[go: up one dir, main page]

WO2001010027A1 - Quantic computer based on magnetic qubits - Google Patents

Quantic computer based on magnetic qubits Download PDF

Info

Publication number
WO2001010027A1
WO2001010027A1 PCT/ES1999/000247 ES9900247W WO0110027A1 WO 2001010027 A1 WO2001010027 A1 WO 2001010027A1 ES 9900247 W ES9900247 W ES 9900247W WO 0110027 A1 WO0110027 A1 WO 0110027A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
spin
element according
logical element
states
Prior art date
Application number
PCT/ES1999/000247
Other languages
Spanish (es)
French (fr)
Inventor
Javier Tejada Palacios
Joan Manel Hernandez Ferras
Enrique Gonzalez Garcia
Eugene M. Chudnovsky
Original Assignee
Javier Tejada Palacios
Joan Manel Hernandez Ferras
Enrique Gonzalez Garcia
Chudnovsky Eugene M
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Javier Tejada Palacios, Joan Manel Hernandez Ferras, Enrique Gonzalez Garcia, Chudnovsky Eugene M filed Critical Javier Tejada Palacios
Priority to AU52910/99A priority Critical patent/AU5291099A/en
Priority to PCT/ES1999/000247 priority patent/WO2001010027A1/en
Publication of WO2001010027A1 publication Critical patent/WO2001010027A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control

Definitions

  • the present invention concerns logical and data storage elements based on nanometric size structures (particles and molecular aggregate systems, or "clusters”) for the processing and storage of quantum information.
  • the invention is based on a new class of quantum bit or qubit, a magnetic qubit, that is a mesoscopic spin system.
  • the qubit according to the invention consists of a monodomain magnetic unit, of nanometric dimension, generally dielectric, with a high quality factor (QF) of ferromagnetic resonance, in a quantum superposition of the level corresponding to the fundamental state of spin and the level of the first excited state of spin.
  • QF quality factor
  • This magnetic unit is able to improve the magnetic recording density when the operation is performed in a temperature range of the order of the milikelvin.
  • the invention also relates to a logic gate using a series of magnetic qubits deposited on a suitable substrate and a quantum computer based on magnetic qubits organized according to a suitable architecture.
  • the invention also relates to dielectric materials, such as monodomain magnetic particles of nanometric size or magnetic molecular aggregates with a total spin of less than 1,000, suitable for the preparation of said qubits.
  • the invention also relates to a method for operating a quantum computer built on magnetic qubits.
  • Quantum computing has been one of the fields that in recent years has undergone a faster development partly due to its implications in theoretical physics. Today it is one of the important objectives of experimentation in physics and engineering.
  • An element of a quantum computer is a qubit - an object that exists in a quantum superposition of two states cos (x) ⁇ 0> + sin (x) ⁇ 1> (Feynman).
  • the state of a quantum system (usually denoted by
  • the space of a single qubit covers a base consisting of the two possible classic states denoted by
  • each qubit has an infinite number of pure quantum states, characterized by the continuous variable x.
  • the measure of x destroys the qubit while projecting its state on ⁇ 0> or ⁇ 1>.
  • the qubits must be coupled together in a controlled, predetermined manner.
  • Quantum computers if they develop, will be used in different scientific, technological and business disciplines. In physics, for example, applications such as powerful simulations in atomic and nuclear physics, of the electrical, optical and magnetic properties of materials can be anticipated. Indeed, quantum computers, with their quantum dynamics, will be the most suitable machines for such computations, producing fast and reliable responses.
  • a conventional computer looking for an element among a list of N elements, has to examine N / 2 elements so that it has a 50% chance of success.
  • a quantum computer that performed the same task would require only the square root of N stages, since it can examine multiple elements simultaneously (Grover).
  • quantum parallelism is the basis for solving some problems much more quickly with a quantum processor.
  • WO 99/14858 refers to a quantum computer comprising a semiconductor substrate in which donor atoms are introduced to produce a series of donor nuclear spin electron systems with non-zero electronic wave functions inside the core of the core.
  • donor atoms Other references in the specialized literature known to applicants, of possible interest in this field for a better understanding of the principles of the invention are detailed below:
  • the objective of the invention is the exploitation of magnetic systems, operating in a range of milikelvins temperatures and duly shielded with respect to external magnetic fields, for quantum computing.
  • This invention describes a quantum computer based on magnetic qubits, that is, monodomain magnetic particles of nanometric size or molecular aggregates as previously defined. While all molecular aggregates are identical, monodomain magnetic particles may differ in size and shape.
  • domain is described for example in CP Bean and J. D. Livingston J. Appl. Physics, 30, 120 (1959); and BD Cullity. Introduction to Magnetic Materials, Addison-Wesley Publishing Co., Massachusets, (1972), see also The Magnetic Properties of Materials by JE Thomson, Newnes International Monographs on Materials Science an Technology, CRC Press, Cleveland, Ohio 1968.
  • Each magnetic particle of nanometric size, monodomain or molecular aggregate is deposited, first, in a well-controlled area on a dielectric substrate, for example embedded within a solid matrix, and is located inside a quantum elementary device consisting of a superconductive inductive element and a micro-SQUID (microscopic device, superconductor, quantum interference) in sensor functions.
  • a quantum elementary device consisting of a superconductive inductive element and a micro-SQUID (microscopic device, superconductor, quantum interference) in sensor functions.
  • the quantum states of each qubit are manipulated and measured by sending and receiving electromagnetic signals to and from the corresponding set of superconductive inductive element and micro-SQUID.
  • the quantum states of the different particles of nanometric size are mixed / superimposed by the connection of said quantum elementary devices by superconducting lines with Josephson switches.
  • Two sets of quantum states can be used in a magnetic qubit.
  • the first one refers to the situation in which the passage, by tunnel effect, of the spin of the nanometric particles, monodomain, is suppressed.
  • the first excited state of the spin corresponds, in classical terms, to the uniform precession of the magnetic moment of the particle around its axis of anisotropy.
  • This excited state is separated from the fundamental spin state by the energetic distance that is equal to the product of the Planck constant by the ferromagnetic resonance frequency (FMR).
  • the quality factor (QF) in dielectric ferromagnetic materials can be as high as 10 6 , which suggests a very low decoherence rate.
  • the QF of the FMR of pure dielectric ferromagnetic crystals can be as high as one million, well above the QF of one thousand, widely cited as necessary to perform computation at an adequate scale. Although FMR and its QF have not been measured in individual nanometric particles, there is no reason to believe that it should be smaller than in large crystals.
  • the second situation of quantum states corresponds to small magnetic particles or molecular aggregates where the spin passes through the tunnel through the anisotropic barrier.
  • the phenomenon has been considered both theoretically and experimentally by two of the present inventors Chudnowsky E..M. and Tejada J. in the work “Macroscopic Quantum Tunneling of the Magnetic Moment", (Cambridge University Press 1998). In this case, which is illustrated in Fig. 2, the fundamental state of the particle is divided into two states that can be used as states 10) and 1 1).
  • the energy distance of the first situation is of the order of 0.1 K, while in the second situation said energy distance can be controlled by applying the external magnetic field perpendicular to the anisotropic axis of the particle or molecular aggregate. In any case the temperature of the operation must be in the range of the milikelvin.
  • VLSI very high scale integration
  • AFM atomic force microscopy
  • STM scanning effect microscopy tunnel
  • MFM magnetic force microscopy
  • substrates for organizing these magnetic units whether nanoparticles or molecular aggregates in sets of 1, 2 and 3 dimensions can be matrices such as molecular clathrates, porous zeolites, Langmuir-Blodgett epitaxial film films, plastics and nanotubes. Each nanoparticle or molecular aggregate will act as an individual and identifiable qubit.
  • the mixing or superposition between different qubits is achieved in this invention by placing the magnetic units inside a superconductive and micro-SQUID inductive element assembly, and connecting these quantum elementary assemblies or devices to each other by means of superconducting lines such as shown in Fig. 3 of the attached drawings.
  • the change in the magnetic states of any particle will result from the electromagnetic induction of a superconducting current in the set of superconductive and micro-SQUID inductive element that surrounds said magnetic unit. This current will flow to the neighboring assemblies changing the quantum states of the nearby magnetic units.
  • Josephson type connections (schematized as switches) acting as switches will be used.
  • Josephson type joints allow switching between different states in extremely short times. It is feasible to control the interaction between qubits simply by connecting or disconnecting the corresponding superconducting lines that relate them.
  • Logic gates based on magnetic nanometric structures need to maintain consistency during computing time.
  • the effect of decoherence can be diminished by purifying the particles both chemically and isotopically.
  • the particles must be dielectric in order to avoid the decoherence phenomena associated with the conducting electrons.
  • ferro and ferri nanometric particles with an anisotropic field greater than 0.05 T such as CoFe ⁇ O ,,, -Fe ⁇ and BaFe 12 O 19
  • anti-ferromagnetic particles or nanometric molecular aggregates can be used.
  • Examples are ferritin and molecular aggregates of Fe 8 synthesized according to Wiedghardt K., Pohl K, Jibril I and Huttner G. "Angew. Chem. Int. Ed. Engl. (1984) 77 and with a nominal composition [( C 6 H 15 N 3 ) 6 Fe 8 ( ⁇ 3 -O) 2 ( ⁇ 2 -OH) 12 (Br 7 (H 2 O)) Br 8 H 2 ⁇ ] checked by chemical and infrared analysis. 8 the distance between the levels corresponding to the two lowest levels within the magnetic anisotropic wells is around 5K.
  • the quantum states of the particles can be manipulated by combining two techniques:
  • the coupling of magnetic particles to the superconductive and micro-SQUID inductive element assemblies is an ideal arrangement since both the magnetic units (particles or molecular aggregates) and the said assemblies can operate in the same frequency range.
  • the quality factor (QF) of 10 3 -10 6 will make it possible for the proposed computer to perform 10 3 -10 6 operations without applying error correction. By applying the error correction algorithm the number of operations can be drastically increased. DESCRIPTION OF THE DRAWINGS
  • Fig. 1 is a schematic drawing showing the structure of spin levels in the two potential wells associated with the magnetic anisotropy of the nanometric particles
  • Fig. 2 is a schematic drawing showing the structure of spin levels in two potential wells. The breakage of the degeneration of the fundamental state ⁇ due to the tunnel effect is also indicated; and Fig.
  • FIG. 3 is a schematic drawing indicative, in a simplified, convenient form, of a portion of a possible arrangement of magnetic units (nanometric particles or molecular aggregates), as proposed by the invention deposited on a substrate and whose quantum states are properly mixed / superimposed so that they constitute a logical element suitable for a quantum computer;
  • the figure also includes the symbol of the two quantum states of the spin.
  • a plurality (the drawing only represents a minimum part of the arrangement) of magnetic units (1), are surrounded by a set (2) or quantum elementary device that includes a superconductive inductive element and a micro-SQUID, which will generally surround both the magnetic unit, although the micro-SQUID could adopt another alternative arrangement.
  • Said assemblies (2) are interrelated through superconductive inductive lines (3) each of which contains a control switch (4) that can be a Josephson type junction.
  • Each set (2) is connected to lines (5), preferably also superconductors, to measure and manipulate the qubits.
  • the magnetic units are deposited on a non-magnetic dielectric substrate (6) by the techniques already defined that enable a quality factor (QF) that must exceed the QF of the NMR qubit in the milikelvin range .
  • QF quality factor
  • a set of superconductive and micro-SQUID inductive element can, in principle, manipulate the magnetic state of the magnetic unit (1) with a precision of a quantum of magnetic flux.
  • Connecting said assemblies (2) as shown in Fig. 3 will imply mixing or superimposing the states of the different particles (1).
  • the change in the quantum magnetic state of any magnetic unit will result in the generation of an electromagnetic induction in the assembly (2) surrounding said particle (1).
  • This current will flow to the neighboring assemblies (2) changing the quantum states of the corresponding magnetic units (1) that they enclose.
  • Josephson type connections (5) have already been applied as building blocks for classic digital circuits.
  • the advantage of magnetic systems for quantum computing over all the above mentioned proposals is twofold. In the first place, all the elements necessary to build the said quantum computer already exist and have been experimentally tested.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

