WO2000053616A2 - Nucleotides and polynucleotides immobilised on a solid support via a disulphide linkage - Google Patents
Nucleotides and polynucleotides immobilised on a solid support via a disulphide linkage Download PDFInfo
- Publication number
- WO2000053616A2 WO2000053616A2 PCT/GB2000/000843 GB0000843W WO0053616A2 WO 2000053616 A2 WO2000053616 A2 WO 2000053616A2 GB 0000843 W GB0000843 W GB 0000843W WO 0053616 A2 WO0053616 A2 WO 0053616A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polynucleotide
- solid support
- nucleotide
- polynucleotides
- support
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/06—Pyrimidine radicals
- C07H19/10—Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/16—Purine radicals
- C07H19/20—Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54306—Solid-phase reaction mechanisms
Definitions
- This invention is concerned with the immobilisation of nucleotides and polynucleotides on solid surfaces.
- Immobilised polynucleotides are used in immunoassays and ELISA assays and also in hybridisation assays. More particularly, arrays of immobilised oligonucleotides are being widely used to compare target nucleic acids and indeed for de novo sequencing.
- arrays of immobilised oligonucleotides are being widely used to compare target nucleic acids and indeed for de novo sequencing.
- Disulphide bonds are very widely used to covalently bind proteins and other biomolecules on solid surfaces.
- thiol derivatives can easily form symmetric dimers in the presence of air oxygen.
- M Chassignol and N T Thuong have reported (Tetrahedron Letters, 39, 1998, 8271 -4) the synthesis of conjugated oligonucleotides via a phosphodisulphide bridge, obtained by reacting in solution a terminal phosphorothioate oligonucleotide with a alkyl-2-pyridyldisulphide derivative. Using this strategy, formation of symmetrical oligonucleotide disulphide by oxidation was avoided.
- the invention provides a method of immobilising a nucleotide or polynucleotide on a solid support, by providing a nucleotide or a polynucleotide comprising at least one phosphorothioate group and coupling this to the support as defined by means of a sulphide exchange reaction.
- the invention provides a product having the structure: B - S - S - P(O)R 1 R 2 where B is the solid support and R 1 and R 2 are such that -POR R 2 represents a nucleotide or a polynucleotide.
- the invention provides an array of polynucleotides immobilised at spaced locations on a surface of a support as defined.
- the support may be massive, e.g. a surface of a reaction vessel or the wells of a microtitre plate, or may be particulate. Of particular interest for arrays are flat surfaces which may be porous or non-porous.
- the material of the support should be stable against oxidation and hydrolysis, and may be inorganic e.g. silicon or titanium dioxide or aluminium oxide or preferably glass; or organic e.g. polystyrene, cellulose, polyamide and others.
- the support preferably has a functionalised surface comprising groups of formula - S - S - L, where L is a leaving group, i.e. a group which is readily replaced by a nucleotide or a polynucleotide.
- L is a leaving group, i.e. a group which is readily replaced by a nucleotide or a polynucleotide.
- suitable leaving groups are 2-pyridyl and 2-(5-nitropyridyl).
- Other suitable groups are well known in the field, see Bioconjugate Techniques by Greg T Hermanson, Academic Press, 1996.
- a solid support having a functionalised surface of this kind can be prepared in various ways.
- a solid support having surface hydroxyl groups can be reacted with a mercaptosilane such as (3-mercaptopropyl)-trimethoxysilane.
- a mercaptosilane such as (3-mercaptopropyl)-trimethoxysilane.
- thiol groups which is reacted with a di-(organic)disulphide, where one or both of the organic groups is a leaving group, to give the required functionalised surface.
- a surface carrying amino groups such as aminosilanased glass or amyiated polypropylene may be reacted with for example 3,3'-dithiopropionic acid in the presence of a coupling reagent such as 1 -(3-Dimethylaminopropyl)-3-ethylcarbodiimide (EDC) or 0-Benzotriazol-1 -yl-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU), followed by reduction with dithiothreitol and reaction with a di-(organic)disulphide to yield the required functionalised surface.
- a coupling reagent such as 1 -(3-Dimethylaminopropyl)-3-ethylcarbodiimide (EDC) or 0-Benzotriazol-1 -yl-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU)
- a disulphide functionalised surface may also be prepared by reacting a surface carrying amino groups with 2-carboxyethyl-2'-(leaving group)disulphide in the presence of a coupling reagent such as EDC or HBTU.
- the disulphide functionality - S - S - L may be linked to the solid support through a linker, for example an organic chain of up to 60 atoms selected from C, O, N and P and/or one or more silicon or silicate moieties. The nature and existence of such linkers is well known in the art and is not material to the present invention.
- the solid support B is herein deemed to include an optional linker through which the disulphide functionality - S - S - L is immobilised.
- the solid support having a functionalised surface is designed to immobilise a nucleotide, which term is used to include nucleotide analogues, or a polynucleotide, which term is used to include oligonucleotides of natural or synthetic origin and which may contain nucleotide analogue residues; and polynucleotides which may be single- stranded or double-stranded and may be RNA or cDNA or DNA of genomic or other origin or PCR fragments and may include nucleotide analogue residues.
- a nucleotide analogue is a nucleotide modified in the base and/or sugar and/or phosphate moiety and is capable of forming base-pair hybrids.
- the nucleotide or polynucleotide to be immobilised is modified by being provided with a phosphorothioate group (also known as a thiophosphate group). This may preferably be done by replacing a 5'-terminal or 3'-terminal phosphate group - PO 4 H with a phosphorothioate group - P0 3 SH.
- the modified nucleotide or polynucleotide is contacted with the functionalised surface of the solid support under conditions to couple the two together by means of a sulphide exchange reaction.
- Preferred reaction conditions are as follows.
- the temperature should be from 0 to 80°C, preferably from ambient to 50°C.
- the modified nucleotide or polynucleotide is provided in aqueous solution preferably containing an organic water-miscible polar liquid such as ethylene glycol or dimethylsuiphoxide (DMSO) which reduces the rate of evaporation.
- DMSO dimethylsuiphoxide
- the proportion of such organic liquid may be up to 50% or even higher.
- the pH is preferably in the range 1.5 to 8, particularly 3 to 6; above pH 8 covalent binding by means of disulphide links begins to be swamped by non-specific binding.
- the nucleotide or polynucleotide solution may be maintained in contact with the functionalised surface of the solid support for long enough to effect coupling, e.g. 1 minute to 24 hours, if necessary using a high humidity atmosphere to delay evaporation. Then the support is washed to remove unreacted nucleotides and polynucleotides and is ready for use. pH control may be effected by means of buffers commonly used with nucleic acids, for example sodium citrate/citric acid buffer and imidazole buffer.
- the nucleotide or polynucleotide concentration is preferably 0.1 to 100 ⁇ M.
- arrays e.g. for APEX (arrayed primer extension WO 95/00699) or SBH (sequencing by hybridisation) assays
- APEX array primer extension WO 95/00699
- SBH sequencing by hybridisation
- B is a solid support including an optional linker.
- the group -P(O)R 1 R 2 represents a nucleotide or polynucleotide moiety.
- R 1 represents an oxygen atom or a hydroxyl group and R 2 represents a moiety
- R 1 is oxygen or hydroxyl and R 2 is a moiety
- n is an integer of at least 2.
- a polynucleotide may be immobilised on a solid support by a single disulphide bond or by a plurality of such bonds which may be at the end or intermediate the ends of the polynucleotide chain.
- the bonds are stable to the conditions commonly encountered in hybridisation or other assays, but are labile under reducing conditions.
- Example 1 describes a typical procedure.
- Examples 2 and 3 describe specific comparative experiments whose results are reported. The chemical reactions involved are illustrated in the following reaction scheme.
- Figure 1 which consists of three bar charts showing signal intensities of the Cy3 hybridisation signal for 3 repeat slides for 5' phosphorothioate and 5' phosphate modified oligonucleotides spotted at different pH values
- Typical procedure used for the method of this invention Slides preparation: 25 precleaned glass microscope slides are put into a metal rack. A 5% (v/v) solution of (3-Mercaptopropyl)trimethoxysilane) in dry toluene is prepared and the slides soaked in this solution for 6 hours. The slides are rinsed 3 times with dry toluene followed by isopropanol. The slides are soaked in a solution of 6.66 g/l 2,2'-dipyridyl disulfide in isopropanol. The slides are washed 3 times with isopropanol and were allowed to dry. For the immobilisation oligonucleotide probes are dissolved in
- oligonucleotide probes are spotted on the disulfide modified surface (typically 0.8 nl per spot) using a micro array spotter. The spotted surface is kept at a humidity of 45% at room temperature for 4 hours, washed with distilled water and allowed to dry. Hybridisation is carried out with Cy3 end labelled complementary oligonucleotide at a concentration of 0.3 ⁇ M. 30 ⁇ l Target solution (oligonucleotide No 16, 0.3 ⁇ M in hybridisation buffer) is applied to the slide surfaces and covered with a coverslip.
- Preferred hybridisation buffer is 7% (w/v) Sodium N-lauroyl sarosinate in 5x SSC buffer.
- the slides are kept in a humid atmosphere in a sealed box at 4°C overnight.
- the slides are washed twice for 5 minutes with ice-cold 10 x SSC buffer.
- Hybridised oligonucleotide is visualised by scanning with a micro array scanner for the fluorescence signal of the target. Oligonucleotides: All oligonucleotides are purchased commercially. Oligonucleotides
- Oligonucleotide solutions of 2 ⁇ M and 10 ⁇ M were prepared in water.
- Disulfide functionalised glass plates were prepared as described in Example 1.
- Oligonucleotides with a 5'-amino, 5'-phosphate, 5'-thiol or 5'-phosphorothioate modification were dissolved in 0.8 M imidazole pH 6 (25%) or 0.8M carbonate buffer pH 9 and ethyleneglycol (25%) and water (50%) to a final concentration of 0.5 ⁇ M.
- the oligonucleotides were spotted with a microarray spotter on the prepared glass slides.
- the slides were incubated at 50°C in a humidity chamber. After 4h the slides were washed wit 15% ammonia, rinsed thoroughly with water and dried.
- Cy3 fluorescence signal was measured with a micro array scanner.
- a high Cy3 fluorescence signal could be seen for 5' phosphorothioate oligonucleotide after hybridisation with Cy3 labelled complementary oligonucleotide when spotted out of imidazole buffer at pH 6.
- Disulfide functionalised glass plates were prepared as described in Example 1 .
- Octamehc oligonucleotides with a 5'-phosphate or 5'-phosphorothioate modification (1 O ⁇ M), were dissolved to a final concentration of 2.5 ⁇ M in citrate buffers at different pH 1 .5 to pH 7.8 (25%), ethyleneglycol or DMSO (25%) and water (25%).
- the oligonucleotides were spotted with a microarray spotter on the prepared glass slides. The slides were kept for 2 hours at room temperature at a humidity of 45%. The slides were rinsed with water and allowed to dry. Following hybridisation with a complementary Cy3 labelled oligonucleotide, the Cy3 fluorescence signal was measured with a micro array scanner.
- Figure 1 shows signal intensities of the Cy3 hybridisation signal for 3 repeat slides. An increase in Cy3 hybridisation signal intensity was found for the 5'-phosphorothioate oligonucleotide with decreasing pH from pH 7.8 to pH 4.
- Non-specific binding of 5'-phosphate oligonucleotide decreased with decreasing pH as can be seen in Figure 1.
- Sequence 218 5'-PO 3 S-TAA-CTC-ATT-AAC-AGG-ATC-3 ⁇ Oligonucleotide solutions of 100 ⁇ M were prepared. Sequence 218 was chosen to bind specifically to disulfide functionalised solid support and to give strand extension when hybridised to Sequence 217 and incubated with Cy3 labelled ddCTP and Thermosequenase.
- Disulfide functionalised glass plates were prepared as described in Example 1.
- Oligonucleotides 218 and 219 were dissolved in 0.8M Citrate buffer pH4 (25%), DMSO (50%) and water (25%) to a final concentration of 2.5 ⁇ M.
- the oligonucleotides were spotted with a micro array spotter on the prepared glass slides.
- the slides were incubated at 25°C and at a humidity of 40% for 4 hours.
- the slides were rinsed with water, treated for 15 minutes with 17% ammonia, washed with water (4X) followed by isopropanol and were dried.
- Thermosequenase Amersham Pharmacia Biotech, DDT free in 20 mM Tris/HCI pH8.5, 0.1 mM EDTA, 100 mM KCI, 0.5% Tween 20, 0.5% NP-40, 50% Glycerol. Buffer exchange was achieved by dialysis using Spectra/POR Steril Dispo Dialysers (Sigma 135488); 10X Thermosequenase reaction buffer: 260mM Tris/HCI pH9, 65 mM MgCI 2 ; Thermosequenase dilution buffer: 10 mM Tris/HCI pH8, 0.5% Tween 20, 0.5% NP-40.
- oligonucleotide 217 100 ⁇ M
- 3 ⁇ l Thermosequenase reaction buffer and 33 ⁇ l water were combined per sample.
- the samples were heated to 100 9 C for 5 minutes and put on ice.
- 1 ⁇ l Cy3-ddCTP 100 ⁇ M
- 2 ⁇ l Thermosequenase diluted to 3.3 U/ ⁇ l
- the array was covered with a cover-slip and incubated for 40 minutes at 48 9 C.
- the glass slides were washed twice with 2X SSC buffer followed by a rinse with water and isopropanol and were allowed to dry.
- the Cy3-fluorescence signal was visualised by scanning with a Molecular Dynamics micro array scanner for the fluorescence signal of extended primer.
- Oligonucleotides with or without a terminal phosphorothioate function were applied to a pyridyl disulfide functionalised surface following procedures described in example 1.
- Oligonucleotide 218 carries a terminal phosphorothioate function and therefore binds covalently to the disulfide functionalised solid surface.
- Oligonucleotide 219 is not modified with a phosphorothioate group and no attachment to the solid surface was expected for this oligonucleotide (219) at pH4.
- APEX arrayed primer extension
- sequences 218 and 219 are capable of being extended with Thermosequenase / Cy3-ddCTP if present.
- the immobilised oligonucleotides retained their ability for hybridisation and recognition by polymerases such as Thermosequenase.
- This method presents a simple and efficient method to covalently attach nucleic acids to solid surfaces via formation of a phosphodisulfide bridge.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Saccharide Compounds (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU29308/00A AU2930800A (en) | 1999-03-09 | 2000-03-07 | Immobilising polynucleotides |
CA002365226A CA2365226A1 (en) | 1999-03-09 | 2000-03-07 | Immobilising polynucleotides |
JP2000604051A JP2003520766A (en) | 1999-03-09 | 2000-03-07 | Fixed polynucleotide |
EP00907844A EP1259524A2 (en) | 1999-03-09 | 2000-03-07 | Nucleotides and polynucleotides immobilised on a solid support via a disulphide linkage |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99301764 | 1999-03-09 | ||
EP99301764.9 | 1999-03-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2000053616A2 true WO2000053616A2 (en) | 2000-09-14 |
WO2000053616A3 WO2000053616A3 (en) | 2002-09-12 |
Family
ID=8241258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2000/000843 WO2000053616A2 (en) | 1999-03-09 | 2000-03-07 | Nucleotides and polynucleotides immobilised on a solid support via a disulphide linkage |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1259524A2 (en) |
JP (1) | JP2003520766A (en) |
AU (1) | AU2930800A (en) |
CA (1) | CA2365226A1 (en) |
WO (1) | WO2000053616A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003029494A1 (en) * | 2001-10-03 | 2003-04-10 | Micrologix Biotech Inc. | Attachment of thiophosphate tethered oligonucleotides to a solid surface |
WO2003048385A2 (en) * | 2001-12-06 | 2003-06-12 | Adnagen Ag | Oligonucleotide array, nucleotide detection method and device therefor |
WO2009023676A1 (en) * | 2007-08-12 | 2009-02-19 | Integrated Dna Technologies, Inc. | Microarray system with improved sequence specificity |
US7553943B2 (en) | 2003-11-07 | 2009-06-30 | Illumina Cambridge Limited | Polynucleotide arrays |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990001564A1 (en) * | 1988-08-09 | 1990-02-22 | Microprobe Corporation | Methods for multiple target analyses through nucleic acid hybridization |
WO1998039481A1 (en) * | 1997-03-05 | 1998-09-11 | Molecular Tool, Inc. | Covalent attachment of nucleic acid molecules onto solid-phases via disulfide bonds |
-
2000
- 2000-03-07 WO PCT/GB2000/000843 patent/WO2000053616A2/en not_active Application Discontinuation
- 2000-03-07 AU AU29308/00A patent/AU2930800A/en not_active Abandoned
- 2000-03-07 EP EP00907844A patent/EP1259524A2/en not_active Withdrawn
- 2000-03-07 CA CA002365226A patent/CA2365226A1/en not_active Abandoned
- 2000-03-07 JP JP2000604051A patent/JP2003520766A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990001564A1 (en) * | 1988-08-09 | 1990-02-22 | Microprobe Corporation | Methods for multiple target analyses through nucleic acid hybridization |
WO1998039481A1 (en) * | 1997-03-05 | 1998-09-11 | Molecular Tool, Inc. | Covalent attachment of nucleic acid molecules onto solid-phases via disulfide bonds |
Non-Patent Citations (5)
Title |
---|
CHASSIGNOL M ET AL: "Phosphodisulfide Bond: A New Linker for the Oligonucleotide Conjugation" TETRAHEDRON LETTERS, vol. 39, no. 45, 5 November 1998 (1998-11-05), page 8271-8274 XP004139391 ISSN: 0040-4039 cited in the application * |
H.SALO ET AL.: "Disulfide-Tethered Solid Supports for Synthesis of Photoluminescent Oligonucleotide Conjugates : Hydrolytic Stability and Labelling on the Support." BIOCONJUGATE CHEMISTRY., vol. 9, no. 3, May 1998 (1998-05) - June 1998 (1998-06), pages 365-371, XP002112924 AMERICAN CHEMICAL SOCIETY, WASHINGTON., US ISSN: 1043-1802 * |
MILLOT M C ET AL: "HPLC DETERMINATION OF BIOLOGICAL THIOLS USING POLYMER-COATED SOLID -PHASE REAGENTS CARRYING DISULFIDE FUNCTIONS" REACTIVE POLYMERS, vol. 13, no. 1 + 02, 1 September 1990 (1990-09-01), pages 177-190, XP000160693 ISSN: 0923-1137 * |
P.KUMAR ET AL.: "A Versatile Solid Phase Method for the Synthesis of Oligonucleotide-3'-Phosphates." TETRAHEDRON LETTERS., vol. 32, no. 6, 4 February 1991 (1991-02-04), pages 967-970, XP002112931 ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM., NL ISSN: 0040-4039 * |
S.ALEFELDER ET AL.: "Incorporation of Terminal Phosphorothioates into Oligonucleotides." NUCLEIC ACIDS RESEARCH., vol. 26, no. 21, 1 November 1998 (1998-11-01), pages 4983-4988, XP002112925 OXFORD UNIVERSITY PRESS, SURREY., GB ISSN: 0305-1048 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003029494A1 (en) * | 2001-10-03 | 2003-04-10 | Micrologix Biotech Inc. | Attachment of thiophosphate tethered oligonucleotides to a solid surface |
WO2003048385A2 (en) * | 2001-12-06 | 2003-06-12 | Adnagen Ag | Oligonucleotide array, nucleotide detection method and device therefor |
WO2003048385A3 (en) * | 2001-12-06 | 2004-04-08 | Adnagen Ag | Oligonucleotide array, nucleotide detection method and device therefor |
US7553943B2 (en) | 2003-11-07 | 2009-06-30 | Illumina Cambridge Limited | Polynucleotide arrays |
WO2009023676A1 (en) * | 2007-08-12 | 2009-02-19 | Integrated Dna Technologies, Inc. | Microarray system with improved sequence specificity |
US8067164B2 (en) | 2007-08-12 | 2011-11-29 | Integrated Dna Technologies, Inc. | Microarray system with improved sequence specificity |
US8945928B2 (en) | 2007-08-12 | 2015-02-03 | Kerry B Gunning | Microarray system with improved sequence specificity |
Also Published As
Publication number | Publication date |
---|---|
WO2000053616A3 (en) | 2002-09-12 |
AU2930800A (en) | 2000-09-28 |
EP1259524A2 (en) | 2002-11-27 |
CA2365226A1 (en) | 2000-09-14 |
JP2003520766A (en) | 2003-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5919626A (en) | Attachment of unmodified nucleic acids to silanized solid phase surfaces | |
US7033760B2 (en) | Metallic solid supports modified with nucleic acids | |
US7553943B2 (en) | Polynucleotide arrays | |
CA2252911A1 (en) | Covalent attachment of nucleic acid molecules onto solid-phases via disulfide bonds | |
JP7518812B2 (en) | Polynucleotide synthesis method, kit, and system | |
US6893822B2 (en) | Enzymatic modification of a nucleic acid-synthetic binding unit conjugate | |
JPH08507199A (en) | Position sequencing by hybridization | |
US9266726B2 (en) | Method for making biochips | |
US7049073B2 (en) | Double stranded nucleic acid biochips | |
WO2005021725A2 (en) | Nucleic acid analysis method conducted in small reaction volumes | |
WO2000053616A2 (en) | Nucleotides and polynucleotides immobilised on a solid support via a disulphide linkage | |
EP1210356B1 (en) | Method for anchoring oligonucleotides to a substrate | |
US8034911B2 (en) | Nucleic acid anchoring system comprising covalent linkage of an oligonucleotide to a solid support | |
AU2003229125B2 (en) | A nucleic acid anchoring system comprising covalent linkage of an oligonucleotide to a solid support | |
Chernov et al. | Double stranded nucleic acid biochips | |
EP1660515A2 (en) | Nucleic acid analysis method conducted in small reaction volumes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2000907844 Country of ref document: EP |
|
ENP | Entry into the national phase in: |
Ref country code: CA Ref document number: 2365226 Kind code of ref document: A Format of ref document f/p: F Ref document number: 2365226 Country of ref document: CA |
|
ENP | Entry into the national phase in: |
Ref country code: JP Ref document number: 2000 604051 Kind code of ref document: A Format of ref document f/p: F |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09914341 Country of ref document: US |
|
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
WWP | Wipo information: published in national office |
Ref document number: 2000907844 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2000907844 Country of ref document: EP |