length product CL1 of the amplification optical fiber 6a in the preamplifier 2a was fixed at 8 kppmm, and CL1 was set to 4 kppmm or 6 kppmm and CL2 was set to 6 kppmm. Were not changed to 8 Okppm ⁇ m, 90 kppm-in, 100 kppm ⁇ m.
  • the flattening of the gain requires more than the influence of the concentration-length product CL1 of the amplification optical fiber 6a in the pre-amplification section 2a, rather than the influence of the amplification optical fiber 6b in the post-amplification section 2b.
  • the CL 1 force is 8 kppm ⁇ m even if (: 1 is set to 41 ⁇ 111 '111 ⁇ It is considered that a curve having a gain characteristic similar to that of is obtained.
  • the preamplifier 2a is a forward pump type
  • the rear amplifier 2b is a backward pump type.
  • the present invention is not limited to this. It is also possible to use an excitation type, the rear amplification unit 2b is a forward excitation type, or both the front and rear amplification units 2a and 2b are both a forward excitation type, or both are a backward excitation type.
  • the present invention when amplification is performed in the L-band (l 570 nn! To 1610 nm), a large gain can be obtained for the signal light of each wavelength included in the L-band. Further, the wavelength gain difference of the signal light can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

An optical amplifier comprises an amplifier element including a fiber optic amplifier that directly amplifies signal light by stimulated emission. For amplification in the L-band (1570 nm to 1610 nm), a large gain is obtained for all signal light included in the L-band, while the difference in gain between wavelengths of the signal light is decreased. The optical amplifier is composed of a front-stage (2a) and a final stage (2b), which include fiber optic amplifiers (6a, 6b) for amplification of signal light by stimulated emission. The product of the Er dose and fiber length is 4 to 8 kppm-m for the fiber optic amplifier (6a) in the front stage (2a), and 80 to 100 kppm-m for the fiber optic amplifier (6b) in the final stage (2b).