Quantic computer based on magnetic cubits which consist of monodomain, nanometric, dielectric magnetic units (1), with a high ferromagnetic resonance quality factor, in a quantic superposition of the levels of the fundamental spin state and of the first excited spin state, operating in a milikelvins temperature range, each of the magnetic units (1) being deposited on a dielectric non magnetic substrate (6), inside an elementary quantic device (2) which incorporates a superconductor inductive element and a micro-SQUID sensor, and to which are associated superconductor lines (5). The quantic states of each qubit are manipulated and measured by sending and receiving electromagnetic signals to and from the corresponding quantic elementary device so that the quantic states of the various magnetic units are mixed/superposed by connecting said quantic element devices through superconductor lines (3) with switches of the Josephson union type (4).

Description

COMPUTADOR CUÁNTICO BASADO EN QUBITS MAGNÉTICOS QUANTIC COMPUTER BASED ON MAGNETIC QUBITS

CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION

La presente invención concierne a elementos lógicos y de almacenamiento de datos basados en estructuras de tamaño nanométrico (partículas y sistemas de agregados moleculares, o "clusters") para el procesado y almacenamiento de información cuántica.The present invention concerns logical and data storage elements based on nanometric size structures (particles and molecular aggregate systems, or "clusters") for the processing and storage of quantum information.

La invención se basa en una nueva clase de bit cuántico o qubit, un qubit magnético, es decir un sistema de espín mesoscópico. El qubit según la invención consiste en una unidad magnética monodominio, de dimensión nanométrica, en general dieléctrica, con un elevado factor de calidad (QF) de resonancia ferromagnética, en una superposición cuántica del nivel correspondiente al estado fundamental de espín y del nivel del primer estado excitado de espín. Esta unidad magnética es capaz de mejorar la densidad de grabación magnética cuando la operativa se realiza en un rango de temperaturas del orden del milikelvin. La invención se refiere igualmente a una puerta lógica utilizando una serie de qubits magnéticos depositados sobre un substrato adecuado y a un computador cuántico basado sobre qubits magnéticos organizados según una arquitectura adecuada.The invention is based on a new class of quantum bit or qubit, a magnetic qubit, that is a mesoscopic spin system. The qubit according to the invention consists of a monodomain magnetic unit, of nanometric dimension, generally dielectric, with a high quality factor (QF) of ferromagnetic resonance, in a quantum superposition of the level corresponding to the fundamental state of spin and the level of the first excited state of spin. This magnetic unit is able to improve the magnetic recording density when the operation is performed in a temperature range of the order of the milikelvin. The invention also relates to a logic gate using a series of magnetic qubits deposited on a suitable substrate and a quantum computer based on magnetic qubits organized according to a suitable architecture.

La invención se refiere también a unos materiales dieléctricos, tales como partículas magnéticas monodominio de tamaño nanométrico o agregados moleculares magnéticos con un espín total inferior a 1.000, adecuados para la preparación de los referidos qubits.The invention also relates to dielectric materials, such as monodomain magnetic particles of nanometric size or magnetic molecular aggregates with a total spin of less than 1,000, suitable for the preparation of said qubits.

Además la invención también se refiere a un método para operar un computador cuántico construido en base a qubits magnéticos.In addition, the invention also relates to a method for operating a quantum computer built on magnetic qubits.

ANTECEDENTES DE LA INVENCIÓN En los computadores convencionales, la carga eléctrica o su ausencia representan el "O" o el " 1 " utilizados en el lenguaje binario de almacenamiento de datos. En un computador cuántico, los niveles de energía de las partículas individuales o agregados de partículas representarán la información. De acuerdo con los mecanismos cuánticos tales niveles de energía son estados discretos. Así el estado fundamental de espín o estado bajo, representará un "O" y el estado excitado de espín o estado alto representará un " 1 " .BACKGROUND OF THE INVENTION In conventional computers, the electric charge or its absence represents the "O" or the "1" used in the binary data storage language. In a quantum computer, the energy levels of the individual particles or aggregates of particles will represent the information. According to quantum mechanisms such energy levels are discrete states. So the state fundamental of spin or low state, will represent an "O" and the excited state of spin or high state will represent a "1".

La computación cuántica ha sido uno de los campos que en los últimos años ha experimentado un desarrollo más rápido en parte debido a sus implicaciones en física teórica. Hoy en día es uno de los objetivos importantes de la experimentación en física e ingeniería. Un elemento de un computador cuántico es un qubit - un objeto que existe en una superposición cuántica de dos estados cos(x) ¡ 0 > + sin(x) ¡ 1 > (Feynman).Quantum computing has been one of the fields that in recent years has undergone a faster development partly due to its implications in theoretical physics. Today it is one of the important objectives of experimentation in physics and engineering. An element of a quantum computer is a qubit - an object that exists in a quantum superposition of two states cos (x) ¡0> + sin (x) ¡1> (Feynman).

Es decir, en términos matemáticos, el estado de un sistema cuántico (que usualmente se denota por | 0) es un vector en un espacio de Hilbert de posibles estados para el sistema. El espacio de un único qubit abarca una base consistiendo en los dos posibles estados clásicos denotados por | 0) y 1 1). Ello significa que cualquier estado de un qubit se puede descomponer en la superposiciónThat is, in mathematical terms, the state of a quantum system (usually denoted by | 0) is a vector in a Hilbert space of possible states for the system. The space of a single qubit covers a base consisting of the two possible classic states denoted by | 0) and 1 1). This means that any state of a qubit can be decomposed in the overlay.

| *) = a| 0> + b | l) [1] con una adecuada elección de los coeficientes complejos a y b.| *) = a | 0> + b | l) [1] with an adequate choice of complex coefficients a and b.

