WO2000066998A2 - Procede et dispositif permettant de saisir une image d'une surface essentiellement cylindrique - Google Patents
Procede et dispositif permettant de saisir une image d'une surface essentiellement cylindrique Download PDFInfo
- Publication number
- WO2000066998A2 WO2000066998A2 PCT/AT2000/000104 AT0000104W WO0066998A2 WO 2000066998 A2 WO2000066998 A2 WO 2000066998A2 AT 0000104 W AT0000104 W AT 0000104W WO 0066998 A2 WO0066998 A2 WO 0066998A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- round optics
- sensor
- optical sensor
- optics
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000011156 evaluation Methods 0.000 claims abstract description 21
- 230000003287 optical effect Effects 0.000 claims description 31
- 238000005516 engineering process Methods 0.000 claims description 14
- 239000011159 matrix material Substances 0.000 claims description 10
- 230000007547 defect Effects 0.000 claims description 7
- 238000003860 storage Methods 0.000 claims description 6
- 239000011796 hollow space material Substances 0.000 abstract 1
- 238000012545 processing Methods 0.000 description 14
- 238000013461 design Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 7
- 238000007689 inspection Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 239000003000 extruded plastic Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000012432 intermediate storage Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000001454 recorded image Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/954—Inspecting the inner surface of hollow bodies, e.g. bores
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/952—Inspecting the exterior surface of cylindrical bodies or wires
Definitions
- the invention relates to a method for detecting an image of a substantially cylindrical surface, such as surface of a ⁇ cavity and outer jacket of a substantially cylindrical workpiece.
- image processing denotes the interpretation of an image, object or scene by using contactless sensors with the aim of obtaining information, monitoring machines or processes or checking workpieces.
- An image processing system usually consists of the components: lighting, Sensor technology with optics, image digitization / image processing and image evaluation / generation of identification and control data.
- CCD cameras are the most widespread as imaging sensors.
- the semiconductor CCD cameras have become very cheap, small and light. They are available as a matrix sensor (2D arrangement, usually 780x580 pixels) and also as a line sensor (1D arrangement, from 256 to 8000 pixels).
- Image processing is used to process the captured image so that it can be evaluated in the subsequent stages with relatively little effort. Here the image is rectified, the noise and redundant redundancies eliminated by data compression.
- the pre-processed image is evaluated, errors classified or objects identified, which is done using appropriately programmed computers. Intelligent evaluation algorithms such as neural networks or fuzzy logic are often used here.
- the present invention relates to the use of an image processing system in the field of surface inspection of - preferably finished - workpieces and specifically relates only to the image acquisition part of such an image processing system.
- An image processing system offers decisive advantages especially in the field of surface inspection: It inspects objectively, reproducibly, fatigue-free and regardless of the condition of the staff.
- an image acquisition unit and an image evaluation unit the image acquisition unit having all-round optics, which detects light from the entire circumference of the cylindrical surface and projects it onto an optical sensor, the all-round optics and cylindrical surface being moved relative to one another and after completion of a predeterminable movement path Partial image of the surface that has just been captured by the sensor is stored by the image evaluation unit and all partial images are combined to form an overall image of the surface and the all-round optics and cylindrical surface are continuously moved relative to one another.
- the speed of the relative movement between the all-round optics and the surface is chosen to be the same throughout.
- the surface is kept still and the all-round optics is moved further relative to the surface.
- This variant is particularly suitable for workpieces that are large and / or heavy compared to the all-round optics and therefore can only be moved with greater effort than these.
- the optical sensor is held stationary with respect to the all-round optics and the light detected by the all-round optics. preferably using optical fibers or mirror systems, is projected onto the optical sensor.
- the spatial separation of the all-round optics and sensor thus achieved means that the part of the image acquisition unit to be moved can be manufactured with very small geometric dimensions.
- the optical sensor in contrast to the embodiment just mentioned, provision can also be made for the optical sensor to be rigidly connected to the all-round optics and to be moved together with the latter in relation to the surface.
- the all-round optics are held immovably and the surface is moved further relative to the all-round optics.
- This design variant should be selected in particular if the surface whose image is to be captured is that of an endless strand of workpieces, e.g. an extruded plastic strand, a glass strand or the like.
- the image evaluation unit recognizes defects in the surface by comparing the overall surface image with a reference image.
- Another object of the invention is to provide a device of the simplest possible design for carrying out the method just discussed. According to a first variant of the invention, this is achieved by an image acquisition unit and an image evaluation unit, the image acquisition unit having all-round optics, which detects light from the entire circumference of the cylindrical surface and projects it onto an optical sensor, the all-round optics and cylindrical surface being held movable relative to one another and the optical sensor is a ring sensor.
- an image acquisition unit and an image evaluation unit the image acquisition unit having all-round optics, which detects light from the entire circumference of the cylindrical surface and projects it onto an optical sensor, the all-round optics and cylindrical surface being kept movable relative to one another and optical sensor is a matrix sensor.
- the optical sensor is implemented in CMOS technology or in CCD technology. Both technologies show sufficient for the application area in question
- the all-round optics and, if appropriate, the optical sensor are fixed on a linear drive that can be moved continuously.
- the linear drive is formed by an electrical spindle drive, since such drives can be produced in a relatively simple manner with the travel accuracy required in the context in question.
- Spindle drive is formed by an electrical stepper or servo motor, because such drives are particularly easy to control.
- Such a drive also has the necessary travel accuracy.
- FIG. 1 shows a block diagram of a device according to the invention
- FIG. 6 shows the overall picture of the bore according to FIG. 5;
- FIG. 7 shows the circuit diagram of an image capturing component 9 which is held in CMOS technology
- Fig.l is a block diagram of an inventive device for inspecting the
- Outer surface of cylindrical workpieces, according to the principle of the invention be recorded.
- the basic structure of the necessary devices is the same.
- a device suitable for inspecting cavity surfaces is therefore described below.
- such a device essentially comprises two main components, namely on the one hand the image acquisition unit 1 and on the other hand the image evaluation unit 2.
- the image capturing unit 1 has all-round optics 6, which captures light from the entire circumference of the cylindrical surface 13 and projects it onto an optical sensor 8, 8 '(see FIG. 2, 3).
- the electrical output of this sensor 8, 8 ' is connected to the image evaluation unit 2.
- Cavity could be projected onto it, rather only a section - which, as explained in more detail below, a ring disk-shaped, the entire circumference
- Section of the surface is to be projected onto it.
- Partial images are combined into a total image of the surface in a manner also described below.
- This linear drive 4 can be of any design, for example, a
- Spindle drive threaded spindle is rotatably driven about its longitudinal axis, slide 5 has an internal thread which is penetrated by the threaded spindle) or a pneumatic linear drive (smooth-running pneumatic cylinder, its free
- Piston rod end forms the carriage 5) can be specified.
- Threaded spindle is preferably carried out by an electrical step or
- all-round optics is understood in connection with FIG. 1 to be an objective which, due to its design, is permeable to any light which is incident on it in a plane running approximately normal to its geometric axis of symmetry 7 (see FIG. 2)
- the relative movement between surface 13 and all-round optics 6 is here achieved in that the surface 13 or the workpiece on which this surface 13 is located is kept still and the all-round optics 6 is moved relative to the surface 13.
- Another component of the image acquisition unit 1 is the optical sensor 8, 8 'onto which the light passing through the all-round optics 6 is projected.
- image sensors are known per se and are designed, for example, as ring sensors 8 or as surface or matrix sensors 8 '.
- This sensor is particularly preferably designed as a ring sensor 8, which means that its individual image acquisition components 9 are arranged in a ring.
- these image acquisition components 9 are fixed on the lateral surface of a cylindrical support 10, as shown in FIG. With this design, the light incident through the all-round optics 6 does not need to be deflected, but can be made to fall directly on the sensor 8.
- Both types of ring sensors 8 only have a single image line, so that, in contrast to surface sensors 8 '(cf. FIG. 4 a), they cannot detect a larger image, but only an image line.
- the image acquisition components 9 are arranged in the form of a rectangular matrix, so that a larger-area image can be projected onto this sensor design. Both sensor designs can be used according to the invention, which will be explained further below.
- the sensor 8, 8 ′ could also be at the tip of the endoscope 3, namely within the all-round optics 6.
- the electrical signals generated by it and corresponding to the light incident on the sensor 8, 8 ′ must then be forwarded to the image processing unit 2 by means of corresponding electrical lines 24.
- the sensor 8,8 'could be fixed outside the all-round optics 6, for example at the other end of the endoscope 3 or otherwise on the slide 5 of the linear drive 4 his.
- the light incident through the all-round optics 3 would have to be fed to the sensor 8,8 ', which can be done, for example, by means of light guides or mirror systems.
- the endoscope 3 can be designed with a smaller diameter, so that it can also be used for the inspection of narrower cavities.
- Illumination of the cavity is also provided, which is preferably also fixed on the endoscope 3.
- FIG. 5 shows only the surface 13 of a hole, but not the workpiece within which this hole is actually made.
- the particularly preferred embodiment of the sensor 8 as a CMOS ring sensor is also assumed: the endoscope 3 comprising at least the all-round optics 6, possibly also the CMOS ring sensor 8, is pushed into the hole to be inspected along its axis of symmetry 14.
- the image processing unit 2 has the components clocked in FIG. 1, switches 16, intermediate storage 17 and total image storage 18.
- Each image capturing component 9 of the sensor 8 delivers a value, the size of which corresponds to the intensity of the image capturing in question.
- Component 9 corresponds to falling light.
- intermediate values 17 are combined to form an overall image 21 of the surface, simply by storing the values of each surface section
- the endoscope 3 is moved further into the bore until the ring sensor 8 lies at the level of a second section 20 and the ring sensor 8 is read out again. Then the endoscope 3 is moved again and the ring sensor
- Ring sensor 8 is detected, which is combined by the downstream image processing unit 2 to form an entire, leveled image of the surface (see FIG. 6).
- the height h of each detected strip-shaped section 15, 20, 22 of the surface 13 is as high as one
- the speed of the relative movement is preferably between
- All-round optics 6 and surface 13 are consistently chosen to be of the same height, so that there is a continuous movement (see FIG.
- Relative movement is reduced for the duration of the storage of a partial image (cf.
- the CMOS ring sensor 8 is therefore read out each time a path corresponding to the pixel height h is covered, but without stopping the endoscope 3.
- Component that is a pixel of the CMOS ring sensor 8, is shown in FIG. such
- CMOS sensors have about 120 dB, which allows detailed recordings even in high-contrast environments
- CCD sensors on the other hand, only have 70 to a maximum of 80dB. This significantly higher modulation range makes it easier to identify defects on reflective surfaces, such as those that can occur during die inspection in die-cast parts.
- CMOS sensors do not show the blooming effect that occurs with CCD sensors if a very bright light beam remains in the same place for too long. Pixels saturated by the intense lighting can no longer hold their charge, so that they flow to neighboring pixels and also saturate them. The image information of the affected pixels is lost.
- the sampling frequency i.e. the frequency with which the ring sensor 8 is read out can be directly proportional to the travel speed of the endoscope 3.
- the displacement sensor 19 is connected to the linear drive 4. This displacement sensor 19 triggers the switch 16 by one pixel height each time the endoscope 3 is moved, so that the image evaluation device 2 is caused to read out the ring sensor 8.
- An advantage of this triggered scanning is that the travel speed of the endoscope 3 can be freely selected within wide limits. Thus, e.g. in blind holes are gently braked without changing the resolution in the captured image. If the coupling of the covered endoscope path and scanning is made changeable, i.e. the length of the path, after which a new scan has to be carried out, is kept changeable, the recorded image can be given a variable resolution: if the endoscope path between two scans is increased, the resolution of the image in this area is reduced, conversely, the endoscope path between two scans is reduced, the resolution of the image increases. Areas of the hole that are of no interest (e.g. because experience has shown that surface defects do not occur there or because defects in such areas are less interesting for assessing the quality of the hole) can be scanned with reduced resolution and at a higher speed.
- the processing of the overall image 21 of the surface i.e. its examination for any existing defects in the bore surface 13 is carried out by the image evaluation unit 2, which, in addition to the total memory 18, comprises a computer on which corresponding image processing software runs, which recognizes defects in the surface by comparing the overall surface image with a reference image.
- the image evaluation unit 2 which, in addition to the total memory 18, comprises a computer on which corresponding image processing software runs, which recognizes defects in the surface by comparing the overall surface image with a reference image.
- the optical sensor 8,8 ' can be arranged in the immediate vicinity of the all-round optics 6 and its outputs can be connected to the image evaluation device 2 by means of electrical lines 24, or an objectionable arrangement of the all-round optics 6 and the sensor 8,8' can be provided, the the light passing through the all-round optics 6 is fed to the sensor 8.8 'by means of light guides and / or mirror systems.
- the principle according to the invention can also be used to record the image of the outer lateral surface of a cylindrical body.
- FIG. 1 An image acquisition unit 1 suitable for this is shown in FIG. The most significant difference from the previously discussed device for recording the image of a cavity surface lies in the other design of the all-round optics 6.
- a plane mirror 30 is arranged above the desk mirror 25, which is arranged inclined to the optical axis of the desk mirror 25 and serves to deflect the light coming from the desk mirror 25 onto the sensor 8,8 '.
- the optical sensor 8, 8 ' is arranged behind the objective 31.
- the workpiece 28 is illuminated by a plurality of light beams 32, 32 'surrounding the workpiece 28 in an annular manner, the angle of incidence of the light beams 32, 32' on the surface 13 of the workpiece 28, with respect to the optical axis 7, being not equal to 90 °, so that do not place the light beams 32, 32 'and the optical axis 7 perpendicular to one another, but the light beams penetrate the optical axis at an angle.
- the desk mirror 25 can be translucent in a suitable manner in the area of incidence of the light beams 32, 32 'so that the light beams 32, 32' surrounding the workpiece 28 penetrate the desk mirror 25 and the semi-transparent mirror surface 26 and within a certain width on the entire circumferential surface Fall surface of the workpiece 28 and there scan a more or less narrow surface ring.
- the workpiece 28 is illuminated in a ring laterally above the desk mirror 25. From there, the light is reflected onto the mirror surface 26 or scattered light reaches where the reflected light 33, 33 'falls upwards onto the plane mirror 30, which contains the light throws on the lens 31, which bundles the light and images it according to the imaging scale on the sensor 8,8 '.
- this sensor 8, 8 ' can either be designed as a single-line ring sensor 8 (FIG. 9a) or by a matrix sensor 8' (FIG. 9b), the technology of the sensor being selectable in each case. however, CMOS or CCD sensors are preferably used, in particular ring sensors held in CMOS technology.
- the individual partial images When using ring sensors 8, the individual partial images again have a height h corresponding to the pixel height p of these sensors 8; when using surface sensors 8 ', the individual partial images can be wider. Corresponding to the width of the surface section that can be projected onto the sensor 8, 8 ′,
- the workpiece 28 in order to achieve the relative movement between surface 13 and all-round optics 6, the workpiece 28 can also be held immovably and the all-round optics 6 can be moved, for which purpose the latter on the carriage 5
- Linear drive 4 is fixed.
- the components of the plane mirror 30, lens 31 and sensor 8, 8 ' can also be kept movable, that is, they can also be fixed on the slide 5 of the linear drive 4, or they can also lie outside the linear drive 4, that is, they can be held immovably with respect to the all-round optics 6.
- All-round optics 6 can also be designed in any other design.
- the light beams can also be passed on by means of light guides.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU39462/00A AU3946200A (en) | 1999-04-30 | 2000-04-26 | Method and device for detecting an image of an essentially cylindrical surface |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA779/99 | 1999-04-30 | ||
AT77999A AT408385B (de) | 1999-04-30 | 1999-04-30 | Verfahren und vorrichtung zur erfassung eines abbildes einer im wesentlichen zylindrischen oberfläche |
Publications (4)
Publication Number | Publication Date |
---|---|
WO2000066998A2 true WO2000066998A2 (fr) | 2000-11-09 |
WO2000066998A3 WO2000066998A3 (fr) | 2001-04-12 |
WO2000066998A9 WO2000066998A9 (fr) | 2002-08-29 |
WO2000066998A8 WO2000066998A8 (fr) | 2004-04-15 |
Family
ID=3499546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AT2000/000104 WO2000066998A2 (fr) | 1999-04-30 | 2000-04-26 | Procede et dispositif permettant de saisir une image d'une surface essentiellement cylindrique |
Country Status (3)
Country | Link |
---|---|
AT (1) | AT408385B (fr) |
AU (1) | AU3946200A (fr) |
WO (1) | WO2000066998A2 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005059530A1 (fr) * | 2003-12-12 | 2005-06-30 | Focke & Co. (Gmbh & Co. Kg) | Procede et dispositif pour tester la surface d'un boudin de matiere en mouvement dans l'industrie du tabac |
EP1582068A2 (fr) * | 2002-12-03 | 2005-10-05 | OG Technologies, Inc. | Appareil et procede de detection de defauts de surface sur une piece telle qu'une barre metallique laminee et/ou etiree |
US7460703B2 (en) | 2002-12-03 | 2008-12-02 | Og Technologies, Inc. | Apparatus and method for detecting surface defects on a workpiece such as a rolled/drawn metal bar |
US9759670B2 (en) | 2014-12-23 | 2017-09-12 | Mitutoyo Corporation | Bore imaging system |
US9880108B2 (en) | 2014-12-23 | 2018-01-30 | Mitutoyo Corporation | Bore imaging system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007031358B4 (de) | 2007-07-05 | 2023-03-16 | Jenoptik Industrial Metrology Germany Gmbh | Vorrichtung zur Abbildung der Innenfläche eines zylindrischen Hohlraums |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4072427A (en) * | 1976-07-28 | 1978-02-07 | Bell Telephone Laboratories, Incorporated | Fault inspection system |
US5004339A (en) * | 1979-02-27 | 1991-04-02 | Diffracto Ltd. | Method and apparatus for determining physical characteristics of objects and object surfaces |
US5126872A (en) * | 1987-12-10 | 1992-06-30 | Birkle Sensor Gmbh & Co. | Apparatus for optically scanning the surface of an object whose surface is capable of reflecting or scattering light |
DE19713973A1 (de) * | 1997-04-04 | 1998-10-15 | Fraunhofer Ges Forschung | Verfahren und Vorrichtung zum optischen Prüfen der Mantelfläche zylindrischer Körper |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0679327B2 (ja) * | 1986-04-24 | 1994-10-05 | 日本たばこ産業株式会社 | 円筒表面撮像装置 |
JPH09196856A (ja) * | 1996-01-23 | 1997-07-31 | Tsubakimoto Chain Co | 表面検査方法、表面検査装置及びプリズム |
DE19806261B4 (de) * | 1997-02-14 | 2006-05-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur gesteuerten Darstellung von Hohlraum-Oberflächen |
-
1999
- 1999-04-30 AT AT77999A patent/AT408385B/de not_active IP Right Cessation
-
2000
- 2000-04-26 AU AU39462/00A patent/AU3946200A/en not_active Abandoned
- 2000-04-26 WO PCT/AT2000/000104 patent/WO2000066998A2/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4072427A (en) * | 1976-07-28 | 1978-02-07 | Bell Telephone Laboratories, Incorporated | Fault inspection system |
US5004339A (en) * | 1979-02-27 | 1991-04-02 | Diffracto Ltd. | Method and apparatus for determining physical characteristics of objects and object surfaces |
US5126872A (en) * | 1987-12-10 | 1992-06-30 | Birkle Sensor Gmbh & Co. | Apparatus for optically scanning the surface of an object whose surface is capable of reflecting or scattering light |
DE19713973A1 (de) * | 1997-04-04 | 1998-10-15 | Fraunhofer Ges Forschung | Verfahren und Vorrichtung zum optischen Prüfen der Mantelfläche zylindrischer Körper |
Non-Patent Citations (3)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 012, no. 125 (P-691), 19. April 1988 (1988-04-19) & JP 62 250343 A (JAPAN TOBACCO INC), 31. Oktober 1987 (1987-10-31) * |
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 11, 28. November 1997 (1997-11-28) & JP 09 196856 A (TSUBAKIMOTO CHAIN CO), 31. Juli 1997 (1997-07-31) -& US 5 905 595 A (TSUBAKIMOTO CHAIN CO) 18. Mai 1999 (1999-05-18) * |
SOUTHWELL D ET AL: "A CONICAL MIRROR PIPELINE INSPECTION SYSTEM" MINNEAPOLIS, APR. 22 - 28, 1996,NEW YORK, IEEE,US, Bd. CONF. 13, 22. April 1996 (1996-04-22), Seiten 3253-3258, XP000773177 ISBN: 0-7802-2989-8 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1582068A2 (fr) * | 2002-12-03 | 2005-10-05 | OG Technologies, Inc. | Appareil et procede de detection de defauts de surface sur une piece telle qu'une barre metallique laminee et/ou etiree |
EP1582068A4 (fr) * | 2002-12-03 | 2008-04-23 | Og Technologies Inc | Appareil et procede de detection de defauts de surface sur une piece telle qu'une barre metallique laminee et/ou etiree |
US7460703B2 (en) | 2002-12-03 | 2008-12-02 | Og Technologies, Inc. | Apparatus and method for detecting surface defects on a workpiece such as a rolled/drawn metal bar |
US7627163B2 (en) | 2002-12-03 | 2009-12-01 | Og Technologies, Inc. | Apparatus and method for detecting surface defects on a workpiece such as a rolled/drawn metal bar |
WO2005059530A1 (fr) * | 2003-12-12 | 2005-06-30 | Focke & Co. (Gmbh & Co. Kg) | Procede et dispositif pour tester la surface d'un boudin de matiere en mouvement dans l'industrie du tabac |
US9759670B2 (en) | 2014-12-23 | 2017-09-12 | Mitutoyo Corporation | Bore imaging system |
US9880108B2 (en) | 2014-12-23 | 2018-01-30 | Mitutoyo Corporation | Bore imaging system |
Also Published As
Publication number | Publication date |
---|---|
AT408385B (de) | 2001-11-26 |
WO2000066998A8 (fr) | 2004-04-15 |
AU3946200A (en) | 2000-11-17 |
ATA77999A (de) | 2001-03-15 |
WO2000066998A3 (fr) | 2001-04-12 |
WO2000066998A9 (fr) | 2002-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0228500B2 (fr) | Méthode et dispositif pour la mesure sans contact du profil d'une roue des roues d'ensembles de roues de voie ferrée | |
DE3027373C2 (fr) | ||
DE3007233C2 (de) | Verfahren und Einrichtung zur Fehlerbestimmung von Oberflächen | |
DE3822303C2 (fr) | ||
DE2602001C3 (de) | Vorrichtung zur Überprüfung einer bearbeiteten Oberfläche eines Werkstucks | |
DE3123703A1 (de) | Optisches messsystem mit einer fotodetektoranordnung | |
DE3906281A1 (de) | Verfahren und vorrichtung zum optischen ueberpruefen des aussehens chipartiger bauteile und zum sortieren der chipartigen bauteile | |
EP2165186A1 (fr) | Dispositif pour représenter la surface intérieure d'un espace creux de préférence cylindrique | |
DE19836071A1 (de) | Verfahren zur Erkennung von Fadenresten auf Spinnkopshülsen | |
WO2015193010A1 (fr) | Dispositif de contrôle et procédé de contrôle des parois intérieures d'un corps creux | |
DE102004052508B4 (de) | System und Verfahren zum Vermessen und zum Überwachen der Oberfläche eines Körpers | |
DE69128634T2 (de) | Bildlesesystem | |
AT408385B (de) | Verfahren und vorrichtung zur erfassung eines abbildes einer im wesentlichen zylindrischen oberfläche | |
DE19946520B4 (de) | Vorrichtung und Verfahren zur Oberflächeninspektion eines kontinuierlich zulaufenden Bandmaterials | |
DE19818069A1 (de) | Verfahren und Vorrichtung zum Bestimmen von optischen Merkmalen von Garnen | |
DE19646236C2 (de) | Vorrichtung zur endoskopischen Diagnose und Behandlung von Gewebe | |
DE3215067A1 (de) | Automatische pruefvorrichtung zum nachweis von fremdkoerpern | |
DE102016107272A1 (de) | Konzept zum Prüfen eines Objekts | |
EP3462164A1 (fr) | Dispositif et procédé d'inspection d'objets en forme de plaque mobiles | |
DE3609863A1 (de) | Verfahren und einrichtung zur erfassung des radprofils eines eisenbahnrades | |
WO1999054532A1 (fr) | Procede et dispositif pour la determination de caracteristiques optiques de fils | |
WO2010094268A2 (fr) | Dispositif et procédé de mesure d'un corps | |
DE19604440A1 (de) | Verfahren und Vorrichtung zur Beurteilung eines Ziehsteins | |
DE102005026375A1 (de) | Vorrichtung und Verfahren zur Positions-und/oder Dimensionsbestimmung von einem an einer Werkzeugmaschine angeordneten Werkzeug | |
DE102017104766B4 (de) | Verfahren und Vorrichtung zum Messen der Dicke eines transparenten Körpers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ CZ DE DE DK DK DM EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ CZ DE DE DK DK DM EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
AK | Designated states |
Kind code of ref document: C2 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: C2 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
COP | Corrected version of pamphlet |
Free format text: PAGE 4/5, DRAWINGS, REPLACED BY A NEW PAGE 4/5 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
CFP | Corrected version of a pamphlet front page | ||
CR1 | Correction of entry in section i |
Free format text: IN PCT GAZETTE 45/2000 DUE TO A TECHNICAL PROBLEMAT THE TIME OF INTERNATIONAL PUBLICATION, SOME INFORMATION WAS MISSING UNDER (81). THE MISSING INFORMATION NOW APPEARS IN THE CORRECTED VERSION |