Description

明細書  Specification
光増幅器  Optical amplifier
技術分野  Technical field
本発明は、 誘導放出効果によって信号光を直接に増幅する増幅用光ファイバを 増幅素子として備えた光増幅器に係り、 特には、 波長多重通信において増幅を円 滑に行うための技術に関する。  The present invention relates to an optical amplifier provided with an amplifying optical fiber for directly amplifying signal light by the stimulated emission effect as an amplifying element, and particularly to a technique for smoothly performing amplification in wavelength division multiplex communication.
背景技術 Background art
一般に、 光通信システムにおいては、 伝送路の途中で減衰した信号光のパワー を増幅して再度、 光伝送路に送出するために、 光増幅器が使用される。  Generally, in an optical communication system, an optical amplifier is used to amplify the power of signal light attenuated in the middle of a transmission line and send the amplified signal light to the optical transmission line again.
従来、 このような光増幅器における増幅素子として、 誘導放出効果によって信 号光を光電変換することなく直接に増幅する増幅用光ファイバを用いたものが提 供されている。 一方、 複数の情報を単一の光ファイバ伝送路で効率良く伝送する ために、 波長多重通信の有効性が指摘されている。  Conventionally, as an amplifying element in such an optical amplifier, one using an amplifying optical fiber for directly amplifying signal light without photoelectric conversion by an stimulated emission effect has been provided. On the other hand, the effectiveness of wavelength division multiplexing has been pointed out to efficiently transmit multiple pieces of information over a single optical fiber transmission line.
このような波長多重通信において、 上記の増幅用光ファイバを増幅素子とした 光増幅器を用いて波長多重化された信号光を一括して増幅する場合、 E rととも に A 1をドープした増幅用光ファイバは、 増幅利得波長帯が 1 5 5 O nmを中心と して比較的広い範囲(1 5 3 Ο ηπ!〜 1 5 6 0 nm)をもつので有効である (たとえば、 電子情報通信学会秋季大会(1 9 9 2 ) C— 2 6 3参照)。  In such wavelength-division multiplexing communication, when the signal light that has been wavelength-multiplexed is collectively amplified using an optical amplifier that uses the above-described amplification optical fiber as an amplifying element, amplification doped with A1 together with Er Optical fibers are effective because the amplification gain wavelength band has a relatively wide range (1531ηπ! ~ 156 nm) centered at 150 nm. Academic Fall Meeting (see 199 2) C-263.
波長多重通信を行う場合において、 特に、 伝送用の石英系の光ファイバとして、 零分散を 1 5 5 O nm帯にシフ卜した分散シフトファイバ(D S F )を使用するとき には、 いわゆる光波混合によって不要な波長成分の光が生成され、 これがノイズ になって信号劣化が起こり易い。 そこで、 波長多重通信において、 1 5 5 0 nm帯 よりも若干長波長側の 1 5 7 Ο ηπ!〜 1 6 1 O nmの波長範囲(以下、 L一 bandとい う)を使用することで、 上記のような光波混合に基づく伝送特性の劣化を抑える ことが検討されている。 そのため、 波長範囲を多重化された信号を増幅するうえ では、 増幅用光ファイバの増幅可能な範囲も L— bandまで広げることが必要とな る。  In wavelength-division multiplexing communication, especially when using a dispersion-shifted fiber (DSF) in which the zero dispersion is shifted to the 1550 nm band as a silica-based optical fiber for transmission, so-called light wave mixing is used. Light of an unnecessary wavelength component is generated, which becomes noise and signal degradation easily occurs. Therefore, in wavelength division multiplexing communication, 157 ηπ !, which is slightly longer than the 1550 nm band! The use of a wavelength range of up to 16 1 O nm (hereinafter referred to as L-band) has been studied to suppress the degradation of transmission characteristics due to light wave mixing as described above. Therefore, in order to amplify a signal whose wavelength range is multiplexed, it is necessary to extend the amplifiable range of the amplification optical fiber to the L-band.
L一 bandを含む信号光を増幅するためには、  In order to amplify the signal light including L-band,
, L一 bandを含む波長帯域において大きな利得が得られること、 •各信号光の増幅出力に利得差(以下、 波長利得差という)が生じないように L一 bandを含む波長帯域において平坦化された利得特性をもつこと、 , A large gain is obtained in the wavelength band including L-band, • have gain characteristics that are flattened in the wavelength band including the L band so that no gain difference (hereinafter, referred to as wavelength gain difference) occurs in the amplification output of each signal light;
が要求される。  Is required.
しかしながら、 従来の光増幅器においては、 これらの要求を満たすことができ るものは未だ提供されていないのが実情である。  However, the fact is that a conventional optical amplifier that can satisfy these requirements has not been provided yet.
したがって、 本発明は、 上記の問題点を解決するためになされたもので、 L— bandにおける増幅を行う場合に、 この L一 bandに含まれる各信号光について大き な利得が得られ、 かつ、 各信号光の波長利得差が小さくなるようにすることを目 的とする。  Therefore, the present invention has been made to solve the above problems, and when performing amplification in the L-band, a large gain is obtained for each signal light included in the L-band, and The purpose is to reduce the wavelength gain difference of each signal light.
発明の開示 Disclosure of the invention
本発明の光増幅器は、 前段増幅部と後段増幅部とが縦列接続され、 これら前段、 後段の各増幅部は、 誘導放出効果によって信号光を増幅する増幅素子としての増 幅用光ファイバを備えており、 前記前段増幅部の増幅用光ファイバの E rのドー プ量と条長との積である濃度条長積を 4〜 8 kppm · mとしている。 これにより、 増幅可能な範囲を L一 bandまで広げて、 L一 bandに含まれる各信号光を大きな利 得で増幅することが可能となる。  In the optical amplifier of the present invention, a front-stage amplifier and a rear-stage amplifier are connected in cascade, and each of the front-stage and rear-stage amplifiers includes an amplification optical fiber as an amplification element for amplifying signal light by the stimulated emission effect. The product of the concentration length, which is the product of the doping amount of Er and the length of the optical fiber for amplification of the preamplifier, is 4 to 8 kppm · m. As a result, the range that can be amplified is extended to the L-band, and each signal light included in the L-band can be amplified with great gain.
本発明は上述の改良された光増幅器において、 前記後段増幅部の増幅用光ファ ィバの前記濃度条長積を 8 0〜 1 0 O kppm · mにしている。 これにより、 各信号 光の波長利得差を小さくすることができる。  According to the present invention, in the improved optical amplifier described above, the concentration length product of the amplification optical fiber of the post-amplification section is set to 80 to 10 Oppm · m. Thereby, the wavelength gain difference of each signal light can be reduced.
なお、 上述の改良された光増幅器では、 前記前段増幅部と、 前記後段増幅部と をアイソレータを介して接続するのが好ましく、 また、 前記前段、 後段の各増幅 部は、 前記増幅用光ファイバをボンビングする励起光源を備えているのが好まし い。  In the improved optical amplifier described above, it is preferable that the preamplifier and the postamplifier are connected via an isolator, and the preamplifier and the postamplifier are each provided with the amplifying optical fiber. It is preferable to provide an excitation light source for bombing.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態に係る光増幅器の構成図である。  FIG. 1 is a configuration diagram of an optical amplifier according to an embodiment of the present invention.
図 2は、 図 1の構成の光増幅器を用いて利得特性を調べた実験結果を示す図で ある。  FIG. 2 is a diagram showing experimental results obtained by examining gain characteristics using the optical amplifier having the configuration of FIG.
図 3は、 図 1の構成の光増幅器を用いて利得特性を調べた実験結果を示す図で ある。 発明を実施するための最良の形態 FIG. 3 is a diagram showing an experimental result obtained by examining a gain characteristic using the optical amplifier having the configuration of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の最良の実施形態について図 1を参照して詳細に説明する。  Hereinafter, the best embodiment of the present invention will be described in detail with reference to FIG.
図 1は、 本発明の実施形態における光増幅器の全体構成を示す図である。  FIG. 1 is a diagram illustrating an overall configuration of an optical amplifier according to an embodiment of the present invention.
この実施形態の光増幅器 1は 2段増幅の構成となっている。 すなわち、 光増幅 器 1は、 前段増幅部 2 aと後段増幅部 2 bとを有しており、 これら前後の各増幅部 2 a, 2 bがアイソレータ 4を介して互いに接続されている。  The optical amplifier 1 of this embodiment has a two-stage amplification configuration. That is, the optical amplifier 1 has a front-stage amplifier 2a and a rear-stage amplifier 2b, and the front and rear amplifiers 2a and 2b are connected to each other via the isolator 4.
前段増幅部 2 aは、 誘導放出効果によって信号光を増幅する増幅素子としての 増幅用光フアイバ 6 aと、 この増幅用光ファイバ 6 aをボンピングするレーザダイ ォ一ド等の励起光源 7 aと、 この励起光源 7 aからの励起光を増幅用光フアイバ 6 aに導入する光力ブラ 8 aとを備えている。 前段増幅部 2 aは、 信号光と励起光と が同じ方向から増幅用光ファイバ 6 aに入射される前方励起型となっている。  The preamplifier 2a includes an amplification optical fiber 6a as an amplification element for amplifying signal light by the stimulated emission effect, an excitation light source 7a such as a laser diode for pumping the amplification optical fiber 6a, and An optical power bra 8a for introducing the excitation light from the excitation light source 7a to the amplification optical fiber 6a is provided. The preamplifier 2a is of a forward pump type in which the signal light and the pump light enter the amplification optical fiber 6a from the same direction.
増幅用光ファイバ 6 aは、 コア内またはその外周部に E rと A 1とが共ド一プさ れている。 また、 増幅用光ファイバ 6 aは、 その内の E rのドープ量と光ファイバ 6 aの条長との積である濃度条長積が 4〜8 kppm · mになるように設定されている。 後段増幅部 2 bは、 誘導放出効果によって信号光を増幅する増幅素子としての 増幅用光ファイバ 6 bと、 この増幅用光ファイバ 6 bをボンピングするレーザダイ ォード等の励起光源 7 bと、 この励起光源 7 bからの励起光を増幅用光フアイバ 6 bに導入する光力ブラ 8 bとを備えている。 後段増幅部 2 bは、 信号光に対して励 起光が逆方向から増幅用光ファイバ 6 bに入射される後段励起型となっている。 増幅用光ファイバ 6 bは、 コア内またはその外周部に E rと A 1とが共ドープさ れている。 増幅用光ファイバ 6 bは、 その内の E rのド一プ量と光ファイバ 6 bの 条長との積である濃度条長積が 8 0〜1 0 O kppm ' mになるように設定されてい る。  In the amplification optical fiber 6a, Er and A1 are co-doped in the core or on the outer periphery thereof. The amplification optical fiber 6a is set such that the product of the concentration and the product of the doping amount of Er and the length of the optical fiber 6a is 4 to 8 kppmm. . The post-amplifying unit 2b includes an amplification optical fiber 6b as an amplification element for amplifying signal light by the stimulated emission effect, an excitation light source 7b such as a laser diode for pumping the amplification optical fiber 6b, and an excitation light source 7b. An optical power bra 8b for introducing the excitation light from the light source 7b into the amplification optical fiber 6b. The post-amplifier 2b is of a post-pump type in which pump light is incident on the amplification optical fiber 6b from the opposite direction with respect to the signal light. In the amplification optical fiber 6b, Er and A1 are co-doped in the core or in the outer periphery thereof. The amplification optical fiber 6b is set so that the concentration length product, which is the product of the Dop amount of Er in the optical fiber 6b and the length of the optical fiber 6b, is 80 to 10 Oppm ppm. It has been done.
このように、 前後の各増幅部 2 a, 2 bにおいて増幅用光ファイバ 6 a, 6 bの濃 度条長積がそれぞれ異なるので、 両光ファイバ 6 a, 6 bをボンビングする各励起 光源 7 a, 7 bの励起光パワーの適切な条件も互いに異なっている。 そのため、 後 段増幅部 2 bの励起光源 7 bからの励起光や蛍光が前段増幅部 2 aに影響すること が危惧される。 しかしながら、 両増幅部 2 a, 2 b間にはアイソレータ 4が設けら れているので、 後段増幅部 2 bの励起光源 7 bからの励起光や蛍光は、 このアイソ レー夕 4で遮断されて前段増幅部 2aに影響しない。 したがって、 前段増幅部 2a での励起光パワーの調整が容易になる。 また、 後段増幅部 2 bでは、 前段増幅部 2 aの励起光がアイソレータ 4を通過して入射するので、 後段増幅用光ファイバ 6 bの励起光源 7 bのパワーは、 前段増幅部 2 aから入射する励起光パワーを考慮 して、 設定すればよい。 As described above, since the amplification products of the amplification optical fibers 6a and 6b are different from each other in the front and rear amplification sections 2a and 2b, the pump light sources 7 that bomb both optical fibers 6a and 6b are used. Appropriate conditions for the pump light powers of a and 7b are also different from each other. For this reason, there is a concern that the excitation light and the fluorescence from the excitation light source 7b of the rear amplification unit 2b may affect the front amplification unit 2a. However, since the isolator 4 is provided between the two amplifying sections 2a and 2b, the excitation light and the fluorescent light from the excitation light source 7b of the subsequent amplifying section 2b are not separated by the isolator 4. It is cut off at Ray 4 and does not affect the preamplifier 2a. Therefore, the adjustment of the pump light power in the preamplifier 2a becomes easy. Also, in the latter-stage amplifier 2b, the pump light of the former-stage amplifier 2a passes through the isolator 4 and enters, so that the power of the pump light source 7b of the latter-stage optical fiber 6b is changed from the former-stage amplifier 2a. The setting may be made in consideration of the power of the exciting pump light.
なお、 1 0a, 1 Obは寄生発振を抑えて雑音を低減するために信号光を一方向 にのみ通過させる偏波無依存型のアイソレータであり、 1 2a, 1 2bは入出射用 のコネクタ、 14はこれらの各素子間を結合するための結合用光ファイバである。 図 1の構成の光増幅器において、 前後の増幅用光ファイバ 6a, 6bの濃度条長 積 CL 1, CL 2をそれぞれ適切に設定するために、 L一 bandを含む前後の波長 帯域について、 利得波長特性を調べた結果を次に示す。  In addition, 10a and 1 Ob are polarization-independent isolators that pass signal light only in one direction to suppress parasitic oscillation and reduce noise, and 12a and 12b are input / output connectors. Numeral 14 denotes a coupling optical fiber for coupling these elements. In the optical amplifier with the configuration shown in Fig. 1, in order to properly set the concentration length products CL1 and CL2 of the front and rear amplification fibers 6a and 6b, respectively, the gain wavelength for the front and rear wavelength bands including the L-band is determined. The results of examining the characteristics are shown below.
(実験 1)  (Experiment 1)
ここでは、 前段増幅部 2aにおける増幅用光ファイバ 6aとして、 Erのドープ 量 9 0 Ορρπκ A1のド一プ量 1 0000 ppm、 力ットオフ波長 0. 9 2 ζπκ モー ドフィールド径 4. 5 1 mの特徵を備えたものを 3種類用いている。 これら 3種 類の光ファイバ 6 aは、 濃度条長積 CL 1を、 それぞれ、 4kppm ' m、 6 kppm · m、 8kppm · mとしている。 また、 前段増幅部 2 aの励起光波長を 1. 48 /mとし、 励 起光パワーを 5 OmWとしている。  Here, as the amplification optical fiber 6a in the pre-amplifier 2a, the Er doping amount of 90 0ρρπκ A1 is 10000 ppm, the power-off wavelength is 0.92 ζπκ, and the mode field diameter is 4.5 m. Three types with special features are used. In these three types of optical fibers 6a, the concentration length product CL1 is set to 4 kppm'm, 6 kppm · m, and 8 kppm · m, respectively. Also, the pumping light wavelength of the preamplifier 2a is set to 1.48 / m, and the pumping light power is set to 5 OmW.
後段増幅部 2 bにおける増幅用光ファイバ 6 bは、 前段増幅部 2 aの増幅用光フ アイバ 6aと同じ特性のものを使用している。 しかしながら、 光ファイバ 6bは、 その条長を長くして濃度条長積 CL 2を 4 Okppm · mに固定的に設定している。 また、 後段増幅部 2 bの励起光波長を 1. 48
Figure imgf000006_0001
とし、 励起光パワーを 1 5 OmW としている。
The amplification optical fiber 6b in the rear amplification section 2b has the same characteristics as the amplification optical fiber 6a in the front amplification section 2a. However, the length of the optical fiber 6b is lengthened, and the concentration length product CL 2 is fixedly set to 4 Okppm · m. Also, the pumping light wavelength of the post-amplifier 2 b is set to 1.48
Figure imgf000006_0001
And the pump light power is 15 OmW.
そして、 — l OdBm, — 4 OdBmの 2種類の信号光入力において、 図 1中の符 号 Xの位置を信号光入力とし、 符号 Yの位置を信号光出力として利得波長特性を 調べた。 その結果を図 2、 表 1および表 2に示す。  Then, for two types of signal light input of —l OdBm and —4 OdBm, the gain wavelength characteristics were examined with the position of the symbol X in FIG. 1 as the signal light input and the position of the code Y as the signal light output. The results are shown in Figure 2, Table 1 and Table 2.
なお、 参考のために、 図 1のような 2段増幅の構成ではなく、図 1の場合と同 じ特性を有する単一の増幅用光ファイバを有する単段増幅の構成としたうえで、 濃度条長積を 2 Okppm ' mに設定した場合の利得波長特性を調べた。 その結果も 同時に図 2、 表 1および表 2に示している, For reference, instead of the two-stage amplification configuration shown in Fig. 1, a single-stage amplification configuration with a single amplification optical fiber having the same characteristics as in Fig. 1 was used. The gain wavelength characteristics when the strip length product was set to 2 Okppm'm were examined. The result Also shown in Figure 2, Table 1 and Table 2,
【表 1】  【table 1】
Figure imgf000007_0001
図 2から分かるように、 図 1の前段増幅部 2 aにおける増幅用光ファイバ 6 aの 濃度条長積 C L 1を 4kppm · m、 6 kppm - m, 8 kppm · mとした 3種類のいずれの 場合も、 従来例の場合に比較して、 利得が大きい帯域が長波長側に広がっている t また、 濃度条長積 CL 1を大きくすると、 特性曲線の立ち上がり部分がわずかに 長波長側にシフトするが、 最大利得は信号光入力が一 1 OdBm, — 40dBmのい ずれも濃度条長積 CL 1に依存することなくほとんど変わっていない。 たとえば, 信号光入力一 1 OdBmの場合、 利得が平坦な部分は、 1 5 5 0〜 1 58 Onmの範 囲で、 その場合の利得は約 3 ldBである。
Figure imgf000007_0001
As can be seen from Fig. 2, the concentration-length product CL1 of the amplification optical fiber 6a in the preamplifier 2a in Fig. 1 was set to 4 kppmm, 6 kppm-m, and 8 kppmm. In this case, as compared with the conventional example, the band where the gain is larger spreads to the longer wavelength side.t Also, when the concentration-length product CL 1 is increased, the rising part of the characteristic curve is slightly shifted to the longer wavelength side. However, the maximum gain is almost unchanged regardless of the signal light input of 1 OdBm, -40 dBm, regardless of the concentration length product CL1. For example, when the signal light input is 1 OdBm, the portion where the gain is flat is in the range of 1550 to 158 Onm, and the gain in that case is about 3 ldB.
前段増幅部 2 aにおける増幅用光ファイバ 6 aの濃度条長積 C L 1を変化させて も最大利得が変化しないのは、 後段増幅部 2 bにおける増幅用光ファイバ 6 bの濃 度条長積 C L 2が大きくて十分な増幅率をもっているために、 前段増幅部 2 aに おける増幅用光ファイバ 6 aの増幅作用が利得に対して顕著に現れないためだと 考えられる。 The maximum gain does not change even if CL 1 is changed even if the concentration length product CL 1 of the amplification optical fiber 6 a in the pre-amplification section 2 a is changed by the concentration length product of the amplification optical fiber 6 b in the post-amplification section 2 b. The reason is that because the CL 2 is large and has a sufficient amplification factor, the amplification effect of the amplification optical fiber 6a in the pre-amplification section 2a does not appear significantly to the gain. Conceivable.
表 1には、 信号光入力が— 1 OdBmである場合において、 利得がその最大値か ら低下する量が、 1 dB未満となる波長帯域を示している。 表 1に示すように、 この場合の波長帯域は、 増幅用光ファイバ 6 aの濃度条長積 C L 1が 4kppm · m, 6 kppm - m, 8 kppni · mのいずれの場合も、 約 28 nmの幅を有している。  Table 1 shows the wavelength band where the amount of decrease in the gain from its maximum value is less than 1 dB when the signal light input is -1 OdBm. As shown in Table 1, the wavelength band in this case is approximately 28 nm when the concentration-length product CL 1 of the amplification optical fiber 6 a is 4 kppmm, 6 kppm-m, or 8 kppnim. Has a width of
表 2には、 信号光入力が一 1 OdBmである場合において、 利得が 30dB以上 となる波長帯域を示している。 表 2に示すように、 この場合の波長帯域は、 増幅 用光ファイバ 6 aの濃度条長積 C L 1が 4kppm · m, 6 kppm - m, 8 kppm · mのいず れの場合も、 約 32nmの幅を有している。  Table 2 shows the wavelength band where the gain is 30 dB or more when the signal light input is 11 OdBm. As shown in Table 2, the wavelength band in this case is approximately equal when the concentration-length product CL1 of the amplification optical fiber 6a is 4 kppmm, 6 kppm-m, or 8 kppmm. It has a width of 32 nm.
実験 1から分かるように、 前段増幅部 2 aにおける増幅用光ファイバ 6 aの濃度 条長積 C L 1が 4 kppm · m, 6 kppm - m, 8 kppm · mのいずれの場合であっても、 従来例と比較して利得の平坦な波長帯が長波長側にシフトしており、 増幅可能な 範囲を L一 bandまで広げて、 L一 bandに含まれる各信号光を大きな利得で増幅す ることが可能となっているのが確認できる。  As can be seen from Experiment 1, regardless of whether the concentration of the amplification optical fiber 6a in the preamplifier 2a is 1 kppm-m, 6 kppm-m, or 8 kppm The wavelength band where the gain is flat compared to the conventional example is shifted to the longer wavelength side, and the range that can be amplified is extended to L-band, and each signal light included in L-band is amplified with a large gain. You can see that it is possible.
しかしながら、 後段増幅部 2 bにおける増幅用光ファイバ 6 bの濃度条長積 CL 2を 4 Okppm · mに設定している限りは、 利得は、 L— band ( 1 5 70 M!〜 1 6 1 Onm)全体にわたって平坦になっているとはいい難い。 したがって、 L— bandに ついての利得の平坦化を十分に得るためには、 上記の条件だけでは未だ不十分で あることが理解できる。  However, as long as the concentration-length product CL 2 of the amplification optical fiber 6 b in the post-amplifying section 2 b is set to 4 Okppm · m, the gain is L—band (1570 M! ~ 16 1 Onm) It is hard to say that it is flat throughout. Therefore, it can be understood that the above conditions alone are not enough to obtain sufficient gain flatness for the L-band.
(実験 2) (Experiment 2)
ここでは、 前段増幅部 2aにおける増幅用光ファイバ 6aとして、 Erのドープ 量 9 0 O pm, A1のド一プ量 1 0 0 0 Oppmで、 カツトオフ波長 0. 9 2 ΠΚ モ ードフィールド径 4. 5 1 の特徴を備え、 さらには、 濃度条長積 CL 1を 8 kppm · mにしたものを用いている。 また、 前段増幅部 2 aの励起光波長を 1. 48 //mとし、 励起光パワーを 5 OmWとしている。  Here, as the amplification optical fiber 6a in the pre-amplifier 2a, the doping amount of Er is 900 Opm, the doping amount of A1 is 100 Oppm, and the cut-off wavelength is 0.92 ΠΚ mode field diameter 4.5. It has the features of 1 and uses the product of concentration length product CL 1 of 8 kppm · m. The pump light wavelength of the preamplifier 2a is 1.48 // m, and the pump light power is 5 OmW.
後段増幅部 2 bにおける増幅用光ファイバ 6 bは、 前段増幅部 2 aの増幅用光フ アイバ 6bと同じ特性のものを使用している。 しかしながら、 光ファイバ 6bはそ の条長を長くして濃度条長積 C L 2を 4 Okppm · m, 80 kppm - m, 9 0 kppm - m, 1 0 Okppm · mとした 4種類のものを用いている。 また、 後段増幅部 2bの励起光 波長を 1.48 zmとし、 励起光パワーを 1 5 OmWとしている。 The amplification optical fiber 6b in the rear amplification unit 2b has the same characteristics as the amplification optical fiber 6b in the front amplification unit 2a. However, for the optical fiber 6b, use four types of optical fiber 6b whose length is made longer and the concentration length product CL2 is 4 Okppmm, 80 kppm-m, 90 kppm-m, 10 Okppm-m. ing. Also, the pump light of the post-amplifier 2b The wavelength is 1.48 zm and the pump light power is 15 OmW.
そして、 — l OdBm, — 4 OdBmの 2種類の信号光入力において、 図 1中の符 号 Xの位置を信号光入力とし、 符号 Yの位置を信号光出力として利得波長特性を 調べた。 その結果を図 3、 表 3、 表 4および表 5に示す。  Then, for two types of signal light input of —l OdBm and —4 OdBm, the gain wavelength characteristics were examined with the position of the symbol X in FIG. 1 as the signal light input and the position of the code Y as the signal light output. The results are shown in Figure 3, Table 3, Table 4, and Table 5.
【表 3】  [Table 3]
Figure imgf000009_0001
図 3から分かるように、 後段増幅部 2 bにおける増幅用光ファイバ 6 bの濃度条 長積 CL 2を 40 kppm - mとした場合には、 信号光波長は 1 58 Οηπιを越えると 特性曲線の利得がなだらかに減少していき、 L— band(l 57 0 nm〜 1 6 1 0M) 全体にわたる利得の平坦化を図るには不十分である。
Figure imgf000009_0001
As can be seen from FIG. 3, when the concentration length product CL 2 of the amplification optical fiber 6 b in the post-amplifier 2 b is set to 40 kppm-m, the signal light wavelength exceeds 158 58ηπι. The gain of the characteristic curve gradually decreases, which is insufficient for flattening the gain over the entire L-band (1570 nm to 1610M).
これに対して、 信号光入力が— 1 OdBmであって、 増幅用光ファイバ 6bの濃 度条長積 CL 2を 8 Okppm · π!〜 1 0 Okppm · mとした場合には、 L— bandの全域 にわたつて利得が平坦化していて、 その場合の利得はおおよそ 3 I dBとなって いる。  On the other hand, the signal light input is -1 OdBm, and the concentration length product CL 2 of the amplification optical fiber 6b is 8 Okppm · π! When Ok10 Okppm · m, the gain is flat over the entire L-band, and the gain in that case is about 3 I dB.
表 3には、 信号光入力が一 1 OdBmである場合において、 利得がその最大値か ら低下する量が、 1 dB未満となる波長帯域を示している。 表 3に示すように、 この場合の波長帯域は、 増幅用光ファイバ 6bの濃度条長積 CL 2が 8 Okppm · m, 90 kppm - in, 1 00 kppm · mのいずれの場合も、 L—bandを含むおおよそ 46 nm の幅を有している。  Table 3 shows the wavelength band where the amount of decrease in the gain from its maximum value is less than 1 dB when the signal light input is 11 OdBm. As shown in Table 3, the wavelength band in this case is as follows: The concentration-length product CL2 of the optical fiber 6b for amplification is 8 Okppm · m, 90 kppm-in, and 100 kppm · m. It has a width of about 46 nm including the band.
表 4には、 信号光入力が一 1 OdBmである場合において、 利得が 30dB以上 となる波長帯域を示している。 表 4に示すように、 この場合の波長帯域は、 増幅 用光フアイゾ 6 bの濃度条長積 C L 2が 8 0 kppm · m, 9 0 kppm - m, 1 0 0 kppm · mのいずれの場合も、 L一 bandを含むおおよそ 48 nmの幅を有している。 表 5には、 信号光入力— 4 OdBmである場合において、 利得が 3 0 dB以上と なる波長帯域を示している。 表 5に示すように、 この場合の波長帯域は、 増幅用 光ファイバ 6 bの濃度条長積 CL 2が 8 Okppm · m, 90 kppm - m, 1 00 kppm - m のいずれの場合も、 L—bandを含むおおよそ 5 6nmの幅を有している。  Table 4 shows the wavelength band where the gain is 30 dB or more when the signal light input is 11 OdBm. As shown in Table 4, the wavelength band in this case is either when the concentration length product CL2 of the optical fiber for amplification 6b is 80 kppm · m, 90 kppm-m, or 100 kppm · m. Also has a width of about 48 nm including the L-band. Table 5 shows the wavelength band where the gain is 30 dB or more when the signal light input is 4 OdBm. As shown in Table 5, in this case, the concentration band product of the optical fiber for amplification 6b, CL2, is 8 Okppm · m, 90 kppm-m, and 100 kppm-m. —It has a width of about 56 nm including the band.
また、 信号光入力が一 1 OdBmである場合において、 利得がその最大値から低 下する量が、 1 dB未満となる波長帯域内における励起光から信号光への変換効 率を調べたところ、 50〜6 0 %であった。 この変換効率は、 従来例の場合の変 換効率 74%には及ばないものの、 実用的には十分な値である。  In addition, when the signal light input was 11 OdBm, the conversion efficiency from pump light to signal light in a wavelength band in which the amount by which the gain decreased from the maximum value was less than 1 dB was examined. It was 50-60%. Although this conversion efficiency does not reach the conversion efficiency of 74% in the case of the conventional example, it is a practically sufficient value.
実験 2から分かるように、 前段増幅部 2 aにおける増幅用光ファイバ 6 aの濃度 条長積 CL 1を 8kppm · mとして、 後段増幅部 2 bにおける増幅用光ファイバ 6 b の濃度条長積 CL 2を 4 Okppm · mに設定した場合には、 L— band(l 5 70 〜 1 6 1 Onm)全体にわたる利得の平坦化は不十分であった。 しかしながら、 濃度 条長積 CL 2を 8 0〜 1 0 Okppm · mに設定した場合には、 L— band全体にわた る利得の平坦化を十分に図れることが確認できた。 なお、 実験 2では、 前段増幅部 2aにおける増幅用光ファイバ 6aの濃度条長積 CL 1を 8kppm · mに固定しており、 C L 1を 4kppm · mあるいは 6kppm · mに設 定して C L 2を 8 Okppm · m, 90 kppm - in, 100 kppm · mと変化させた場合に ついて実験していない。 しかしながら、 上記のように、 利得の平坦化には、 前段 増幅部 2 aにおける増幅用光ファイバ 6 aの濃度条長積 C L 1の影響よりも、 後段 増幅部 2 bにおける増幅用光ファイバ 6 bの濃度条長積 C L 2の影響の方が大きい ので、 (:し 1を41^ 111 ' 111ぁるぃは61^^111 ' 111に設定した場合でも、 C L 1力 8 kppm · mの場合と同様の利得特性をもつ曲線が得られると考えられる。 As can be seen from Experiment 2, the concentration length product CL of the amplification optical fiber 6a in the front amplification unit 2a is set to 8 kppmm, and the concentration length product CL of the amplification optical fiber 6b in the rear amplification unit 2b. When 2 was set to 4 Okppm · m, gain flattening over the entire L-band (570-161 Onm) was insufficient. However, it was confirmed that when the concentration-length product CL 2 was set to 80 to 10 Okppm · m, the gain over the entire L-band could be sufficiently flattened. In Experiment 2, the concentration-length product CL1 of the amplification optical fiber 6a in the preamplifier 2a was fixed at 8 kppmm, and CL1 was set to 4 kppmm or 6 kppmm and CL2 was set to 6 kppmm. Were not changed to 8 Okppm · m, 90 kppm-in, 100 kppm · m. However, as described above, the flattening of the gain requires more than the influence of the concentration-length product CL1 of the amplification optical fiber 6a in the pre-amplification section 2a, rather than the influence of the amplification optical fiber 6b in the post-amplification section 2b. Since the influence of CL 2 is greater than that of CL 2, the CL 1 force is 8 kppm · m even if (: 1 is set to 41 ^ 111 '111 ぁIt is considered that a curve having a gain characteristic similar to that of is obtained.
なお、 図 1に示した光増幅器は、 前段増幅部 2 aを前方励起型、 後段増幅部 2 b を後方励起型としているが、 これに限定されるものではなく、 前段増幅部 2 aを 後方励起型、 後段増幅部 2bを前方励起型としたり、 あるいは前後の両増幅部 2a, 2 bを共に前方励起型としたり、 共に後方励起型とすることも可能である。  In the optical amplifier shown in FIG. 1, the preamplifier 2a is a forward pump type, and the rear amplifier 2b is a backward pump type.However, the present invention is not limited to this. It is also possible to use an excitation type, the rear amplification unit 2b is a forward excitation type, or both the front and rear amplification units 2a and 2b are both a forward excitation type, or both are a backward excitation type.
産業上の利用可能性 Industrial applicability
本発明によれば、 L— band(l 570 nn!〜 1610 nm)における増幅を行う場合 に、 この L一 bandに含まれる各波長の信号光について大きな利得が得られる。 さ らには、 信号光の波長利得差が小さくなるようにすることができる。  According to the present invention, when amplification is performed in the L-band (l 570 nn! To 1610 nm), a large gain can be obtained for the signal light of each wavelength included in the L-band. Further, the wavelength gain difference of the signal light can be reduced.

Claims

請求の範囲 The scope of the claims
1. 前段増幅部と後段増幅部とが縦列接続され、 これら前段、 後段の各増幅部は, 誘導放出効果によって信号光を増幅する増幅素子としての増幅用光ファイバを備 えており、 1. The front-stage and rear-stage amplifiers are connected in cascade, and each of the front-stage and rear-stage amplifiers has an amplification optical fiber as an amplification element for amplifying signal light by the stimulated emission effect.
前記前段増幅部の増幅用光ファイバの Erのドープ量と条長との積である濃度 条長積を 4〜 8 kppm · mとした  The concentration, which is the product of the Er doping amount and the strip length of the amplification optical fiber of the preamplifier, was set to 4 to 8 kppmm.
光増幅器。  Optical amplifier.
2. 請求項 1に記載の光増幅器であって、  2. The optical amplifier according to claim 1, wherein
前記後段増幅部の増幅用光ファイバの前記濃度条長積を 80〜 1 0 Okppm * m とした、  The concentration length product of the amplification optical fiber of the post-amplification unit was 80 to 10 Okppm * m.
光増幅器。  Optical amplifier.
3. 請求項 1に記載の光増幅器であって、  3. The optical amplifier according to claim 1, wherein
前記前段増幅部と、 前記後段増幅部とをアイソレータを介して接続した、 光増幅器。  An optical amplifier, wherein the preamplifier and the postamplifier are connected via an isolator.
4. 請求項 1に記載の光増幅器であって、  4. The optical amplifier according to claim 1, wherein
前記前段、 後段の各増幅部は、 前記増幅用光ファイバをボンビングする励起光 源を備えている、  Each of the pre-stage and post-stage amplification units includes an excitation light source that bombs the amplification optical fiber.
光増幅器。  Optical amplifier.
PCT/JP2000/005233 1999-08-04 2000-08-03 Optical amplifier WO2001011735A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22098299A JP3787045B2 (en) 1999-08-04 1999-08-04 Optical amplifier
JP11/220982 1999-08-04

Publications (1)

Publication Number Publication Date
WO2001011735A1 true WO2001011735A1 (en) 2001-02-15

Family

ID=16759625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005233 WO2001011735A1 (en) 1999-08-04 2000-08-03 Optical amplifier

Country Status (2)

Country Link
JP (1) JP3787045B2 (en)
WO (1) WO2001011735A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4281245B2 (en) * 2000-12-15 2009-06-17 富士通株式会社 Optical amplifier
JP2003092449A (en) * 2001-09-17 2003-03-28 Fujikura Ltd Optical fiber amplifier
JP2007288124A (en) * 2006-03-22 2007-11-01 Nippon Telegr & Teleph Corp <Ntt> Optical fiber amplifier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224511A (en) * 1993-01-27 1994-08-12 Mitsubishi Cable Ind Ltd Optical fiber for amplification
EP0803944A2 (en) * 1996-04-22 1997-10-29 Lucent Technologies Inc. Article comprising a hybrid multistage optical fiber amplifier
US5920424A (en) * 1997-02-18 1999-07-06 Lucent Technologies Inc. Article comprising a broadband optical fiber amplifier
JPH11307851A (en) * 1998-04-24 1999-11-05 Nippon Telegr & Teleph Corp <Ntt> Optical fiber amplifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224511A (en) * 1993-01-27 1994-08-12 Mitsubishi Cable Ind Ltd Optical fiber for amplification
EP0803944A2 (en) * 1996-04-22 1997-10-29 Lucent Technologies Inc. Article comprising a hybrid multistage optical fiber amplifier
US5920424A (en) * 1997-02-18 1999-07-06 Lucent Technologies Inc. Article comprising a broadband optical fiber amplifier
JPH11307851A (en) * 1998-04-24 1999-11-05 Nippon Telegr & Teleph Corp <Ntt> Optical fiber amplifier

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ELECTRONICS LETTERS, vol. 28, no. 20, 24 September 1992 (1992-09-24), pages 1924 - 1925, XP002933190 *
ELECTRONICS LETTERS, vol. 33, no. 8, 10 April 1997 (1997-04-10), pages 710 - 711, XP002933188 *
ELECTRONICS LETTERS, vol. 34, no. 15, 23 July 1998 (1998-07-23), pages 1490 - 1491, XP002933184 *
ELECTRONICS LETTERS, vol. 34, no. 18, 3 September 1998 (1998-09-03), pages 1747 - 1748, XP002933185 *
IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 10, no. 9, September 1998 (1998-09-01), pages 1244 - 1246, XP002933187 *
IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 9, no. 5, May 1997 (1997-05-01), pages 596 - 598, XP002933189 *
IEEE PHOTONICS TECHNOLOGY, vol. 8, no. 5, May 1996 (1996-05-01), pages 620 - 622, XP002933186 *

Also Published As

Publication number Publication date
JP2001044551A (en) 2001-02-16
JP3787045B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
JP3403288B2 (en) Optical amplifier
CN111698033B (en) Hybrid optical fiber amplifier, optical signal amplification method, and optical communication system
JP3936533B2 (en) Rare earth doped fiber amplifier and multistage fiber amplifier
JP4046506B2 (en) Broadband erbium-doped fiber amplifier
JPH11103113A (en) Optical amplifier
JP2000091683A (en) Multistage optical fiber amplifier
CN101431375A (en) Optical amplifier and a method of controlling the optical amplifier
GB2340297A (en) Long-wavelength optical fibre amplifier
JP2021190691A (en) Gain equalization in C + L erbium-added fiber optic amplifier
US6903868B2 (en) Wideband erbium doped fiber amplifier capable of minimizing band crosstalk
JPH10163554A (en) Optical fiber amplifier
US6252700B1 (en) Erbium doped fiber amplifier suitable for long wavelength light signal
US20050185261A1 (en) Wide band erbium-doped fiber amplifier with gain enhancement
US6429964B1 (en) High power, multiple-tap co-doped optical amplifier
EP1345344B1 (en) Wide band optical fiber amplifier
WO2001011735A1 (en) Optical amplifier
JP2003518778A (en) L-band and C-band optical amplifiers
US7012741B2 (en) Wideband amplifier with erbium-doped fiber
CN114884574B (en) An L-band extended hybrid fiber amplifier
JP2004004815A (en) Raman optical fiber amplifier using erbium-doped optical fiber
JP3599543B2 (en) Optical fiber amplifier
JPH09138432A (en) Optical amplifier
JP2008153558A (en) Light transmission system and its signal spectrum correction method
US20250141175A1 (en) L++ band amplifier
US20220069539A1 (en) Optical amplifier for multiple bands

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10048563

Country of ref document: US

122 Ep: pct application non-entry in european phase