A diferencia de un elemento binario de un computador convencional, que puede estar en un estado ¡ 0 > o ¡ 1 > , cada qubit tiene un infinito número de estados cuánticos puros, caracterizados por la variable continua x. La medida de x destruye el qubit en tanto que proyecta su estado sobre ¡ 0 > o ¡ 1 > . La interacción con el entorno, que debe de ser evitada, independientemente de lo débil que sea, eventualmente da como resultado el mismo efecto de proyección o lo que es lo mismo, la randomización de la decoherencia (pérdida de la coherencia cuántica, es decir de la superposición de dos estados) de fase x. Para realizar una computación, los qubits deben de acoplarse entre sí de una manera controlada, prefijada. La computación implica la preparación de todos los qubits de acuerdo con una lista dada, seguida de la evolución por la mecánica cuántica del sistema hacia un estado final, seguido por la medida de dicho estado. Una computación a escala requiere un gran número de qubits interconectados, que incrementarán la decoherencia. Afortunadamente, con una baja decoherencia, este problema puede ser resuelto utilizando algoritmos de corrección cuánticos (Shor, Steane). Dichos algoritmos se basan en un concepto teórico de expandir el espacio de Hilbert de los qubits más allá de dos dimensiones ( ¡ 0 > y ¡ 1 > ), creando una redundancia que protege frente a errores e incrementando el tiempo de decoherencia. La potencialidad del computador cuántico deriva de su equivalencia con un computador convencional con un infinito número de procesadores en paralelo. Los computadores cuánticos, si llegan a desarrollarse, serán utilizados en diferentes disciplinas científicas, tecnológicas y de negocios. En física, por ejemplo se pueden anticipar aplicaciones tales como poderosas simulaciones en física atómica y nuclear, de las propiedades eléctricas, ópticas y magnéticas de materiales. En efecto, los computadores cuánticos, con su dinámica cuántica serán las máquinas más idóneas para tales computaciones, produciendo respuestas rápidas y fiables. Un computador convencional, que busca un elemento entre una lista de N elementos, ha de examinar N/2 elementos para que tenga una probabilidad de éxito del 50%. Un computador cuántico que realizase la misma tarea precisaría únicamente de la raíz cuadrada de N etapas, puesto que puede examinar múltiples elementos simultáneamente (Grover). PorUnlike a binary element of a conventional computer, which can be in a ¡0> or ¡1> state, each qubit has an infinite number of pure quantum states, characterized by the continuous variable x. The measure of x destroys the qubit while projecting its state on ¡0> or ¡1>. The interaction with the environment, which should be avoided, regardless of how weak it may be, eventually results in the same projection effect or what is the same, randomization of decoherence (loss of quantum coherence, that is to say the superposition of two states) of phase x. To perform a computation, the qubits must be coupled together in a controlled, predetermined manner. Computing involves the preparation of all qubits according to a given list, followed by the evolution by the quantum mechanics of the system towards a final state, followed by the measurement of that state. A scale computing requires a large number of interconnected qubits, which will increase decoherence. Fortunately, with a low decoherence, this problem can be solved using quantum correction algorithms (Shor, Steane). These algorithms are based on a theoretical concept of expanding the Hilbert space of the qubits beyond two dimensions (¡0> and ¡1>), creating a redundancy that protects against errors and increasing the decoherence time. The potential of the quantum computer derives from its equivalence with a conventional computer with an infinite number of parallel processors. Quantum computers, if they develop, will be used in different scientific, technological and business disciplines. In physics, for example, applications such as powerful simulations in atomic and nuclear physics, of the electrical, optical and magnetic properties of materials can be anticipated. Indeed, quantum computers, with their quantum dynamics, will be the most suitable machines for such computations, producing fast and reliable responses. A conventional computer, looking for an element among a list of N elements, has to examine N / 2 elements so that it has a 50% chance of success. A quantum computer that performed the same task would require only the square root of N stages, since it can examine multiple elements simultaneously (Grover). By

Ejemplo para 10.000 elementos sería la diferencia entre 5.000 y 100 etapas, lo que sugiere una aplicación comercial inmediata de los computadores cuánticos. En consecuencia, como que un qubit se basa en dos estados, un sistema completo de m qubits comportará 2m estados. Un computador clásico con un registro de entrada de m-bits solo se puede preparar en uno de estos posibles estados, y por ello los cálculos con diferentes valores de entrada se han de realizar como cálculos separados. Sin embargo, extrapolando el principio de superposición de la ecuación {11 a una máquina con un registro de entrada de m qubits, un computador cuántico permite que existan una superposición de todos sus posibles estados binarios clásicos.An example for 10,000 elements would be the difference between 5,000 and 100 stages, which suggests an immediate commercial application of quantum computers. Consequently, as a qubit is based on two states, a complete system of m qubits will involve 2 m states. A classic computer with an m-bit input register can only be prepared in one of these possible states, and therefore calculations with different input values must be performed as separate calculations. However, by extrapolating the principle of superposition of equation {11 to a machine with an input register of m qubits, a quantum computer allows an overlapping of all its possible classical binary states.

Esto significa que podría realizar un único cálculo con sus entradas fijadas en una superposición de todos los valores de entrada clásicos!. Este fenómeno denominado paralelismo cuántico es la base para permitir resolver algunos problemas mucho más rápidamente con un procesador cuántico.This means that you could perform a single calculation with your inputs set to an overlay of all classic input values! This phenomenon called quantum parallelism is the basis for solving some problems much more quickly with a quantum processor.

Algunos dispositivos para computación cuántica que han sido propuestos y que aparecen en la literatura técnica son:Some devices for quantum computing that have been proposed and that appear in the technical literature are:

1. Iones en una trampa electromagnética, interactuando a través de sus modos de vibración, con estados cuánticos preparados y leídos por un láser externo (J.I. Cirac y P.Zoller). Aunque es posible implementarlo con unos pocos iones, este sistema es difícil de construir a mayor escala, con un tamaño necesario para una computación útil. La patente US. 5.793.091 de Ralph Godwin Devoe se refiere a una arquitectura en paralelo para un computador cuántico utilizando trampas de iones.1. Ions in an electromagnetic trap, interacting through their vibration modes, with quantum states prepared and read by an external laser (JI Cirac and P. Zoller). Although it is possible to implement it with a few ions, this system is difficult to build on a larger scale, with a size necessary for useful computing. US patent 5,793,091 by Ralph Godwin Devoe refers to a parallel architecture for a quantum computer using ion traps.

2. Átomos en rayos, interactuando electromagnéticamente entre sí y con unos fotones externos (Kimble et al. , Aspect). Este sistema presenta el mismo problema que el anterior: puede ser relativamente fácil de operar con un pequeño número de átomos pero muy difícil de construir a gran escala. La patente US. 4.984.959 de Houk et al. se refiere a un computador óptico incluyendo una conversión mediatizada de números en una representación residual.2. Atoms in rays, interacting electromagnetically with each other and with external photons (Kimble et al., Aspect). This system presents the same problem as the previous one: it can be relatively easy to operate with a small number of atoms but very difficult to build on a large scale. US patent 4,984,959 to Houk et al. refers to an optical computer including a mediated conversion of numbers into a residual representation.

3. Electrones en puntos cuánticos interactuando electrostáticamente (Ekkert y Jozsa). Los qubits están formados por niveles cuánticos de electrones confinados. Este sistema precisa operar a nivel de electrones, de forma individualizada, lo que de hecho es más una cuestión teórica que una posibilidad práctica. La patente US. 5.530.263 de Di Vicenzo se refiere a unos elementos de computación de tres puntos cuánticos de una escala atómica o próxima.3. Electrons at quantum points interacting electrostatically (Ekkert and Jozsa). The qubits are formed by quantum levels of confined electrons. This system needs to operate at the level of electrons, individually, which in fact is more a theoretical issue than a practical possibility. US patent Di Vicenzo 5,530,263 refers to three quantum dot computing elements of an atomic or near scale.

4. Superconductores nanométricos acoplados eléctricamente (Shnirman et al.). Los qubits están formados por niveles discretos debido al flujo cuan tincado.4. Electrically coupled nanometric superconductors (Shnirman et al.). The qubits are formed by discrete levels due to the flow rate.

5. Espines nucleares acoplados a través de interacción de los dipolos magnéticos (Kane, Gerchenfeld y Chuang, Cory et al.). Los campos magnéticos se pueden utilizar para manipular este sistema a baja temperatura. Los espines nucleares tienen un tiempo de decoherencia grande. El problema de esta propuesta estriba en que no está claro que de momento se puedan manipular de manera eficaz los espines nucleares individuales en un sistema que tenga unas dimensiones razonables. La patente WO 99/14858 se refiere a un computador cuántico comprendiendo un substrato de semiconductor en el cual se introducen átomos donadores para producir una serie de sistemas de electrones de espín nuclear donador con unas funciones de onda electrónica no nulas en el interior del núcleo del átomo donador. Otras referencias en la literatura especializada conocidas por los solicitantes, de posible interés en este campo para una mejor comprensión de los principios de la invención se detallan seguidamente:5. Nuclear spins coupled through interaction of magnetic dipoles (Kane, Gerchenfeld and Chuang, Cory et al.). Magnetic fields can be used to manipulate this system at low temperature. Nuclear spins have a great decoherence time. The problem with this proposal is that it is not clear that individual nuclear spins can be handled efficiently in a system that has reasonable dimensions. WO 99/14858 refers to a quantum computer comprising a semiconductor substrate in which donor atoms are introduced to produce a series of donor nuclear spin electron systems with non-zero electronic wave functions inside the core of the core. donor atom Other references in the specialized literature known to applicants, of possible interest in this field for a better understanding of the principles of the invention are detailed below:

1.- R.P.Feynman, Opt. News 11 , 11 ( February 1985).1.- R.P. Feynman, Opt. News 11, 11 (February 1985).

2.- P.W. Shor, " Fault-tolerant quantum computation" in Proc. 37* Symp. On Foundations of Computer Science ( IEEE Computer Society Press).2.- PW Shor, "Fault-tolerant quantum computation" in Proc. 37 * Symp. On Foundations of Computer Science (IEEE Computer Society Press).

3.- A.M. Steane, Phys. Rev. Lett. 78, 2252 (1997).3:00 A.M. Steane, Phys. Rev. Lett. 78, 2252 (1997).

4.- L.K.Grover, " A fast quantum mechanical algorithm for datábase search" in Proc. 28Λ Annual ACM Symposium on the Theory of Computing" ( 1996); Phys. Rev. Lett. 79, 325 (1997).4.- LKGrover, "A fast quantum mechanical algorithm for datábase search" in Proc. 28 Λ Annual ACM Symposium on the Theory of Computing "(1996); Phys. Rev. Lett. 79, 325 (1997).

5.- J.I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).5.- J.I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).

6.- H.J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, 6916.- H.J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, 691

(1997).(1997).

7.- A. Aspect et al. , Phys. Rev. Lett. 45, 617 (1980). 8.- A. Ekkert and R. Jozsa, Rev. Mod. Phys. 68, 733 (1996).7.- A. Aspect et al. , Phys. Rev. Lett. 45, 617 (1980). 8.- A. Ekkert and R. Jozsa, Rev. Mod. Phys. 68, 733 (1996).

9.- A. Shnirman, G. Schón and Z. Hermon, Phys. Rev. Lett. 79, 2371 (1997).9.- A. Shnirman, G. Schón and Z. Hermon, Phys. Rev. Lett. 79, 2371 (1997).

10.- B.E.Kane, Nature 393, 133 (1998).10.- B.E. Kane, Nature 393, 133 (1998).

11.- N.A. Gershenfeld and I. L. Chuang, Science 275, 350 (1997).11.- N.A. Gershenfeld and I. L. Chuang, Science 275, 350 (1997).

12.- D. Cory, A. Fahmy and T. Havel, Proc. Nat. Acad. Sci. 94(5), 1634 (1997).12.- D. Cory, A. Fahmy and T. Havel, Proc. Nat. Acad. Sci. 94 (5), 1634 (1997).

13.- C.P. Collier, E.W.Wong, M.Belohradsky, F.M.Raymo, J.F. Stoddart,13.- C.P. Collier, E.W. Wong, M.Belohradsky, F.M. Raymo, J.F. Stoddart,

P.J. Juekes, R.S. Williams, and J.R.Heath "Electronically ConfigurableP.J. Juekes, R.S. Williams, and J.R. Heath "Electronically Configurable

Molecular-Based Logic Gates" Science Jul 16, 1999: 391-394.Molecular-Based Logic Gates "Science Jul 16, 1999: 391-394.

14.- E. Del Barco, N. Vernier, J.M. Hernández, J. Tejada, E.M.Schudnovsky, E.Molins and G. Bellessa "Quantum Coherence in Fe8 14.- E. Del Barco, N. Vernier, JM Hernández, J. Tejada, EMSchudnovsky, E. Molins and G. Bellessa "Quantum Coherence in Fe 8

Molecular Nanomagnets" pendiente de publicación en Europhysics Letters,Molecular Nanomagnets "pending publication in Europhysics Letters,

1999.1999.

EXPOSICIÓN DE LA INVENCIÓNEXHIBITION OF THE INVENTION

El objetivo de la invención es la explotación de sistemas magnéticos, operando en un rango de temperaturas de milikelvins y debidamente apantallados respecto a campos magnéticos externos, para computación cuántica.The objective of the invention is the exploitation of magnetic systems, operating in a range of milikelvins temperatures and duly shielded with respect to external magnetic fields, for quantum computing.

Esta invención describe un computador cuántico basado en qubits magnéticos, es decir partículas magnéticas monodominio de tamaño nanométrico o agregados moleculares según se ha definido previamente. Mientras que todos los agregados moleculares son idénticos, las partículas magnéticas monodominio pueden diferir en tamaño y forma.This invention describes a quantum computer based on magnetic qubits, that is, monodomain magnetic particles of nanometric size or molecular aggregates as previously defined. While all molecular aggregates are identical, monodomain magnetic particles may differ in size and shape.

El término "dominio" se halla descrito por ejemplo en C.P. Bean and J. D.Livingston J. Appl. Physics, 30, 120 (1959); and B.D. Cullity. Introduction to Magnetic Materials, Addison-Wesley Publishing Co. , Massachusets, (1972), see also The Magnetic Properties of Materials by J.E. Thomson, Newnes International Monographs on Materials Science an Technology, CRC Press, Cleveland, Ohio 1968. Cada partícula magnética de tamaño nanométrico, monodominio o agregado molecular se deposita, en primer lugar, en una zona bien controlada sobre un substrato dieléctrico, por ejemplo embebida dentro de una matriz sólida, y se halla en el interior de un dispositivo elemental cuántico constituido por un elemento inductivo superconductor y un micro-SQUID (dispositivo microscópico, superconductor, de interferencia cuántica) en funciones de sensor. Los estados cuánticos de cada qubit se manipulan y miden enviando y recibiendo señales electromagnéticas hacia y desde el correspondiente conjunto de elemento inductivo superconductor y micro-SQUID. Los estados cuánticos de las diferentes partículas de tamaño nanométrico están mezclados/superpuestos por la conexión de dichos dispositivos elementales cuánticos por unas líneas superconductoras con interruptores de Josephson.The term "domain" is described for example in CP Bean and J. D. Livingston J. Appl. Physics, 30, 120 (1959); and BD Cullity. Introduction to Magnetic Materials, Addison-Wesley Publishing Co., Massachusets, (1972), see also The Magnetic Properties of Materials by JE Thomson, Newnes International Monographs on Materials Science an Technology, CRC Press, Cleveland, Ohio 1968. Each magnetic particle of nanometric size, monodomain or molecular aggregate is deposited, first, in a well-controlled area on a dielectric substrate, for example embedded within a solid matrix, and is located inside a quantum elementary device consisting of a superconductive inductive element and a micro-SQUID (microscopic device, superconductor, quantum interference) in sensor functions. The quantum states of each qubit are manipulated and measured by sending and receiving electromagnetic signals to and from the corresponding set of superconductive inductive element and micro-SQUID. The quantum states of the different particles of nanometric size are mixed / superimposed by the connection of said quantum elementary devices by superconducting lines with Josephson switches.

Dos conjuntos de estados cuánticos se pueden utilizar en un qubit magnético. El primero de ellos, detallado en la Fig. 1 de los dibujos adjuntos, se refiere a la situación en la cual se suprime el paso, por efecto túnel, del espín de las partículas nanométricas, monodominio. En este caso el primer estado excitado del espín corresponde, en términos clásicos, a la precesión uniforme del momento magnético de la partícula alrededor de su eje de anisotropía. Este estado excitado está separado del estado fundamental de espín por la distancia energética que es igual al producto de la constante de Planck por la frecuencia de la resonancia ferromagnética (FMR). El factor de calidad (QF) en materiales ferromagnéticos dieléctricos puede ser tan alto como 106, lo que sugiere una muy baja velocidad de decoherencia.Two sets of quantum states can be used in a magnetic qubit. The first one, detailed in Fig. 1 of the attached drawings, refers to the situation in which the passage, by tunnel effect, of the spin of the nanometric particles, monodomain, is suppressed. In this case, the first excited state of the spin corresponds, in classical terms, to the uniform precession of the magnetic moment of the particle around its axis of anisotropy. This excited state is separated from the fundamental spin state by the energetic distance that is equal to the product of the Planck constant by the ferromagnetic resonance frequency (FMR). The quality factor (QF) in dielectric ferromagnetic materials can be as high as 10 6 , which suggests a very low decoherence rate.

Esta clase de qubit y su manipulación son muy similares en concepto al qubit basado en NMR (resonancia magnética nuclear), ver por Ej. Chuang, en la obra "Introduction to Quantum Computation and Information", World Scientific, 1998). Este último qubit debe de manipularse aplicando campos de radio-frecuencia a nivel de un espín nuclear individual en el rango de las frecuencias NMR, lo que es extremadamente difícil de implementar (aunque posible, en principio) . Por el contrario, el qubit de FMR puede manipularse fácilmente en el interior de un conjunto de elemento inductivo superconductor y micro-SQUID, debido al hecho de que las frecuencias FMR típicas y las frecuencias típicas del micro-SQUID se hallan en la misma gama de microondas.This kind of qubit and its manipulation are very similar in concept to qubit based on NMR (nuclear magnetic resonance), see for example Chuang, in the work "Introduction to Quantum Computation and Information", World Scientific, 1998). This last qubit must be manipulated by applying radio frequency fields at the level of an individual nuclear spin in the range of NMR frequencies, which is extremely difficult to implement (although possible, in principle). On the contrary, the FMR qubit can be easily manipulated inside a set of superconductive and micro-SQUID inductive element, due to the fact that the Typical FMR frequencies and typical micro-SQUID frequencies are in the same microwave range.

El QF de la FMR de los cristales ferromagnéticos dieléctricos puros puede ser tan alto como un millón, muy por encima del QF de mil, ampliamente citado como necesario para realizar una computación a escala adecuada. Aunque la FMR y su QF no han sido medidos en partículas nanométricas individuales, no existe ninguna razón para creer que debe ser menor que en cristales grandes.The QF of the FMR of pure dielectric ferromagnetic crystals can be as high as one million, well above the QF of one thousand, widely cited as necessary to perform computation at an adequate scale. Although FMR and its QF have not been measured in individual nanometric particles, there is no reason to believe that it should be smaller than in large crystals.

La segunda situación de estados cuánticos corresponde a pequeñas partículas magnéticas o agregados moleculares en donde el espín pasa por efecto túnel a través de la barrera anisotrópica. El fenómeno se ha considerado tanto teórica como experimentalmente por dos de los presentes inventores Chudnowsky E..M. y Tejada J. en la obra "Macroscopic Quantum Tunneling of the Magnetic Moment", (Cambridge University Press 1998). En este caso, que aparece ilustrado en la Fig. 2, el estado fundamental de la partícula se divide en dos estados que pueden ser utilizados como estados 10) y 1 1).The second situation of quantum states corresponds to small magnetic particles or molecular aggregates where the spin passes through the tunnel through the anisotropic barrier. The phenomenon has been considered both theoretically and experimentally by two of the present inventors Chudnowsky E..M. and Tejada J. in the work "Macroscopic Quantum Tunneling of the Magnetic Moment", (Cambridge University Press 1998). In this case, which is illustrated in Fig. 2, the fundamental state of the particle is divided into two states that can be used as states 10) and 1 1).

En ambas situaciones la temperatura operativa debe ser baja comparada con la distancia energética Δ entre los estados | 0) y 1 1). La distancia energética de la primera situación es del orden de 0, 1 °K, mientras que en la segunda situación dicha distancia energética se puede controlar aplicando el campo magnético externo perpendicular al eje anisotrópico de la partícula o agregado molecular. En cualquier caso la temperatura de la operación debe estar en el rango de los milikelvin.In both situations the operating temperature must be low compared to the energy distance Δ between the states | 0) and 1 1). The energy distance of the first situation is of the order of 0.1 K, while in the second situation said energy distance can be controlled by applying the external magnetic field perpendicular to the anisotropic axis of the particle or molecular aggregate. In any case the temperature of the operation must be in the range of the milikelvin.

La deposición y caracterización de los conjuntos de partículas o agregados moleculares sobre un substrato dieléctrico se conseguirá utilizando técnicas tales como la litografía basada en integración a muy alta escala (VLSI), la microscopía de fuerza atómica (AFM), la microscopía de barrido por efecto túnel (STM) y la microscopía de fuerza magnética (MFM), véase Proceeding of the IEEE, Edición especial "Quantum Devices and Application" April 1999, páginas 652-657, The Institute of Electrical and Electronics Engineers Inc. Editado por Alan C. Seabangh y P. NarKi Mazunder, USA. Ejemplos de substratos para organizar estas unidades magnéticas, ya sean nanopartículas o agregados moleculares en conjuntos de 1, 2 y 3 dimensiones pueden ser matrices tales como clatrados moleculares, ceolitas porosas, películas de capa epitaxial de Langmuir-Blodgett, plásticos y nanotubos. Cada nanopartícula o agregado molecular actuará como un qubit individual e identificable.The deposition and characterization of the sets of particles or molecular aggregates on a dielectric substrate will be achieved using techniques such as lithography based on very high scale integration (VLSI), atomic force microscopy (AFM), scanning effect microscopy tunnel (STM) and magnetic force microscopy (MFM), see Proceeding of the IEEE, Special Edition "Quantum Devices and Application" April 1999, pages 652-657, The Institute of Electrical and Electronics Engineers Inc. Edited by Alan C. Seabangh and P. NarKi Mazunder, USA. Examples of substrates for organizing these magnetic units, whether nanoparticles or molecular aggregates in sets of 1, 2 and 3 dimensions can be matrices such as molecular clathrates, porous zeolites, Langmuir-Blodgett epitaxial film films, plastics and nanotubes. Each nanoparticle or molecular aggregate will act as an individual and identifiable qubit.

La mezcla o superposición entre diferentes qubits se consigue en esta invención colocando las unidades magnéticas en el interior de un conjunto de elemento inductivo superconductor y micro-SQUID, y conectando entre sí estos conjuntos o dispositivos elementales cuánticos por medio de unas líneas superconductoras tal como se muestra en la Fig. 3 de los dibujos adjuntos. El cambio en los estados magnéticos de cualquier partícula resultará de la inducción electromagnética de una corriente superconductora en el conjunto de elemento inductivo superconductor y micro-SQUID que rodea a dicha unidad magnética. Esta corriente fluirá hacia los conjuntos vecinos cambiando los estados cuánticos de las unidades magnéticas próximas. Para ello se emplearán unas uniones tipo Josephson (esquematizadas como interruptores) actuando a modo de interruptores. Las uniones tipo Josephson permiten conmutar entre diferentes estados en tiempos extremadamente reducidos. Es factible controlar la interacción entre qubits simplemente conectando o desconectando las correspondientes líneas superconductoras que los relacionan.The mixing or superposition between different qubits is achieved in this invention by placing the magnetic units inside a superconductive and micro-SQUID inductive element assembly, and connecting these quantum elementary assemblies or devices to each other by means of superconducting lines such as shown in Fig. 3 of the attached drawings. The change in the magnetic states of any particle will result from the electromagnetic induction of a superconducting current in the set of superconductive and micro-SQUID inductive element that surrounds said magnetic unit. This current will flow to the neighboring assemblies changing the quantum states of the nearby magnetic units. For this purpose, Josephson type connections (schematized as switches) acting as switches will be used. Josephson type joints allow switching between different states in extremely short times. It is feasible to control the interaction between qubits simply by connecting or disconnecting the corresponding superconducting lines that relate them.

Las puertas lógicas basadas en estructuras nanométricas magnéticas precisan mantener la coherencia durante el tiempo de computación. En el qubit magnético descrito en esta invención el efecto de decoherencia se puede disminuir purificando las partículas tanto químicamente como isotópicamente.Logic gates based on magnetic nanometric structures need to maintain consistency during computing time. In the magnetic qubit described in this invention the effect of decoherence can be diminished by purifying the particles both chemically and isotopically.

Además, las partículas deben de ser dieléctricas con el fin de evitar los fenómenos de decoherencia asociados a los electrones conductores.In addition, the particles must be dielectric in order to avoid the decoherence phenomena associated with the conducting electrons.

Ejemplos de materiales adecuados para la situación mostrada en la fig. 1 son partículas nanométricas ferro y ferri con un campo anisotrópico mayor que 0,05 T, tales como CoFe^O,,, -Fe^ y BaFe12O19 Examples of materials suitable for the situation shown in fig. 1 are ferro and ferri nanometric particles with an anisotropic field greater than 0.05 T, such as CoFe ^ O ,,, -Fe ^ and BaFe 12 O 19

En la situación de la Fig. 2, se pueden utilizar partículas anti-ferromagnéticas o agregados moleculares nanométricos. Ejemplos son la ferritina y los agregados moleculares de Fe8 sintetizados de acuerdo con Wiedghardt K. , Pohl K, Jibril I and Huttner G. "Angew. Chem. Int. Ed. Engl. (1984) 77 y con una composición nominal [(C6H15N3)6Fe83-O)22-OH)12(Br7(H2O))Br8H2θ] comprobados por análisis químico y de infrarrojos. En el Fe8 la distancia entre los niveles correspondientes a los dos niveles más bajos dentro de los pozos anisotrópicos magnéticos es de alrededor de 5K. En cuanto la temperatura desciende sensiblemente por debajo de dicho valor, el número de niveles excitados de espín se reduce exponencialmente y únicamente resultan de interés práctico transiciones entre los niveles correspondientes al estado fundamental de espín. Aplicando un campo magnético externo estático perpendicular al eje de fácil imanación, se puede ajustar la energía de dichas transiciones a la frecuencia del campo de radiación y observar oscilaciones cuánticas coherentes del espín, similares al ejemplo de moléculas de amoníaco descrito en literatura.In the situation of Fig. 2, anti-ferromagnetic particles or nanometric molecular aggregates can be used. Examples are ferritin and molecular aggregates of Fe 8 synthesized according to Wiedghardt K., Pohl K, Jibril I and Huttner G. "Angew. Chem. Int. Ed. Engl. (1984) 77 and with a nominal composition [( C 6 H 15 N 3 ) 6 Fe 83 -O) 22 -OH) 12 (Br 7 (H 2 O)) Br 8 H 2 θ] checked by chemical and infrared analysis. 8 the distance between the levels corresponding to the two lowest levels within the magnetic anisotropic wells is around 5K. As soon as the temperature drops significantly below that value, the number of excited spin levels is reduced exponentially and only transitions between the levels corresponding to the fundamental spin state are of practical interest. By applying a static external magnetic field perpendicular to the axis of easy magnetization, the energy of these transitions can be adjusted to the frequency of the radiation field and observe coherent quantum oscillations of the spin, similar to the example of ammonia molecules described in the literature.

Los estados cuánticos de las partículas se pueden manipular combinando dos técnicas:The quantum states of the particles can be manipulated by combining two techniques:

- en primer lugar aplicando campos magnéticos externos del orden del campo magnético anisotrópico de las partículas;- firstly by applying external magnetic fields of the order of the anisotropic magnetic field of the particles;

- en segundo lugar enviando señales electromagnéticas a los conjuntos de elemento inductivo superconductor y micro-SQUID con una frecuencia que iguala a la distancia energética entre 10) y 1 1) dividida por la constante de Planck; dicha frecuencia será igual a la frecuencia FMR para la primera situación descrita en la Fig. 1 e igual al "quantum splitting" o distancia energética que separa los niveles | O) y 1 1) descritos en la Fig. 2. En el segundo caso (Fig. 2) la frecuencia se puede ajustar por el campo magnético transversal.- secondly, by sending electromagnetic signals to the superconductive and micro-SQUID inductive element assemblies with a frequency that equals the energy distance between 10) and 1 1) divided by the Planck constant; said frequency shall be equal to the FMR frequency for the first situation described in Fig. 1 and equal to the "quantum splitting" or energy distance that separates the levels | O) and 1 1) described in Fig. 2. In the second case (Fig. 2) the frequency can be adjusted by the transverse magnetic field.

La ventaja de este método de manipular qubits sobre todas las otras propuestas existentes deriva del hecho de que se utilizarán circuitos eléctricos de una manera similar a la de los computadores convencionales y que no se precisa radiación externa.The advantage of this method of manipulating qubits over all other existing proposals derives from the fact that electrical circuits will be used in a manner similar to that of conventional computers and that external radiation is not required.

A tal fin el acoplamiento de partículas magnéticas a los conjuntos de elemento inductivo superconductor y micro-SQUID es una disposición ideal puesto que tanto las unidades magnéticas (partículas o agregados moleculares) como los citados conjuntos pueden operar en la misma gama de frecuencias.To this end, the coupling of magnetic particles to the superconductive and micro-SQUID inductive element assemblies is an ideal arrangement since both the magnetic units (particles or molecular aggregates) and the said assemblies can operate in the same frequency range.

De la misma manera, el estado final de los qubits se puede leer fácilmente a través de los micro-SQUIDs de la manera convencional.In the same way, the final state of the qubits can be easily read through the micro-SQUIDs in the conventional manner.

El factor de calidad (QF) de 103-106 hará posible que el computador propuesto realice 103-106 operaciones sin aplicación de la corrección de error. Aplicando el algoritmo de corrección de error el número de operaciones podrá incrementarse drásticamente. DESCRIPCIÓN DE LOS DIBUJOSThe quality factor (QF) of 10 3 -10 6 will make it possible for the proposed computer to perform 10 3 -10 6 operations without applying error correction. By applying the error correction algorithm the number of operations can be drastically increased. DESCRIPTION OF THE DRAWINGS

Otras características y ventajas de la presente invención resultarán aparentes a partir de la siguiente descripción, considerada conjuntamente con los dibujos adjuntos, en los cuales: la Fig. 1 es un dibujo esquemático mostrando la estructura de niveles de espín en los dos pozos de potencial asociados a la anisotropía magnética de las partículas nanométricas; la Fig. 2 es un dibujo esquemático mostrando la estructura de niveles de espín en dos pozos de potencial. También se indica la rotura de la degeneración del estado fundamental Δ debido al efecto túnel; y la Fig. 3 es un dibujo esquemático indicativo, en una forma simplificada, conveniente, de una porción de una posible disposición de unidades magnéticas (partículas nanométricas o agregados moleculares), conforme propone la invención depositados sobre un substrato y cuyos estados cuánticos están debidamente mezclados/superpuestos de manera que constituyan un elemento lógico adecuado para un computador cuántico; la figura incluye asimismo el símbolo de los dos estados cuánticos del espín.Other features and advantages of the present invention will be apparent. from the following description, considered in conjunction with the accompanying drawings, in which: Fig. 1 is a schematic drawing showing the structure of spin levels in the two potential wells associated with the magnetic anisotropy of the nanometric particles; Fig. 2 is a schematic drawing showing the structure of spin levels in two potential wells. The breakage of the degeneration of the fundamental state Δ due to the tunnel effect is also indicated; and Fig. 3 is a schematic drawing indicative, in a simplified, convenient form, of a portion of a possible arrangement of magnetic units (nanometric particles or molecular aggregates), as proposed by the invention deposited on a substrate and whose quantum states are properly mixed / superimposed so that they constitute a logical element suitable for a quantum computer; The figure also includes the symbol of the two quantum states of the spin.

En la Fig. 3 una pluralidad (el dibujo únicamente representa una mínima parte de la disposición) de unidades magnéticas (1), están rodeadas por un conjunto (2) o dispositivo elemental cuántico que incluye un elemento inductivo superconductor y un micro-SQUID, que en general rodearán ambos a la unidad magnética, aunque el micro-SQUID podría adoptar otra disposición alternativa. Dichos conjuntos (2) están interrelacionados a través de líneas inductivas superconductoras (3) cada una de las cuales contiene un interruptor de control (4) que puede ser una unión tipo Josephson. Cada conjunto (2) está conectado a unas líneas (5), preferentemente también superconductoras, para medir y manipular los qubits. Las unidades magnéticas (partículas o agregados moleculares) se depositan sobre un substrato dieléctrico (6) no magnético por las técnicas ya definidas que posibilitan un factor de calidad (QF) que debe de sobrepasar el QF del qubit de NMR en el rango de los milikelvin.In Fig. 3 a plurality (the drawing only represents a minimum part of the arrangement) of magnetic units (1), are surrounded by a set (2) or quantum elementary device that includes a superconductive inductive element and a micro-SQUID, which will generally surround both the magnetic unit, although the micro-SQUID could adopt another alternative arrangement. Said assemblies (2) are interrelated through superconductive inductive lines (3) each of which contains a control switch (4) that can be a Josephson type junction. Each set (2) is connected to lines (5), preferably also superconductors, to measure and manipulate the qubits. The magnetic units (particles or molecular aggregates) are deposited on a non-magnetic dielectric substrate (6) by the techniques already defined that enable a quality factor (QF) that must exceed the QF of the NMR qubit in the milikelvin range .

Un conjunto de elemento inductivo superconductor y micro-SQUID puede, en principio, manipular el estado magnético de la unidad magnética (1) con una precisión de un quantum de flujo magnético. Conectando los citados conjuntos (2) tal como se muestra en la Fig. 3 ello implicará mezclar o superponer lo estados de las diferentes partículas (1). El cambio en el estado magnético cuántico de cualquier unidad magnética dará como resultado la generación de una inducción electromagnética en el conjunto (2) que rodea a dicha partícula (1). Esta corriente fluirá hacia los conjuntos (2) vecinos cambiando los estados cuánticos de las correspondientes unidades magnéticas (1) que encierran. Las uniones tipo Josephson (5) ya se han aplicado como bloques constructivos para circuitos digitales clásicos. La ventaja de los sistemas magnéticos para computación cuántica sobre todas las propuestas anteriores citadas es doble. En primer lugar, todos los elementos necesarios para construir el citado computador cuántico ya existen y han sido ensayados experimentalmente. Los materiales, tanto las partículas magnéticas monodominio de tamaño nanométrico como los agregados moleculares, has sido estudiados intensamente y caracterizados por los presentes inventores y otros grupos durante los últimos años (véase los documentos publicados que se han citado). Respecto a la medida del momento magnético de las partículas, en la actualidad es posible medir partículas con un espín total por debajo de 1000 en el interior de una disposición de micro-SQUID (por Ej. Wensdorfer y otros en el CNRS - Grenoble). En segundo lugar, no se precisa radiación externa para manipular los qubits magnéticos. Todas las operaciones se pueden realizar electrónicamente, tal como en los computadores convencionales, de manera que se puede emplear toda la experiencia existente. A set of superconductive and micro-SQUID inductive element can, in principle, manipulate the magnetic state of the magnetic unit (1) with a precision of a quantum of magnetic flux. Connecting said assemblies (2) as shown in Fig. 3 will imply mixing or superimposing the states of the different particles (1). The change in the quantum magnetic state of any magnetic unit will result in the generation of an electromagnetic induction in the assembly (2) surrounding said particle (1). This current will flow to the neighboring assemblies (2) changing the quantum states of the corresponding magnetic units (1) that they enclose. Josephson type connections (5) have already been applied as building blocks for classic digital circuits. The advantage of magnetic systems for quantum computing over all the above mentioned proposals is twofold. In the first place, all the elements necessary to build the said quantum computer already exist and have been experimentally tested. The materials, both the monodomain magnetic particles of nanometric size and the molecular aggregates, have been studied intensively and characterized by the present inventors and other groups during the last years (see the published documents that have been cited). Regarding the measurement of the magnetic moment of the particles, it is currently possible to measure particles with a total spin below 1000 inside a micro-SQUID arrangement (eg Wensdorfer and others in the CNRS - Grenoble). Secondly, no external radiation is required to manipulate the magnetic qubits. All operations can be performed electronically, as in conventional computers, so that all existing experience can be used.

Claims

REIVINDICACIONES 1.- Un elemento lógico que comprende: una primera unidad magnética consistente en una partícula o agregado molecular preparada en una primera superposición de dos estados cuánticos diferentes del espín; una segunda unidad magnética consistente en una partícula o agregado molecular preparada en una segunda superposición de dos estados cuánticos diferentes del espín; estando dichas primera y segunda unidades magnéticas firmemente acopladas o fijadas a un substrato dieléctrico e interactuando a través de un circuito superconductor dotado de unos interruptores de control para poder mezclar/ superponer los estados cuánticos de las unidades magnéticas; en cuyo elemento lógico las unidades magnéticas son capaces de aportar una elevada densidad de almacenamiento magnético cuando la operación se realiza en una gama de temperaturas en el rango de los milikelvin de manera que cada partícula actúa como un qubit individual e identificable, y el sistema está apantallado respecto a campos magnéticos externos.CLAIMS 1. A logical element comprising: a first magnetic unit consisting of a particle or molecular aggregate prepared in a first superposition of two different quantum states of the spin; a second magnetic unit consisting of a particle or molecular aggregate prepared in a second superposition of two different quantum states of the spin; said first and second magnetic units being firmly coupled or fixed to a dielectric substrate and interacting through a superconducting circuit provided with control switches to be able to mix / superimpose the quantum states of the magnetic units; in which logical element the magnetic units are able to provide a high density of magnetic storage when the operation is performed in a range of temperatures in the range of millikelvin so that each particle acts as an individual and identifiable qubit, and the system is shielded with respect to external magnetic fields. 2.- Un elemento lógico según la reivindicación 1, en el cual la citada preparación de dichas primera y segunda unidades magnéticas implica el envío de señales electromagnéticas a través de un anillo superconductor que rodea a cada una de dichas unidades magnéticas.2. A logical element according to claim 1, wherein said preparation of said first and second magnetic units involves sending electromagnetic signals through a superconducting ring that surrounds each of said magnetic units. 3.- Un elemento lógico, según la reivindicación 1, en el cual dichas primera y segunda partículas magnéticas son partículas magnéticas monodominio o agregados moleculares con un espín total de menos de 1.000. 3. A logical element according to claim 1, wherein said first and second magnetic particles are monodomain magnetic particles or molecular aggregates with a total spin of less than 1,000. 4.- Un elemento lógico, según la reivindicación 3, en el cual dichas partículas magnéticas o agregados moleculares son de naturaleza dieléctrica.4. A logical element according to claim 3, wherein said magnetic particles or molecular aggregates are dielectric in nature. 5.- Un elemento lógico, según la reivindicación 3, en el cual los materiales de dicha primera y segunda partículas magnéticas son sometidos a purificaciones químicas e isotópicas para adquirir una baja decoherencia. 5. A logical element according to claim 3, in which the materials of said first and second magnetic particles are subjected to chemical and isotopic purifications to acquire a low decoherence. 6.- Un elemento lógico, según la reivindicación 3, en el cual dicho anillo superconductor consiste en un dispositivo elemental cuántico que comprende un elemento inductivo superconductor y un micro-SQUID, con un dispositivo asociado a cada unidad magnética y rodeando al menos dicho elemento inductivo superconductor a cada una de dichas unidades magnéticas.6. A logical element according to claim 3, wherein said superconducting ring consists of a quantum elementary device comprising a superconductive inductive element and a micro-SQUID, with a device associated with each magnetic unit and surrounding at least said element inductive superconductor to each of said magnetic units. 7.- Un elemento lógico según la reivindicación 1 , en el cual dichos interruptores de control son interruptores de alta frecuencia del tipo de unión de Josephson para controlar la interacción entre dichas primera y segunda unidades magnéticas.7. A logical element according to claim 1, wherein said control switches are high frequency switches of the Josephson junction type for controlling the interaction between said first and second magnetic units. 8.- Un elemento lógico según la reivindicación 56 y comprendiendo además medios de adquisición de datos para medir dichos dos estados cuánticos diferentes del espín, de dichas primera y segunda unidades magnéticas.8. A logical element according to claim 56 and further comprising data acquisition means for measuring said two different quantum states of the spin, of said first and second magnetic units. 9.- Un elemento lógico según la reivindicación 8, en el cual dichos medios de adquisición de datos están constituidos por los citados micro-SQUIDs que tienen conectados unos hilos conductores para medir y manipular dichos qubits.9. A logical element according to claim 8, wherein said data acquisition means are constituted by said micro-SQUIDs that have conductive wires connected to measure and manipulate said qubits. 10.- Un elemento lógico según la reivindicación 9, en el cual dichos hilos conductores son unas líneas superconductoras.10. A logical element according to claim 9, wherein said conductive wires are superconducting lines. 11.- Un elemento lógico según la reivindicación 2, en el cual dichos dos estados cuánticos diferentes del espín, son, o bien los estados cuánticos del operador Sz, o los estados cuánticos diferentes que derivan por efecto túnel de la rotura de la degeneración del estado fundamental de dichas unidades magnéticas.11. A logical element according to claim 2, wherein said two different quantum states of the spin, are either the quantum states of the operator S z , or the different quantum states that derive by tunnel effect from the breakage of the degeneration. of the fundamental state of said magnetic units. 12.- Un elemento lógico según la reivindicación 11, en el cual para adquirir dichos dos estados cuánticos diferentes del espín, se aplica un campo magnético externo a través de dicho anillo superconductor.12. A logical element according to claim 11, in which to acquire said two different quantum states of the spin, an external magnetic field is applied through said superconducting ring. 13.- Un elemento lógico según la reivindicación 12, en el cual para adquirir dichos dos estados cuánticos diferentes del espín que derivan por efecto túnel de la rotura de la degeneración del estado fundamental de dichas unidades magnéticas, dicho campo magnético externo debe ser perpendicular al eje de fácil imanación de la anisotropía magnética.13. A logical element according to claim 12, in which to acquire said two different quantum states of the spin that derive by tunnel effect of the breakage of the degeneration of the fundamental state of said magnetic units, said external magnetic field must be perpendicular to the easy magnetization axis of magnetic anisotropy. 14.- Un elemento lógico según la reivindicación 12, en el cual para adquirir dichos dos estados cuánticos diferentes del espín, del operador Sz, de cada una de dichas unidades magnéticas, dicho campo magnético externo debe ser paralelo al eje de fácil imanación de la anisotropía magnética. 14. A logical element according to claim 12, in which to acquire said two different quantum states of the spin, of the operator S z , of each of said magnetic units, said external magnetic field must be parallel to the axis of easy magnetization of magnetic anisotropy. 15.- Un elemento lógico según la reivindicación 11 , en el cual dicho anillo superconductor recibe señales eléctricas de frecuencias FMR para la manipulación de dichas primera y segunda unidades magnéticas, que en este caso son partículas magnéticas monodominio de tamaño nanométrico. 15. A logical element according to claim 11, wherein said superconducting ring receives electrical signals of FMR frequencies for the manipulation of said first and second magnetic units, which in this case are monodomain magnetic particles of nanometric size. 16.- Un elemento lógico según la reivindicación 11 , en el cual dicho anillo superconductor recibe señales eléctricas de frecuencias correspondientes a dicha rotura de la degeneración del estado fundamental o efecto túnel de las unidades magnéticas, que son en este caso agregados moleculares. 16. A logical element according to claim 11, wherein said superconducting ring receives electrical signals of frequencies corresponding to said breakage of the degeneration of the fundamental state or tunnel effect of the magnetic units, which are in this case molecular aggregates. 17.- Un elemento lógico según la reivindicación 16, en el cual las citadas frecuencias se pueden ajustar por medio del campo magnético transversal.17. A logical element according to claim 16, wherein said frequencies can be adjusted by means of the transverse magnetic field. 18.- Un elemento lógico, según la reivindicación 3, en el cual dichos dos estados cuánticos diferentes del espín, son los estados fundamentales del operador Sz y dichas partículas magnéticas monodominio, nanométricas son partículas de tamaño nanométrico ferro and ferri con campos anisotrópicos superiores a 0,05 T, tales como18. A logical element according to claim 3, wherein said two different quantum states of the spin, are the fundamental states of the S z operator and said monodomain, nanometric magnetic particles are ferro and ferri nanometric size particles with higher anisotropic fields at 0.05 T, such as CoFe^ t, -Fe2θ3 y BaFeι2O19 CoFe ^ t , -Fe 2 θ 3 and BaFeι 2 O 19 19.- Un elemento lógico, según la reivindicación 3, en el cual dichos dos estados cuánticos diferentes del espín son los estados que derivan de la rotura de la degeneración del estado fundamental por efecto túnel de cada una de dichas unidades magnéticas, las cuales consisten en partículas anti-ferromagnéticas y agregados moleculares tales como ferritina y Fe8.19. A logical element according to claim 3, wherein said two different quantum states of the spin are the states that derive from the breakage of the degeneration of the fundamental state by tunnel effect of each of said magnetic units, which consist in anti-ferromagnetic particles and molecular aggregates such as ferritin and Fe 8 . 20.- Una puerta lógica basada en un qubit consistente en una partícula magnética monodominio, de tamaño nanométrico o agregado molecular, con un factor de calidad elevado de la resonancia ferromagnética, en una superposición cuántica de su estado fundamental y el primer estado excitado de espín, firmemente acoplada a un substrato dieléctrico y rodeada por un dispositivo elemental cuántico que comprende un elemento inductivo superconductor y un micro-SQUID.20.- A logical gate based on a qubit consisting of a monodomain magnetic particle, of nanometric size or molecular aggregate, with a high quality factor of the ferromagnetic resonance, in a quantum superposition of its fundamental state and the first excited state of spin , firmly coupled to a dielectric substrate and surrounded by a quantum elementary device comprising a superconductive inductive element and a micro-SQUID. 21.- Una puerta lógica comprendiendo dos qubits magnéticos de acuerdo con la reivindicación 20, con sus estados cuánticos mezclados/superpuestos por medio de una línea superconductora que incluye un interruptor de control. 21. A logic gate comprising two magnetic qubits according to claim 20, with their quantum states mixed / superimposed by means of a superconducting line that includes a control switch. 22.- Una puerta lógica comprendiendo: una primera unidad magnética consistente en una partícula o agregado molecular preparada en una primera superposición de dos estados cuánticos diferentes del espín; al menos una segunda unidad magnética consistente en una partícula o agregado molecular preparada en una segunda superposición de dos estados cuánticos diferentes del espín; un circuito superconductor dotado de interruptores de control que permiten interactuar a dichas unidades magnéticas; un dispositivo elemental cuántico que comprende un elemento inductivo superconductor y un micro-SQUID, asociado a cada unidad magnética y rodeando al menos dicho elemento inductivo a dicha unidad magnética, cuyo dispositivo elemental está enlazado a unas líneas conductoras, y medios para medir y manipular dicho dispositivo elemental cuántico, a través de dichas líneas conductoras.22.- A logical door comprising: a first magnetic unit consisting of a particle or molecular aggregate prepared in a first superposition of two different quantum states of the spin; at least a second magnetic unit consisting of a particle or molecular aggregate prepared in a second superposition of two different quantum states of the spin; a superconducting circuit equipped with control switches that allow interact with said magnetic units; a quantum elementary device comprising a superconductive inductive element and a micro-SQUID, associated to each magnetic unit and surrounding at least said inductive element to said magnetic unit, whose elementary device is linked to conductive lines, and means for measuring and manipulating said quantum elementary device, through said conductive lines. 23.- Un computador cuántico comprendiendo una serie de unidades magnéticas según una cualquiera de las reivindicaciones 1 a 19, rodeadas por un dispositivo elemental cuántico que comprende un elemento inductivo superconductor y un micro- SQUID, conectados a unas líneas superconductoras e interrelacionados por un circuito superconductor con unos interruptores de control de comunicación entre las unidades magnéticas.23. A quantum computer comprising a series of magnetic units according to any one of claims 1 to 19, surrounded by a quantum elementary device comprising a superconductive inductive element and a micro-SQUID, connected to superconducting lines and interrelated by a circuit Superconductor with communication control switches between magnetic units. 24.- Un método para una computación cuántica de propósito general comprendiendo una pluralidad de elementos lógicos interconectados, cada uno de los cuales incluye: una primera unidad magnética consistente en una partícula o agregado molecular preparada en una primera superposición de dos estados cuánticos diferentes del espín; al menos una segunda unidad magnética consistente en una partícula o agregado molecular preparada en una segunda superposición de dos estados cuánticos diferentes del espín; interactuando dichas primera y segunda unidades magnéticas a través de un circuito superconductor dotado de unos interruptores de control, de manera que los estados cuánticos de las unidades pueden mezclarse/superponerse; un anillo superconductor que rodea a cada una de dichas unidades magnéticas, en donde el método comprende las siguientes etapas: a) introducir una señal portadora de datos a través de dicho anillo superconductor, de manera que se alcance uno de dichos dos estados cuánticos diferentes del espín; b) cerrar los interruptores en un orden escogido para interconectar un número determinado de unidades magnéticas entre sí; c) leer los estados finales de los elementos lógicos conectados. 24.- A method for a general purpose quantum computation comprising a plurality of interconnected logical elements, each of which includes: a first magnetic unit consisting of a particle or molecular aggregate prepared in a first superposition of two different quantum states of the spin ; at least a second magnetic unit consisting of a particle or molecular aggregate prepared in a second superposition of two different quantum states of the spin; said first and second magnetic units interacting through a superconducting circuit provided with control switches, so that the quantum states of the units can be mixed / superimposed; a superconducting ring that surrounds each of said magnetic units, wherein the method comprises the following steps: a) introducing a data carrier signal through said superconducting ring, so that one of said two different quantum states of the spin b) close the switches in a chosen order to interconnect a certain number of magnetic units with each other; c) read the final states of the connected logic elements.
PCT/ES1999/000247 1999-07-30 1999-07-30 Quantic computer based on magnetic qubits WO2001010027A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU52910/99A AU5291099A (en) 1999-07-30 1999-07-30 Quantic computer based on magnetic qubits
PCT/ES1999/000247 WO2001010027A1 (en) 1999-07-30 1999-07-30 Quantic computer based on magnetic qubits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES1999/000247 WO2001010027A1 (en) 1999-07-30 1999-07-30 Quantic computer based on magnetic qubits

Publications (1)

Publication Number Publication Date
WO2001010027A1 true WO2001010027A1 (en) 2001-02-08

Family

ID=8307228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1999/000247 WO2001010027A1 (en) 1999-07-30 1999-07-30 Quantic computer based on magnetic qubits

Country Status (2)

Country Link
AU (1) AU5291099A (en)
WO (1) WO2001010027A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530263A (en) * 1994-08-16 1996-06-25 International Business Machines Corporation Three dot computing elements
US5768297A (en) * 1995-10-26 1998-06-16 Lucent Technologies Inc. Method for reducing decoherence in quantum computer memory
US5793091A (en) * 1996-12-13 1998-08-11 International Business Machines Corporation Parallel architecture for quantum computers using ion trap arrays
US5838436A (en) * 1997-03-26 1998-11-17 The United States Of America As Represented By The Secretary Of The Air Force Multi-purpose quantum computing
WO1999014614A1 (en) * 1997-09-17 1999-03-25 Unisearch Limited Electron devices for single electron and nuclear spin measurement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530263A (en) * 1994-08-16 1996-06-25 International Business Machines Corporation Three dot computing elements
US5768297A (en) * 1995-10-26 1998-06-16 Lucent Technologies Inc. Method for reducing decoherence in quantum computer memory
US5793091A (en) * 1996-12-13 1998-08-11 International Business Machines Corporation Parallel architecture for quantum computers using ion trap arrays
US5838436A (en) * 1997-03-26 1998-11-17 The United States Of America As Represented By The Secretary Of The Air Force Multi-purpose quantum computing
WO1999014614A1 (en) * 1997-09-17 1999-03-25 Unisearch Limited Electron devices for single electron and nuclear spin measurement
WO1999014858A1 (en) * 1997-09-17 1999-03-25 Unisearch Limited Quantum computer

Also Published As

Publication number Publication date
AU5291099A (en) 2001-02-19

Similar Documents

Publication Publication Date Title
Moreno-Pineda et al. Measuring molecular magnets for quantum technologies
Chen et al. Recent progress on topological structures in ferroic thin films and heterostructures
Tejada et al. Magnetic qubits as hardware for quantum computers
Yu et al. Room-temperature creation and spin–orbit torque manipulation of skyrmions in thin films with engineered asymmetry
Soumyanarayanan et al. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces
Jena et al. Observation of magnetic antiskyrmions in the low magnetization ferrimagnet Mn2Rh0. 95Ir0. 05Sn
US8284585B2 (en) Josephson quantum computing device and integrated circuit using such devices
US8922239B2 (en) Quantum processor
KR20210031963A (en) Formation and fabrication of semiconductor-superconductor nanowires and quantum devices based thereon
Zhang et al. Highly Efficient Nonvolatile Magnetization Switching and Multi‐Level States by Current in Single Van der Waals Topological Ferromagnet Fe3GeTe2
JP2003519927A (en) Qubit using Josephson junction between s-wave superconductor and d-wave superconductor
CN101548288A (en) Systems, methods and apparatus for local programming of quantum processor elements
Bunkov Quantum magnonics
Bracher et al. Detection of short-waved spin waves in individual microscopic spin-wave waveguides using the inverse spin hall effect
US10297739B1 (en) Parafermion braiding device
Khalili Amiri et al. Prospects for antiferromagnetic spintronic devices
JP7564554B2 (en) Method and device for providing anyon, use of the device
Song et al. Experimental realization of a skyrmion circulator
Harneit Spin quantum computing with endohedral fullerenes
Kagan et al. Electronic Phase Separation in Magnetic and Superconducting Materials
Gallop et al. Nanoscale superconducting quantum interference devices add another dimension
Liu et al. Manipulation of Spin–Orbit Torque in Tungsten Oxide/Manganite Heterostructure by Ionic Liquid Gating and Orbit Engineering
Burger et al. Atomic force manipulation of single magnetic nanoparticles for spin-based electronics
WO2001010027A1 (en) Quantic computer based on magnetic qubits
WO2021246943A1 (en) A spin hall ising machine and method for operating such

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase