WO2000059748A1 - Safety device for vehicle air conditioning system - Google Patents
Safety device for vehicle air conditioning system Download PDFInfo
- Publication number
- WO2000059748A1 WO2000059748A1 PCT/JP1999/001746 JP9901746W WO0059748A1 WO 2000059748 A1 WO2000059748 A1 WO 2000059748A1 JP 9901746 W JP9901746 W JP 9901746W WO 0059748 A1 WO0059748 A1 WO 0059748A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon dioxide
- dioxide concentration
- air
- evaporator
- vehicle
- Prior art date
Links
- 238000004378 air conditioning Methods 0.000 title claims abstract description 21
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 205
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 102
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 101
- 239000003463 adsorbent Substances 0.000 claims abstract description 9
- 239000003507 refrigerant Substances 0.000 claims description 24
- 238000005057 refrigeration Methods 0.000 claims description 24
- 238000001514 detection method Methods 0.000 claims description 12
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 14
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- -1 diborane Chemical compound 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00735—Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
- B60H1/008—Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being air quality
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3204—Cooling devices using compression
- B60H1/3225—Cooling devices using compression characterised by safety arrangements, e.g. compressor anti-seizure means or by signalling devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H3/00—Other air-treating devices
- B60H3/0085—Smell or pollution preventing arrangements
Definitions
- the present invention relates to a safety device for a vehicle air conditioner using carbon dioxide as a refrigerant, the safety device being capable of avoiding adverse effects on occupants due to refrigerant leakage.
- the supercritical vapor compression cycle disclosed in Japanese Patent Publication No. 7-186002 is composed of at least a compressor, a cooling device, a throttling means, and an evaporator.
- Examples include ethylene, diborane, ethane, nitric oxide and carbon dioxide.
- This supercritical vapor compression cycle is one of the non-fluorocarbon refrigeration cycles replacing the chlorofluorocarbon refrigeration cycle.
- refrigeration cycles using carbon dioxide are promising alternatives to the chlorofluorocarbon refrigeration cycle.
- the critical point of carbon dioxide is as low as about 31.1 ° C, the outside air temperature may exceed the critical point, especially in summer, and the high pressure line of the refrigeration cycle may be used during the operation of the refrigeration cycle. (Between the compressor and the squeezing means) is a supercritical region. In the supercritical region beyond this critical point, the pressure is determined by the density and the temperature. Even when it exceeds.
- the operating pressure is much higher than in the case of CFCs. If the parts are made thicker to improve the pressure resistance, the weight of the product will increase and the cost will increase, and the heat exchange rate will decrease in the heat exchange part of the cooling device and evaporator. Occurs.
- the compressor, the cooling device, and the throttling means can be arranged in the engine room, but the evaporator is located in the duct of the vehicle air conditioner. If refrigerant leaks from this evaporator, it is expected that carbon dioxide will leak into the cabin through the air conditioning duct, and the concentration of carbon dioxide in the cabin will be reduced to the specified amount. It is not preferable that the above is achieved.
- an object of the present invention is to provide a safety device for an air conditioner for a vehicle, which detects leaks of carbon dioxide quickly and reliably and suppresses an increase in the concentration of carbon dioxide in a vehicle cabin due to the leak of carbon dioxide.
- the vehicle air conditioner according to the present invention includes an air conditioning duct, an outside air introduction port and an inside air introduction port that are opened on the most upstream side of the air conditioning duct, and selectively the outside air introduction port and the inside air introduction port.
- the safety device comprises: a carbon dioxide concentration detecting means for detecting a carbon dioxide concentration near the downstream side of the evaporator; and an occupant when the carbon dioxide concentration detected by the carbon dioxide concentration detecting means is equal to or more than a predetermined value. It has warning means for issuing a warning.
- the carbon dioxide concentration in the vicinity of the downstream side of the evaporator is equal to or higher than a predetermined value, it can be determined that carbon dioxide has leaked from the evaporator. Therefore, occupants can take safety measures such as stopping the compressor, opening windows, introducing outside air, and evacuating outside the vehicle.
- the safety device when the carbon dioxide concentration detected by the carbon dioxide concentration detecting means is equal to or more than a predetermined value for a prescribed time, the safety device forcibly shifts the intake door to the outside air introduction mode and stops the compressor.
- the air conditioner is provided with a means for reducing the concentration of carbon dioxide to increase the air volume of the blower.
- the compressor is stopped to suppress the refrigerant leak and to protect the refrigeration cycle, and further, to prevent the outside air
- the introduction mode compulsorily and increasing the air volume of the blower
- the safety device for the vehicle air conditioner further includes: an evaporator; a bypass passage provided between the temperature control means; a carbon dioxide adsorbent disposed in the bypass passage; Located upstream of A bypass door that opens and closes the bypass passage and guides the air that has passed through the evaporator to the bypass passage; and, when the outside air introduction mode cannot be set in the carbon dioxide concentration reducing means, opens the bypass door.
- the apparatus is provided with carbon dioxide concentration reduction preliminary means for adsorbing carbon dioxide from the air passing through the evaporator.
- the bypass door is opened and the air sucked from the vehicle interior and positively passes through the evaporator. Since it can be guided to the bypass passage and pass through the carbon dioxide adsorbent, and the air after carbon dioxide adsorption can be blown out into the vehicle interior, the carbon dioxide concentration in the vehicle interior can be reduced even if the intake door fails. Can be done. Further, it is desirable that the downstream side opening of the bypass passage is shielded by a thin film that can be broken by the air volume of the blower. As a result, the carbon dioxide adsorbent and the air can be shut off, so that the carbon dioxide normally contained in the air can prevent the carbon dioxide adsorbent from lowering its performance.
- the prescribed time is desirably set to be long when the detected value of the carbon dioxide concentration is low, and set short when the detected value of the carbon dioxide concentration is high.
- the safety device for the vehicle air conditioner includes a pressure detection unit that detects a pressure of the refrigeration cycle, and stops the compressor when a pressure detected by the pressure detection unit is equal to or less than a predetermined value. And a compressor stopping means.
- FIG. 1 is a schematic configuration diagram showing a configuration of a vehicle air conditioner according to the present invention
- FIG. 2 is a front view showing an example of an operation panel
- FIG. 3 and FIG. Fig. 5 is a flow chart showing the control of the safety device of the air conditioner for air conditioning.
- Fig. 5 is a characteristic diagram for calculating the specified time.
- Fig. 6 (a) shows the emission of CO2 in the inside air circulation mode (REC). It is a characteristic diagram showing the relationship between the time since the carbon leak and the carbon dioxide concentration, and (b) shows the relationship between the time from the carbon dioxide leak and the carbon dioxide concentration in the outside air introduction mode (FRESH).
- the vehicle air conditioner 1 shown in FIG. 1 has an air conditioning duct 2 arranged on the vehicle interior side. At the most upstream side of the air conditioning duct 2, an outside air inlet 3 communicating with the outside of the vehicle and an inside air inlet 4 communicating with the cabin are opened, and are selectively opened and closed by an intake door 5.
- a blower 6 is arranged downstream of the intake door 5, and the air-conditioning duct 2 sucks outside air or inside air from the outside air introduction port 3 or the inside air introduction port 4 opened by the intake door 5. It is sent downstream of On the downstream side of the blower 6, an evaporator 12 constituting a refrigeration cycle 11 together with a compressor 8, a condenser 9, and an expansion valve 10 driven via an electromagnetic clutch 7 is arranged.
- the refrigeration cycle 11 uses carbon dioxide as a supercritical refrigerant, and the compressor 8, the capacitor 9, and the expansion valve 10 are arranged in an engine room (not shown).
- a carbon dioxide concentration detection sensor 13 is disposed near the downstream side of the evaporator 12. Since most refrigerant leakage in the cabin of the refrigeration cycle 11 occurs at or around the evaporator 12, it is desirable to arrange the carbon dioxide concentration detection sensor 13 near the downstream side of the evaporator 12. It is a thing. Thus, the carbon dioxide concentration detection sensor 13 can quickly and surely detect a refrigerant leak from the evaporator 12.
- a bypass passage 15 opened and closed by a bypass door 14 is provided downstream of the carbon dioxide concentration detection sensor 13.
- a carbon dioxide adsorbent 16 is disposed in the bypass passage 15, a shielding film 18 is disposed in the downstream opening 17, and the carbon dioxide adsorbent 16 is disposed in the bypass door 1 on the upstream side. At 4 on the downstream side, it is shielded from surrounding air by a shielding film 18.
- the bypass door 14 operates to open the upstream side of the bypass passage 15 and close the air-conditioning duct passage 19 formed in parallel with the bypass passage 15. .
- a heater core 20 that uses engine cooling water as a heat source is disposed downstream of the bypass passage 15, and air that has passed through the air conditioning duct passage 19 is disposed upstream of the heater core 20. Heat and air passing through heater core 20 An air mix door 21 is provided for diverting air to bypass the tacho 20.
- the air cooled through the evaporator 12 is diverted at a predetermined ratio into the air passing through the heater core 20 and the air passing by the bypass according to the opening of the air mixing door 21, and the heater core 2
- the air heated by passing through the heater core 20 and the cooled air bypassing the heater core 20 are mixed at a predetermined ratio, so that air at a desired temperature can be obtained. Can be done.
- the air conditioning duct 2 At the most downstream side of the air conditioning duct 2, there are a differential air outlet 22, a vent air outlet 23, and a foot air outlet 24, which are selected by the mode doors 25a, 25b, 25c.
- the opening is designed to be opened.
- the vehicle air conditioner 1 having the above-described configuration includes control devices, for example, an actuator 5a for driving the intake door 5, a motor 6a for the blower 6, an electromagnetic clutch 7, and an actuator for driving the bypass door 14. 14a, an actuator 21a for driving the air-mix door 21 and an actuator 25d for driving the mode doors 25a, 25b, 25c.
- a control unit (CZU) 30 is provided.
- the control unit 30 includes at least a central processing unit (CPU), a read-only memory (R ⁇ M), a random access memory (RAM), an input / output port (I / O), etc. (not shown).
- CPU central processing unit
- R ⁇ M read-only memory
- RAM random access memory
- I / O input / output port
- the control unit 30 includes at least a central processing unit (CPU), a read-only memory (R ⁇ M), a random access memory (RAM), an input / output port (I / O), etc. (not shown).
- CPU central processing unit
- R ⁇ M read-only memory
- RAM random access memory
- I / O input / output port
- the operation panel 40 includes a REC switch 41 for manually setting the intake door 5 to the inside air circulation mode or the outside air introduction mode, and a vent for manually opening the vent mode only the vent outlet 23.
- MODE switch 4 that sets the outlet mode, the foot outlet mode that opens only the foot outlet 24, and the bi-level mode that opens the vent outlets 23 and 24 at a specified ratio 2, a FAN switch 43 for manually setting the air volume of the blower 6 in four stages, and a temperature setting device 44 consisting of an up-down switch 44 a and 44 b for setting the target temperature in the cabin.
- the DEF switch 45 that opens the differential air outlet 22 to prevent fogging of the front glass (not shown), the OFF switch 46 that stops the operation of the air conditioner itself, and the air conditioner AZC Sui
- An AUTO switch 49 comprising a switch 47 and an ECON switch 48 for executing economical air-conditioning control, and a display section 50 for displaying the setting status of these switches or the current air conditioning status automatically.
- a warning indicator 51 that lights up when the carbon dioxide concentration in the vehicle interior is equal to or higher than a predetermined value.
- the safety control started from step 100 is the main control
- step 120 it is determined whether the detection value S out of the carbon dioxide concentration detection sensor 13 is equal to or greater than a predetermined value Kr. In this determination, if the detected value of carbon dioxide concentration S out is equal to or greater than the predetermined value Kr, the process proceeds to step 130 to turn on the warning display 51 of the operation panel 40, and the main control is started from step 140. Return to routine.
- the prescribed value Kf is desirably set to a value larger than the rise L3 and L6 of the carbon dioxide due to the occupant's exhalation.
- step 120 if the carbon dioxide concentration S out is smaller than the predetermined value K r in the determination in step 120, the process returns from step 140 to the main control routine, bypassing step 130.
- step 110 If it is determined in step 110 that the ignition switch has not been turned on for the first time, the operation proceeds to step 150 to drive the air conditioner (A / C), and the operation proceeds to step 160. Then, it is determined whether or not the low pressure Ps of the refrigeration cycle 11 detected by the pressure sensor 31 is equal to or higher than a predetermined pressure Kp. In this determination, if the low pressure Ps is lower than the predetermined pressure Kp, it is determined that there is a refrigerant leak, and the process proceeds to step 170 to shut off the electromagnetic claim 7 and stop the compressor 8. Then, the flow returns to the main control routine from step 180.
- the process proceeds to the step 190 and the carbon dioxide concentration S out It is determined whether or not is greater than or equal to a predetermined value Kr. If it is greater than or equal to the predetermined value Kr, the process proceeds to step 200 to determine whether or not “1” is set in the timer t setting flag (FL AG 1). Since it is not set for the first time, the timer t is started in step 210 and the timer t setting flag (FLAG1) is set to "1" in step 220. In step 230, the specified time Tr is calculated.
- the specified time Tr is set by the value of the carbon dioxide concentration Sout, and is long when the value of the carbon dioxide concentration Sout is low, and is high when the value of the carbon dioxide concentration Sout is high. In this case, it is set to be shorter. This is to enhance safety from the relationship between carbon dioxide concentration and exposure time.
- step 200 If FLAG 1 is set to “1” in step 200, the timer t continues counting, and steps 210, 220, and 230 are avoided. It has become.
- step 240 via the connector A, and it is determined whether or not the timer t has become equal to or longer than the specified time Tr. In this determination, if the timer t has not reached the specified time Tr, the process proceeds to step 320 to return to the main control routine, and in the determination of step 240, the timer t has exceeded the specified time. If so, proceed to step 250 to determine whether or not it is in the outside air introduction mode (FRESH MOD E?). If it is in the outside air introduction mode, proceed to step 290 to stop the compressor 8
- step 300 the blower 6 is operated at a high speed (HIGH) to blow outside air into the vehicle interior to reduce the carbon dioxide concentration in the vehicle interior. Then, the warning display 51 is turned on in step 310, and the process returns to the main control routine from step 320. Things.
- HIGH high speed
- step 250 If it is determined in step 250 that the current mode is not the outside air introduction mode, the process proceeds to step 260 to move the intake door 5, and the internal air circulation mode (REC mode) is determined in step 260. ), It is determined that the mode has shifted to the outside air introduction mode (FRESH), the process proceeds to step 290, and the control of step 290 and subsequent steps is executed.
- Fig. 6 (b) in the outside air introduction mode (FRESH), the carbon dioxide concentration decreases with the passage of time. However, it is possible to reduce the time during which the carbon dioxide concentration S out is equal to or higher than the specified value K r.
- L4 is the case of a rapid refrigerant leak
- L5 is the case of a slow refrigerant leak
- L6 is the carbon dioxide concentration due to exhalation.
- Tr 3 indicates the time when the carbon dioxide concentration Sout in the vehicle compartment exceeds the specified value r in the case of a sudden refrigerant leak
- TR 4 indicates the carbon dioxide concentration in the vehicle compartment in the case of a slow refrigerant leak. Indicates the time when Sout has exceeded the specified value Kr.
- step 270 determines whether the intake door 5 has been driven for some reason and the mode has not been shifted to the outside air introduction mode. If it is determined in step 270 that the intake door 5 has not been driven for some reason and the mode has not been shifted to the outside air introduction mode, the process proceeds to step 280 to proceed to step 280. Drive 14 to open the bypass passage 15 and close the air conditioning duct passage 19 to operate the adsorption system (ON). Then, the process proceeds to step 290 to execute the control in step 290 and lower.
- step 190 when the carbon dioxide concentration S out becomes smaller than the predetermined value K r, the process proceeds from the determination of step 190 to step 330, the timer t is reset, and the FLAG 1 is set to FLAG 1 in step 340. "0" is set, and the process returns to the main control routine from step 350.
- Step 190 to Step 330, Step 340, and Step 350 are repeated until a refrigerant leak is detected in the determinations of Step 160 and Step 190. Things. Industrial applicability
- the safety device for a vehicle air conditioner is provided with the carbon dioxide concentration detection means near the downstream of the evaporator arranged in the air conditioning duct arranged in the vehicle interior.
- the carbon dioxide concentration detection means can quickly and reliably detect the leakage of refrigerant from the vehicle, and if this detection result is abnormal, it can warn the occupants, so vehicles using carbon dioxide as refrigerant
- the safety of the air conditioner can be improved. If the carbon dioxide concentration is abnormal, the compressor is stopped, the outside air introduction mode is forcibly set, and the air volume of the blower is increased, so that the carbon dioxide concentration in the cabin is reduced. To make Can be done.
- the bypass passage is opened, and the carbon dioxide contained can be removed by passing the sucked inside air through the carbon dioxide adsorbent arranged in the bypass passage. Therefore, the concentration of carbon dioxide in the passenger compartment can be reduced, and the safety of the vehicle air conditioner can be further improved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
A safety device for an air conditioning system for detecting quickly and positively carbon dioxide leakage and controlling increase in a carbon dioxide concentration in a vehicle otherwise caused by leaked carbon dioxide, comprising a carbon dioxide concentration detector (13) disposed in the vicinity of, and on the downstream side of, an evaporator (12) and an alarm (51) for announcing carbon dioxide leakage when the detector (13) detects that a carbon dioxide concentration has exceeded a preset value to inform carbon dioxide leakage from the evaporator (12), wherein, when a carbon dioxide concentration exceeding a preset value is detected, an intake door (5) is forced into an outside air introduction mode, a compressor (8) is stopped and a blower (6) air volume is increased for reduction in an in-vehicle carbon dioxide concentration. In addition, a bypass (15) opened and closed by a bypass door (14) is provided in an air conditioning duct (2) and a carbon dioxide adsorbent (16) is disposed in the bypass.
Description
明 細 書 車両用空調装置の安全装置 技術分野 Description Safety devices for vehicle air conditioners Technical field
この発明は、 冷媒と して二酸化炭素を使用した車両用空調装置におい て、 冷媒漏れによる乗員への悪影響を回避することのできる安全装置に 関する。 背景技術 The present invention relates to a safety device for a vehicle air conditioner using carbon dioxide as a refrigerant, the safety device being capable of avoiding adverse effects on occupants due to refrigerant leakage. Background art
特公平 7— 1 8 6 0 2号公報に開示される超臨界蒸気圧縮サイクル は、 圧縮機、 冷却装置、 絞り手段、 及び蒸発器から少なく とも構成され るもので、 使用される超臨界冷媒と しては、 たとえばエチレン、 ディボ ラン、 ェタン、 酸化窒素及び二酸化炭素等がある。 The supercritical vapor compression cycle disclosed in Japanese Patent Publication No. 7-186002 is composed of at least a compressor, a cooling device, a throttling means, and an evaporator. Examples include ethylene, diborane, ethane, nitric oxide and carbon dioxide.
この超臨界蒸気圧縮サイクルは、 フロン冷凍サイクルに代わるノンフ 口ン冷凍サイクルの一つであり、 特に二酸化炭素を用いた冷凍サイクル は、 フロン冷凍サイクルの代替えと して有望である。 This supercritical vapor compression cycle is one of the non-fluorocarbon refrigeration cycles replacing the chlorofluorocarbon refrigeration cycle. In particular, refrigeration cycles using carbon dioxide are promising alternatives to the chlorofluorocarbon refrigeration cycle.
しかしながら、 二酸化炭素の臨界点は、 約 3 1 . 1 °Cと低いために、 特に夏場においては外気温度が臨界点を超える場合があり、 また、 冷凍 サイクルの運転中においても冷凍サイクルの高圧ライン (圧縮機から絞 り手段までの間) は超臨界領域となり、 この臨界点を超える超臨界領域 においては、 圧力は密度と温度によって決定されるので、 温度の高い場 合には 2 O M P a を超える場合もでてくる。 However, since the critical point of carbon dioxide is as low as about 31.1 ° C, the outside air temperature may exceed the critical point, especially in summer, and the high pressure line of the refrigeration cycle may be used during the operation of the refrigeration cycle. (Between the compressor and the squeezing means) is a supercritical region. In the supercritical region beyond this critical point, the pressure is determined by the density and the temperature. Even when it exceeds.
このよ うに、 上記冷凍サイクルでは、 フロンの場合に比べて作動圧力 が非常に高いため、 すべての部品を超高耐圧仕様にする必要があるが、
耐圧を向上させるために部品を厚く形成すると、 製品重量が重くなった り コス 卜が高く なつたりする不具合が生じると共に冷却装置及び蒸発 器等に熱交換部分においては熱交換率が低下するという不具合が生じ る。 As described above, in the above refrigeration cycle, the operating pressure is much higher than in the case of CFCs. If the parts are made thicker to improve the pressure resistance, the weight of the product will increase and the cost will increase, and the heat exchange rate will decrease in the heat exchange part of the cooling device and evaporator. Occurs.
また、 軽量化及び熱交換率の向上のためには、 材料と してアルミ材を 用いることが適しているが、 特に熱交換器などの場合、 熱交換能力と強 度との兼ね合いから耐圧能力を考えると、 冷凍サイクル自体の最高使用 圧力は、 現在のところ 2 0 M P aが限界であるといえる。 In addition, it is appropriate to use aluminum as the material in order to reduce the weight and improve the heat exchange rate. However, especially in the case of heat exchangers and the like, the pressure resistance is required due to the balance between heat exchange capacity and strength. Considering that, the maximum working pressure of the refrigeration cycle itself is currently limited to 20 MPa.
以上のような構成の冷凍サイクルを車両用空調装置に搭載する場合、 圧縮機、 冷却装置及び絞り手段は、 エンジン室内に配置することができ るが、 蒸発器は車両用空調装置のダク ト内に配する必要があるため、 万 がーこの蒸発器から冷媒が漏洩した場合、 二酸化炭素は空調ダク トを介 して車室内へ漏洩することが想定され、 車室内の二酸化炭素濃度が規定 量以上となることは好ましくない。 When the refrigeration cycle configured as described above is installed in a vehicle air conditioner, the compressor, the cooling device, and the throttling means can be arranged in the engine room, but the evaporator is located in the duct of the vehicle air conditioner. If refrigerant leaks from this evaporator, it is expected that carbon dioxide will leak into the cabin through the air conditioning duct, and the concentration of carbon dioxide in the cabin will be reduced to the specified amount. It is not preferable that the above is achieved.
このため、 この発明においては、 二酸化炭素の漏洩をいち早く確実に 検出すると共に、 二酸化炭素の漏洩による車室内の二酸化炭素濃度の上 昇を抑制する車両用空調装置の安全装置を提供することにある。 発明の開示 Therefore, an object of the present invention is to provide a safety device for an air conditioner for a vehicle, which detects leaks of carbon dioxide quickly and reliably and suppresses an increase in the concentration of carbon dioxide in a vehicle cabin due to the leak of carbon dioxide. . Disclosure of the invention
このため、 この発明に係る車両用空調装置は、 空調ダク トと、 該空調 ダク 卜の最上流側に開口する外気導入口及び内気導入口と、 これら外気 導入口及び内気導入口を選択的に開口するィンテ一ク ドアと、 該インテ ーク ドアの下流側に設けられる送風機と、 該送風機の下流側に配され、 少なく ともコンプレッサ、 放熱器、 膨張手段と共に冷媒と して二酸化炭 素を使用した冷凍サイクルを構成するエバポレ一タと、 該前記エバポレ
ータを通過した空気の加熱量を変化させて目標の温度に温調する温調 手段と、 前記空調ダク トの最下流側に開口する複数の吹出口とを少なく とも具備するものであり、 その安全装置は、 前記エバポレータの下流側 近傍の二酸化炭素濃度を検出する二酸化炭素濃度検出手段と、 該ニ酸化 炭素濃度検出手段によって検出された二酸化炭素濃度が所定値以上で ある場合に、 乗員に警告を発する警告手段を具備するものである。 For this reason, the vehicle air conditioner according to the present invention includes an air conditioning duct, an outside air introduction port and an inside air introduction port that are opened on the most upstream side of the air conditioning duct, and selectively the outside air introduction port and the inside air introduction port. An opening door, a blower provided downstream of the intake door, and a carbon dioxide disposed at the downstream side of the blower and used as a refrigerant together with at least a compressor, a radiator, and expansion means. An evaporator constituting a refrigeration cycle, wherein the evaporator comprises: At least a temperature control means for controlling the temperature of the air passing through the air conditioner to a target temperature by changing a heating amount thereof, and a plurality of air outlets opened to the most downstream side of the air conditioning duct. The safety device comprises: a carbon dioxide concentration detecting means for detecting a carbon dioxide concentration near the downstream side of the evaporator; and an occupant when the carbon dioxide concentration detected by the carbon dioxide concentration detecting means is equal to or more than a predetermined value. It has warning means for issuing a warning.
これによつて、 エバポレータ下流側近傍の二酸化炭素濃度が所定値以 上である場合には、 エバポレータから二酸化炭素が漏れたことが判断で きるため、 警告手段によって乗員に二酸化炭素漏れを警告することがで きるので、 乗員は、 コンプレッサの停止、 窓開け、 外気導入、 車外への 退避等の安全手段をとることができるものである。 If the carbon dioxide concentration in the vicinity of the downstream side of the evaporator is equal to or higher than a predetermined value, it can be determined that carbon dioxide has leaked from the evaporator. Therefore, occupants can take safety measures such as stopping the compressor, opening windows, introducing outside air, and evacuating outside the vehicle.
さらに、 この安全装置は、 前記二酸化炭素濃度検出手段によって検出 された二酸化炭素濃度が規定時間所定値以上である場合に、 ィンテーク ドアを外気導入モードに強制的に移行すると共に、 前記コンプレッサを 停止し、 送風機の風量を大きくする二酸化炭素濃度減少手段を具備する ものである。 Further, when the carbon dioxide concentration detected by the carbon dioxide concentration detecting means is equal to or more than a predetermined value for a prescribed time, the safety device forcibly shifts the intake door to the outside air introduction mode and stops the compressor. The air conditioner is provided with a means for reducing the concentration of carbon dioxide to increase the air volume of the blower.
これによつて、 二酸化炭素濃度が規定時間所定値以上である場合には、 エバポレータからの冷媒漏れがあると判定し、 コンプレッサを停止して 冷媒漏れの抑制及び冷凍サイクルの保護を図り、 さらに外気導入モード に強制的に設定すると共に送風機の風量を大きく し、 車室内の吹出され る空気量を多く して車室内の二酸化炭素濃度の減少を図ることができ るものである。 As a result, when the carbon dioxide concentration is equal to or more than the predetermined value for the specified time, it is determined that there is a refrigerant leak from the evaporator, and the compressor is stopped to suppress the refrigerant leak and to protect the refrigeration cycle, and further, to prevent the outside air By setting the introduction mode compulsorily and increasing the air volume of the blower, the amount of air blown out of the cabin can be increased to reduce the carbon dioxide concentration in the cabin.
また、 前記車両用空調装置の安全装置は、 さらに、 前記エバポレータ と、 前記温調手段の間に設けられたバイパス通路と、 該バイパス通路内 に配された二酸化炭素吸着剤と、 前記バイ パス通路の上流側に配され、
該バイパス通路を開閉すると共にエバポレ一タを通過した空気をバイ パス通路に導くバイパス ドアと、 前記二酸化炭素濃度減少手段において、 外気導入モ一ドが設定不可能である場合、 前記バイパス ドアを開と して、 エバポレータを通過した空気から二酸化炭素を吸着する二酸化炭素濃 度減少予備手段とを具備するものである。 The safety device for the vehicle air conditioner further includes: an evaporator; a bypass passage provided between the temperature control means; a carbon dioxide adsorbent disposed in the bypass passage; Located upstream of A bypass door that opens and closes the bypass passage and guides the air that has passed through the evaporator to the bypass passage; and, when the outside air introduction mode cannot be set in the carbon dioxide concentration reducing means, opens the bypass door. In this case, the apparatus is provided with carbon dioxide concentration reduction preliminary means for adsorbing carbon dioxide from the air passing through the evaporator.
これによつて、 インテーク ドアが何らかの トラブルにより外気導入モ ― ドの設定が不可能になった場合には、 バイパス ドアを開と して車室内 から吸引され、 エバポレータを通過した空気を積極的にバイパス通路に 導いて二酸化炭素吸着剤内を通過させ、 二酸化炭素吸着後の空気を車室 内に吹き出すようにできることから、 インテーク ドアが故障した場合に も、 車室内の二酸化炭素濃度を減少させることができるものである。 また、 前記バイパス通路の後流側開口部は、 送風機の風量によって破 損可能な薄膜によって遮蔽されることが望ましい。 これによつて、 二酸 化炭素吸着剤と空気とを遮断することができるので、 空気に普通に含有 される二酸化炭素によって二酸化炭素吸着剤の能力の低下を防止する ことできるものである。 As a result, if it becomes impossible to set the outside air introduction mode due to some trouble with the intake door, the bypass door is opened and the air sucked from the vehicle interior and positively passes through the evaporator. Since it can be guided to the bypass passage and pass through the carbon dioxide adsorbent, and the air after carbon dioxide adsorption can be blown out into the vehicle interior, the carbon dioxide concentration in the vehicle interior can be reduced even if the intake door fails. Can be done. Further, it is desirable that the downstream side opening of the bypass passage is shielded by a thin film that can be broken by the air volume of the blower. As a result, the carbon dioxide adsorbent and the air can be shut off, so that the carbon dioxide normally contained in the air can prevent the carbon dioxide adsorbent from lowering its performance.
さらに、 前記二酸化炭素濃度減少手段において、 規定時間は、 二酸化 炭素濃度の検出値が低い場合には長く、 二酸化炭素濃度の検出値が高い 場合には短く設定されることが望ましい。 Further, in the carbon dioxide concentration reducing means, the prescribed time is desirably set to be long when the detected value of the carbon dioxide concentration is low, and set short when the detected value of the carbon dioxide concentration is high.
これによつて、 二酸化炭素の悪影響をより的確に防止することができ るものである。 As a result, the adverse effects of carbon dioxide can be prevented more accurately.
さらにまた、 前記車両用空調装置の安全装置は、 前記冷凍サイクルの 圧力を検出する圧力検出手段と、 該圧力検出手段によって検出された圧 力が所定値以下である場合には、 コンプレッサを停止させるコンプレツ サ停止手段とを具備するものである。 これによつて、 冷凍サイクル全体
における冷媒の漏れを検出することができるので、 コンプレッサを停止 して冷凍サイクルの保護を図ることができる。 尚、 冷凍サイクルの圧力 としては、 低圧側の圧力を トレースすることが望ましい。 図面の簡単な説明 Still further, the safety device for the vehicle air conditioner includes a pressure detection unit that detects a pressure of the refrigeration cycle, and stops the compressor when a pressure detected by the pressure detection unit is equal to or less than a predetermined value. And a compressor stopping means. As a result, the entire refrigeration cycle Since it is possible to detect the leakage of the refrigerant at the time, the compressor can be stopped to protect the refrigeration cycle. It is desirable to trace the pressure on the low pressure side as the refrigeration cycle pressure. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本願発明に係る車両用空調装置の構成を示した概略構成図 であり、 第 2図は操作パネルの一例を示した正面図であり、 第 3図及び 第 4図は、 車両用空調装置の安全装置の制御を示したフローチヤ一ト図 であり、 第 5図は規定時間を演算する特性線図であり、 第 6図において ( a ) は内気循環モード (R E C ) 時の二酸化炭素漏れからの時間と二 酸化炭素濃度との関係を示した特性線図であり、 (b ) は外気導入モー ド (F R E S H ) 時の二酸化炭素漏れからの時間と二酸化炭素濃度との 関係を示した特性線図である。 発明を実施するための最良の形態 FIG. 1 is a schematic configuration diagram showing a configuration of a vehicle air conditioner according to the present invention, FIG. 2 is a front view showing an example of an operation panel, and FIG. 3 and FIG. Fig. 5 is a flow chart showing the control of the safety device of the air conditioner for air conditioning. Fig. 5 is a characteristic diagram for calculating the specified time. In Fig. 6, (a) shows the emission of CO2 in the inside air circulation mode (REC). It is a characteristic diagram showing the relationship between the time since the carbon leak and the carbon dioxide concentration, and (b) shows the relationship between the time from the carbon dioxide leak and the carbon dioxide concentration in the outside air introduction mode (FRESH). FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説述するために、 添付図面に従ってこれを説明す る。 The present invention will be described in more detail with reference to the accompanying drawings.
第 1図に示す車両用空調装置 1は、 車室内側に配された空調ダク ト 2 を有する。 この空調ダク ト 2の最上流側には車外と連通する外気導入口 3と車室内と連通する内気導入口 4 とが開口し、 インテーク ドア 5によ つて選択的に開閉されるものである。 The vehicle air conditioner 1 shown in FIG. 1 has an air conditioning duct 2 arranged on the vehicle interior side. At the most upstream side of the air conditioning duct 2, an outside air inlet 3 communicating with the outside of the vehicle and an inside air inlet 4 communicating with the cabin are opened, and are selectively opened and closed by an intake door 5.
このインテーク ドア 5の下流側には、 送風機 6が配され、 前記インテ ーク ドア 5によって開口された外気導入口 3 も しくは内気導入口 4か ら外気又は内気を吸引 して空調ダク ト 2の下流側に送出するものであ る。
前記送風機 6の下流側には、 電磁クラッチ 7を介して駆動されるコン プレッサ 8、 コンデンサ 9、 膨張弁 1 0と共に冷凍サイクゾレ 1 1を構成 するエバポレータ 1 2が配される。 尚、 この冷凍サイクル 1 1は、 超臨 界冷媒と して二酸化炭素を使用したもので、 前記コンプレッサ 8、 コン デンサ 9及び膨張弁 1 0は、 図示しないエンジン室内に配されるもので ある。 A blower 6 is arranged downstream of the intake door 5, and the air-conditioning duct 2 sucks outside air or inside air from the outside air introduction port 3 or the inside air introduction port 4 opened by the intake door 5. It is sent downstream of On the downstream side of the blower 6, an evaporator 12 constituting a refrigeration cycle 11 together with a compressor 8, a condenser 9, and an expansion valve 10 driven via an electromagnetic clutch 7 is arranged. The refrigeration cycle 11 uses carbon dioxide as a supercritical refrigerant, and the compressor 8, the capacitor 9, and the expansion valve 10 are arranged in an engine room (not shown).
前記エバポレータ 1 2の下流側近傍には、 二酸化炭素濃度検出センサ 1 3が配される。 冷凍サイクル 1 1の車室内冷媒漏れは、 ほとんどエバ ポレータ 1 2自体若しくはその周縁で発生することから、 二酸化炭素濃 度検出センサ 1 3は、 エバポレータ 1 2の下流側近傍に配することが望 ましいものである。 これによつて、 二酸化炭素濃度検出センサ 1 3は、 エバポレータ 1 2からの冷媒漏れを素早く確実に検出することができ るものである。 A carbon dioxide concentration detection sensor 13 is disposed near the downstream side of the evaporator 12. Since most refrigerant leakage in the cabin of the refrigeration cycle 11 occurs at or around the evaporator 12, it is desirable to arrange the carbon dioxide concentration detection sensor 13 near the downstream side of the evaporator 12. It is a thing. Thus, the carbon dioxide concentration detection sensor 13 can quickly and surely detect a refrigerant leak from the evaporator 12.
また、 前記二酸化炭素濃度検出センサ 1 3の下流側には、 バイパス ド ァ 1 4によって開閉されるバイパス通路 1 5が設けられる。 このバイパ ス通路 1 5には、 二酸化炭素吸着剤 1 6が配され、 下流側開口部 1 7に は遮蔽膜 1 8が配され、 前記二酸化炭素吸着剤 1 6は上流側ではバイパ ス ドア 1 4によって下流側では遮蔽膜 1 8によって周囲の空気と遮断 されているものである。 A bypass passage 15 opened and closed by a bypass door 14 is provided downstream of the carbon dioxide concentration detection sensor 13. A carbon dioxide adsorbent 16 is disposed in the bypass passage 15, a shielding film 18 is disposed in the downstream opening 17, and the carbon dioxide adsorbent 16 is disposed in the bypass door 1 on the upstream side. At 4 on the downstream side, it is shielded from surrounding air by a shielding film 18.
また、 前記バイパス ドア 1 4は、 前記バイパス通路 1 5の上流側を開 く と同時に、 このバイパス通路 1 5 と並列に形成される空調ダク ト通路 1 9を閉鎖するように動作するものである。 The bypass door 14 operates to open the upstream side of the bypass passage 15 and close the air-conditioning duct passage 19 formed in parallel with the bypass passage 15. .
前記バイパス通路 1 5の下流側には、 エンジン冷却水を熱源とするヒ ータコア 2 0が配され、 このヒータコア 2 0の上流側には、 前記空調ダ ク ト通路 1 9を通過した空気を、 ヒータコア 2 0を通過する空気とヒー
タコア 2 0をバイパスする空気に分流するエアミ ックス ドア 2 1が設 けられる。 A heater core 20 that uses engine cooling water as a heat source is disposed downstream of the bypass passage 15, and air that has passed through the air conditioning duct passage 19 is disposed upstream of the heater core 20. Heat and air passing through heater core 20 An air mix door 21 is provided for diverting air to bypass the tacho 20.
これによつて、 エバポレータ 1 2を通過して冷却された空気は、 エア ミ ックス ドア 2 1の開度によってヒータコア 2 0を通過する空気とバ ィパスする空気に所定の割合で分流され、 ヒータコア 2 0の下流側で、 ヒータコア 2 0を通過して加熱された空気とヒータコア 2 0をバイパ スした冷却されたままの空気が所定の割合で混合されるので、 所望の温 度の空気を得ることができるものである。 As a result, the air cooled through the evaporator 12 is diverted at a predetermined ratio into the air passing through the heater core 20 and the air passing by the bypass according to the opening of the air mixing door 21, and the heater core 2 On the downstream side of 0, the air heated by passing through the heater core 20 and the cooled air bypassing the heater core 20 are mixed at a predetermined ratio, so that air at a desired temperature can be obtained. Can be done.
前記空調ダク ト 2の最下流側には、 デフ吹出口 2 2、 ベント吹出口 2 3及びフッ ト吹出口 2 4が開口 し、 モ一ドドア 2 5 a, 2 5 b , 2 5 c によって選択的に開口するようになっているものである。 At the most downstream side of the air conditioning duct 2, there are a differential air outlet 22, a vent air outlet 23, and a foot air outlet 24, which are selected by the mode doors 25a, 25b, 25c. The opening is designed to be opened.
以上の構成の車両用空調装置 1には、 各制御機器、 たとえばインテ一 ク ドア 5を駆動するァクチユエ一タ 5 a、 送風機 6のモータ 6 a、 電磁 クラッチ 7、 バイパス ドア 1 4を駆動するァクチユエータ 1 4 a、 エア ミ ックス ドア 2 1を駆動するァクチユエ一タ 2 1 a、 及びモ一ドドア 2 5 a , 2 5 b , 2 5 cを駆動するァクチユエ一タ 2 5 dを制御するため に、 コン ト ロールユニッ ト (CZU) 3 0が設けられる。 The vehicle air conditioner 1 having the above-described configuration includes control devices, for example, an actuator 5a for driving the intake door 5, a motor 6a for the blower 6, an electromagnetic clutch 7, and an actuator for driving the bypass door 14. 14a, an actuator 21a for driving the air-mix door 21 and an actuator 25d for driving the mode doors 25a, 25b, 25c. A control unit (CZU) 30 is provided.
このコン トロールュニッ ト 3 0は、 少なく とも図示しない中央演算処 理装置 (C PU)、 読取専用メモリ (R〇M)、 ランダムアクセスメモリ (RAM) 及び入出力ポー ト ( I /O) 等からなる公知のもので、 少な く とも前記二酸化炭素濃度検出センサ 1 3、 冷凍サイクル 1 1の低圧側 の圧力を検出する圧力センサ 3 1、 外気温度を検出する温度センサ 3 2 及び車室内の温度を検出する温度センサ 3 3からの信号が、 マルチプレ クサ (MP X) 34及び AZD変換器 3 5を介して入力され、 さらに下 記する操作パネル 40からの設定信号が入力され、 所定のプログラムで
処理された後、 適当な制御信号と して前記制御機器に出力されるもので ある。 The control unit 30 includes at least a central processing unit (CPU), a read-only memory (R〇M), a random access memory (RAM), an input / output port (I / O), etc. (not shown). At least the known carbon dioxide concentration detection sensor 13, the pressure sensor 31 for detecting the pressure on the low pressure side of the refrigeration cycle 11, the temperature sensor 32 for detecting the outside air temperature, and the temperature in the passenger compartment A signal from the temperature sensor 33 is input through the multiplexer (MPX) 34 and the AZD converter 35, and a setting signal from the operation panel 40 described below is input. After being processed, it is output to the control device as an appropriate control signal.
前記操作パネル 4 0は、 ィンテーク ドア 5を手動により内気循環モー ドもしくは外気導入モードに設定する R E Cスィ ッチ 4 1 と、 吹出モー ドを手動によりベン ト吹出口 2 3のみを開口するベン ト吹出モー ド、 フ ッ ト吹出口 2 4のみを開口するフッ ト吹出モー ド、 及びベント吹出口 2 3及びフッ ト吹出口 2 4を所定の割合で開口するバイ レベルモードに 設定する M O D Eスィッチ 4 2 と、 前記送風機 6の風量を手動により 4 段階に設定する F A Nスィ ツチ 4 3 と、 車室内の目標温度を設定するァ ップダウンスィッチ 4 4 a, 4 4 bからなる温度設定器 4 4と、 図示し ないフロン トガラスの曇り を防止するためにデフ吹出口 2 2を開口す る D E Fスィ ッチ 4 5 と、 空調装置自体の稼動を停止させる O F Fスィ ツチ 4 6 と、 空調装置を稼動させる A Z Cスィ ツチ 4 7及び経済的な空 調制御を実行する E C O Nスィ ツチ 4 8からなる A U T Oスィ ツチ 4 9 と、 これらのスィ ッチによる設定状況もしくは自動による現状の空調 状況を表示する表示部 5 0 と、 車室内の二酸化炭素濃度が所定値以上と なった場合に点灯する警告表示 5 1 とを具備するものである。 The operation panel 40 includes a REC switch 41 for manually setting the intake door 5 to the inside air circulation mode or the outside air introduction mode, and a vent for manually opening the vent mode only the vent outlet 23. MODE switch 4 that sets the outlet mode, the foot outlet mode that opens only the foot outlet 24, and the bi-level mode that opens the vent outlets 23 and 24 at a specified ratio 2, a FAN switch 43 for manually setting the air volume of the blower 6 in four stages, and a temperature setting device 44 consisting of an up-down switch 44 a and 44 b for setting the target temperature in the cabin. The DEF switch 45 that opens the differential air outlet 22 to prevent fogging of the front glass (not shown), the OFF switch 46 that stops the operation of the air conditioner itself, and the air conditioner AZC Sui An AUTO switch 49 comprising a switch 47 and an ECON switch 48 for executing economical air-conditioning control, and a display section 50 for displaying the setting status of these switches or the current air conditioning status automatically. A warning indicator 51 that lights up when the carbon dioxide concentration in the vehicle interior is equal to or higher than a predetermined value.
以下、 コント口一ルュニッ ト 3 0で実行される安全制御について、 第 3図及び第 4図に示されるフローチャートに従って説明する。 Hereinafter, the safety control performed by the controller unit 30 will be described with reference to the flowcharts shown in FIGS. 3 and 4.
ステップ 1 0 0から開始される安全制御は、 空調制御のメイン制御ル The safety control started from step 100 is the main control
—チンから定期的に介しされるもので、 ステップ 1 1 0において図示し ない車両のィダニッショ ンスィ ツチが投入された直後か否か ( I G〇N 初回?) が判定され、 初回である場合には、 ステップ 1 2 0に進んで二 酸化炭素濃度検出センサ 1 3の検出値 S out が所定値 K r以上であるか 否かが判定される。
この判定において、 二酸化炭素濃度検出値 S out が所定値 K r以上で ある場合には、 ステップ 1 3 0に進んで操作パネル 4 0の警告表示 5 1 を点灯させ、 ステップ 1 4 0からメイン制御ルーチンに回帰する。 —It is determined that it is the first time that the vehicle is switched on (IG〇N for the first time?). Proceeding to step 120, it is determined whether the detection value S out of the carbon dioxide concentration detection sensor 13 is equal to or greater than a predetermined value Kr. In this determination, if the detected value of carbon dioxide concentration S out is equal to or greater than the predetermined value Kr, the process proceeds to step 130 to turn on the warning display 51 of the operation panel 40, and the main control is started from step 140. Return to routine.
尚、 前記規定値 K f は、 第 5図 ( a ) ( b ) に示すように、 乗員の呼 気による二酸化炭素の上昇 L 3及び L 6 より も所定値大きい値に設定 することが望ましい。 As shown in FIGS. 5 (a) and 5 (b), the prescribed value Kf is desirably set to a value larger than the rise L3 and L6 of the carbon dioxide due to the occupant's exhalation.
これによつて、 乗車直後に二酸化炭素濃度が所定値以上であることを 目視できるので、 窓開け、 車外への退避等の処置をとることができるも のである。 As a result, it is possible to visually check that the carbon dioxide concentration is equal to or higher than the predetermined value immediately after getting on the vehicle, so that measures such as opening windows and evacuating outside the vehicle can be taken.
さらに、 前記ステップ 1 2 0の判定で、 二酸化炭素濃度 S out が所定 値 K r より小さい場合には、 ステップ 1 3 0を回避してステップ 1 4 0 からメイン制御ルーチンに回帰する。 Further, if the carbon dioxide concentration S out is smaller than the predetermined value K r in the determination in step 120, the process returns from step 140 to the main control routine, bypassing step 130.
また、 前記ステップ 1 1 0において、 ィグニッシヨンスィツチ投入初 回でないと判定された場合には、 ステップ 1 5 0に進んで空調装置 (A / C ) を駆動させ、 ステップ 1 6 0に進んで、 前記圧力センサ 3 1によ つて検出された冷凍サイクル 1 1の低圧圧力 P sが所定の圧力 K p以 上であるか否かの判定がおこなれる。 この判定において、 低圧圧力 P s が所定の圧力 K pより も低い場合には、 冷媒漏れであると判定し、 ステ ップ 1 7 0に進んで電磁ク レーム 7を遮断してコンプレッサ 8を停止 させ、 ステップ 1 8 0からメイン制御ルーチンに回帰する。 If it is determined in step 110 that the ignition switch has not been turned on for the first time, the operation proceeds to step 150 to drive the air conditioner (A / C), and the operation proceeds to step 160. Then, it is determined whether or not the low pressure Ps of the refrigeration cycle 11 detected by the pressure sensor 31 is equal to or higher than a predetermined pressure Kp. In this determination, if the low pressure Ps is lower than the predetermined pressure Kp, it is determined that there is a refrigerant leak, and the process proceeds to step 170 to shut off the electromagnetic claim 7 and stop the compressor 8. Then, the flow returns to the main control routine from step 180.
これによつて、 冷凍サイクル 1 1に冷媒漏れが生じた場合、 コンプレ ッサ 8を停止させることができるので、 空駆動による不具合から冷凍サ ィクル 1 1 の各部品を保護することができる。 Thus, when a refrigerant leak occurs in the refrigeration cycle 11, the compressor 8 can be stopped, so that each component of the refrigeration cycle 11 can be protected from a trouble due to idling.
また、 前記ステップ 1 6 0の判定において、 低圧圧力 P sが所定値 K p以上である場合には、 ステップ 1 9 0に進んで二酸化炭素濃度 S out
が所定値 K r以上であるか否かが判定され、 所定値 K r以上である場合 には、ステップ 2 00に進んでタイマ t設定フラグ(F L AG 1 )に" 1 " が設定されているか否かが判定され、 初回は設定されていないので、 ス テツプ 2 1 0に進んでタイマ tをスタートさせ、 ステップ 2 2 0でタイ マ t設定フラグ (F L AG 1 ) に " 1 " を設定し、 ステップ 2 3 0にお いて規定時間 T rを演算する。 If the low pressure Ps is equal to or more than the predetermined value Kp in the determination at the step 160, the process proceeds to the step 190 and the carbon dioxide concentration S out It is determined whether or not is greater than or equal to a predetermined value Kr. If it is greater than or equal to the predetermined value Kr, the process proceeds to step 200 to determine whether or not “1” is set in the timer t setting flag (FL AG 1). Since it is not set for the first time, the timer t is started in step 210 and the timer t setting flag (FLAG1) is set to "1" in step 220. In step 230, the specified time Tr is calculated.
前記規定時間 T rは、 第 6図で示すように、 二酸化炭素濃度 Sout の 値により設定されるもので、 二酸化炭素濃度 S out の値が低い場合には 長く、 二酸化炭素濃度 Sout の値が高い場合には短くなるように設定さ れる。 これは、 二酸化炭素濃度と暴露時間との関係から、 より安全性を 高めるためである。 As shown in FIG. 6, the specified time Tr is set by the value of the carbon dioxide concentration Sout, and is long when the value of the carbon dioxide concentration Sout is low, and is high when the value of the carbon dioxide concentration Sout is high. In this case, it is set to be shorter. This is to enhance safety from the relationship between carbon dioxide concentration and exposure time.
また、 前記ステップ 2 0 0において、 F LAG 1に " 1 " が設定され る場合には、 タイマ tのカウントが継続しているので、 ステップ 2 1 0, 2 20, 2 3 0を回避するようになっている。 If FLAG 1 is set to “1” in step 200, the timer t continues counting, and steps 210, 220, and 230 are avoided. It has become.
そして、 連結子 Aを介してステップ 24 0に進み、 前記タイマ tが前 記規定時間 T r以上となったか否かが判定される。 この判定において、 タイマ tが前記規定時間 T rに到達していない場合には、 ステップ 3 2 0に進んでメィン制御ルーチンに回帰し、 ステップ 24 0の判定におい てタイマ tが規定時間以上となった場合には、 ステップ 2 5 0に進んで, 外気導入モードか否か (F R E S H MOD E ?) が判定され、 外気導 入モードの場合には、 ステップ 2 9 0に進んでコンプレッサ 8を停止し て冷媒漏れを抑制し、 ステップ 3 0 0に進んで送風機 6を高速 (H I G H) 運転して、 車室内に外気を吹き出し、 車室内の二酸化炭素濃度を减 少させるようにしたものである。 そして、 ステップ 3 1 0におい警告表 示 5 1を点灯させ、 ステップ 3 2 0からメイン制御ルーチンに回帰する
ものである。 Then, the process proceeds to step 240 via the connector A, and it is determined whether or not the timer t has become equal to or longer than the specified time Tr. In this determination, if the timer t has not reached the specified time Tr, the process proceeds to step 320 to return to the main control routine, and in the determination of step 240, the timer t has exceeded the specified time. If so, proceed to step 250 to determine whether or not it is in the outside air introduction mode (FRESH MOD E?). If it is in the outside air introduction mode, proceed to step 290 to stop the compressor 8 In step 300, the blower 6 is operated at a high speed (HIGH) to blow outside air into the vehicle interior to reduce the carbon dioxide concentration in the vehicle interior. Then, the warning display 51 is turned on in step 310, and the process returns to the main control routine from step 320. Things.
また、 ステップ 2 5 0の判定において、 外気導入モードでないと判定 された場合には、 ステップ 2 6 0に進んでインテ一ク ドア 5を移動させ、 ステップ 2 7 0の判定において内気循環モード (R E C) から外気導入 モード (F R E S H) に移行したことが判定された場合、 前記ステップ 2 90に進んで、 ステップ 2 9 0以下の制御を実行するものである。 これによつて、 第 6図 ( b) で示すように、 外気導入モード (F R E S H) の場合、 二酸化炭素濃度は時間の経過と共に減少することから、 送風機 6の風量を積極的に大きくすることによって、 二酸化炭素濃度 S outが規定値 K r以上となる時間を短縮することができるものである。 尚、 第 6図 (b ) において、 L 4は急激な冷媒漏れの場合、 L 5は緩慢 な冷媒漏れの場合、 L 6は呼気による二酸化炭素濃度である。 また、 T r 3は急激な冷媒漏れの場合において車室内の二酸化炭素濃度 Sout が 規定値 r以上となった時間を示し、 T R 4は緩慢な冷媒漏れの場合に おいて車室内の二酸化炭素濃度 Sout が規定値 K r以上となった時間を 示す。 If it is determined in step 250 that the current mode is not the outside air introduction mode, the process proceeds to step 260 to move the intake door 5, and the internal air circulation mode (REC mode) is determined in step 260. ), It is determined that the mode has shifted to the outside air introduction mode (FRESH), the process proceeds to step 290, and the control of step 290 and subsequent steps is executed. As a result, as shown in Fig. 6 (b), in the outside air introduction mode (FRESH), the carbon dioxide concentration decreases with the passage of time. However, it is possible to reduce the time during which the carbon dioxide concentration S out is equal to or higher than the specified value K r. In FIG. 6 (b), L4 is the case of a rapid refrigerant leak, L5 is the case of a slow refrigerant leak, and L6 is the carbon dioxide concentration due to exhalation. Also, Tr 3 indicates the time when the carbon dioxide concentration Sout in the vehicle compartment exceeds the specified value r in the case of a sudden refrigerant leak, and TR 4 indicates the carbon dioxide concentration in the vehicle compartment in the case of a slow refrigerant leak. Indicates the time when Sout has exceeded the specified value Kr.
しかしながら、 前記ステップ 2 7 0の判定おいて、 何らかの原因によ つてインテーク ドア 5が駆動せず、 外気導入モードに移行していないと 判定された場合には、 ステップ 2 8 0に進んでバイパス ドア 1 4を駆動 してバイパス通路 1 5を開く と共に空調ダク ト通路 1 9を閉鎖し、 吸着 システムを稼動させる (ON)。 そして、 ステップ 2 9 0に進んで、 ス テツプ 2 9 0以下の制御を実行するものである。 However, if it is determined in step 270 that the intake door 5 has not been driven for some reason and the mode has not been shifted to the outside air introduction mode, the process proceeds to step 280 to proceed to step 280. Drive 14 to open the bypass passage 15 and close the air conditioning duct passage 19 to operate the adsorption system (ON). Then, the process proceeds to step 290 to execute the control in step 290 and lower.
これによつて、 万一インテーク ドア 5が駆動しない場合、 第 5図 ( a ) で示すように、 内気循環モー ド (R E C) の場合、 車室内の二酸化炭素 濃度は减少しないので、 二酸化炭素の吸着システムを稼動させ、 積極的
に吸入内気から二酸化炭素を除去することによって車室内の二酸化炭 素濃度を低下させるものである。 尚、 第 5図 ( a ) において、 L 1は急 激な冷媒漏れの場合、 L 2は緩慢な冷媒漏れの場合、 L 3は呼気による 二酸化炭素濃度の変化を示すものである。 尚、 T r lは急激な冷媒漏れ の場合において車室内の二酸化炭素濃度 V out が規定値 K r を超えた場 合の時間を示し、 T r 2は緩慢な冷媒漏れの場合において車室内の二酸 化炭素濃度 V outが規定値 K rを超えた場合の時間を示す。 As a result, if the intake door 5 is not driven, as shown in Fig. 5 (a), in the case of the inside air circulation mode (REC), the concentration of carbon dioxide in the vehicle interior is very small. Active operation of adsorption system In addition, it removes carbon dioxide from the intake air to lower the concentration of carbon dioxide in the cabin. In FIG. 5 (a), L1 indicates a rapid refrigerant leak, L2 indicates a slow refrigerant leak, and L3 indicates a change in carbon dioxide concentration due to exhalation. Trl indicates the time when the carbon dioxide concentration Vout in the vehicle compartment exceeds the specified value Kr in the case of a sudden refrigerant leak, and Tr2 indicates the time in the vehicle compartment in the case of a slow refrigerant leak. Indicates the time when the carbon oxide concentration V out exceeds the specified value Kr.
以上の制御において、 二酸化炭素濃度 S out が所定値 K r より减少し た場合、 ステップ 1 9 0の判定からステッブ 3 3 0に進み、 タイマ tが リセッ トされ、 ステップ 3 4 0において F L A G 1に " 0 " が設定され、 ステップ 3 5 0からメイン制御ルーチンに回帰するものである。 In the above control, when the carbon dioxide concentration S out becomes smaller than the predetermined value K r, the process proceeds from the determination of step 190 to step 330, the timer t is reset, and the FLAG 1 is set to FLAG 1 in step 340. "0" is set, and the process returns to the main control routine from step 350.
これによつて、 ステップ 1 6 0及びステップ 1 9 0の判定において冷 媒漏れが検出されるまで、 ステップ 1 9 0からステップ 3 3 0、 ステツ プ 3 4 0、 及びステップ 3 5 0が繰り返されるものである。 産業上の利用可能性 As a result, Step 190 to Step 330, Step 340, and Step 350 are repeated until a refrigerant leak is detected in the determinations of Step 160 and Step 190. Things. Industrial applicability
以上説明したように、 この発明に係る車両用空調装置の安全装置は、 車室内に配置される空調ダク ト内に配されるエバポレータの下流近傍 に二酸化炭素濃度検出手段を設けたことから、 エバポレータからの冷媒 漏れを迅速に且つ確実に検出することができ、 さらにこの検出結果が異 常である場合には、 乗員に警告することができるので、 冷媒と して二酸 化炭素を使用した車両用空調装置の安全性を向上させることができる。 また、 二酸化炭素濃度が異常である場合には、 コンプレッサを停止さ せると共に、 強制的に外気導入モードに設定し、 さらに送風機の風量を 大きくするようにしたので、 車室内の二酸化炭素濃度を減少させること
ができるものである。 As described above, the safety device for a vehicle air conditioner according to the present invention is provided with the carbon dioxide concentration detection means near the downstream of the evaporator arranged in the air conditioning duct arranged in the vehicle interior. Can quickly and reliably detect the leakage of refrigerant from the vehicle, and if this detection result is abnormal, it can warn the occupants, so vehicles using carbon dioxide as refrigerant The safety of the air conditioner can be improved. If the carbon dioxide concentration is abnormal, the compressor is stopped, the outside air introduction mode is forcibly set, and the air volume of the blower is increased, so that the carbon dioxide concentration in the cabin is reduced. To make Can be done.
また、 外気導入モードに設定不可能な場合には、 バイパス通路を開放 し、 吸引された内気をバイパス通路に配置された二酸化炭素吸着剤に通 して含有される二酸化炭素を除去することができるので、 車室内の二酸 化炭素濃度を減少させることができ、 車両用空調装置の安全性をさらに 高めることができる。
When it is not possible to set the outside air introduction mode, the bypass passage is opened, and the carbon dioxide contained can be removed by passing the sucked inside air through the carbon dioxide adsorbent arranged in the bypass passage. Therefore, the concentration of carbon dioxide in the passenger compartment can be reduced, and the safety of the vehicle air conditioner can be further improved.
Claims
1 . 空調ダク トと、 該空調ダク トの最上流側に開口する外気導入口及 び内気導入口と、 これら外気導入口及び内気導入口を選択的に開口する インテーク ドアと、 該インテ一ク ドアの下流側に設けられる送風機と、 該送風機の下流側に配され、 少なく ともコンプレッサ、 放熱器、 膨張手 段と共に冷媒と して二酸化炭素を使用した冷凍サイクルを構成するェ バポレータと、 該前記エバポレータを通過した空気の加熱量を変化させ て目標の温度に温調する温調手段と、 前記空調ダク トの最下流側に開口 する複数の吹出口とを少なく とも具備する車両用空調装置において、 前記エバポレータの下流側近傍の二酸化炭素濃度を検出する二酸化 炭素濃度検出手段と、 1. An air-conditioning duct, an outside air inlet and an inside air inlet opening at the most upstream side of the air-conditioning duct, an intake door selectively opening the outside air inlet and the inside air inlet, and the inlet A blower provided downstream of the door, an evaporator arranged downstream of the blower and constituting a refrigeration cycle using carbon dioxide as a refrigerant together with at least a compressor, a radiator, and an expansion means; A vehicle air conditioner having at least a temperature control means for controlling a temperature to a target temperature by changing a heating amount of air passing through an evaporator, and a plurality of air outlets opened at the most downstream side of the air conditioning duct. A carbon dioxide concentration detecting means for detecting a carbon dioxide concentration near the downstream side of the evaporator;
該二酸化炭素濃度検出手段によって検出された二酸化炭素濃度が所 定値以上である場合に、 乗員に警告を発する警告手段を具備することを 特徴とする車両用空調装置の安全装置。 A safety device for a vehicle air conditioner, comprising: warning means for issuing a warning to an occupant when the carbon dioxide concentration detected by the carbon dioxide concentration detecting means is equal to or higher than a predetermined value.
2 . 前記二酸化炭素濃度検出手段によって検出された二酸化炭素濃度が 規定時間所定値以上である場合に、 インテーク ドアを外気導入モードに 強制的に移行すると共に、 前記コンプレッサを停止し、 送風機の風量を 大きくする二酸化炭素濃度減少手段を具備することを特徴とする請求 の範囲第 1項記載の車両用空調装置の安全装置。 2. If the carbon dioxide concentration detected by the carbon dioxide concentration detecting means is equal to or greater than a predetermined value for a prescribed time, the intake door is forcibly shifted to an outside air introduction mode, the compressor is stopped, and the air volume of the blower is reduced. The safety device for a vehicle air conditioner according to claim 1, further comprising a carbon dioxide concentration reducing means for increasing the concentration.
3 . 前記車両用空調装置は、 さらに、 前記エバポレータと、 前記温調手 段の間に設けられたバイパス通路と、 3. The vehicle air conditioner further comprises: an evaporator; a bypass passage provided between the temperature control means;
該バイパス通路内に配された二酸化炭素吸着剤と、 A carbon dioxide adsorbent disposed in the bypass passage;
前記バイパス通路の上流側に配され、 該バイパス通路を開閉すると共 にエバポレータを通過した空気をバイパス通路に導くバイパス ドアと、
前記二酸化炭素濃度減少手段において、 外気導入モードが設定不可能 である場合、 前記バイパス ドアを開として、 エバポレータを通過した空 気から二酸化炭素を吸着する二酸化炭素濃度減少予備手段とを具備す ることを特徴とする請求の範囲第 2項記載の車両用空調装置の安全装 A bypass door disposed upstream of the bypass passage, for opening and closing the bypass passage, and guiding air that has passed through the evaporator to the bypass passage; When the outside air introduction mode cannot be set in the carbon dioxide concentration reducing means, the bypass door is opened, and a carbon dioxide concentration decreasing preliminary means for adsorbing carbon dioxide from air passing through an evaporator is provided. A safety device for a vehicle air conditioner according to claim 2, characterized in that:
4 . 前記バイパス通路の後流側開口部は、 送風機の風量によって破損可 能な薄膜によって遮蔽されることを特徴とする請求の範囲第 3項記載 の車両用空調装置の安全装置。 4. The safety device for a vehicle air conditioner according to claim 3, wherein the downstream side opening of the bypass passage is shielded by a thin film that can be damaged by an air volume of a blower.
5 . 前記二酸化炭素濃度減少手段において、 規定時間は、 二酸化炭素濃 度の検出値が低い場合には長く、 二酸化炭素濃度の検出値が高い場合に は短く設定されることを特徴とする請求の範囲第 2項、 第 3項又は第 4 項記載の車両用空調装置の安全装置。 5. In the carbon dioxide concentration reducing means, the prescribed time is set to be long when the detected value of the carbon dioxide concentration is low and to be short when the detected value of the carbon dioxide concentration is high. A safety device for a vehicle air conditioner according to paragraph 2, 3, or 4.
6 . 前記冷凍サイクルの圧力を検出する圧力検出手段と、 6. Pressure detecting means for detecting the pressure of the refrigeration cycle,
該圧力検出手段によって検出された圧力が所定値以下である場合に は、 コンプレッサを停止させるコンプレッサ停止手段とを具備すること を特徴とする請求の範囲各項のいずれか一つに記載の車両用空調装置 の安全装置。
The vehicle according to any one of claims 1 to 3, further comprising: a compressor stop unit that stops the compressor when the pressure detected by the pressure detection unit is equal to or less than a predetermined value. Safety device for air conditioner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1999/001746 WO2000059748A1 (en) | 1999-04-02 | 1999-04-02 | Safety device for vehicle air conditioning system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1999/001746 WO2000059748A1 (en) | 1999-04-02 | 1999-04-02 | Safety device for vehicle air conditioning system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000059748A1 true WO2000059748A1 (en) | 2000-10-12 |
Family
ID=14235374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1999/001746 WO2000059748A1 (en) | 1999-04-02 | 1999-04-02 | Safety device for vehicle air conditioning system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2000059748A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002310542A (en) * | 2001-04-13 | 2002-10-23 | Japan Climate Systems Corp | Air conditioner for vehicle |
WO2004056593A1 (en) * | 2002-12-19 | 2004-07-08 | Daimlerchrysler Ag | Method for operating an air conditioning system |
WO2007057269A1 (en) * | 2005-11-21 | 2007-05-24 | Continental Automotive Gmbh | Air conditioning device |
DE102008059965A1 (en) | 2008-12-02 | 2010-06-10 | Daimler Ag | Lithium-ion battery operating method for vehicle, involves connecting cooling plate to air conditioning system in thermally conductive manner, and introducing carbon dioxide-absorbing material into interior of battery housing |
JP2011162096A (en) * | 2010-02-12 | 2011-08-25 | Yazaki Corp | Cabin carbon dioxide concentration increase determination device and cabin safety support system |
JP2012136159A (en) * | 2010-12-27 | 2012-07-19 | Mitsubishi Electric Corp | Air conditioner for rolling stock and rolling stock |
US8388649B2 (en) | 2001-05-21 | 2013-03-05 | Thoratec Corporation | Staged implantation of ventricular assist devices |
KR20200104008A (en) * | 2019-02-26 | 2020-09-03 | 주식회사 엠알씨 | A air conditioner for a vehicle |
CN112065539A (en) * | 2019-06-11 | 2020-12-11 | 丰田自动车株式会社 | CO2 recovery system |
JPWO2021144907A1 (en) * | 2020-01-16 | 2021-07-22 | ||
JPWO2021192374A1 (en) * | 2020-03-27 | 2021-09-30 | ||
CN114877423A (en) * | 2021-02-03 | 2022-08-09 | 重庆海润节能技术股份有限公司 | Five-scale indoor environment control method for centralized energy supply |
CN114877422A (en) * | 2021-02-03 | 2022-08-09 | 重庆海润节能技术股份有限公司 | Household fresh air control method for keeping temperature, humidity, oxygen, clean and static balance |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5847191A (en) * | 1981-09-14 | 1983-03-18 | Nissan Motor Co Ltd | Apparatus for protecting compressor in cooler |
JPH08156574A (en) * | 1994-12-02 | 1996-06-18 | Gastar Corp | Exhaust gas back flow safety device for automobile |
JPH10288429A (en) * | 1997-04-14 | 1998-10-27 | Sanden Corp | Alarming device for air-conditioning refrigerant carbon dioxide gas |
-
1999
- 1999-04-02 WO PCT/JP1999/001746 patent/WO2000059748A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5847191A (en) * | 1981-09-14 | 1983-03-18 | Nissan Motor Co Ltd | Apparatus for protecting compressor in cooler |
JPH08156574A (en) * | 1994-12-02 | 1996-06-18 | Gastar Corp | Exhaust gas back flow safety device for automobile |
JPH10288429A (en) * | 1997-04-14 | 1998-10-27 | Sanden Corp | Alarming device for air-conditioning refrigerant carbon dioxide gas |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002310542A (en) * | 2001-04-13 | 2002-10-23 | Japan Climate Systems Corp | Air conditioner for vehicle |
US8388649B2 (en) | 2001-05-21 | 2013-03-05 | Thoratec Corporation | Staged implantation of ventricular assist devices |
WO2004056593A1 (en) * | 2002-12-19 | 2004-07-08 | Daimlerchrysler Ag | Method for operating an air conditioning system |
WO2007057269A1 (en) * | 2005-11-21 | 2007-05-24 | Continental Automotive Gmbh | Air conditioning device |
DE102008059965A1 (en) | 2008-12-02 | 2010-06-10 | Daimler Ag | Lithium-ion battery operating method for vehicle, involves connecting cooling plate to air conditioning system in thermally conductive manner, and introducing carbon dioxide-absorbing material into interior of battery housing |
JP2011162096A (en) * | 2010-02-12 | 2011-08-25 | Yazaki Corp | Cabin carbon dioxide concentration increase determination device and cabin safety support system |
JP2012136159A (en) * | 2010-12-27 | 2012-07-19 | Mitsubishi Electric Corp | Air conditioner for rolling stock and rolling stock |
KR102160262B1 (en) * | 2019-02-26 | 2020-09-25 | 주식회사 엠알씨 | A air conditioner for a vehicle |
KR20200104008A (en) * | 2019-02-26 | 2020-09-03 | 주식회사 엠알씨 | A air conditioner for a vehicle |
CN112065539A (en) * | 2019-06-11 | 2020-12-11 | 丰田自动车株式会社 | CO2 recovery system |
CN112065539B (en) * | 2019-06-11 | 2022-04-26 | 丰田自动车株式会社 | CO2Recovery system |
JPWO2021144907A1 (en) * | 2020-01-16 | 2021-07-22 | ||
WO2021144907A1 (en) | 2020-01-16 | 2021-07-22 | 三菱電機株式会社 | Air conditioning device for vehicle |
EP4092361A4 (en) * | 2020-01-16 | 2023-01-11 | Mitsubishi Electric Corporation | AIR CONDITIONING DEVICE FOR VEHICLE |
JPWO2021192374A1 (en) * | 2020-03-27 | 2021-09-30 | ||
WO2021192374A1 (en) * | 2020-03-27 | 2021-09-30 | 三菱電機株式会社 | Vehicle air conditioner |
CN114877423A (en) * | 2021-02-03 | 2022-08-09 | 重庆海润节能技术股份有限公司 | Five-scale indoor environment control method for centralized energy supply |
CN114877422A (en) * | 2021-02-03 | 2022-08-09 | 重庆海润节能技术股份有限公司 | Household fresh air control method for keeping temperature, humidity, oxygen, clean and static balance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5918475A (en) | Air conditioning apparatus for vehicle, using a flammable refrigerant | |
JP4127230B2 (en) | Air conditioner for vehicles | |
US8256238B2 (en) | Control system for a variable-capacity compressor in air conditioner | |
WO2000059748A1 (en) | Safety device for vehicle air conditioning system | |
JP5609764B2 (en) | Air conditioner for vehicles | |
JP2005271696A (en) | Air conditioner for vehicle | |
WO2017094351A1 (en) | Airflow control system | |
JP2004155391A (en) | Air-conditioner for vehicle | |
JP2009241892A (en) | Cabin air control device | |
WO2019138735A1 (en) | Vehicle air-conditioning device | |
JP3317014B2 (en) | Humidity sensor failure determination device and vehicle air conditioner | |
JP4675229B2 (en) | Air conditioning system for vehicles | |
JP2008261511A (en) | Air conditioning device | |
JP3617144B2 (en) | Air conditioner for vehicles | |
JP3617143B2 (en) | Air conditioner for vehicles | |
JPH0939550A (en) | Air conditioner for vehicle | |
JP3404990B2 (en) | Heat pump type air conditioner for vehicles | |
WO2000034065A1 (en) | Safety device for vehicles | |
JP2003080926A (en) | Vehicular air conditioner | |
JPH10175426A (en) | Air conditioner for vehicle | |
JP3351098B2 (en) | Electric vehicle air conditioner | |
JP2008281317A (en) | Air conditioner | |
JP2007131232A (en) | Air-conditioning control device for vehicle | |
JP2002036845A (en) | Vehicle air conditioner | |
JP2003267026A (en) | Air conditioner for vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |