[go: up one dir, main page]

WO2000038014A1 - Photo mask production method and device thereof - Google Patents

Photo mask production method and device thereof Download PDF

Info

Publication number
WO2000038014A1
WO2000038014A1 PCT/JP1999/006962 JP9906962W WO0038014A1 WO 2000038014 A1 WO2000038014 A1 WO 2000038014A1 JP 9906962 W JP9906962 W JP 9906962W WO 0038014 A1 WO0038014 A1 WO 0038014A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
illumination
photomask
manufacturing
mask
Prior art date
Application number
PCT/JP1999/006962
Other languages
French (fr)
Japanese (ja)
Inventor
Naomasa Shiraishi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU16842/00A priority Critical patent/AU1684200A/en
Publication of WO2000038014A1 publication Critical patent/WO2000038014A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70433Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
    • G03F7/70441Optical proximity correction [OPC]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70475Stitching, i.e. connecting image fields to produce a device field, the field occupied by a device such as a memory chip, processor chip, CCD, flat panel display

Definitions

  • the present invention relates to a method for manufacturing a photomask used when manufacturing a microdevice such as a semiconductor integrated circuit, an image sensor (CCD or the like), a liquid crystal display, or a thin-film magnetic head using a lithography technique. And equipment. Background art
  • an image of the mask pattern is formed using a photomask on which a mask pattern (original pattern) in which a circuit pattern to be formed is enlarged, for example, about 4 to 5 times is formed.
  • a transfer method is used in which the light is projected onto a substrate to be exposed such as a wafer via a reduction projection optical system.
  • An exposure apparatus is used for transferring a photomask pattern, and a photomask used in a step-and-repeat type reduction projection exposure apparatus is also called a reticle. .
  • such a reticle is formed by forming a light-shielding film on a predetermined substrate (blanks) and applying a resist, and then drawing and developing a predetermined pattern using an electron beam lithography apparatus or a laser beam lithography apparatus.
  • the resist is patterned, and the light-shielding film is etched using the remaining resist pattern as a mask.
  • the illumination optical system of the reduced projection exposure apparatus includes a coherence factor ( ⁇ ) in order to increase the resolution of the reduced projection optical system.
  • coherence factor
  • large lighting Conditions may be set, or modified illumination such as annular illumination may be used.
  • the line width accuracy or the like higher than the accuracy of the original reticle pattern cannot be obtained. It is required to be formed on a substrate with uniform width and high positional accuracy.
  • the resolution R at the time of reduced projection is generally defined by the following equation, where the exposure wavelength is taken and the numerical aperture of the projection optical system is NA.
  • k is a process coefficient.
  • the resolution R becomes smaller as described above, the density of the pattern transferred onto the wafer increases, and the density of the reticle pattern also increases.
  • the fidelity of the pattern transferred on the wafer to the reticle pattern is reduced mainly due to the optical proximity effect, and the pattern transferred on the wafer and the reticle pattern are reduced in design by a predetermined factor.
  • the line width of the pattern on the reticle is changed depending on the presence or absence of another pattern near the pattern, so-called ⁇ PC (Opti cal Proximity Correc). tion) processing is also used.
  • ⁇ PC Opti cal Proximity Correc
  • tion Opti cal Proximity Correc
  • the time required for the process is enormous.
  • the data processing cost is high.
  • the data amount of the reticle pattern after the PC processing is several times larger than the design data before the PC processing. For example, when the reticle pattern is drawn on a predetermined substrate by an electron beam drawing apparatus. Since the time is increased several times, there is an inconvenience that the production cost of reticle is greatly increased.
  • the present invention provides a photomask manufacturing method capable of manufacturing a photomask corrected for the light proximity effect generated when transferring a mask pattern in a short time and at low cost. Is the primary purpose.
  • the present invention provides a photomask manufacturing apparatus capable of performing such a photomask manufacturing method, and a photomask manufactured using such a photomask manufacturing method. Aim. Further, the present invention provides a method for manufacturing a device using such a method for manufacturing a photomask, and a highly functional device manufactured using such a method for manufacturing a device. The third purpose is to provide devices. Disclosure of the invention
  • a first method for manufacturing a photomask according to the present invention is a method for manufacturing a photomask (WR) on which a pattern to be transferred via a projection optical system (33) is formed under predetermined first conditions. Then, a master mask (MR) is created by drawing a pattern of the enlarged parent pattern on the first substrate (40), and the second mask set according to the first condition is created. Under the conditions, the master pattern of the master mask is transferred onto the second substrate (26) via the reduction projection optical system (6) to produce the photomask.
  • WR photomask
  • MR master mask
  • the optical proximity effect under the first condition can be used to reduce the line width of the part of the photomask pattern where no other pattern exists (isolated part) in the vicinity.
  • the second condition is set so that the optical proximity effect generated under the second condition works in a direction to increase the line width of the isolated portion. Therefore, a pattern in which the line width of the isolated portion is thickened is formed on the second substrate, and the line width change due to the optical proximity effect that occurs when this pattern is transferred under the first condition. Is previously offset or reduced by a change in line width due to the optical proximity effect that occurs under the second condition. That is, the pattern formed on the second substrate has been corrected for the optical proximity effect under the first condition.
  • the correction for the optical proximity effect that occurs under the first condition can be collectively optically performed on the entire parent pattern. Therefore, the time required for the correction process is much longer than when the correction process is performed for each pattern that constitutes the photomask on a design basis, such as when using an electron beam lithography system. Is shortened to Further, according to the present invention, when the parent pattern is drawn on the mask, for example, an electron beam drawing apparatus is used.
  • the parent pattern is an enlarged pattern of the pattern of the photomask
  • a pattern obtained by dividing the parent pattern is drawn on a plurality of master masks.
  • the drawing time for each mask and mask is small because the amount of drawing data for each mask and mask is small and the amount of data for each mask is not increased by the correction process. Become.
  • the pattern of the photomask can be formed with substantially higher accuracy without increasing the writing accuracy as compared with the conventional case. Further, when manufacturing a plurality of photomasks, the pattern of the master-mask may be simply transferred repeatedly. As described above, a photomask corrected for the optical proximity effect generated under the first condition can be manufactured in a short time, with high accuracy, and at low cost.
  • a second photomask manufacturing method includes a photomask (WR) on which a pattern to be transferred via the projection optical system (33) is formed under predetermined first illumination conditions. ), A mask pattern (MR) is produced by drawing a parent pattern obtained by enlarging the pattern on the first substrate (40) and projecting the projected image under the first illumination condition. Under the second illumination condition set to cancel the change of the master, the master pattern of the master mask is transferred to the second substrate (26) via the reduction projection optical system (6). The photomask is transferred to the above to produce the photomask.
  • WR photomask
  • MR mask pattern
  • the second photomask manufacturing method when a change (such as a change in line width) occurs in a projected image due to, for example, an optical proximity effect under the first illumination condition, the second photomask is used.
  • the illumination condition (2) is set so as to have an optical proximity effect having a reverse characteristic, that is, to cause a change in the projected image to offset the change in the projected image due to the optical proximity effect accompanying the light proximity effect.
  • a photomask corrected for the optical proximity effect generated under the first illumination condition can be manufactured in a short time and at low cost.
  • the second illumination condition is illumination having a coherence factor of 0.4 or less and 0.1 or more.
  • the first photomask manufacturing apparatus includes a photomask (WR) on which a pattern to be transferred via the projection optical system (33) is formed under predetermined first illumination conditions.
  • a mask stage (13) that holds a master mask (MR) on which a parent pattern that is an enlargement of the mask is drawn, and a plurality of illumination units that illuminate the mask on the mask stage.
  • An illumination optical system (1 to 5) that illuminates under any of the conditions, and a second illumination condition selected from among the plurality of illumination conditions so as to cancel a change in the projected image due to the first illumination condition.
  • It has a control system (18) set in the illumination optical system, and a reduction projection optical system (6) for transferring an image of a mask pattern on the mask stage onto a predetermined substrate (26). According to such a manufacturing apparatus of the present invention, the method of manufacturing a photomask of the present invention can be performed.
  • a method for manufacturing a device is a method for manufacturing a predetermined device, wherein the pattern (20) of a predetermined layer of the device is multiplied by a. ( ⁇ is a real number greater than 1) to create a first pattern (2 1) enlarged, and a first step of setting a first lighting condition when illuminating the first pattern;
  • An optical image (PW i) obtained by reducing the pattern of the master mask by a factor of 1/3 under the second illumination condition set to offset the change in the projected image due to the first illumination condition (2)
  • a working mask (WR) is fabricated by transferring it onto a substrate.
  • a photomask in which a pattern is corrected for an optical proximity effect when a mask pattern is transferred under a first illumination condition can be manufactured in a short time at low cost.
  • a plurality of photomasks can be manufactured in a short time and at low cost, high-performance devices with excellent line width accuracy can be mass-produced in a short time and at low cost.
  • a third method for manufacturing a photomask according to the present invention is a method for manufacturing a photomask (WR) having a pattern (21) transferred onto a photosensitive substrate by an exposure apparatus used for device manufacture, A mask (R i), which forms at least a part (P i) of the parent pattern (22) obtained by enlarging the pattern, is arranged on the object plane side of the projection optical system (6).
  • the master mask is illuminated under illumination conditions corresponding to the proximity of some of the parent patterns, and a photomask manufacturing substrate (26) arranged on the image plane side via the projection optical system.
  • the photomask is manufactured by transferring a reduced image of at least a part of the parent pattern.
  • the device A photomask corrected for the optical proximity effect generated during manufacturing can be manufactured in a short time and at low cost.
  • a second photomask manufacturing apparatus is a photomask (WR) manufacturing apparatus having a pattern (21) transferred onto a photosensitive substrate by an exposure apparatus used for device manufacturing, An illumination optical system (1 to 5) for illuminating the master mask (R i) on which at least a part (P i) of the parent pad (22) is enlarged, and A projection optical system (6) for projecting a reduced image of the master mask on a photomask manufacturing substrate (26), and the illumination conditions of the master mask corresponding to the proximity of at least some of the parent patterns. Adjustment device set for the illumination optical system (1
  • the method for manufacturing a photomask of the present invention can be performed.
  • the first or second photomask according to the present invention is manufactured using the photomask manufacturing method or manufacturing apparatus according to the present invention, respectively, and is capable of correcting the optical proximity effect in a short time and at low cost.
  • a photomask on which the coating is performed can be obtained.
  • the device according to the present invention is manufactured using the device manufacturing method according to the present invention, and has an advantage that a high-performance device excellent in line width accuracy and the like can be obtained.
  • FIG. 1 is a schematic configuration diagram showing an apparatus for manufacturing a reticle used in an example of a preferred embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a method for correcting a pattern deformation due to an optical proximity effect generated when transferring a mask pattern.
  • FIG. 3 is a diagram illustrating an example of a design process of a parent pattern formed on a master reticle.
  • FIG. 4 is a diagram illustrating an example of a process for manufacturing a working reticle and a semiconductor device.
  • the present invention is applied to the case of manufacturing a reticle for manufacturing a semiconductor device as a photomask.
  • FIG. 1 shows an optical projection exposure apparatus for manufacturing a working reticle of this embodiment.
  • illumination light (exposure light) IL for exposure emitted from an exposure light source 1 is a relay lens 2
  • An aperture stop (hereinafter referred to as “ ⁇ stop”) 4 of the illumination system is illuminated via an optical integrator (a fly-eye lens in FIG. 1) 3.
  • the size of the aperture of the diaphragm 4 is adjustable by the drive system 4a.
  • an illumination optical system controller 18 controls the light emission of the exposure light source 1 and the aperture diameter of the stop 4.
  • an exchange device for replacing the ⁇ stop 4 with a ring-shaped aperture stop having a ring-shaped aperture and a modified illumination aperture stop having a plurality of small apertures is also provided.
  • K r F excimer one laser light (wavelength 248 ⁇ m)
  • a r F excimer one laser light (wavelength 1 93 nm) excimer one laser light such as, F 2 laser beam (wavelength: 1 57 nm), the harmonics of a YAG laser, or the i-line (wavelength 365 nm) of a mercury lamp can be used.
  • the exposure light IL that has passed through the ⁇ stop 4 illuminates the transfer target reticle MR via the condenser lens system 5.
  • the master reticle MR is formed by drawing a parent pattern obtained by enlarging a predetermined mask pattern on the pattern forming surface (lower surface) of a substrate 40 such as a glass substrate.
  • C The exposure light IL transmitted through the master reticle MR is projected.
  • An image obtained by reducing the parent pattern at a reduction magnification (1ZJ3 is, for example, 1Z4, 15) is formed on a substrate 26 such as a glass substrate for a working reticle via the optical system 6.
  • a variable aperture stop 7 is arranged on the optical Fourier transform plane (pupil plane) of the projection optical system 6 with respect to the pattern forming surface of the master reticle MR, and the exit side of the projection optical system 6 is arranged by the aperture stop 7.
  • the numerical aperture NA of the (substrate 26 side) and the numerical aperture N Am of the incident side (master reticle MR side) are defined.
  • the condenser lens system 5 is simplified, it is actually an optical system that forms an image once inside and has a reticle blind (field stop) on the image forming surface.
  • the illumination optical system of this example is composed of an exposure light source 1, a relay lens 2, an optical integrator 3, a squeezing aperture 4, and a condenser lens system 5.
  • the ⁇ stop 4 is arranged on the optical Fourier transform surface with respect to the condenser lens system 5 with respect to the pattern formation surface of the mass reticle MR. For this reason, the maximum value of the incident angle of the exposure light IL to the mass reticle MR, that is, the half angle of the aperture 01 is set to a desired value by adjusting the size of the aperture of the ⁇ stop 4.
  • the resolution R of the projection exposure apparatus of the present embodiment is expressed by the following equation using the wavelength of the exposure light, the process coefficient k, and the numerical aperture NA of the projection optical system 6 on the exit side, similarly to a normal projection exposure apparatus.
  • the numerical aperture NAm on the entrance side of the system 6 is equal to the master reticle MR of the luminous flux that originates from one point on the master reticle MR and reaches the substrate 26. Since it is the sine of the maximum value of the exit angle (half-angle of the aperture) for the exit angle (that is, NAm2 sin ⁇ 2),
  • 1Z3 is the reduction magnification of the projection optical system 6.
  • the size of the aperture of the aperture stop 7 should be adjustable.
  • the numerical aperture NA and, consequently, the numerical aperture NAm can be adjusted to a desired value.
  • the Z axis is taken parallel to the optical axis AX of the projection optical system 6, the X axis is taken parallel to the plane of Fig. 1 in a plane perpendicular to the Z axis, and the Y axis is taken perpendicular to the plane of Fig. 1. I do.
  • the master reticle MR is held on the reticle stage 13, and the reticle stage 13 positions the master reticle MR on the reticle base 14 within a predetermined range in the X, Y, and rotation directions. I do.
  • the position of reticle stage 13 (master reticle MR) is measured with high precision by a laser interferometer built in reticle stage drive system 15, and its position information and control from main control system 16 Based on the information, reticle stage drive system 15 controls the position of reticle stage 13.
  • Reticle alignment microscopes (hereinafter referred to as “RA microscopes”) 19 A and 19 B are arranged above the master reticle MR, and the RA microscope 11 is used to align the master reticle MR.
  • the positions of the marks 27 A and 27 B (see FIG. 4) are measured, and the measurement results are supplied to the main control system 16.
  • the main control system 16 holds the substrate based on the measurement result, while the substrate 26 for the working reticle is sucked and held on a substrate holder (not shown), and the substrate holder is fixed on the Z tilt stage 8.
  • the Z tilt stage 8 is mounted on the XY stage 9 so that it can move two-dimensionally. ing.
  • the XY stage 9 positions the tilt stage 8 in the X direction, the right direction, and the rotation direction by, for example, a linear motor. Then, the X coordinate, the ⁇ ⁇ coordinate, and the rotation angle of the tilt stage 8 are measured by the movable mirror 10 fixed to the upper end of the tilt stage 8 and the laser interferometer 11, and the measured values are transferred to the main control system 1.
  • the substrate stage driving system 12 is supplied to the substrate stage driving system 12 and controls the operation of the stage 9 based on the measured values and the control information from the main control system 16.
  • the tilt stage 8 incorporates a drive mechanism for controlling the focus position (position in the optical axis AX direction) of the substrate 26 and the tilt angle.
  • the focus position is measured at a plurality of measurement points on the surface of the substrate 26 by an auto focus sensor (not shown), and based on the measurement results, the Z tilt stage 8 performs an auto focus method and an auto focus.
  • the surface of the substrate 26 is adjusted to the image plane of the projection optical system 6 by a belling method.
  • the substrate stage is composed of the Z tilt stage 8 and the XY stage 9.
  • the master reticle MR and other masks are placed on one substrate 26.
  • the reticle loader (not shown) provided near the reticle stage 13 can replace the master reticle. Done.
  • the master reticle for example, the pattern surface or the end surface
  • the master reticle conveyed onto the reticle stage 13 has the type of the parent pattern and the conditions such as the illumination condition and the imaging condition after being transferred onto the reticle. It is recorded as a bar code BC, and the main control system 16 recognizes the condition by reading the bar code BC attached to each master reticle via the bar code reader 17.
  • Information such as lighting conditions corresponding to the conditions read from the bar code BC is stored in a storage unit in the main control system 16 as, for example, a table (details will be described later). Based on this, the lighting conditions ( ⁇ value, etc.) for the mass reticle MR are set.
  • a light-shielding film such as a chrome (Cr) film is formed on the substrate 26 in advance, and the A photoresist is applied beforehand.
  • the XY stage 9 is driven so that a predetermined shot area of the substrate 26 on the Z tilt stage 8 is formed. Move to the exposure area of the projection optical system 6.
  • the reticle blind (not shown) in the condenser lens system 5 is adjusted so that only the desired pattern on the master reticle MR is illuminated, and the mask reticle MR is exposed by the exposure light IL from the illumination optical system.
  • a reduced image of the illuminated pattern is projected and exposed on a substrate 26 via a projection optical system 6.
  • the above-described reticle blind is illuminated with patterns in the different areas.
  • the Z-tilt stage 8 is moved stepwise to move the next shot area on the substrate 26 to the exposure area of the projection optical system 6, and irradiates the exposure light IL while performing screen splicing. .
  • the Z tilt stage 8 (substrate 26) After performing the step movement, exposure is performed while screen joining is performed. In this manner, the operation of exposing the master reticle pattern image to a plurality of shot areas on the substrate 26 is repeated in a step-and-repeat method (step-and-stick method). The entire reduced image of the predetermined parent pattern is transferred onto the top. Then, develop the photoresist and etch the light-shielding film.
  • the substrate 26 becomes a working reticle WR, that is, a reticle used when actually exposing the pattern of the device, through the steps of etching, resist stripping, and the like.
  • the peak reticle WR manufactured by the optical projection exposure apparatus of this embodiment is loaded into a projection exposure apparatus for manufacturing a semiconductor device having substantially the same configuration as the projection exposure apparatus of FIG.
  • the projection exposure apparatus includes an illumination optical system 31 and a projection optical system 33 with a reduction ratio ⁇ ⁇ ⁇ (10; 174, 1/5, etc.).
  • the working reticle WR is illuminated by illumination light (exposure light) 3 2 for exposure from the illumination optical system 31 under predetermined illumination conditions, and a reduced image 24 of the pattern of the working reticle WR is transmitted through the projection optical system 33. Is transferred to the shot area S # on the wafer W.
  • the stage system and the like of the projection exposure apparatus for manufacturing a semiconductor device have almost the same configuration as that of the projection exposure apparatus for manufacturing a working reticle in FIG. 1, and a description thereof will be omitted.
  • the mask reticle MR in FIG. 1 is replaced with a ⁇ -king reticle WR
  • the substrate 26 is replaced with a wafer.
  • the working reticle WR is illuminated by the illumination optical system 31, and when a reduced image of this pattern is transferred onto the wafer W via the projection optical system 33, the light proximity effect is used.
  • a certain degree of deformation of the projected image and, consequently, of the formed pattern occurs.
  • the amount of deformation may exceed a predetermined allowable range. Therefore, in this example, as described with reference to FIG. 2, the effect of the optical proximity effect is corrected.
  • FIG. 2 (A) shows a mask reticle MR of this example.
  • the mask reticle MR is a parent pattern composed of patterns P 1 A to P 5 A on a substrate 40. 4 1 is formed.
  • Parent pattern 4 1 It is a similar enlargement of the circuit pattern of a certain layer of the finally manufactured semiconductor device.
  • the size of the parent pattern 41 is determined by reducing the magnification of the projection exposure apparatus for manufacturing semiconductor devices (projection optical system 33 in FIG. 4) to 1 ⁇ 0; and the projection exposure apparatus for manufacturing the working reticle (see FIG. 1).
  • the circuit pattern of the finally manufactured semiconductor device is enlarged by ⁇ 3 times.
  • Each pattern constituting the parent computer 41 is represented by a thick line width for convenience, but is actually a fine pattern of the order of m in width.
  • FIG. 2 (A), FIGS. 2 (B 1) and (B 2), and FIGS. 2 (C 1) and (C 2) actually have different magnifications. Are shown in the same size.
  • the circuit pattern of the finally manufactured semiconductor device is changed to ⁇ by using ⁇ times the reciprocal of the reduction magnification ⁇ of the projection optical system 33 in FIG.
  • the working reticle WR ' was manufactured by drawing the mask pattern 41 12 that was doubled on the substrate.
  • the patterns ⁇ 1 ⁇ to ⁇ 5 ⁇ constituting the mask pattern 4 1 ⁇ 2 are obtained by precisely multiplying the patterns ⁇ 1 ⁇ to ⁇ 5 ⁇ of the parent pattern 41 in FIG. It is also a reduced pattern.
  • the mask pattern 41-2 of this single reticle WR ' is transferred, the pattern formed on the wafer may be deformed due to the optical proximity effect.
  • the illumination conditions are set to conditions with a large coherence factor ( ⁇ value) (1 ⁇ HI ⁇ 0.7) in order to increase the resolution, or deformation such as annular illumination is required. Due to the use of illumination, the image of the part of the transferred reticle where no other pattern exists on the working reticle (isolated part) is thinned by the optical proximity effect. Will be transcribed.
  • FIG. 2 (C2) shows the mask of one king reticle WR 'in Fig. 2 ( ⁇ 2).
  • FIG. 2 (C 2) shows the pattern 41 C 2 formed on the wafer when the pattern 41 B 2 is exposed under an illumination condition having a large ⁇ value (1 ⁇ 0.7).
  • the isolated portions of the patterns ⁇ 1 C ′, ⁇ 2 C ′, and ⁇ 3 C in the pattern 41 C 2 are thinly transferred by the optical proximity effect.
  • the periodic portion of the pattern P 1 C, and the periodic patterns P 4 C, P 5 C ′ are transferred with their original line widths.
  • ⁇ PC Optical Proximity Correction
  • the illumination conditions of the projection exposure apparatus for manufacturing the working reticle are changed according to the illumination conditions of the projection exposure apparatus for manufacturing the semiconductor device.
  • the deformation of the pattern due to the optical proximity effect when transferring the masking pattern of the peaking reticle is corrected.
  • the illumination condition is set to a condition (1 ⁇ 0.7) with a large coherence factor ( ⁇ value) in order to increase the resolution.
  • the illumination condition of the projection exposure apparatus shown in Fig. 1 is set to a condition with a small value (0.1 ⁇ ⁇ 0.4).
  • the ⁇ value is smaller than 0.1, the amount of exposure light decreases, and the influence of the aberration of the projection optical system increases. If the ⁇ value is larger than 0.4, the influence of the optical proximity effect is reduced, and a sufficient correction amount cannot be obtained.
  • the master pattern 41 of the master reticle MR shown in FIG. 2 ( ⁇ ) is reduced and projected onto the substrate 26, and development and etching are performed. As a result, as shown in FIG. 2 (B 1), a mask pad 41 B 1 is formed on the working reticle WR. In the working reticle WR of Fig.
  • the line width of the isolated part of the pattern ⁇ 1 ⁇ , ⁇ 2 ⁇ , ⁇ 3 ⁇ that constitutes 1 ⁇ 1 is formed thicker than the design value (width exactly multiplied by the parent pattern 4 1),
  • the line width of the periodic portion of the pattern ⁇ 1 ⁇ and the line width of the periodic pattern ⁇ 4 ⁇ : ⁇ 5 ⁇ are as designed.
  • a reduced image of the mask pattern 411-1 of the working reticle WR is transferred onto a wafer by using a projection exposure apparatus for manufacturing a semiconductor device.
  • the optical proximity effect that occurs at this time acts to make the isolated portion thinner so as to offset the optical proximity effect that occurs in the projection exposure apparatus for manufacturing a working reticle, and as shown in Fig. 2 (C1).
  • the pattern ⁇ 1C to P5C constituting the pattern 41C1 formed on the wafer has dimensions as designed.
  • the illumination condition of the projection exposure apparatus is set to a condition (0.1 ⁇ 0.4) with a small coherence factor ( ⁇ value) so that the optical proximity effect works in the direction to make isolated parts thicker. .
  • the coherence factor ( ⁇ value) of the projection exposure apparatus is reduced to about 0.4 or less.
  • the optical proximity effect that occurs in the projection exposure apparatus for manufacturing semiconductor devices acts in the direction of increasing the thickness of the isolated portion, so that In a projection exposure apparatus for reticle manufacturing, the coherence factor ( ⁇ value) should be set to about 0.7 or more and 1 or less so that the optical proximity effect works in the direction to make isolated parts thinner, or to illumination optics.
  • the system shall be set to annular illumination.
  • the area that can be transferred from one master reticle MR has an area of about 20 mm square even when the latest optical projection exposure apparatus is used. If it were to be reduced by a factor of four, the area would be only about 5 mm square on the wafer. Therefore, when actually manufacturing a marking reticle WR, it is necessary to manufacture a plurality of master reticles and transfer their parent patterns to the working reticle substrate 26 sequentially while performing screen splicing. Become.
  • FIG. 3 An example of a semiconductor device manufacturing process to which the working reticle manufacturing method of the above embodiment is applied will be described with reference to FIGS. 3 and 4.
  • FIG. 3 An example of a semiconductor device manufacturing process to which the working reticle manufacturing method of the above embodiment is applied will be described with reference to FIGS. 3 and 4.
  • FIG. 3 An example of a semiconductor device manufacturing process to which the working reticle manufacturing method of the above embodiment is applied will be described with reference to FIGS. 3 and 4.
  • FIG. 3 shows a design process of a parent pattern formed on the master reticle of this example.
  • a circuit pattern 20 of a certain layer of a finally manufactured semiconductor device is designed.
  • the circuit pattern 20 is formed by forming various line-and-space patterns or the like in a rectangular area having orthogonal sides having widths of dX and dY.
  • the circuit patterns 20 and the like shown in FIGS. 3 and 4 are virtual patterns having a wider line width than an actual circuit pattern.
  • the circuit pattern 20 is magnified by ⁇ times (h> 1), and the mask pattern 21 consisting of a rectangular area of d X, a * d Y with the width of the orthogonal side is Create on the design data (including images).
  • FIG. 4 shows a manufacturing process of the working reticle and the semiconductor device according to the present embodiment.
  • the electron beam lithography apparatus or laser beam lithography
  • alignment marks 27 A and 27 B composed of two two-dimensional marks are formed on each master reticle R i in a predetermined positional relationship with respect to the partial parent pattern P i.
  • the alignment marks 27 A and 27 B are used for alignment when performing screen joint exposure.
  • Manufacture reticle WR Also, on the substrate 26, two two-dimensional alignment marks 28 A, in a predetermined positional relationship with respect to the mask pattern 23, 2 8 B is formed in advance. The alignment marks 28 A and 28 B may be transferred as part of the mask panel 23.
  • the working reticle WR is loaded into a projection exposure apparatus for semiconductor device manufacturing, and the working reticle WR is illuminated with the exposure light 32 from the illumination optical system 31 to form a mask pattern on the first reticle WR.
  • the image 24 of 23 is sequentially transferred to each shot area SA on the wafer W coated with the photoresist through the projection optical system 33 at a reduction ratio of 1 / a, development jetting and the like are performed.
  • a circuit pattern of a certain layer is formed.
  • a desired device is manufactured by repeating the exposure step and the pattern formation step, and then going through a dicing step and a bonding step.
  • the illumination condition having a large coherence factor is set in the illumination optical system 31 in order to obtain high resolution.
  • the illumination conditions of the projection exposure apparatus for transferring a reduced image of the partial parent pattern P i of the mask reticle R i onto the substrate 26 are as follows. Is set to a condition with a small risk factor. As a result, the image 24 projected on the wafer W and the dimensions of the circuit pattern formed thereon are the same as those of the originally designed circuit pattern 20 (see FIG. 3). Become.
  • each partial parent pattern P i is projected after being reduced to 1 Z / 3
  • the drawing error of each partial parent pattern P i by the electron beam drawing apparatus is substantially reduced to 1 Z i3.
  • the drawing data of each partial parent pattern P i is 1 / N of the drawing data of the circuit pattern 20 in FIG. 3, the drawing time of each partial parent pattern P i can be reduced. Since the drift inside is also small, the N reticle R1 ⁇ : RN can be manufactured in a short time and with high accuracy as a whole.
  • the pattern of the N pieces of reticle R 1 to RN is repeated. Since it is only necessary to repeat the transfer, it is possible to manufacture a plurality of working reticles WR at extremely low cost and in a short time, and mass-produce semiconductor devices at low cost.
  • a desired partial parent pattern may be selected from a plurality of partial parent patterns formed on one master reticle and transferred onto a single reticle substrate.
  • the area may be divided equally, but a unit having a specific function may be used. It is desirable to divide the data for each circuit pattern, for example, for each IP (Intellectual Property) part of the system LSI. That is, it is desirable to form a different master reticle for each unit circuit pattern such as the CPU core unit, the RAM unit, the ROM unit, the AZD conversion unit, and the DZA conversion unit. In this case, when manufacturing working reticles for different types of system LSIs, the same mask and reticle can be used for the common IP section, thus reducing the number of master reticle manufactured. can do. Therefore, the production cost of the working reticle and, consequently, the production cost of the system LSI can be reduced.
  • IP Intelligent Property
  • a pattern connection In this example, a batch exposure type projection exposure apparatus was used for manufacturing the working reticle, but a scanning exposure type reduction projection exposure apparatus such as a step-and-scan method may be used instead. Good.
  • a scanning exposure type reduction projection exposure apparatus a master reticle and a reticle substrate are synchronously scanned with a projection optical system at a reduction ratio in exposure. By using an optical scanning type reduction projection exposure apparatus, the distortion of the projection optical system can be reduced.
  • the position of the parent pattern on the master reticle MR is adjusted so that the amount of displacement of the mask pattern due to the distortion of the projection optical system 6 is corrected. It is preferable to shift by a predetermined amount. As described above, by correcting the positional deviation of the mask pattern at the stage of forming the master pattern on the master reticle MR, that is, at the stage of forming a large pattern, highly accurate positional correction can be achieved. It can be carried out.
  • the working reticle substrate 26 is supported at three points on the Z tilt stage 8 without being sucked.
  • the radius of the board 26 due to its own weight is actually measured or calculated (simulation), and the displacement between the parent pattern and the board 26 due to the radius is corrected. It is desirable to shift the formation position of the parent pattern on the master reticle MR by a predetermined amount based on the radius amount.
  • the projection magnification or the distortion of the projection optical system 6 may be adjusted based on the amount of deflection so as to offset the deformation of the substrate 26 due to the radius.
  • the master reticle MR and the substrate 2 The alignment position with 6 may be shifted by a predetermined amount.
  • the optical type is used as the projection exposure apparatus for manufacturing a device.
  • a projection exposure apparatus using EUV light in the soft X-ray region may be used.
  • the photomask that can be manufactured by the present invention is not limited to a transmission type or an ultraviolet type, but a photomask (a membrane mask, a stencil mask, etc.) for a charged particle beam or an X-ray, or a reflection type for an EUV. It may be a photomask.
  • the working reticle may be a phase shift reticle, and devices manufactured by using the projection exposure apparatus shown in FIG. 4 are not limited to semiconductor devices, but include liquid crystal display elements, image pickup elements (CCD), and thin films. Any device such as a magnetic head and a display may be used.
  • an optical integrator to be placed in the illumination optical system is used instead of a fly-eye lens.
  • a rod integrator may be used, or a fly-eye lens and a mouth integrator may be used in combination.
  • the incident surface is almost coincident with the Fourier transform surface in the illumination optical system, and the exit surface is arranged almost conjugate with the reticle pattern surface in the illumination optical system. Is done.
  • the reticle blind (field stop) is arranged close to the exit surface of the rod integrator, and the aperture stop plate 4 is arranged close to the entrance surface of the rod integre, or It is arranged on the Fourier transform plane (pupil plane) set between the reticle and the reticle.
  • the projection optical system in FIGS. 1 and 4 is not limited to a dioptric system including only a plurality of dioptric elements, but a catadioptric system having a dioptric element and a reflective optical element (such as a concave mirror), May be a reflection system composed of only the reflection optical element of the above.
  • the catadioptric projection optical system includes an optical system having at least a beam splitter and a concave mirror as a reflection optical element, and an optical system having a concave mirror and a mirror without using a beam splitter as a reflection optical element.
  • a modified illumination or a change of the ⁇ value, etc. are performed using the aperture stop replacement device of the illumination optical system or the drive system 4a of the ⁇ stop 4.
  • at least one movable optical element is arranged between the exposure light source 1 and the optical integrator 3, and the intensity distribution of the illumination light on the incident surface of the optical integrator 3 (that is, its size). May be changed.
  • At least one light A pair of conical prisms (axicons) is further placed on the side of the exposure light source 1 than the optical element, and the distance between the pair of axicons in the optical axis direction is adjusted, so that the illumination light on the entrance surface of the optical integrator 3 May be configured to be changeable into an annular shape whose intensity distribution is higher outside the center than outside the center.
  • the fly-eye lens it is set on the exit-side focal plane located on the Fourier transform plane in the illumination optical system, and in the case of the rod gin, it is set on the entrance plane or between the exit plane and the reticle. It is possible to change the intensity distribution of the illumination light on the Fourier transform plane of the illumination optical system.
  • the modified illumination method in which the intensity distribution of the illumination light on the Fourier transform plane in the illumination optical system is increased in four local regions decentered from the optical axis of the illumination optical system from the center thereof is adopted. For example, by adjusting the distance between a pair of axicons, the intensity distribution of the illumination light on the Fourier exchange surface is made into an annular shape, and a light shielding plate (or a dimming plate) for defining four local regions is provided on the Fourier transform surface. Just place them.
  • a diffractive optical element that receives illumination light from a light source and generates, for example, diffracted light distributed in the above-described four local regions may be used.
  • the diffractive optical element can be exchanged with another diffractive optical element that distributes diffracted light in a rectangular or circular predetermined area centered on the optical axis of the illumination optical system. It is desirable to configure.
  • infrared region oscillated from the DFB semiconductor laser one The or fiber laser, or a single-wavelength, single-The visible region, for example, erbium (E r) (or erbium And ytterpium (both Y b)) may be amplified by a fiber amplifier doped with the same and a harmonic converted to a wavelength of ultraviolet light using a nonlinear optical crystal may be used.
  • erbium E r
  • erbium And ytterpium both Y b
  • the oscillation wavelength of a single-wavelength laser is in the range of 1.51 to 1.5
  • a 10th harmonic within the range of ⁇ 159 nm is output.
  • the oscillation wavelength is in the range of 1.544 to 1.553 xm
  • the 8th harmonic in the range of 193 to 194 nm, that is, ultraviolet light having almost the same wavelength as the ArF excimer laser can be obtained.
  • the oscillation wavelength 1. a 57 ⁇ 1. 58 / xm in the range of 10 harmonic in the range of 1. 57 to 1 58 nm, i.e. F 2 single tHE with ultraviolet light having almost the same wavelength is obtained Can be
  • the oscillation wavelength is in the range of 1.03 to 1.12 m
  • a 7th harmonic whose output wavelength is in the range of 147 to 160 nm is output, and especially the oscillation wavelength is 1.099
  • the wavelength is within the range of 1.106 m
  • the seventh harmonic within the wavelength range of 157 to 158 zm, that is, ultraviolet light having substantially the same wavelength as the F 2 laser can be obtained.
  • the single-wavelength oscillation laser a laser-doped fiber laser is used as the single-wavelength oscillation laser.
  • the illumination light for exposure is not limited to far ultraviolet light (DUV light) or vacuum ultraviolet light (VUV light), etc., but has a wavelength of 5 to 15 nm, for example, 13.4 nm or 11. Extreme ultraviolet light (EUV light XUV light) in the soft X-ray region of 5 nm may be used.
  • An exposure apparatus using far ultraviolet light, vacuum ultraviolet light, or the like generally uses a transmission type reticle, and the reticle substrate is quartz glass, fluorine-doped quartz glass, fluorite, magnesium fluoride, or the like. Alternatively, quartz or the like is used.
  • a reflective mask is used in an EUV exposure apparatus, and a transmission type mask (stencil mask, membrane mask) is used in a proximity type X-ray exposure apparatus or an electron beam exposure apparatus, and a silicon substrate is used as a mask substrate. A wafer or the like is used.
  • an illumination optical system composed of a plurality of optical elements and a projection optical system are incorporated into the main body of the projection exposure apparatus to perform optical adjustment, and a large number of mechanical parts.
  • the reticle stage and wafer stage made of the product are attached to the main body of the projection exposure apparatus, wiring and piping are connected, and the overall adjustment (electrical adjustment, operation confirmation, etc.) is performed to manufacture the projection exposure apparatus of the above embodiment. can do. It is desirable that the exposure apparatus be manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
  • the first method for manufacturing a photomask of the present invention it is possible to manufacture a photomask corrected for deformation of a projected image caused by, for example, the optical proximity effect that occurs under the first condition.
  • the time required for the correction processing is greatly reduced compared to the case where correction is performed for each pattern constituting the mask pattern on the design data, and the amount of pattern data does not increase due to the correction processing.
  • the parent pattern on the mask is drawn using, for example, an electron beam drawing device, the drawing time is greatly reduced. Therefore, a photomask in which the correction for the optical proximity effect generated under the first condition is substantially performed can be manufactured at low cost and in a short time.
  • a photomask corrected for the optical proximity effect generated under the first illumination condition is manufactured at low cost and in a short time. be able to.
  • the method for manufacturing a photomask of the invention can be implemented. Further, according to the device manufacturing method of the present invention, a photomask corrected for the optical proximity effect can be manufactured in a short time and at low cost, and as a result, high-performance devices can be mass-produced at low cost. be able to.
  • a photomask corrected for the optical proximity effect generated when manufacturing a device can be manufactured in a short time and at low cost.
  • the first or second photomask of the present invention there is an advantage that a photomask corrected for the optical proximity effect in a short time and at low cost can be obtained. Further, according to the device of the present invention, there is an advantage that a highly functional device excellent in line width accuracy and the like can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

A photo mask production method capable of producing in short time and at low costs a photo mask on which a correction is made for a pattern deformation produced by an optical proximity effect when transferring a mask pattern. Partial master patterns (Pi (i= 1 to N)) formed by dividing into N segments a master pattern obtained by magnifying at a specified magnification a circuit pattern to be formed on a wafer (W) are respectively drawn on a substrate to prepare master reticles (Ri (i= 1 to N)), and reduction images (PWi) 1/β times as large as the partial master patterns (Pi) of the master reticles (Ri) are transferred onto a substrate (26) while image fields are joined one by one to produce a working reticle (WR). An illuminating condition required in transferring partial master pattern images of the master reticles (Ri) onto the substrate (26) is set so as to offset changes in projection images to be produced by an optical proximity effect when the mask pattern of the working reticle (WR) is transferred onto the wafer (W).

Description

明 細 書 フォトマスクの製造方法及び装置 技術分野  Description Photomask manufacturing method and apparatus
本発明は、 例えば半導体集積回路、 撮像素子 (C C D等) 、 液晶ディ スプレイ、 又は薄膜磁気へッド等のマイクロデバイスをリソグラフィ技 術を用いて製造する際に使用されるフォトマスクの製造方法、 及び装置 に関する。 背景技術  The present invention relates to a method for manufacturing a photomask used when manufacturing a microdevice such as a semiconductor integrated circuit, an image sensor (CCD or the like), a liquid crystal display, or a thin-film magnetic head using a lithography technique. And equipment. Background art
半導体集積回路等のデバイスを製造する際に、 形成すべき回路パター ンを例えば 4〜 5倍程度に拡大したマスクパターン (原版パターン) が 形成されたフォ トマスクを使用して、 そのマスクパターンの像を縮小投 影光学系を介してウェハ等の被露光基板上に投影する転写方式が用いら れている。 このような、 フォトマスクのパターンの転写の際に使用され るのが露光装置であり、 ステップ · アンド · リピート方式等の縮小投影 露光装置で使用されるフォ卜マスクは、 レチクルとも呼ばれている。 従来、 そのようなレチクルは、 所定の基板 (ブランクス) 上に遮光膜 を形成してレジストを塗布した後、 電子線描画装置、 又はレーザビーム 描画装置を用いてそれぞれ所定のパターンを描画して現像を行うことで レジス卜のパターンニングを行い、 残されたレジストパターンをマスク としてその遮光膜をエッチングすることによって製造されていた。 最近 では、 レチクルのマスクパターン (レチクルパターン) をウェハ上へ転 写する際には、 縮小投影光学系による解像度を高めるため、 縮小投影露 光装置の照明光学系には、 コヒ一レンスファクタ (σ値) の大きい照明 条件が設定されたり、 又は輪帯照明等の変形照明が使用されたりする場 合がある。 When manufacturing a device such as a semiconductor integrated circuit, an image of the mask pattern is formed using a photomask on which a mask pattern (original pattern) in which a circuit pattern to be formed is enlarged, for example, about 4 to 5 times is formed. A transfer method is used in which the light is projected onto a substrate to be exposed such as a wafer via a reduction projection optical system. An exposure apparatus is used for transferring a photomask pattern, and a photomask used in a step-and-repeat type reduction projection exposure apparatus is also called a reticle. . Conventionally, such a reticle is formed by forming a light-shielding film on a predetermined substrate (blanks) and applying a resist, and then drawing and developing a predetermined pattern using an electron beam lithography apparatus or a laser beam lithography apparatus. In this case, the resist is patterned, and the light-shielding film is etched using the remaining resist pattern as a mask. Recently, when transferring a reticle mask pattern (reticle pattern) onto a wafer, the illumination optical system of the reduced projection exposure apparatus includes a coherence factor (σ) in order to increase the resolution of the reduced projection optical system. Value) large lighting Conditions may be set, or modified illumination such as annular illumination may be used.
更に、 縮小投影時の解像度を高めても、 もとのレチクルパターンの精 度以上の線幅精度等が得られないため、 レチクルを製造する段階におい て、 微細な原版パターンを高解像度及び高い線幅均一性で、 かつ高い位 置精度で基板上に形成することが求められている。  Furthermore, even if the resolution at the time of the reduced projection is increased, the line width accuracy or the like higher than the accuracy of the original reticle pattern cannot be obtained. It is required to be formed on a substrate with uniform width and high positional accuracy.
上記のように従来より、 縮小投影時の解像度を高めることと共に、 レ チクル (ワーキングレチクル) のパターン自体の精度を高めることが求 められている。 これに関して、 縮小投影時の解像度 Rは、 露光波長をえ、 投影光学系の開口数を N Aとすると、 一般に次式により定義される。  As described above, conventionally, there has been a demand for increasing the resolution at the time of reduced projection and increasing the accuracy of the pattern of the reticle (working reticle) itself. In this regard, the resolution R at the time of reduced projection is generally defined by the following equation, where the exposure wavelength is taken and the numerical aperture of the projection optical system is NA.
R = k · λ / N A ( 1 )  R = k · λ / N A (1)
ただし、 kはプロセス係数である。 このプロセス係数 kの値は、 従来 は 0 . 6程度であつたが、 最近では 0 . 5程度となっており、 更に 0 . 4程度まで小さくなることが予想されている。 これは、 ウェハ上に塗布 される感光材料 (フォトレジスト) の進歩によるところも大きいが、 原 理的には回折限界で規定される解像度 (= λ Ζ Ν Α ) に対して、 より厳 しい条件での露光転写が要求されていることに他ならない。  Here, k is a process coefficient. The value of the process coefficient k has been about 0.6 in the past, but has recently become about 0.5, and is expected to be further reduced to about 0.4. This is largely due to advances in the photosensitive material (photoresist) applied on the wafer, but in principle, more severe conditions are imposed on the resolution (= λ Ζ Ν Α) specified by the diffraction limit. This is nothing less than the need for exposure transfer.
しかしながら、 このように解像度 Rがより小さくなると、 ウェハ上に 転写されるパターンの密集度が高まり、 ひいてはレチクルパターンの密 集度も高まることになる。 その結果として、 主に光近接効果によって、 ウェハ上に転写されるパターンのレチクルパターンに対する忠実度が低 下して、 ウェハ上に転写されるパターンと、 設計上でレチクルパターン を所定倍率で縮小したパターンとの間に差異が生じるという問題が生じ ている。 即ち、 或る程度以上に微細な (線幅の細い) パターンについて は、 レチクル上でそのパターンの近傍に他のパターンが存在するかしな いかによつて、 レチクルパターンの線幅とウェハ上に転写されるパター ンの線幅との間の比例関係が崩れ、 ウェハ上に転写されるパターンの線 幅が変動してしまうという不都合が生じる。 However, when the resolution R becomes smaller as described above, the density of the pattern transferred onto the wafer increases, and the density of the reticle pattern also increases. As a result, the fidelity of the pattern transferred on the wafer to the reticle pattern is reduced mainly due to the optical proximity effect, and the pattern transferred on the wafer and the reticle pattern are reduced in design by a predetermined factor. There is a problem in that there is a difference between the patterns. That is, for a pattern that is finer than a certain level (narrow line width), the pattern is transferred to the line width of the reticle pattern and the wafer depending on whether or not another pattern exists near the pattern on the reticle. Putter The proportional relationship between the line width of the pattern and the line width of the pattern to be transferred is broken, and the line width of the pattern transferred onto the wafer fluctuates.
また、 解像度を向上させるためコヒーレンスファクタ (σ値) を大き くしたり、 輪帯照明等の変形照明を使用する場合には、 この光近接効果 の影響が一層大きくなり、 ウェハ上に転写されるパターンの忠実度は一 層悪化してしまう。  In addition, when the coherence factor (σ value) is increased to improve the resolution, or when deformed illumination such as annular illumination is used, the effect of the optical proximity effect is further increased, and the pattern transferred onto the wafer is increased. Fidelity is further exacerbated.
なお、 この光近接効果によるパターンの変形を補正するため、 レチク ル上のパターンの線幅を、 そのパターン近傍における他のパターンの有 無によって変化させる、 いわゆる〇 P C (Op t i ca l Proximi ty Correc t i o n)処理も使用されている。 しかしながら、 この O P C処理は、 膨大なデ —夕量を持つレチクルパターンの全てに関して、 各パターンの近傍での 他のパターンの有無を判断して補正を行うため、 その処理に要する時間 が膨大であり、 データ処理コストも高いという不都合がある。 また、 0 P C処理後のレチクルパターンのデータ量は、 〇P C処理前の設計デー 夕に比べて数倍にも増大し、 例えば電子線描画装置により所定の基板上 にレチクルパターンを描画する際の時間も数倍に増大するため、 レチク ルの製造コス卜が大幅に上昇してしまうという不都合がある。  In order to correct the pattern deformation due to the optical proximity effect, the line width of the pattern on the reticle is changed depending on the presence or absence of another pattern near the pattern, so-called 〇 PC (Opti cal Proximity Correc). tion) processing is also used. However, since this OPC process corrects all reticle patterns having a large amount of de-duration by judging the presence or absence of other patterns near each pattern, the time required for the process is enormous. However, there is a disadvantage that the data processing cost is high. In addition, the data amount of the reticle pattern after the PC processing is several times larger than the design data before the PC processing. For example, when the reticle pattern is drawn on a predetermined substrate by an electron beam drawing apparatus. Since the time is increased several times, there is an inconvenience that the production cost of reticle is greatly increased.
本発明は斯かる点に鑑み、 マスクパターンを転写する際に生じる光近 接効果に対する補正が施されたフォトマスクを、 短時間、 かつ低コスト に製造できるフォ卜マスクの製造方法を提供することを第 1の目的とす る。  In view of the above, the present invention provides a photomask manufacturing method capable of manufacturing a photomask corrected for the light proximity effect generated when transferring a mask pattern in a short time and at low cost. Is the primary purpose.
また、 本発明は、 そのようなフォトマスクの製造方法を実施できるフ ォ卜マスクの製造装置、 及びそのようなフォトマスクの製造方法を用い て製造されるフォトマスクを提供することを第 2の目的とする。 更に、 本発明は、 そのようなフォトマスクの製造方法を用いたデバイスの製造 方法、 及びそのようなデバイスの製造方法を用いて製造される高機能の デバイスを提供することを第 3の目的とする。 発明の開示 In addition, the present invention provides a photomask manufacturing apparatus capable of performing such a photomask manufacturing method, and a photomask manufactured using such a photomask manufacturing method. Aim. Further, the present invention provides a method for manufacturing a device using such a method for manufacturing a photomask, and a highly functional device manufactured using such a method for manufacturing a device. The third purpose is to provide devices. Disclosure of the invention
本発明による第 1のフォトマスクの製造方法は、 所定の第 1の条件の もとで投影光学系 ( 3 3 ) を介して転写されるパターンが形成されたフ オトマスク (W R ) の製造方法であって、 そのパターンを拡大した親パ 夕一ンを第 1基板 (4 0 ) 上に描画することによってマスターマスク ( M R ) を作製し、 その第 1の条件に応じて設定された第 2の条件のも とで、 そのマスターマスクのその親パターンを縮小投影光学系 (6 ) を 介して第 2基板 (2 6 ) 上に転写してそのフォトマスクを作製するもの である。  A first method for manufacturing a photomask according to the present invention is a method for manufacturing a photomask (WR) on which a pattern to be transferred via a projection optical system (33) is formed under predetermined first conditions. Then, a master mask (MR) is created by drawing a pattern of the enlarged parent pattern on the first substrate (40), and the second mask set according to the first condition is created. Under the conditions, the master pattern of the master mask is transferred onto the second substrate (26) via the reduction projection optical system (6) to produce the photomask.
斯かる本発明によれば、 その第 1の条件 (照明条件、 結像条件、 フォ トレジストの特性、 又は露光量等) のもとでは、 例えば光近接効果によ つて転写されるパターンの線幅が変化するものとする。 一例として、 そ の第 1の条件のもとでの光近接効果が、 フォトマスクのパターンの内そ の近傍に他のパターンが存在しない部分 (孤立的部分) の線幅を細くす る方向に働く場合には、 その第 2の条件のもとで生じる光近接効果が、 その孤立的部分の線幅を太くする方向に働くようにその第 2の条件を設 定する。 従って、 その第 2基板上には孤立的部分の線幅が太くなつたパ ターンが形成され、 このパターンをその第 1の条件のもとで転写する際 に生じる光近接効果による線幅の変化は、 予めその第 2の条件のもとで 生じる光近接効果による線幅の変化により相殺、 又は低減されている。 即ち、 第 2基板上に形成されるパターンは、 第 1の条件の光近接効果に 対する補正がされたものとなる。  According to the present invention, under the first conditions (illumination conditions, imaging conditions, photoresist characteristics, exposure dose, etc.), for example, the line width of a pattern transferred by the optical proximity effect Change. As an example, the optical proximity effect under the first condition can be used to reduce the line width of the part of the photomask pattern where no other pattern exists (isolated part) in the vicinity. When it works, the second condition is set so that the optical proximity effect generated under the second condition works in a direction to increase the line width of the isolated portion. Therefore, a pattern in which the line width of the isolated portion is thickened is formed on the second substrate, and the line width change due to the optical proximity effect that occurs when this pattern is transferred under the first condition. Is previously offset or reduced by a change in line width due to the optical proximity effect that occurs under the second condition. That is, the pattern formed on the second substrate has been corrected for the optical proximity effect under the first condition.
また、 そのマス夕一マスクのその親パターンをその第 2基板上に転写 する際には、 例えばステッパー等の光学式の投影露光装置が使用される c このため、 その第 1の条件のもとで生じる光近接効果に対する補正を、 光学的にその親パターンの全体に対して一括して施すことができる。 従 つて、 電子線描画装置等を使用する場合のように、 設計デ一夕上でその フォ卜マスクを構成する各パターン毎に補正処理を行う方式と比較して、 補正処理に要する時間が大幅に短縮される。 更に本発明によれば、 その マス夕一マスク上に親パターンを描画する際には例えば電子線描画装置 が使用される。 この際に、 その親パターンはそのフォトマスクのパター ンの拡大パターンであるため、 実用上はその親パターンを分割したパ夕 ーンが複数枚のマスターマスクに描画される。 しかしながら、 この際の 各マス夕一マスク毎の描画デ一夕量は少ないと共に、 補正処理によるパ 夕一ンのデ一夕量の増加もないため、 各マス夕一マスクの描画時間は短 かくなる。 Also, when transferring the parent patterns of the mass evening first mask on the second substrate, for example, an optical projection exposure apparatus such as a stepper is used c Therefore, the correction for the optical proximity effect that occurs under the first condition can be collectively optically performed on the entire parent pattern. Therefore, the time required for the correction process is much longer than when the correction process is performed for each pattern that constitutes the photomask on a design basis, such as when using an electron beam lithography system. Is shortened to Further, according to the present invention, when the parent pattern is drawn on the mask, for example, an electron beam drawing apparatus is used. At this time, since the parent pattern is an enlarged pattern of the pattern of the photomask, in practice, a pattern obtained by dividing the parent pattern is drawn on a plurality of master masks. However, at this time, the drawing time for each mask and mask is small because the amount of drawing data for each mask and mask is small and the amount of data for each mask is not increased by the correction process. Become.
また、 その描画誤差はそのマス夕一マスクの縮小倍率分だけ小さくな るため、 その描画精度を従来よりも高めることなく、 実質的に高精度に そのフォトマスクのパターンを形成できる。 更に、 複数枚のフォトマス クを製造する場合にも、 単にそのマスタ一マスクのパターンを繰り返し て転写すればよい。 以上より、 第 1の条件のもとで生じる光近接効果に 対する補正が施されたフォトマスクを、 短時間に、 高精度に、 かつ低コ ス卜に製造することができる。  Further, since the writing error is reduced by the reduction ratio of the mask, the pattern of the photomask can be formed with substantially higher accuracy without increasing the writing accuracy as compared with the conventional case. Further, when manufacturing a plurality of photomasks, the pattern of the master-mask may be simply transferred repeatedly. As described above, a photomask corrected for the optical proximity effect generated under the first condition can be manufactured in a short time, with high accuracy, and at low cost.
次に、 本発明による第 2のフォトマスクの製造方法は、 所定の第 1の 照明条件のもとで投影光学系 ( 3 3 ) を介して転写されるパターンが形 成されたフォトマスク (W R ) の製造方法であって、 そのパターンを拡 大した親パターンを第 1基板 (4 0 ) 上に描画することによってマス夕 —マスク (M R ) を作製し、 その第 1の照明条件による投影像の変化を 相殺するように設定された第 2の照明条件のもとで、 そのマスタ一マス クのその親パターンを縮小投影光学系 (6 ) を介して第 2基板 (2 6 ) 上に転写してそのフォトマスクを作製するものである。 Next, a second photomask manufacturing method according to the present invention includes a photomask (WR) on which a pattern to be transferred via the projection optical system (33) is formed under predetermined first illumination conditions. ), A mask pattern (MR) is produced by drawing a parent pattern obtained by enlarging the pattern on the first substrate (40) and projecting the projected image under the first illumination condition. Under the second illumination condition set to cancel the change of the master, the master pattern of the master mask is transferred to the second substrate (26) via the reduction projection optical system (6). The photomask is transferred to the above to produce the photomask.
斯かる第 2のフォ トマスクの製造方法によれば、 その第 1の照明条件 のもとで例えば光近接効果によって投影像に変化 (線幅の変化等) が生 じる場合には、 その第 2の照明条件は、 逆特性の光近接効果を持つよう に、 即ちこれに伴う光近接効果によってその投影像の変化量を相殺する ような投影像の変化量を生じさせるように設定される。 これによつて、 その第 1の照明条件のもとで生じる光近接効果に対する補正が施された フォトマスクを、 短時間、 かつ低コストに製造することができる。  According to the second photomask manufacturing method, when a change (such as a change in line width) occurs in a projected image due to, for example, an optical proximity effect under the first illumination condition, the second photomask is used. The illumination condition (2) is set so as to have an optical proximity effect having a reverse characteristic, that is, to cause a change in the projected image to offset the change in the projected image due to the optical proximity effect accompanying the light proximity effect. Thus, a photomask corrected for the optical proximity effect generated under the first illumination condition can be manufactured in a short time and at low cost.
この場合、 一例として、 その第 1の照明条件 (又は第 2の照明条件) 力 コヒ一レンスファクタが 0. 7以上の照明、 又は輪帯照明であると きには、 その第 2の照明条件 (又は第 1の照明条件) は、 コヒーレンス ファクタが 0. 4以下で 0. 1以上の照明である。  In this case, as an example, if the first illumination condition (or the second illumination condition) is illumination with a coherence factor of 0.7 or more, or annular illumination, the second illumination condition (Or the first illumination condition) is illumination having a coherence factor of 0.4 or less and 0.1 or more.
次に、 本発明による第 1のフォトマスクの製造装置は、 所定の第 1の 照明条件のもとで投影光学系 (33) を介して転写されるパターンが形 成されたフォトマスク (WR) の製造装置であって、 そのパ夕一ンを拡 大した親パターンが描画されたマスタ一マスク (MR) を保持するマス クステージ (1 3) と、 このマスクステージ上のマスクを複数の照明条 件の何れかで照明する照明光学系 (1〜5) と、 その複数の照明条件中 からその第 1の照明条件による投影像の変化を相殺するように選択した 第 2の照明条件をその照明光学系に設定する制御系 (1 8) と、 そのマ スクステージ上のマスクのパターンの像を所定の基板 (26) 上に転写 する縮小投影光学系 (6) とを有するものである。 斯かる本発明の製造 装置によれば、 本発明のフォトマスクの製造方法を実施することができ る。  Next, the first photomask manufacturing apparatus according to the present invention includes a photomask (WR) on which a pattern to be transferred via the projection optical system (33) is formed under predetermined first illumination conditions. A mask stage (13) that holds a master mask (MR) on which a parent pattern that is an enlargement of the mask is drawn, and a plurality of illumination units that illuminate the mask on the mask stage. An illumination optical system (1 to 5) that illuminates under any of the conditions, and a second illumination condition selected from among the plurality of illumination conditions so as to cancel a change in the projected image due to the first illumination condition. It has a control system (18) set in the illumination optical system, and a reduction projection optical system (6) for transferring an image of a mask pattern on the mask stage onto a predetermined substrate (26). According to such a manufacturing apparatus of the present invention, the method of manufacturing a photomask of the present invention can be performed.
次に、 本発明によるデバイスの製造方法は、 所定のデバイスの製造方 法であって、 そのデバイスの所定のレイヤのパターン (2 0) を a倍 ( αは 1より大きい実数) に拡大した第 1パターン (2 1) を作成し、 この第 1パターンを照明する際の第 1の照明条件を設定する第 1工程と、 この第 1パターンを j3倍 ( 3は 1より大きい実数) に拡大した親パター ン (22) を 1枚又は複数枚の第 1基板上に描画することによってマス 夕一マスク (R i ) を作製する第 2工程と、 その第 1の照明条件による 投影像の変化を相殺するように設定された第 2の照明条件のもとでその マスターマスクのパターンを 1ノ /3倍に縮小した光学像 (PW i ) を第 2基板上に転写することによってワーキングマスク (WR) を作製する 第 3工程と、 その第 1の照明条件のもとでそのワーキングマスク上のパ 夕一ンを ΐ Ζα倍に縮小した像をその第 3基板 (W) 上に転写する第 4 工程と、 を有するものである。 Next, a method for manufacturing a device according to the present invention is a method for manufacturing a predetermined device, wherein the pattern (20) of a predetermined layer of the device is multiplied by a. (α is a real number greater than 1) to create a first pattern (2 1) enlarged, and a first step of setting a first lighting condition when illuminating the first pattern; A second step of producing a mask (R i) by drawing a parent pattern (22) enlarged twice (3 is a real number greater than 1) on one or more first substrates; An optical image (PW i) obtained by reducing the pattern of the master mask by a factor of 1/3 under the second illumination condition set to offset the change in the projected image due to the first illumination condition (2) A working mask (WR) is fabricated by transferring it onto a substrate. The third step, and under the first lighting conditions, an image obtained by reducing the pattern on the working mask by a factor of α And a fourth step of transferring onto a third substrate (W).
斯かる本発明のデバイスの製造方法によれば、 第 1の照明条件のもと でマスクパターンを転写する際の光近接効果に対するパターンの補正が 施されたフォ卜マスクを短時間に低コストに製造できる。 特に複数枚の フォトマスクを短時間に低コストに製造できるため、 線幅精度等に優れ た高機能のデバイスを、 短時間に低コス卜で量産することができる。 次に、 本発明による第 3のフォトマスクの製造方法は、 デバイス製造 に用いられる露光装置によって感光基板上に転写されるパターン (2 1 ) を有するフォトマスク (WR) の製造方法であって、 そのパターンを拡 大した親パターン (22) の少なくとも一部 (P i ) が形成されるマス 夕一マスク (R i ) を投影光学系 (6) の物体面側に配置し、 その少な くとも一部の親パターンの近接度に応じた照明条件でそのマスターマス クを照明するとともに、 その投影光学系を介してその像面側に配置され るフォトマスク製造用の基板 (26) 上に、 その少なくとも一部の親パ ターンの縮小像を転写してそのフォトマスクを製造するものである。 斯かる本発明の第 3のフォトマスクの製造方法によれば、 デバイスを 製造する際に生じる光近接効果に対する補正が施されたフォトマスクを、 短時間、 かつ低コストに製造することができる。 According to such a method for manufacturing a device of the present invention, a photomask in which a pattern is corrected for an optical proximity effect when a mask pattern is transferred under a first illumination condition can be manufactured in a short time at low cost. Can be manufactured. In particular, since a plurality of photomasks can be manufactured in a short time and at low cost, high-performance devices with excellent line width accuracy can be mass-produced in a short time and at low cost. Next, a third method for manufacturing a photomask according to the present invention is a method for manufacturing a photomask (WR) having a pattern (21) transferred onto a photosensitive substrate by an exposure apparatus used for device manufacture, A mask (R i), which forms at least a part (P i) of the parent pattern (22) obtained by enlarging the pattern, is arranged on the object plane side of the projection optical system (6). The master mask is illuminated under illumination conditions corresponding to the proximity of some of the parent patterns, and a photomask manufacturing substrate (26) arranged on the image plane side via the projection optical system. The photomask is manufactured by transferring a reduced image of at least a part of the parent pattern. According to the third method for manufacturing a photomask of the present invention, the device A photomask corrected for the optical proximity effect generated during manufacturing can be manufactured in a short time and at low cost.
次に、 本発明による第 2のフォトマスクの製造装置は、 デバイス製造 に用いられる露光装置によって感光基板上に転写されるパターン (2 1 ) を有するフォトマスク (W R ) の製造装置であって、 そのパ夕一ンを拡 大した親パ夕一ン (2 2 ) の少なくとも一部 (P i ) が形成されたマス ターマスク (R i ) を照明する照明光学系 ( 1〜 5 ) と、 そのマスター マスクの縮小像をフォトマスク製造用の基板 (2 6 ) 上に投射する投影 光学系 (6 ) と、 その少なくとも一部の親パターンの近接度に応じたそ のマスタ一マスクの照明条件をその照明光学系に設定する調整装置 ( 1 Next, a second photomask manufacturing apparatus according to the present invention is a photomask (WR) manufacturing apparatus having a pattern (21) transferred onto a photosensitive substrate by an exposure apparatus used for device manufacturing, An illumination optical system (1 to 5) for illuminating the master mask (R i) on which at least a part (P i) of the parent pad (22) is enlarged, and A projection optical system (6) for projecting a reduced image of the master mask on a photomask manufacturing substrate (26), and the illumination conditions of the master mask corresponding to the proximity of at least some of the parent patterns. Adjustment device set for the illumination optical system (1
8 ) とを備えたものである。 斯かる本発明の製造装置によれば、 本発明 のフォトマスクの製造方法を実施することができる。 8). According to such a manufacturing apparatus of the present invention, the method for manufacturing a photomask of the present invention can be performed.
次に、 本発明による第 1又は第 2のフォトマスクは、 それぞれ本発明 のフォトマスクの製造方法又は製造装置を用いて製造されるものであり、 短時間、 かつ低コストに光近接効果に対する補正が施されたフォトマス クが得られる利点がある。 また、 本発明によるデバイスは、 本発明のデ バイスの製造方法を用いて製造されるものであり、 線幅精度等に優れた 高機能のデバイスが得られる利点がある。 図面の簡単な説明  Next, the first or second photomask according to the present invention is manufactured using the photomask manufacturing method or manufacturing apparatus according to the present invention, respectively, and is capable of correcting the optical proximity effect in a short time and at low cost. There is an advantage that a photomask on which the coating is performed can be obtained. The device according to the present invention is manufactured using the device manufacturing method according to the present invention, and has an advantage that a high-performance device excellent in line width accuracy and the like can be obtained. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の好適な実施の形態の一例において使用されるヮーキ ングレチクルの製造装置を示す概略構成図である。 図 2は、 マスクパ夕 —ンを転写する際に生じる光近接効果によるパターンの変形を補正する 方法の説明図である。 図 3は、 マスターレチクルに形成される親パター ンの設計工程の一例を示す図である。 図 4は、 ワーキングレチクル及び 半導体デバイスの製造工程の一例を示す図である。 発明を実施するための最良の形態 FIG. 1 is a schematic configuration diagram showing an apparatus for manufacturing a reticle used in an example of a preferred embodiment of the present invention. FIG. 2 is an explanatory diagram of a method for correcting a pattern deformation due to an optical proximity effect generated when transferring a mask pattern. FIG. 3 is a diagram illustrating an example of a design process of a parent pattern formed on a master reticle. FIG. 4 is a diagram illustrating an example of a process for manufacturing a working reticle and a semiconductor device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好適な実施の形態の一例につき図面を参照して説明す る。 本例は、 本発明をフォトマスクとしての半導体デバイス製造用のヮ —キングレチクルを製造する場合に適用したものである。  Hereinafter, an example of a preferred embodiment of the present invention will be described with reference to the drawings. In this example, the present invention is applied to the case of manufacturing a reticle for manufacturing a semiconductor device as a photomask.
図 1は、 本例のワーキングレチクル製造用の光学式の投影露光装置を 示し、 この図 1において、 露光光源 1より射出された露光用の照明光 (露光光) I Lは、 リレーレンズ 2、 及びオプティカル ·インテグレ一 夕 (図 1ではフライアイレンズ) 3を介して照明系の開口絞り (以下、 「σ絞り」 という) 4を照明する。 ひ絞り 4の開口の大きさは、 駆動系 4 aにより調整自在な構成となっている。 装置全体の動作を統轄制御す る主制御系 1 6の制御のもとで、 照明光学系制御装置 1 8が露光光源 1 の発光、 及びび絞り 4の開口径の制御を行う。 また、 不図示であるが、 σ絞り 4を、 輪帯状の開口を持つ輪帯照明用の開口絞り、 及び複数の小 開口を持つ変形照明用の開口絞りと交換する交換装置も配置されている。 なお、 露光光 I Lとしては、 K r Fエキシマレ一ザ光 (波長 248 η m) 、 A r Fエキシマレ一ザ光 (波長 1 93 nm) 等のエキシマレ一ザ 光、 F2 レーザ光 (波長 1 57 nm) 、 Y AGレーザの高調波、 又は水 銀ランプの i線 (波長 36 5 nm) 等が使用できる。 FIG. 1 shows an optical projection exposure apparatus for manufacturing a working reticle of this embodiment. In FIG. 1, illumination light (exposure light) IL for exposure emitted from an exposure light source 1 is a relay lens 2, and An aperture stop (hereinafter referred to as “σ stop”) 4 of the illumination system is illuminated via an optical integrator (a fly-eye lens in FIG. 1) 3. The size of the aperture of the diaphragm 4 is adjustable by the drive system 4a. Under the control of a main control system 16 that controls the overall operation of the apparatus, an illumination optical system controller 18 controls the light emission of the exposure light source 1 and the aperture diameter of the stop 4. Although not shown, an exchange device for replacing the σ stop 4 with a ring-shaped aperture stop having a ring-shaped aperture and a modified illumination aperture stop having a plurality of small apertures is also provided. . As the exposure light IL, K r F excimer one laser light (wavelength 248 η m), A r F excimer one laser light (wavelength 1 93 nm) excimer one laser light such as, F 2 laser beam (wavelength: 1 57 nm), the harmonics of a YAG laser, or the i-line (wavelength 365 nm) of a mercury lamp can be used.
そして、 σ絞り 4を通過した露光光 I Lは、 コンデンサレンズ系 5を 介して転写対象のマス夕一レチクル MRを照明する。 マスターレチクル MRは、 ガラス基板等の基板 40のパターン形成面 (下面) に所定のマ スクパターンを拡大した親パターンを描画によって形成したものである c マスターレチクル MRを透過した露光光 I Lは、 投影光学系 6を介して ワーキングレチクル用のガラス基板等の基板 26上にその親パターンを 縮小倍率 (1ZJ3は、 例えば 1Z4, 1 5等) で縮小した像を 形成する。 投影光学系 6中のマスターレチクル MRのパターン形成面に 対する光学的なフーリエ変換面 (瞳面) には、 可変の開口絞り 7が配置 されており、 開口絞り 7によって投影光学系 6の射出側 (基板 2 6側) の開口数 NA、 ひいては入射側 (マスターレチクル MR側) の開口数 N Amが規定されている。 The exposure light IL that has passed through the σ stop 4 illuminates the transfer target reticle MR via the condenser lens system 5. The master reticle MR is formed by drawing a parent pattern obtained by enlarging a predetermined mask pattern on the pattern forming surface (lower surface) of a substrate 40 such as a glass substrate. C The exposure light IL transmitted through the master reticle MR is projected. An image obtained by reducing the parent pattern at a reduction magnification (1ZJ3 is, for example, 1Z4, 15) is formed on a substrate 26 such as a glass substrate for a working reticle via the optical system 6. Form. A variable aperture stop 7 is arranged on the optical Fourier transform plane (pupil plane) of the projection optical system 6 with respect to the pattern forming surface of the master reticle MR, and the exit side of the projection optical system 6 is arranged by the aperture stop 7. The numerical aperture NA of the (substrate 26 side) and the numerical aperture N Am of the incident side (master reticle MR side) are defined.
なお、 コンデンサレンズ系 5は簡略化して表されているが、 実際には 内部で一度結像を行うと共に、 その結像面にレチクルブラインド (視野 絞り) を備えた光学系である。 露光光源 1、 リレーレンズ 2、 ォプティ カル ·インテグレー夕 3、 σ絞り 4、 及びコンデンサレンズ系 5から本 例の照明光学系が構成されている。 この場合、 σ絞り 4は、 マス夕一レ チクル MRのパターン形成面に対してコンデンサレンズ系 5に関して光 学的なフ一リエ変換面に配置されている。 このため、 露光光 I Lのマス 夕一レチクル MRへの入射角の最大値、 即ち開口半角 0 1は、 σ絞り 4 の開口の大きさを調整することによって所望の値に設定される。 以下で は、 この開口半角 0 1の正弦である sin 0 1を 「照明光学系の開口数 N A i」 と呼ぶ。 また、 この照明光学系の開口数 NA iの、 投影光学系 6 の入射側の開口数 N Amに対する比の値 ( = NA i ZNAm) は、 一般 にコヒーレンスファクタ (σ値) と呼ばれている。  Although the condenser lens system 5 is simplified, it is actually an optical system that forms an image once inside and has a reticle blind (field stop) on the image forming surface. The illumination optical system of this example is composed of an exposure light source 1, a relay lens 2, an optical integrator 3, a squeezing aperture 4, and a condenser lens system 5. In this case, the σ stop 4 is arranged on the optical Fourier transform surface with respect to the condenser lens system 5 with respect to the pattern formation surface of the mass reticle MR. For this reason, the maximum value of the incident angle of the exposure light IL to the mass reticle MR, that is, the half angle of the aperture 01 is set to a desired value by adjusting the size of the aperture of the σ stop 4. In the following, sin 0 1 which is the sine of the half angle 01 of the aperture is referred to as “the numerical aperture N A i of the illumination optical system”. The value of the ratio (= NA i ZNAm) of the numerical aperture NA i of the illumination optical system to the numerical aperture N Am on the entrance side of the projection optical system 6 is generally called a coherence factor (σ value). .
本例の投影露光装置の解像度 Rは、 通常の投影露光装置と同様に、 露 光波長久、 プロセス係数 k、 投影光学系 6の射出側の開口数 NAを用い て次式で表される。  The resolution R of the projection exposure apparatus of the present embodiment is expressed by the following equation using the wavelength of the exposure light, the process coefficient k, and the numerical aperture NA of the projection optical system 6 on the exit side, similarly to a normal projection exposure apparatus.
R = k · λΖΝΑ (2)  R = k
また、 その射出側の開口数 NAは、 基板 2 6上の一点に集光する光束 の入射角の最大値 (開口半角) 0 3の正弦であり (即ち、 NA = sin Θ 3 ) 、 投影光学系 6の入射側の開口数 NAmは、 マスターレチクル MR 上の一点から発して基板 2 6に到達する光束のマスタ一レチクル MRに 対する射出角の最大値 (開口半角) の正弦である (即ち、 NAm二 sin Θ 2) ため、 次の関係がある。 The numerical aperture NA on the exit side is the sine of the maximum value of the incident angle of the light beam converged on one point on the substrate 26 (half angle of the aperture) 0 3 (that is, NA = sin Θ 3), and the projection optics The numerical aperture NAm on the entrance side of the system 6 is equal to the master reticle MR of the luminous flux that originates from one point on the master reticle MR and reaches the substrate 26. Since it is the sine of the maximum value of the exit angle (half-angle of the aperture) for the exit angle (that is, NAm2 sin Θ 2),
N Α= β X N Am ( 3 )  N Α = β X N Am (3)
ただし、 上記のように 1Z 3は投影光学系 6の縮小倍率である。 また、 マスタ一レチクル MRを通過して基板 2 6に到達する光束は、 投影光学 系 6内の開口絞り 7によって制限されるため、 開口絞り 7の開口の大き さを調整自在な構成とすることで、 開口数 NA、 ひいては開口数 NAm を所望の値に調整することができる。 以下、 投影光学系 6の光軸 AXに 平行に Z軸を取り、 Z軸に垂直な平面内で図 1の紙面に平行に X軸を、 図 1の紙面に垂直に Y軸を取って説明する。  However, as described above, 1Z3 is the reduction magnification of the projection optical system 6. In addition, since the light flux passing through the master reticle MR and reaching the substrate 26 is restricted by the aperture stop 7 in the projection optical system 6, the size of the aperture of the aperture stop 7 should be adjustable. Thus, the numerical aperture NA and, consequently, the numerical aperture NAm can be adjusted to a desired value. In the following, the Z axis is taken parallel to the optical axis AX of the projection optical system 6, the X axis is taken parallel to the plane of Fig. 1 in a plane perpendicular to the Z axis, and the Y axis is taken perpendicular to the plane of Fig. 1. I do.
まず、 マスターレチクル MRは、 レチクルステージ 1 3上に保持され、 レチクルステージ 1 3は、 レチクルべ一ス 1 4上でマスタ一レチクル M Rを X方向、 Y方向、 及び回転方向に所定範囲内で位置決めする。 レチ クルステージ 1 3 (マスターレチクル MR) の位置は、 レチクルステ一 ジ駆動系 1 5内に組み込まれたレーザ干渉計によって高精度に計測され ており、 その位置情報及び主制御系 1 6からの制御情報に基づいて、 レ チクルステージ駆動系 1 5はレチクルステージ 1 3の位置を制御する。  First, the master reticle MR is held on the reticle stage 13, and the reticle stage 13 positions the master reticle MR on the reticle base 14 within a predetermined range in the X, Y, and rotation directions. I do. The position of reticle stage 13 (master reticle MR) is measured with high precision by a laser interferometer built in reticle stage drive system 15, and its position information and control from main control system 16 Based on the information, reticle stage drive system 15 controls the position of reticle stage 13.
また、 マスタ一レチクル MRの上方には、 レチクルァライメント顕微 鏡 (以下、 「RA顕微鏡」 という) 1 9 A, 1 9 Bが配置され、 この R A顕微鏡 1 1により、 マスターレチクル MR上のァライメントマーク 2 7 A, 2 7 B (図 4参照) の位置が計測され、 その計測結果が主制御系 1 6に供給される。 主制御系 1 6は、 この計測結果に基づいてマス夕一 一方、 ワーキングレチクル用の基板 2 6は、 不図示の基板ホルダ上に 吸着保持され、 この基板ホルダは Zチルトステージ 8上に固定され、 Z チルトステージ 8は XYステージ 9上に 2次元的に移動自在に載置され ている。 X Yステージ 9は、 例えばリニアモ一夕によって、 X方向、 Υ 方向、 及び回転方向に Ζチルトステージ 8を位置決めする。 そして、 Ζ チルトステージ 8の上端に固定された移動鏡 1 0、 及びレーザ干渉計 1 1によって Ζチルトステージ 8の X座標、 Υ座標及び回転角が計測され、 これらの計測値が主制御系 1 6、 及び基板ステージ駆動系 1 2に供給さ れ、 基板ステージ駆動系 1 2は、 その計測値及び主制御系 1 6からの制 御情報に基づいて、 Χ Υステージ 9の動作を制御する。 Reticle alignment microscopes (hereinafter referred to as “RA microscopes”) 19 A and 19 B are arranged above the master reticle MR, and the RA microscope 11 is used to align the master reticle MR. The positions of the marks 27 A and 27 B (see FIG. 4) are measured, and the measurement results are supplied to the main control system 16. On the other hand, the main control system 16 holds the substrate based on the measurement result, while the substrate 26 for the working reticle is sucked and held on a substrate holder (not shown), and the substrate holder is fixed on the Z tilt stage 8. The Z tilt stage 8 is mounted on the XY stage 9 so that it can move two-dimensionally. ing. The XY stage 9 positions the tilt stage 8 in the X direction, the right direction, and the rotation direction by, for example, a linear motor. Then, the X coordinate, the 及 び coordinate, and the rotation angle of the tilt stage 8 are measured by the movable mirror 10 fixed to the upper end of the tilt stage 8 and the laser interferometer 11, and the measured values are transferred to the main control system 1. The substrate stage driving system 12 is supplied to the substrate stage driving system 12 and controls the operation of the stage 9 based on the measured values and the control information from the main control system 16.
また、 Ζチルトステージ 8には、 基板 2 6のフォーカス位置 (光軸 A X方向の位置) 、 及び傾斜角を制御する駆動機構が組み込まれている。 そして、 不図示のオートフォーカスセンサにより、 基板 2 6の表面の複 数の計測点でフォーカス位置が計測されており、 この計測結果に基づい て Zチルトステージ 8は、 オートフォーカス方式、 及びォ一トレべリン グ方式で基板 2 6の表面を投影光学系 6の像面に合わせ込む。 Zチルト ステージ 8、 及び X Yステージ 9より基板ステージが構成されている。  The tilt stage 8 incorporates a drive mechanism for controlling the focus position (position in the optical axis AX direction) of the substrate 26 and the tilt angle. The focus position is measured at a plurality of measurement points on the surface of the substrate 26 by an auto focus sensor (not shown), and based on the measurement results, the Z tilt stage 8 performs an auto focus method and an auto focus. The surface of the substrate 26 is adjusted to the image plane of the projection optical system 6 by a belling method. The substrate stage is composed of the Z tilt stage 8 and the XY stage 9.
また、 1枚の基板 2 6上に、 マスタ一レチクル M R、 及び他のマス夕 In addition, the master reticle MR and other masks are placed on one substrate 26.
—レチクルの親パターンの縮小像を画面継ぎしながら露光することも可 能であり、 この場合には、 レチクルステージ 1 3の近傍に設けられたレ チクルローダ (不図示) により、 マスターレチクルの交換が行われる。 そして、 レチクルステージ 1 3上に搬送されるマスターレチクル (例え ばパターン面、 又は端面) にはそれぞれ親パターンの種類、 及びヮーキ ングレチクル上に転写されてからの照明条件や結像条件等の条件がバー コード B Cとして記録されており、 主制御系 1 6は、 バーコードリーダ 1 7を介して各マスタ一レチクルにそれぞれ付設されたバーコード B C を読み込むことによって、 その条件を認識する。 主制御系 1 6内の記憶 部には、 バーコード B Cから読み取られる条件に対応する照明条件等の 情報が例えばテーブルとして記憶されており (詳細後述) 、 この情報に 基づいて当該マス夕一レチクル M Rに対する照明条件 (σ値等) 等を設 定する。 —It is also possible to expose the reduced image of the reticle's parent pattern while screen-joining. In this case, the reticle loader (not shown) provided near the reticle stage 13 can replace the master reticle. Done. The master reticle (for example, the pattern surface or the end surface) conveyed onto the reticle stage 13 has the type of the parent pattern and the conditions such as the illumination condition and the imaging condition after being transferred onto the reticle. It is recorded as a bar code BC, and the main control system 16 recognizes the condition by reading the bar code BC attached to each master reticle via the bar code reader 17. Information such as lighting conditions corresponding to the conditions read from the bar code BC is stored in a storage unit in the main control system 16 as, for example, a table (details will be described later). Based on this, the lighting conditions (σ value, etc.) for the mass reticle MR are set.
実際に、 マスタ一レチクル M R上の親パターンの像を基板 2 6上に転 写する際には、 基板 2 6上には予めクロム (C r ) 膜等の遮光膜を形成 し、 この上にフォトレジストを塗布しておく。 そして、 まず R A顕微鏡 1 9 A , 1 9 Bを用いてマスターレチクル M Rのァライメントを行った 後、 X Yステージ 9を駆動することによって Zチルトステージ 8上の基 板 2 6の所定のショッ卜領域を投影光学系 6の露光領域に移動する。 ま た、 マスターレチクル M R上の所望のパターンのみが照明されるように、 コンデンサレンズ系 5内の不図示のレチクルブラインドを調整して、 照 明光学系からの露光光 I Lによってマス夕一レチクル M Rを照明し、 そ の照明されたパターンの縮小像を投影光学系 6を介して基板 2 6上に投 影露光する。 続いて、 仮にマスターレチクル M R上の異なる領域のパ夕 一ンの像を、 基板 2 6上の異なるショッ ト領域に転写する際には、 上記 のレチクルブラインドをその異なる領域のパターンが照明されるように 再調整し、 Zチルトステージ 8をステップ移動させて基板 2 6上の次の ショッ ト領域を投影光学系 6の露光領域に移動して、 画面継ぎを行いな がら露光光 I Lを照射する。  Actually, when transferring the image of the master pattern on the master reticle MR onto the substrate 26, a light-shielding film such as a chrome (Cr) film is formed on the substrate 26 in advance, and the A photoresist is applied beforehand. First, after aligning the master reticle MR using the RA microscopes 19 A and 19 B, the XY stage 9 is driven so that a predetermined shot area of the substrate 26 on the Z tilt stage 8 is formed. Move to the exposure area of the projection optical system 6. In addition, the reticle blind (not shown) in the condenser lens system 5 is adjusted so that only the desired pattern on the master reticle MR is illuminated, and the mask reticle MR is exposed by the exposure light IL from the illumination optical system. Then, a reduced image of the illuminated pattern is projected and exposed on a substrate 26 via a projection optical system 6. Subsequently, when the images of the patterns in different areas on the master reticle MR are transferred to different shot areas on the substrate 26, the above-described reticle blind is illuminated with patterns in the different areas. The Z-tilt stage 8 is moved stepwise to move the next shot area on the substrate 26 to the exposure area of the projection optical system 6, and irradiates the exposure light IL while performing screen splicing. .
また、 マスターレチクル M Rとは異なる別のマスターレチクルのパ夕 ーンを露光する際には、 レチクルステージ 1 3上でマスタ一レチクルの 交換を行った後、 Zチルトステージ 8 (基板 2 6 ) のステップ移動を行 つてから、 画面継ぎを行いながら露光を行う。 このようにして、 基板 2 6上の複数のショッ ト領域にマスターレチクルのパターン像を露光する という動作がステップ · アンド · リピート方式 (ステップ · アンド ·ス ティツチ方式) で繰り返されて、 基板 2 6上に所定の親パターンの全体 の縮小像が転写される。 その後、 フォトレジストの現像、 遮光膜のエツ チング、 レジスト剥離等の工程を経ることで、 基板 2 6はワーキングレ チクル W R、 即ち実際にデバイスのパターンを露光する際に使用される レチクルとなる。 Also, when exposing a pattern of another master reticle different from the master reticle MR, after exchanging the master reticle on reticle stage 13, the Z tilt stage 8 (substrate 26) After performing the step movement, exposure is performed while screen joining is performed. In this manner, the operation of exposing the master reticle pattern image to a plurality of shot areas on the substrate 26 is repeated in a step-and-repeat method (step-and-stick method). The entire reduced image of the predetermined parent pattern is transferred onto the top. Then, develop the photoresist and etch the light-shielding film. The substrate 26 becomes a working reticle WR, that is, a reticle used when actually exposing the pattern of the device, through the steps of etching, resist stripping, and the like.
このようにして本例の光学式の投影露光装置により製造されたヮーキ ングレチクル W Rは、 図 1の投影露光装置とほぼ同様な構成の半導体デ バイス製造用の投影露光装置に装填される。  Thus, the peak reticle WR manufactured by the optical projection exposure apparatus of this embodiment is loaded into a projection exposure apparatus for manufacturing a semiconductor device having substantially the same configuration as the projection exposure apparatus of FIG.
図 4に示すように、 この投影露光装置は照明光学系 3 1、 及び縮小倍 率 ΐ Ζ α ( 1 0;は例ぇば1 74, 1 / 5等) の投影光学系 3 3を備え、 所定の照明条件の照明光学系 3 1からの露光用の照明光 (露光光) 3 2 によってワーキングレチクル W Rが照明され、 そのワーキングレチクル W Rのパターンの縮小像 2 4が投影光学系 3 3を介してウェハ W上のシ ョット領域 S Αに転写される。 半導体デバイス製造用の投影露光装置の ステージ系等は、 図 1のワーキングレチクル製造用の投影露光装置とほ ぼ同様の構成であるため、 ここでの説明は省略する。 もちろん、 半導体 デバイス製造用の投影露光装置では、 図 1のマス夕一レチクル M Rがヮ —キングレチクル W Rに、 基板 2 6がウェハに置き換えられる。  As shown in FIG. 4, the projection exposure apparatus includes an illumination optical system 31 and a projection optical system 33 with a reduction ratio Ζ Ζ α (10; 174, 1/5, etc.). The working reticle WR is illuminated by illumination light (exposure light) 3 2 for exposure from the illumination optical system 31 under predetermined illumination conditions, and a reduced image 24 of the pattern of the working reticle WR is transmitted through the projection optical system 33. Is transferred to the shot area S # on the wafer W. The stage system and the like of the projection exposure apparatus for manufacturing a semiconductor device have almost the same configuration as that of the projection exposure apparatus for manufacturing a working reticle in FIG. 1, and a description thereof will be omitted. Of course, in a projection exposure apparatus for manufacturing semiconductor devices, the mask reticle MR in FIG. 1 is replaced with a ヮ -king reticle WR, and the substrate 26 is replaced with a wafer.
次に、 図 4に示すように照明光学系 3 1でワーキングレチクル W Rを 照明し、 このパターンの縮小像を投影光学系 3 3を介してウェハ W上に 転写する際には、 光近接効果によって或る程度の投影像の変形、 ひいて は形成されるパターンの変形が生じる。 特に転写対象のパターンが微細 な密集パターンである場合には、 その変形量が所定の許容範囲を超える 恐れがある。 そこで、 本例では、 図 2を参照して説明するように、 光近 接効果の影響の補正を行うようにしている。  Next, as shown in FIG. 4, the working reticle WR is illuminated by the illumination optical system 31, and when a reduced image of this pattern is transferred onto the wafer W via the projection optical system 33, the light proximity effect is used. A certain degree of deformation of the projected image and, consequently, of the formed pattern occurs. In particular, when the pattern to be transferred is a fine dense pattern, the amount of deformation may exceed a predetermined allowable range. Therefore, in this example, as described with reference to FIG. 2, the effect of the optical proximity effect is corrected.
図 2 ( A) は、 本例のマス夕一レチクル M Rを示し、 この図 2 ( A ) において、 マス夕一レチクル M Rは、 基板 4 0上にパターン P 1 A〜P 5 Aよりなる親パターン 4 1を形成したものである。 親パターン 4 1は、 最終的に製造される半導体デバイスの或るレイヤの回路パターンを相似 に拡大したものである。 親パターン 4 1の大きさは、 半導体デバイス製 造用の投影露光装置 (図 4の投影光学系 3 3) の縮小倍率 1ノ0;、 及び ワーキングレチクル製造用の投影露光装置 (図 1の投影光学系 6) の縮 小倍率 l Zi3を用いて、 最終的に製造される半導体デバイスの回路パ夕 —ンを α · 3倍に拡大したものとなっている。 なお、 親パ夕一ン 4 1を 構成する各パターンは、 便宜上太い線幅で表されているが、 実際にはそ れぞれ幅が mのオーダの微細なパターンである。 また、 図 2 (A) と、 図 2 (B 1 ) , (B 2) と、 図 2 (C 1 ) , (C 2) とは実際には相互 の倍率が異なっているが、 便宜上図面上では同じ大きさで示している。 FIG. 2 (A) shows a mask reticle MR of this example. In FIG. 2 (A), the mask reticle MR is a parent pattern composed of patterns P 1 A to P 5 A on a substrate 40. 4 1 is formed. Parent pattern 4 1 It is a similar enlargement of the circuit pattern of a certain layer of the finally manufactured semiconductor device. The size of the parent pattern 41 is determined by reducing the magnification of the projection exposure apparatus for manufacturing semiconductor devices (projection optical system 33 in FIG. 4) to 1 × 0; and the projection exposure apparatus for manufacturing the working reticle (see FIG. 1). Using the reduced magnification l Zi3 of the optical system 6), the circuit pattern of the finally manufactured semiconductor device is enlarged by α 3 times. Each pattern constituting the parent computer 41 is represented by a thick line width for convenience, but is actually a fine pattern of the order of m in width. In addition, FIG. 2 (A), FIGS. 2 (B 1) and (B 2), and FIGS. 2 (C 1) and (C 2) actually have different magnifications. Are shown in the same size.
ところで、 従来は、 図 4の投影光学系 3 3の縮小倍率 ΐΖαの逆数の α倍を用いて、 図 2 (Β 2) に示すように、 最終的に製造される半導体 デバイスの回路パターンを α倍に拡大したマスクパターン 4 1 Β 2を基 板上に描画してワーキングレチクル WR' を製造していた。 そのマスク パターン 4 1 Β 2を構成するパターン Ρ 1 Β, 〜Ρ 5 Β, は、 図 2 (Α) の親パターン 4 1のパターン Ρ 1 Α〜Ρ 5 Αをそれぞれ正確に 1 Z β倍 に縮小したパターンでもある。 しかしながら、 このヮ一キングレチクル WR' のマスクパターン 4 1 Β 2を転写すると、 光近接効果によってゥ ェハ上に形成されるパターンが変形してしまう場合がある。 特に、 最近 の半導体デバイス製造用の投影露光装置では、 解像度を高めるため照明 条件をコヒ一レンスファクタ (σ値) の大きい条件 ( 1≥ひ≥ 0. 7) にしたり、 輪帯照明等の変形照明を使用したりしているため、 転写され るパターンの内、 ワーキングレチクル上においてその近傍に他のパ夕一 ンが存在しない部分 (孤立的部分) の像が、 光近接効果により細くなつ て転写されてしまう。  Conventionally, as shown in FIG. 2 (Β2), the circuit pattern of the finally manufactured semiconductor device is changed to α by using α times the reciprocal of the reduction magnification ΐΖα of the projection optical system 33 in FIG. The working reticle WR 'was manufactured by drawing the mask pattern 41 12 that was doubled on the substrate. The patterns Ρ 1 Β to Ρ 5 Β constituting the mask pattern 4 1 Β 2 are obtained by precisely multiplying the patterns Ρ 1 Α to Ρ 5 の of the parent pattern 41 in FIG. It is also a reduced pattern. However, when the mask pattern 41-2 of this single reticle WR 'is transferred, the pattern formed on the wafer may be deformed due to the optical proximity effect. In particular, in recent projection exposure apparatuses for manufacturing semiconductor devices, the illumination conditions are set to conditions with a large coherence factor (σ value) (1≥HI≥0.7) in order to increase the resolution, or deformation such as annular illumination is required. Due to the use of illumination, the image of the part of the transferred reticle where no other pattern exists on the working reticle (isolated part) is thinned by the optical proximity effect. Will be transcribed.
図 2 (C 2) は、 図 2 (Β 2 ) のヮ一キングレチクル WR' のマスク パターン 41 B 2を σ値の大きな照明条件 ( 1≥ σ≥ 0. 7) で露光し た際にウェハ上に形成されるパ夕一ン 41 C 2を示し、 この図 2 (C 2 ) において、 パターン 41 C 2の内のパターン Ρ 1 C ' , Ρ 2 C ' , Ρ 3 C の孤立的部分は、 光近接効果により細くなつて転写されている。 一 方、 パターン P 1 C, の周期的部分、 及び周期的なパターン P 4 C, , P 5 C ' はそれぞれ本来の線幅で転写されている。 従来は、 このような 光近接効果によるパターンの変形を補正するために、 〇PC (Optical P roximity Correct ion)処理を適用して、 ワーキングレチクルのマスクパ ターンを描画する際に、 予めマスクパターンの孤立的部分の線幅を太め に修正していたが、 既に説明したように OP C処理を適用するとそのパ ターンの補正デ一夕量が膨大となり、 描画時間がかなり長くなつてしまFig. 2 (C2) shows the mask of one king reticle WR 'in Fig. 2 (Β2). FIG. 2 (C 2) shows the pattern 41 C 2 formed on the wafer when the pattern 41 B 2 is exposed under an illumination condition having a large σ value (1≥σ≥0.7). The isolated portions of the patterns Ρ 1 C ′, Ρ 2 C ′, and Ρ 3 C in the pattern 41 C 2 are thinly transferred by the optical proximity effect. On the other hand, the periodic portion of the pattern P 1 C, and the periodic patterns P 4 C, P 5 C ′ are transferred with their original line widths. Conventionally, in order to correct such a pattern deformation due to the optical proximity effect, 〇PC (Optical Proximity Correction) processing is applied, and when a mask pattern of a working reticle is drawn, the mask pattern is isolated beforehand. The line width of the target part was corrected to be thicker, but as described above, applying the OPC process resulted in a huge amount of correction data for that pattern, and the drawing time was considerably longer.
Ό。 Ό.
そこで、 本例では、 図 2 (A) のマス夕一レチクル MRを用いて、 半 導体デバイス製造用の投影露光装置の照明条件に応じて、 ワーキングレ チクル製造用の投影露光装置の照明条件を設定することによって、 ヮー キングレチクルのマスクパターンを転写する際の光近接効果によるパ夕 ーンの変形を補正する。 例えば本例の投影露光装置の図 4の照明光学系 3 1では、 解像度を高めるために照明条件をコヒ一レンスファクタ (σ 値) の大きな条件 (1≥σ≥0. 7) としているため、 図 1の投影露光 装置の照明条件は、 ひ値の小さな条件 (0. 1≤ひ≤0. 4) に設定さ れる。  Thus, in this example, using the mass reticle MR shown in FIG. 2 (A), the illumination conditions of the projection exposure apparatus for manufacturing the working reticle are changed according to the illumination conditions of the projection exposure apparatus for manufacturing the semiconductor device. By setting, the deformation of the pattern due to the optical proximity effect when transferring the masking pattern of the peaking reticle is corrected. For example, in the illumination optical system 31 of FIG. 4 of the projection exposure apparatus of this example, the illumination condition is set to a condition (1≥σ≥0.7) with a large coherence factor (σ value) in order to increase the resolution. The illumination condition of the projection exposure apparatus shown in Fig. 1 is set to a condition with a small value (0.1 ≤ ≤ 0.4).
この場合、 σ値が 0. 1より小さいと、 露光光の光量が低下すると共 に、 投影光学系の収差の影響が大きくなる。 また、 σ値が 0. 4より大 きいと、 光近接効果の影響が小さくなり、 十分な補正量が得られない。 この σ値の小さな照明条件で、 図 2 (Α) のマスターレチクル MRの親 パターン 41を基板 26上に縮小投影して、 現像及びエッチングを行つ た結果、 図 2 ( B 1 ) に示すように、 ワーキングレチクル W R上にマス クパ夕一ン 4 1 B 1が形成される。 図 2 ( B 1 ) のワーキングレチクル W Rにおいては、 σ値が小さいために、 光近接効果が σ値が大きい場合 とは逆に孤立的部分の線幅を太くする方向に働くため、 マスクパターン 4 1 Β 1を構成するパ夕一ン Ρ 1 Β , Ρ 2 Β , Ρ 3 Βの孤立的部分の線 幅が設計値 (親パターン 4 1を正確に 倍した幅) より太くなつて 形成され、 パターン Ρ 1 Βの周期的部分、 及び周期的なパターン Ρ 4 Β : Ρ 5 Βの線幅は設計値通りである。 In this case, if the σ value is smaller than 0.1, the amount of exposure light decreases, and the influence of the aberration of the projection optical system increases. If the σ value is larger than 0.4, the influence of the optical proximity effect is reduced, and a sufficient correction amount cannot be obtained. Under the illumination condition with a small σ value, the master pattern 41 of the master reticle MR shown in FIG. 2 (Α) is reduced and projected onto the substrate 26, and development and etching are performed. As a result, as shown in FIG. 2 (B 1), a mask pad 41 B 1 is formed on the working reticle WR. In the working reticle WR of Fig. 2 (B1), since the σ value is small, the optical proximity effect works in the direction to increase the line width of the isolated part, which is opposite to the case where the σ value is large. The line width of the isolated part of the pattern Β 1 Β, Ρ 2 Β, Ρ 3 を that constitutes 1 Β 1 is formed thicker than the design value (width exactly multiplied by the parent pattern 4 1), The line width of the periodic portion of the pattern {1} and the line width of the periodic pattern {4}: {5} are as designed.
次に、 半導体デバイス製造用の投影露光装置を用いて、 ワーキングレ チクル W Rのマスクパターン 4 1 Β 1の縮小像をウェハ上に転写する。 この際に生じる光近接効果は、 ワーキングレチクル製造用の投影露光装 置において生じる光近接効果を相殺するように孤立的部分を細くする方 向に働くため、 図 2 ( C 1 ) に示すように、 ウェハ上に形成されるパ夕 ーン 4 1 C 1を構成するパターン Ρ 1 C〜P 5 Cの寸法は設計値通りの ものとなる。  Next, a reduced image of the mask pattern 411-1 of the working reticle WR is transferred onto a wafer by using a projection exposure apparatus for manufacturing a semiconductor device. The optical proximity effect that occurs at this time acts to make the isolated portion thinner so as to offset the optical proximity effect that occurs in the projection exposure apparatus for manufacturing a working reticle, and as shown in Fig. 2 (C1). The pattern を 1C to P5C constituting the pattern 41C1 formed on the wafer has dimensions as designed.
なお、 半導体デバイス製造用の投影露光装置において、 輪帯照明等の 変形照明を使用する場合にも、 光近接効果は孤立的部分を細くする方向 に働くため、 この場合にも、 ワーキングレチクル製造用の投影露光装置 の照明条件は、 光近接効果が孤立的部分を太くする方向に働くようなコ ヒーレンスファクタ (σ値) の小さい条件 (0 . 1≤σ≤0 . 4 ) に設 定される。  Note that even in the case of using deformed illumination such as annular illumination in a projection exposure apparatus for manufacturing semiconductor devices, the optical proximity effect works in the direction of making isolated parts thinner. The illumination condition of the projection exposure apparatus is set to a condition (0.1≤σ≤0.4) with a small coherence factor (σ value) so that the optical proximity effect works in the direction to make isolated parts thicker. .
なお、 半導体デバイス製造用の投影露光装置の高解像度化技術として 位相シフトレチクルを使用する場合には、 その投影露光装置のコヒーレ ンスファクタ (σ値) を 0 . 4程度以下に絞った方が好ましい場合もあ る。 このような場合には、 半導体デバイス製造用の投影露光装置におい て生じる光近接効果が孤立的部分を太くする方向に働くため、 ヮ一キン グレチクル製造用の投影露光装置では、 光近接効果が孤立的部分を細く する方向に働くように、 コヒ一レンスファクタ (σ値) を 0 . 7程度以 上で 1以下に設定するか、 照明光学系を輪帯照明に設定するものとする。 これによつて、 ワーキングレチクルとして位相シフトレチクルを使用す る場合にも、 O P C処理を行うことなくウェハ上に設計値通りの寸法の パターンを形成することができる。 When a phase shift reticle is used as a technique for increasing the resolution of a projection exposure apparatus for manufacturing semiconductor devices, it is preferable to reduce the coherence factor (σ value) of the projection exposure apparatus to about 0.4 or less. There is also. In such a case, the optical proximity effect that occurs in the projection exposure apparatus for manufacturing semiconductor devices acts in the direction of increasing the thickness of the isolated portion, so that In a projection exposure apparatus for reticle manufacturing, the coherence factor (σ value) should be set to about 0.7 or more and 1 or less so that the optical proximity effect works in the direction to make isolated parts thinner, or to illumination optics. The system shall be set to annular illumination. As a result, even when a phase shift reticle is used as a working reticle, a pattern having dimensions as designed can be formed on a wafer without performing OPC processing.
以上の実施の形態において、 1枚のマスタ一レチクル M Rから転写で きる領域は最新の光学式の投影露光装置を使用した場合であっても、 2 0 mm角程度の面積であり、 更に 1 / 4倍に縮小するものとすると、 ゥ ェハ上では 5 mm角程度の面積にしかならない。 そのため、 実際にヮー キングレチクル W Rを製造する際には、 複数枚のマスタ一レチクルを製 造し、 それらの親パターンを画面継ぎを行いながら順次ワーキングレチ クル用の基板 2 6に転写することになる。  In the above-described embodiment, the area that can be transferred from one master reticle MR has an area of about 20 mm square even when the latest optical projection exposure apparatus is used. If it were to be reduced by a factor of four, the area would be only about 5 mm square on the wafer. Therefore, when actually manufacturing a marking reticle WR, it is necessary to manufacture a plurality of master reticles and transfer their parent patterns to the working reticle substrate 26 sequentially while performing screen splicing. Become.
次に、 上記の実施の形態のワーキングレチクルの製造方法を適用した 半導体デバイスの製造工程の一例につき図 3、 及び図 4を参照して説明 する。  Next, an example of a semiconductor device manufacturing process to which the working reticle manufacturing method of the above embodiment is applied will be described with reference to FIGS. 3 and 4. FIG.
図 3は、 本例のマスターレチクルに形成される親パターンの設計工程 を示し、 この図 3において、 まず最終的に製造される半導体デバイスの 或るレイヤの回路パターン 2 0が設計される。 回路パターン 2 0は直交 する辺の幅が d X , d Yの矩形の領域内に種々のライン · アンド · スぺ —スパターン等を形成したものである。 なお、 図 3及び図 4に示されて いる回路パターン 2 0等は、 実際の回路パターンに比べて太い線幅の仮 想的なパターンである。 本例では、 その回路パターン 2 0を α倍 (ひ > 1 ) に拡大して、 直交する辺の幅がひ · d X , a * d Yの矩形の領域よ りなるマスクパターン 2 1をコンピュータの設計デ一夕 (画像デ一夕を 含む) 上で作成する。 α倍は、 ワーキングレチクルが使用される投影露 光装置の縮小倍率 ( ΙΖΟ;) の逆数であり、 ひは例えば 4, 5等である。 次に、 そのマスクパターン 2 1を 3倍 (/3〉 1 ) に拡大して、 直交す る辺の幅が α · j3 · d X, - β · d Yの矩形の領域よりなる親パター ン 2 2を設計データ (画像デ一夕を含む) 上で作成し、 その親パターン 2 2を縦横に分割して Ν個の部分親パターン Ρ 1, Ρ 2 , ···, ΡΝを設 計データ上で作成する。 図 3では、 Ν= 1 6の例が示されている。 なお、 3倍は、 図 1の投影露光装置の投影光学系 6の縮小倍率 (1Z 3) の逆 数である。 FIG. 3 shows a design process of a parent pattern formed on the master reticle of this example. In FIG. 3, first, a circuit pattern 20 of a certain layer of a finally manufactured semiconductor device is designed. The circuit pattern 20 is formed by forming various line-and-space patterns or the like in a rectangular area having orthogonal sides having widths of dX and dY. Note that the circuit patterns 20 and the like shown in FIGS. 3 and 4 are virtual patterns having a wider line width than an actual circuit pattern. In this example, the circuit pattern 20 is magnified by α times (h> 1), and the mask pattern 21 consisting of a rectangular area of d X, a * d Y with the width of the orthogonal side is Create on the design data (including images). α times projection exposure when working reticle is used It is the reciprocal of the reduction ratio (ΙΖΟ;) of the optical device. Next, the mask pattern 21 is magnified three times (/ 3> 1), and the width of orthogonal sides is a parent pattern consisting of a rectangular area of α, j3, dX, -β, dY. 2 2 is created on the design data (including the image data), and its parent pattern 2 2 is divided vertically and horizontally to create Ν partial parent patterns Ρ 1, 2,. Create above. FIG. 3 shows an example where Ν = 16. Note that 3 times is the reciprocal of the reduction magnification (1Z3) of the projection optical system 6 of the projection exposure apparatus in FIG.
図 4は、 本例のワーキングレチクル及び半導体デバイスの製造工程を 示し、 この図 4において、 まず図 3の部分親パターン P i ( i = l〜N) よりそれぞれ電子線描画装置 (又はレーザビーム描画装置等も使用でき る) 用の描画デ一夕を生成し、 その部分親パターン P i をそれぞれ等倍 で、 遮光膜が形成され、 この上にレジストが塗布されたガラス基板上の パターン領域 2 5に描画し、 現像及びエッチングを行うことによって、 マス夕一マスクとしてのマス夕一レチクル R i ( i = l〜N) を作成す る。 この際に各マスターレチクル R i上には部分親パターン P i に対し て所定の位置関係で 2つの 2次元マークよりなるァライメントマーク 2 7 A, 2 7 Bを形成しておく。 このァライメントマーク 2 7 A, 2 7 B は、 画面継ぎ露光を行う際の位置合わせ用に使用される。  FIG. 4 shows a manufacturing process of the working reticle and the semiconductor device according to the present embodiment. In FIG. 4, first, the electron beam lithography apparatus (or laser beam lithography) is used from the partial parent pattern P i (i = 1 to N) in FIG. (A device or the like can also be used). A pattern pattern 2 on a glass substrate on which a light-shielding film is formed and a resist is applied on the partial parent patterns P i at the same magnification, respectively, is generated. By drawing on 5 and performing development and etching, a mass reticle R i (i = l to N) as a mass reticle mask is created. At this time, alignment marks 27 A and 27 B composed of two two-dimensional marks are formed on each master reticle R i in a predetermined positional relationship with respect to the partial parent pattern P i. The alignment marks 27 A and 27 B are used for alignment when performing screen joint exposure.
次に、 図 1のワーキングレチクル製造用の投影露光装置を用いて、 そ の N枚のマスタ一レチクル R iの部分親パターン P iの 1 Z j3倍の縮小 像 PW i ( i = l〜N) を、 順次画面継ぎを行いながら遮光膜が形成さ れフォトレジストが塗布された基板 2 6上に転写し、 現像、 及びエッチ ング等を行ってマスクパターン 2 3を形成することによってヮ一キング レチクル WRを製造する。 また、 基板 2 6上には、 マスクパターン 2 3 に対して所定の位置関係で 2つの 2次元のァライメントマ一ク 2 8 A, 2 8 Bを形成しておく。 ァライメントマーク 2 8 A, 2 8 Bは、 マスク パ夕一ン 2 3の一部として転写してもよい。 Next, using the projection exposure apparatus for manufacturing a working reticle shown in FIG. 1, a reduced image PW i (i = l to N) of the partial master pattern P i of the N master reticle R i is obtained by a factor of 1 Z j. ) Is transferred onto the substrate 26 on which the light-shielding film is formed and the photoresist is applied while sequentially performing screen joining, and is subjected to development, etching, and the like to form a mask pattern 23. Manufacture reticle WR. Also, on the substrate 26, two two-dimensional alignment marks 28 A, in a predetermined positional relationship with respect to the mask pattern 23, 2 8 B is formed in advance. The alignment marks 28 A and 28 B may be transferred as part of the mask panel 23.
次に、 半導体デバイス製造用の投影露光装置にワーキングレチクル W Rをロードして、 照明光学系 3 1からの露光光 3 2でワーキングレチク ル W Rを照明し、 ヮ一キングレチクル W R上のマスクパターン 2 3の像 2 4を投影光学系 3 3を介して縮小倍率 1 / aで、 フォトレジス卜の塗 布されたウェハ W上の各ショット領域 S Aに順次転写した後、 現像ゃェ ツチング等を行うことにより、 或るレイヤの回路パターンが形成される。 更に、 露光工程、 パターン形成工程を繰り返した後、 ダイシング工程や ボンディング工程を経ることによって、 所望のデバイスが製造される。 本例の半導体デバイス製造用の投影露光装置では、 高解像度を得るた め照明光学系 3 1にはコヒ一レンスファクタの大きい照明条件が設定さ れている。 この際の光近接効果の影響を相殺するために、 マス夕一レチ クル R i の部分親パターン P iの縮小像を基板 2 6上に転写するための 投影露光装置の照明条件は、 コヒ一レンスファクタの小さい条件に設定 されている。 これによつて、 ウェハ W上に投影される像 2 4、 ひいては その上に形成される回路パターンの寸法は、 最初に設計された回路パ夕 —ン 2 0 (図 3参照) 通りのものとなる。  Next, the working reticle WR is loaded into a projection exposure apparatus for semiconductor device manufacturing, and the working reticle WR is illuminated with the exposure light 32 from the illumination optical system 31 to form a mask pattern on the first reticle WR. After the image 24 of 23 is sequentially transferred to each shot area SA on the wafer W coated with the photoresist through the projection optical system 33 at a reduction ratio of 1 / a, development jetting and the like are performed. As a result, a circuit pattern of a certain layer is formed. Furthermore, a desired device is manufactured by repeating the exposure step and the pattern formation step, and then going through a dicing step and a bonding step. In the projection exposure apparatus for manufacturing a semiconductor device according to the present embodiment, the illumination condition having a large coherence factor is set in the illumination optical system 31 in order to obtain high resolution. In order to offset the influence of the optical proximity effect at this time, the illumination conditions of the projection exposure apparatus for transferring a reduced image of the partial parent pattern P i of the mask reticle R i onto the substrate 26 are as follows. Is set to a condition with a small risk factor. As a result, the image 24 projected on the wafer W and the dimensions of the circuit pattern formed thereon are the same as those of the originally designed circuit pattern 20 (see FIG. 3). Become.
また、 各部分親パターン P iは、 1 Z /3に縮小して投影されるため、 電子線描画装置による各部分親パターン P iの描画誤差も実質的に 1 Z i3に軽減される。 更に、 各部分親パターン P iの描画デ一夕は、 図 3の 回路パターン 2 0の描画デ一夕の 1 / Nであるため、 各部分親パターン P i の描画時間は短くて済み、 描画中のドリフトも小さくなるため、 N 枚のマス夕一レチクル R 1〜: R Nは、 全体として短時間に、 かつ高精度 に製造することができる。 更に、 ワーキングレチクル W Rを複数枚製造 する場合には、 その N枚のマス夕一レチクル R 1〜R Nのパターンを繰 り返して転写すればよいだけであるため、 複数枚のワーキングレチクル W Rを極めて低コストに、 かつ短時間に製造することができ、 半導体デ バイスを安価に量産することができる。 In addition, since each partial parent pattern P i is projected after being reduced to 1 Z / 3, the drawing error of each partial parent pattern P i by the electron beam drawing apparatus is substantially reduced to 1 Z i3. Furthermore, since the drawing data of each partial parent pattern P i is 1 / N of the drawing data of the circuit pattern 20 in FIG. 3, the drawing time of each partial parent pattern P i can be reduced. Since the drift inside is also small, the N reticle R1 ~: RN can be manufactured in a short time and with high accuracy as a whole. Furthermore, when manufacturing a plurality of working reticles WR, the pattern of the N pieces of reticle R 1 to RN is repeated. Since it is only necessary to repeat the transfer, it is possible to manufacture a plurality of working reticles WR at extremely low cost and in a short time, and mass-produce semiconductor devices at low cost.
なお、 本例のように分割した部分親パターンを全て異なるマス夕一レ チクル R 1〜R N上に形成する必要はなく、 いくつかの部分親パターン を、 同一のマス夕一レチクル上に形成するようにしてもよい。 この場合 には、 1枚のマスタ一レチクルに形成された複数の部分親パターンの内 から所望の部分親パターンを選択してヮ一キングレチクル用の基板上に 転写すればよい。  Note that it is not necessary to form all of the divided partial parent patterns on different mask and reticle R1 to RN as in this example, and to form some partial parent patterns on the same cell and reticle. You may do so. In this case, a desired partial parent pattern may be selected from a plurality of partial parent patterns formed on one master reticle and transferred onto a single reticle substrate.
また、 このようにヮ一キングレチクルに形成するマスクパターンを複 数の部分親パターンに分割する際には、 例えば面積を等分して分割する ようにしてもよいが、 特定の機能を有するユニット回路パターン毎、 例 えばシステム L S I を構成する I P (Inte l l ec tual Property) 部毎に分 割することが望ましい。 即ち、 C P Uコア部、 R A M部、 R O M部、 A Z D変換部、 D ZA変換部等の各ユニッ ト回路パターン毎に、 それぞれ 異なるマスターレチクルに形成することが望ましい。 この場合には、 異 なる品種のシステム L S I用のワーキングレチクルを製造する際に、 共 通する I P部については、 同一のマス夕一レチクルを使用することがで き、 マスターレチクルの製造枚数を少なくすることができる。 従って、 ワーキングレチクルの製造コスト、 ひいてはシステム L S Iの製造コス トを削減することができる。  When a mask pattern formed on a single reticle is divided into a plurality of partial parent patterns in this manner, for example, the area may be divided equally, but a unit having a specific function may be used. It is desirable to divide the data for each circuit pattern, for example, for each IP (Intellectual Property) part of the system LSI. That is, it is desirable to form a different master reticle for each unit circuit pattern such as the CPU core unit, the RAM unit, the ROM unit, the AZD conversion unit, and the DZA conversion unit. In this case, when manufacturing working reticles for different types of system LSIs, the same mask and reticle can be used for the common IP section, thus reducing the number of master reticle manufactured. can do. Therefore, the production cost of the working reticle and, consequently, the production cost of the system LSI can be reduced.
また、 親パターンを複数の部分親パターンに分割する際には、 必ずし も各部分親パターン間のつなぎ部を直線とする必要はなく、 パターンが 分断されないようにパターンの形状にあわせてつなぎ部を形成するよう にしてもよい。 また、 各部分親パターン間のつなぎ部 (境界部) には、 パターンの接続部が存在してい なお、 本例ではワーキングレチクルの製造に際して、 一括露光型の投 影露光装置を使用したが、 その代わりにステップ · アンド · スキャン方 式のような走査露光型の縮小投影露光装置を使用してもよい。 走査露光 型の縮小投影露光装置では、 露光時にマスターレチクルとレチクル基板 とが投影光学系に対して縮小倍率比で同期走査される。 光学式の走査型 縮小投影露光装置を使用することによって、 投影光学系のディスト一シ ョン等が軽減できる。 Also, when dividing a parent pattern into a plurality of partial parent patterns, it is not always necessary to make the connection between each partial parent pattern a straight line, and the connection is made according to the pattern shape so that the pattern is not divided. May be formed. At the connection (boundary) between each partial parent pattern, there is a pattern connection. In this example, a batch exposure type projection exposure apparatus was used for manufacturing the working reticle, but a scanning exposure type reduction projection exposure apparatus such as a step-and-scan method may be used instead. Good. In a scanning exposure type reduction projection exposure apparatus, a master reticle and a reticle substrate are synchronously scanned with a projection optical system at a reduction ratio in exposure. By using an optical scanning type reduction projection exposure apparatus, the distortion of the projection optical system can be reduced.
以上のように、 本例では、 設計データ上でマスクパターンに〇 P C処 理を施す場合と比較して、 マスクパターンを構成する各パターン毎に補 正処理を施す必要がない。 更に、 補正処理によるパターンのデータ量の 増大がなく電子線描画装置等による親パターンの描画時間も短くて済む ため、 ワーキングレチクルを製造する場合の製造時間が大幅に短縮され、 低コストにワーキングレチクルを製造することができる。 また、 一般的 な電子デバイスの製造ラインでは、 量産品種の製造に際してその品種の 製造に必要なワーキングレチクルを複数組作製し、 複数の投影露光装置 を使用して電子デバイスの製造が行われる。 このような形態下では、 一 度マス夕一レチクルを製造すれば、 そのマスターレチクルを繰り返し使 用することによって、 必要な枚数のヮ一キングレチクルを製造できるた め、 マスターレチクルを製造するための時間は、 大きな負担とはならな レ^  As described above, in this example, it is not necessary to perform the correction processing for each pattern constituting the mask pattern, as compared with the case where the PC processing is performed on the mask pattern on the design data. Furthermore, since the amount of pattern data does not increase due to the correction process and the writing time of the parent pattern by an electron beam lithography device or the like can be shortened, the manufacturing time when manufacturing a working reticle is greatly reduced, and the working reticle is manufactured at low cost. Can be manufactured. In a general electronic device manufacturing line, a plurality of sets of working reticles required for manufacturing a variety of mass-produced varieties are manufactured, and the electronic devices are manufactured using a plurality of projection exposure apparatuses. In such a configuration, once the reticle is manufactured, the required number of reticle can be manufactured by repeatedly using the master reticle. Time is not a big burden.
なお、 図 1のワーキングレチクル製造用の投影露光装置においては、 投影光学系 6のディスト一ションによるマスクパターンの位置ずれ量が 補正されるように、 マスターレチクル M R上での親パターンの形成位置 を所定量ずらすことが好ましい。 このようにマスクパターンの位置ずれ を、 マスターレチクル M Rに親パターンを形成する段階、 即ち形成する パターンが大きい段階で補正を行うことによって、 高精度な位置補正を 行うことができる。 また、 図 1の投影露光装置では、 ワーキングレチク ル用の基板 2 6を吸着することなく Zチルトステージ 8上で 3点支持し ている。 このため、 基板 2 6の自重による橈みを実測、 又は計算 (シミ ユレ一シヨン) にて求めておき、 その橈みによる親パターンと基板 2 6 との位置ずれ量が補正されるように、 その橈み量に基づいてマスターレ チクル M R上での親パターンの形成位置を所定量ずらすことが望ましい。 このとき、 その橈みによる基板 2 6の変形を相殺するように、 その撓み み量に基づいて投影光学系 6の投影倍率やディスト一ションなどを調整 するようにしてもよい。 なお、 投影光学系 6のディストーションや自重 による橈みなどに応じて、 マス夕一レチクル M R上での親パターンの形 成位置をずらす代わりに、 図 1の投影露光装置でマスターレチクル M R と基板 2 6とのァライメン卜位置を所定量ずらすようにしてもよい。 ところで、 図 4ではデバイス製造用の投影露光装置として光学式を用 いるものとしたが、 例えば電子線、 又はイオンビームなどの荷電粒子線 を用いる露光装置、 X線を用いるプロキシミディ方式の露光装置、 ある いは軟 X線領域の E U V光を用いる投影露光装置などであってもよい。 即ち、 本発明によって製造可能なフォトマスクは透過型、 又は紫外線用 に限られるものではなく、 荷電粒子線や X線用のフォトマスク (メンブ レンマスク、 ステンシルマスクなど) 、 あるいは E U V用の反射型のフ オトマスクなどであってもよい。 なお、 ワーキングレチクルは位相シフ 卜レチクルであってもよいし、 図 4の投影露光装置を用いて製造するデ バイスは半導体デバイスに限られるものではなく、 液晶表示素子、 撮像 素子 (C C D ) 、 薄膜磁気ヘッド、 ディスプレイなど、 いかなるデバイ スであってもよい。 In the projection exposure apparatus for manufacturing a working reticle shown in FIG. 1, the position of the parent pattern on the master reticle MR is adjusted so that the amount of displacement of the mask pattern due to the distortion of the projection optical system 6 is corrected. It is preferable to shift by a predetermined amount. As described above, by correcting the positional deviation of the mask pattern at the stage of forming the master pattern on the master reticle MR, that is, at the stage of forming a large pattern, highly accurate positional correction can be achieved. It can be carried out. In the projection exposure apparatus of FIG. 1, the working reticle substrate 26 is supported at three points on the Z tilt stage 8 without being sucked. For this reason, the radius of the board 26 due to its own weight is actually measured or calculated (simulation), and the displacement between the parent pattern and the board 26 due to the radius is corrected. It is desirable to shift the formation position of the parent pattern on the master reticle MR by a predetermined amount based on the radius amount. At this time, the projection magnification or the distortion of the projection optical system 6 may be adjusted based on the amount of deflection so as to offset the deformation of the substrate 26 due to the radius. Instead of shifting the formation position of the parent pattern on the reticle MR according to the distortion of the projection optical system 6 and the radius due to its own weight, the master reticle MR and the substrate 2 The alignment position with 6 may be shifted by a predetermined amount. By the way, in FIG. 4, the optical type is used as the projection exposure apparatus for manufacturing a device. Alternatively, a projection exposure apparatus using EUV light in the soft X-ray region may be used. That is, the photomask that can be manufactured by the present invention is not limited to a transmission type or an ultraviolet type, but a photomask (a membrane mask, a stencil mask, etc.) for a charged particle beam or an X-ray, or a reflection type for an EUV. It may be a photomask. The working reticle may be a phase shift reticle, and devices manufactured by using the projection exposure apparatus shown in FIG. 4 are not limited to semiconductor devices, but include liquid crystal display elements, image pickup elements (CCD), and thin films. Any device such as a magnetic head and a display may be used.
ところで、 図 1、 図 4に示した投影露光装置では、 照明光学系内に配 置するォプティカルインテグレー夕としてフライアイレンズの代わりに ロッドインテグレー夕を用いてもよく、 あるいはフライアイレンズと口 ッ ドインテグレ一夕とを組み合わせて用いてもよい。 ロッドインテグレ 一夕を用いる場合にはその入射面が照明光学系内のフーリエ変換面とほ ぼ一致し、 かつその射出面が照明光学系内でレチクルのパターン面とほ ぼ共役となるように配置される。 従って、 レチクルブラインド (視野絞 り) はロッ ドインテグレー夕の射出面に近接して配置され、 開口絞り板 4はロッ ドィンテグレ一夕の入射面に近接して配置されるか、 あるいは ロッ ドインテグレー夕とレチクルとの間に設定されるフ一リェ変換面 (瞳面) に配置される。 By the way, in the projection exposure apparatus shown in Figs. 1 and 4, an optical integrator to be placed in the illumination optical system is used instead of a fly-eye lens. A rod integrator may be used, or a fly-eye lens and a mouth integrator may be used in combination. When using the rod integrator, the incident surface is almost coincident with the Fourier transform surface in the illumination optical system, and the exit surface is arranged almost conjugate with the reticle pattern surface in the illumination optical system. Is done. Therefore, the reticle blind (field stop) is arranged close to the exit surface of the rod integrator, and the aperture stop plate 4 is arranged close to the entrance surface of the rod integre, or It is arranged on the Fourier transform plane (pupil plane) set between the reticle and the reticle.
また、 図 1、 図 4中の投影光学系は複数の屈折光学素子のみからなる 屈折系に限られるものではなく、 屈折光学素子と反射光学素子 (凹面鏡 等) とを有する反射屈折系、 あるいは複数の反射光学素子のみからなる 反射系であってもよい。 ここで、 反射屈折型の投影光学系としては、 反 射光学素子として少なくともビームスプリッ夕、 及び凹面鏡を有する光 学系、 反射光学素子としてビームスプリッ夕を用いずに凹面鏡とミラー とを有する光学系、 米国特許第 5 0 3 1 9 7 6号、 第 5 7 8 8 2 2 9号、 及び第 5 7 1 7 5 1 8号に開示されているように、 複数の屈折光学素子 と 2つの反射光学素子 (少なくとも一方は凹面鏡) とを同一光軸上に配 置した光学系等がある。 なお、 図 4中の投影光学系は等倍系、 又は拡大 系であってもよい。  Further, the projection optical system in FIGS. 1 and 4 is not limited to a dioptric system including only a plurality of dioptric elements, but a catadioptric system having a dioptric element and a reflective optical element (such as a concave mirror), May be a reflection system composed of only the reflection optical element of the above. Here, the catadioptric projection optical system includes an optical system having at least a beam splitter and a concave mirror as a reflection optical element, and an optical system having a concave mirror and a mirror without using a beam splitter as a reflection optical element. As disclosed in U.S. Pat.Nos. 5,031,976, 5,787,229, and 5,717,1818, a plurality of refractive optics and two reflections are disclosed. There is an optical system or the like in which an optical element (at least one of which is a concave mirror) is arranged on the same optical axis. Note that the projection optical system in FIG. 4 may be a unit magnification system or an enlargement system.
更に図 1の投影露光装置では、 照明光学系の開口絞りの交換装置、 又 は σ絞り 4の駆動系 4 aを用いて変形照明の実施、 又は σ値の変更等を 行うものとしたが、 例えば露光光源 1とオプティカル ·インテグレー夕 3との間に少なくとも 1つの移動自在な光学素子を配置し、 ォプティ力 ル ·インテグレー夕 3の入射面上での照明光の強度分布 (即ちその大き さ) を変更するように構成してもよい。 また、 その少なくとも 1つの光 学素子よりも露光光源 1側に一対の円錐プリズム (アキシコン) を更に 配置し、 その一対のアキシコンの光軸方向に関する間隔を調整すること で、 オプティカル ·インテグレー夕 3の入射面上での照明光を、 その強 度分布が中心部よりもその外側で高くなる輪帯状に変更可能に構成して もよい。 これにより、 フライアイレンズでは照明光学系内のフーリエ変 換面に配置されるその射出側焦点面上、 ロッドィンテグレー夕ではその 入射面、 あるいはその射出面とレチクルとの間に設定される照明光学系 のフ一リェ変換面上での照明光の強度分布を変更することが可能となる。 また、 σ値を小さくしたり、 あるいは通常照明を変形照明 (例えば輪帯 照明) に変更しても、 その変更に伴う照明光の光量損失を大幅に低減す ることができ、 高スループットの維持が可能となる。 なお、 照明光学系 内のフーリエ変換面上での照明光の強度分布をその中心部よりも照明光 学系の光軸から偏心した 4つの局所領域内でそれぞれ高める変形照明法 を採用する場合には、 例えば一対のアキシコンの間隔調整によってフー リエ交換面上での照明光の強度分布を輪帯状にし、 かつ 4つの局所領域 を規定するための遮光板 (又は減光板) をそのフーリエ変換面に配置す ればよい。 また、 光源からの照明光を入射して、 例えば前述の 4つの局 所領域内に分布する回折光を発生する回折光学素子を用いるようにして もよい。 なお、 通常照明、 又は輪帯照明を行うときにはその回折光学素 子を、 照明光学系の光軸を中心とする矩形又は円形の所定領域に回折光 を分布させる別の回折光学素子と交換可能に構成することが望ましい。 また、 エキシマレ一ザや F 2 レーザ等の代わりに、 D F B半導体レ一 ザ又はファイバーレーザから発振される赤外域、 又は可視域の単一波長 レ一ザを、 例えばエルビウム (E r ) (又はエルビウムとイツテリピウ ム (Y b ) との両方) がドープされたファイバーアンプで増幅し、 非線 形光学結晶を用いて紫外光に波長変換した高調波を用いてもよい。 例えば、 単一波長レーザの発振波長を 1. 5 1〜 1. 5 の範囲 内とすると、 発生波長が 1 89〜1 99 nmの範囲内である 8倍高調波、 又は発生波長が 1 5 1〜 1 59 nmの範囲内である 10倍高調波が出力 される。 特に発振波長を 1. 544〜1. 553 xmの範囲内とすると、 193〜 1 94 nmの範囲内の 8倍高調波、 即ち A r Fエキシマレ一ザ とほぼ同一波長となる紫外光が得られ、 発振波長を 1. 57〜1. 58 /xmの範囲内とすると、 1 57〜 1 58 nmの範囲内の 10倍高調波、 即ち F2 レ一ザとほぼ同一波長となる紫外光が得られる。 Further, in the projection exposure apparatus shown in FIG. 1, a modified illumination or a change of the σ value, etc., are performed using the aperture stop replacement device of the illumination optical system or the drive system 4a of the σ stop 4. For example, at least one movable optical element is arranged between the exposure light source 1 and the optical integrator 3, and the intensity distribution of the illumination light on the incident surface of the optical integrator 3 (that is, its size). May be changed. Also, that at least one light A pair of conical prisms (axicons) is further placed on the side of the exposure light source 1 than the optical element, and the distance between the pair of axicons in the optical axis direction is adjusted, so that the illumination light on the entrance surface of the optical integrator 3 May be configured to be changeable into an annular shape whose intensity distribution is higher outside the center than outside the center. As a result, in the fly-eye lens, it is set on the exit-side focal plane located on the Fourier transform plane in the illumination optical system, and in the case of the rod gin, it is set on the entrance plane or between the exit plane and the reticle. It is possible to change the intensity distribution of the illumination light on the Fourier transform plane of the illumination optical system. Also, even if the σ value is reduced or the normal illumination is changed to deformed illumination (for example, annular illumination), the loss of illumination light quantity accompanying the change can be significantly reduced, and high throughput is maintained. Becomes possible. It should be noted that the modified illumination method in which the intensity distribution of the illumination light on the Fourier transform plane in the illumination optical system is increased in four local regions decentered from the optical axis of the illumination optical system from the center thereof is adopted. For example, by adjusting the distance between a pair of axicons, the intensity distribution of the illumination light on the Fourier exchange surface is made into an annular shape, and a light shielding plate (or a dimming plate) for defining four local regions is provided on the Fourier transform surface. Just place them. Further, a diffractive optical element that receives illumination light from a light source and generates, for example, diffracted light distributed in the above-described four local regions may be used. When performing normal illumination or annular illumination, the diffractive optical element can be exchanged with another diffractive optical element that distributes diffracted light in a rectangular or circular predetermined area centered on the optical axis of the illumination optical system. It is desirable to configure. Further, instead of such excimer monodentate or F 2 laser, infrared region oscillated from the DFB semiconductor laser one The or fiber laser, or a single-wavelength, single-The visible region, for example, erbium (E r) (or erbium And ytterpium (both Y b)) may be amplified by a fiber amplifier doped with the same and a harmonic converted to a wavelength of ultraviolet light using a nonlinear optical crystal may be used. For example, if the oscillation wavelength of a single-wavelength laser is in the range of 1.51 to 1.5, the 8th harmonic whose generated wavelength is in the range of 189 to 199 nm, or the generated wavelength is 1 5 1 A 10th harmonic within the range of ~ 159 nm is output. In particular, if the oscillation wavelength is in the range of 1.544 to 1.553 xm, the 8th harmonic in the range of 193 to 194 nm, that is, ultraviolet light having almost the same wavelength as the ArF excimer laser can be obtained. When the oscillation wavelength 1. a 57~1. 58 / xm in the range of 10 harmonic in the range of 1. 57 to 1 58 nm, i.e. F 2, single tHE with ultraviolet light having almost the same wavelength is obtained Can be
また、 発振波長を 1. 03〜1. 1 2 mの範囲内とすると、 発生波 長が 147〜 1 60 nmの範囲内である 7倍高調波が出力され、 特に発 振波長を 1. 099〜1. 1 06 mの範囲内とすると、 発生波長が 1 57〜 1 58 zmの範囲内の 7倍高調波、 即ち F2 レーザとほぼ同一波 長となる紫外光が得られる。 なお、 単一波長発振レーザとしてはイツテ リビゥム · ドープ · ファイバ一レーザを用いる。 If the oscillation wavelength is in the range of 1.03 to 1.12 m, a 7th harmonic whose output wavelength is in the range of 147 to 160 nm is output, and especially the oscillation wavelength is 1.099 Assuming that the wavelength is within the range of 1.106 m, the seventh harmonic within the wavelength range of 157 to 158 zm, that is, ultraviolet light having substantially the same wavelength as the F 2 laser can be obtained. It should be noted that, as the single-wavelength oscillation laser, a laser-doped fiber laser is used.
更に、 露光用照明光は遠紫外光 (DUV光) 、 又は真空紫外光 (VU V光) 等に限られるものではなく、 波長が 5〜1 5 nm、 例えば 1 3. 4 nm又は 1 1. 5 n mの軟 X線領域の極端紫外光 (EUV光ノ XUV 光) であってもよい。 なお、 遠紫外光や真空紫外光等を用いる露光装置 では一般的に透過型レチクルが用いられ、 レチクル基板としては石英ガ ラス、 フッ素がド一プされた石英ガラス、 蛍石、 フッ化マグネシウム、 又は水晶等が用いられる。 また、 EUV露光装置では反射型マスクが用 いられ、 プロキシミティ方式の X線露光装置、 又は電子線露光装置等で は透過型マスク (ステンシルマスク、 メンブレンマスク) が用いられ、 マスク基板としてはシリコンウェハ等が用いられる。  Furthermore, the illumination light for exposure is not limited to far ultraviolet light (DUV light) or vacuum ultraviolet light (VUV light), etc., but has a wavelength of 5 to 15 nm, for example, 13.4 nm or 11. Extreme ultraviolet light (EUV light XUV light) in the soft X-ray region of 5 nm may be used. An exposure apparatus using far ultraviolet light, vacuum ultraviolet light, or the like generally uses a transmission type reticle, and the reticle substrate is quartz glass, fluorine-doped quartz glass, fluorite, magnesium fluoride, or the like. Alternatively, quartz or the like is used. In addition, a reflective mask is used in an EUV exposure apparatus, and a transmission type mask (stencil mask, membrane mask) is used in a proximity type X-ray exposure apparatus or an electron beam exposure apparatus, and a silicon substrate is used as a mask substrate. A wafer or the like is used.
なお、 複数の光学素子から構成される照明光学系、 及び投影光学系を 投影露光装置本体に組み込んで光学調整を行うとともに、 多数の機械部 品からなるレチクルステージやウェハステージを投影露光装置本体に取 り付けて配線や配管を接続し、 更に総合調整 (電気調整、 動作確認等) を行うことにより上記実施の形態の投影露光装置を製造することができ る。 なお、 露光装置の製造は温度及びクリーン度等が管理されたクリ一 ンルームで行うことが望ましい。 It should be noted that an illumination optical system composed of a plurality of optical elements and a projection optical system are incorporated into the main body of the projection exposure apparatus to perform optical adjustment, and a large number of mechanical parts. The reticle stage and wafer stage made of the product are attached to the main body of the projection exposure apparatus, wiring and piping are connected, and the overall adjustment (electrical adjustment, operation confirmation, etc.) is performed to manufacture the projection exposure apparatus of the above embodiment. can do. It is desirable that the exposure apparatus be manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
本発明は上述の実施の形態に限定されず、 本発明の要旨を逸脱しない 範囲で種々の構成を取り得る。 更に、 明細書、 特許請求の範囲、 図面、 及び要約を含む、 1 9 9 8年 1 2月 1 8日付提出の日本国特許出願第 1 0 - 3 6 0 5 9 4号の全ての開示内容は、 そっくりそのまま引用してこ こに組み込まれている。 産業上の利用の可能性  The present invention is not limited to the above-described embodiment, and can take various configurations without departing from the gist of the present invention. In addition, all disclosures, including the specification, claims, drawings, and abstract, of Japanese Patent Application No. 10-36 059 94, filed on February 18, 1998 Is incorporated here as is. Industrial applicability
本発明の第 1のフォトマスクの製造方法によれば、 その第 1の条件の もとで生じる例えば光近接効果に伴う投影像の変形に対する補正がされ たフォトマスクを製造することができる。 この際に、 設計データ上でマ スクのパターンを構成するパターン毎に補正を行う場合に比べて、 補正 処理に要する時間が大幅に短縮され、 補正処理によるパターンのデータ 量の増加もないため、 マス夕一マスク上の親パターンを例えば電子線描 画装置等を用いて描画する際に、 その描画時間も大幅に短縮される。 従 つて、 その第 1の条件のもとで生じる光近接効果に対する補正が実質的 に施されたフォ卜マスクを低コスト、 かつ短時間に製造することができ る。  According to the first method for manufacturing a photomask of the present invention, it is possible to manufacture a photomask corrected for deformation of a projected image caused by, for example, the optical proximity effect that occurs under the first condition. At this time, the time required for the correction processing is greatly reduced compared to the case where correction is performed for each pattern constituting the mask pattern on the design data, and the amount of pattern data does not increase due to the correction processing. When the parent pattern on the mask is drawn using, for example, an electron beam drawing device, the drawing time is greatly reduced. Therefore, a photomask in which the correction for the optical proximity effect generated under the first condition is substantially performed can be manufactured at low cost and in a short time.
同様に、 本発明の第 2のフォトマスクの製造方法によれば、 その第 1 の照明条件のもとで生じる光近接効果に対する補正が施されたフォトマ スクを低コスト、 かつ短時間に製造することができる。  Similarly, according to the second photomask manufacturing method of the present invention, a photomask corrected for the optical proximity effect generated under the first illumination condition is manufactured at low cost and in a short time. be able to.
次に、 本発明の第 1又は第 2のフォトマスクの製造装置によれば、 本 発明のフォトマスクの製造方法を実施することができる。 また、 本発明 のデバイスの製造方法によれば、 光近接効果に対する補正が施されたフ オ トマスクを短時間に、 かつ低コストで製造でき、 ひいては高機能のデ バイスを低コス卜に量産することができる。 Next, according to the first or second photomask manufacturing apparatus of the present invention, The method for manufacturing a photomask of the invention can be implemented. Further, according to the device manufacturing method of the present invention, a photomask corrected for the optical proximity effect can be manufactured in a short time and at low cost, and as a result, high-performance devices can be mass-produced at low cost. be able to.
また、 本発明の第 3のフォトマスクの製造方法によれば、 デバイスを 製造する際に生じる光近接効果に対する補正が施されたフォトマスクを、 短時間、 かつ低コストに製造することができる。  Further, according to the third photomask manufacturing method of the present invention, a photomask corrected for the optical proximity effect generated when manufacturing a device can be manufactured in a short time and at low cost.
また、 本発明の第 1又は第 2のフォトマスクによれば、 短時間かつ低 コス卜に光近接効果に対する補正が施されたフォトマスクが得られる利 点がある。 また、 本発明のデバイスによれば、 線幅精度等に優れた高機 能のデバイスが得られる利点がある。  Further, according to the first or second photomask of the present invention, there is an advantage that a photomask corrected for the optical proximity effect in a short time and at low cost can be obtained. Further, according to the device of the present invention, there is an advantage that a highly functional device excellent in line width accuracy and the like can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 所定の第 1の条件のもとで投影光学系を介して転写されるパターン が形成されたフォトマスクの製造方法であって、 1. A method for manufacturing a photomask on which a pattern to be transferred via a projection optical system is formed under predetermined first conditions,
前記パターンを拡大した親パターンを第 1基板上に描画することによ つてマスタ一マスクを作製し、  A master mask is produced by drawing the enlarged parent pattern on the first substrate,
前記第 1の条件に応じて設定された第 2の条件のもとで、 前記マス夕 —マスクの前記親パターンを縮小投影光学系を介して第 2基板上に転写 して前記フォトマスクを作製することを特徴とするフォトマスクの製造 方法。  Under a second condition set in accordance with the first condition, the master pattern of the mask is transferred onto a second substrate via a reduction projection optical system to produce the photomask. A method for manufacturing a photomask, comprising:
2 . 所定の第 1の照明条件のもとで投影光学系を介して転写されるパ夕 —ンが形成されたフォトマスクの製造方法であって、  2. A method for manufacturing a photomask in which a pattern transferred through a projection optical system under predetermined first illumination conditions is formed,
前記パターンを拡大した親パ夕一ンを第 1基板上に描画することによ つてマスターマスクを作製し、  A master mask is manufactured by drawing a parent pattern enlarging the pattern on the first substrate,
前記第 1の照明条件による投影像の変化を相殺するように設定された 第 2の照明条件のもとで、 前記マスターマスクの前記親パターンを縮小 投影光学系を介して第 2基板上に転写して前記フォトマスクを作製する ことを特徴とするフォトマスクの製造方法。  Under a second illumination condition set to offset a change in a projected image due to the first illumination condition, the parent pattern of the master mask is reduced and transferred onto a second substrate via a projection optical system. And producing the photomask.
3 . 前記第 1の照明条件は、 コヒーレンスファクタが 0 . 7以上の照明, 又は輪帯照明であり、  3. The first illumination condition is illumination having a coherence factor of 0.7 or more, or annular illumination,
前記第 2の照明条件は、 コヒ一レンスファクタが 0 . 4以下で 0 . 1 以上の照明であることを特徴とする請求の範囲 2記載のフォトマスクの 製造方法。  3. The method according to claim 2, wherein the second illumination condition is illumination having a coherence factor of 0.4 or less and 0.1 or more.
4 . 前記第 1の照明条件は、 コヒーレンスファクタが 0 . 4以下で 0 . 1以上の照明であり、  4. The first illumination condition is illumination having a coherence factor of 0.4 or less and 0.1 or more,
前記第 2の照明条件は、 コヒ一レンスファクタが 0 . 7以上の照明、 又は輪帯照明であることを特徴とする請求の範囲 2記載のフォ The second illumination condition is illumination having a coherence factor of 0.7 or more, Or a ring illumination.
の製造方法。 Manufacturing method.
5 . 所定の第 1の照明条件のもとで投影光学系を介して転写されるパ夕 —ンが形成されたフォトマスクの製造装置であって、  5. An apparatus for manufacturing a photomask in which a pattern transferred through a projection optical system under a predetermined first illumination condition is formed,
前記パターンを拡大した親パターンが描画されたマスターマスクを保 持するマスクステージと、  A mask stage holding a master mask on which a parent pattern obtained by enlarging the pattern is drawn;
該マスクステージ上のマスクを複数の照明条件の何れかで照明する照 明光学系と、  An illumination optical system for illuminating the mask on the mask stage under any of a plurality of illumination conditions;
前記複数の照明条件中から前記第 1の照明条件による投影像の変化を 相殺するように選択した第 2の照明条件を前記照明光学系に設定する制 御系と、  A control system for setting, in the illumination optical system, a second illumination condition selected from among the plurality of illumination conditions so as to cancel a change in a projected image due to the first illumination condition;
前記マスクステージ上のマスクのパターンの像を所定の基板上に転写 する縮小投影光学系と、  A reduction projection optical system for transferring an image of a mask pattern on the mask stage onto a predetermined substrate;
を有することを特徴とするフォトマスクの製造装置。 An apparatus for manufacturing a photomask, comprising:
6 . 所定のデバイスの製造方法であって、  6. A method for manufacturing a given device,
前記デバイスの所定のレイヤのパターンを α倍 ( αは 1より大きい実 数) に拡大した第 1パターンを作成し、 該第 1パターンを照明する際の 第 1の照明条件を設定する第 1工程と、  A first step of creating a first pattern obtained by enlarging a pattern of a predetermined layer of the device by a factor of α (α is a real number greater than 1), and setting a first illumination condition when illuminating the first pattern; When,
該第 1パターンを 3倍 (/3は 1より大きい実数) に拡大した親パ夕一 ンを 1枚又は複数枚の第 1基板上に描画することによってマス夕一マス クを作製する第 2工程と、  A second mask is fabricated by drawing a parent pattern, which is three times the first pattern (/ 3 is a real number greater than 1) on one or more first substrates. Process and
前記第 1の照明条件による投影像の変化を相殺するように設定された 第 2の照明条件のもとで前記マスターマスクのパターンを 1 Ζ )3倍に縮 小した光学像を第 2基板上に転写することによってヮ一キングマスクを 作製する第 3工程と、  An optical image obtained by reducing the pattern of the master mask by a factor of 3 on the second substrate under a second illumination condition set to cancel the change in the projected image due to the first illumination condition is provided on a second substrate. A third step of producing a king mask by transferring the
前記第 1の照明条件のもとで前記ワーキングマスク上のパターンを 1 a倍に縮小した像を前記第 3基板上に転写する第 4工程と、 Under the first illumination condition, the pattern on the working mask is a fourth step of transferring the image reduced by a times onto the third substrate,
を有することを特徴とするデバイスの製造方法。 A method for manufacturing a device, comprising:
7 . デバイス製造に用いられる露光装置によって感光基板上に転写され るパターンを有するフォトマスクの製造方法であって、  7. A method for producing a photomask having a pattern transferred onto a photosensitive substrate by an exposure apparatus used for device production,
前記パターンを拡大した親パターンの少なくとも一部が形成されるマ ス夕一マスクを投影光学系の物体面側に配置し、 前記少なくとも一部の 親パターンの近接度に応じた照明条件で前記マス夕一マスクを照明する とともに、 前記投影光学系を介してその像面側に配置されるフォトマス ク製造用の基板上に、 前記少なくとも一部の親パターンの縮小像を転写 して前記フォトマスクを製造することを特徴とするフォトマスクの製造 方法。  A mask in which at least a part of the parent pattern obtained by enlarging the pattern is formed is disposed on the object plane side of the projection optical system, and the mask is formed under illumination conditions according to the proximity of the at least part of the parent pattern. Illuminating the mask and transferring the reduced image of the at least a part of the parent pattern onto a photomask manufacturing substrate disposed on the image plane side of the photomask via the projection optical system. A method for manufacturing a photomask, comprising: manufacturing a photomask.
8 . 前記照明条件は、 前記露光装置と近接効果が逆特性となるように定 められることを特徴とする請求の範囲 7記載のフォトマスクの製造方法。 8. The method for manufacturing a photomask according to claim 7, wherein the illumination condition is determined so that the proximity effect of the exposure device and the proximity effect have opposite characteristics.
9 . 前記照明条件は、 前記マスターマスクに照明光を照射する照明光学 系内の、 前記マスターマスクのパターン面に対するフーリエ変換面上で の、 前記照明光の強度分布の形状と大きさとのうち少なくとも 1つを所 定の状態に設定するものであることを特徴とする請求の範囲 7記載のフ ォトマスクの製造方法。 9. The illumination condition is at least one of a shape and a size of an intensity distribution of the illumination light in an illumination optical system that irradiates the master mask with illumination light, on a Fourier transform surface with respect to a pattern surface of the master mask. 8. The method for manufacturing a photomask according to claim 7, wherein one is set to a predetermined state.
1 0 . 前記親パターンは、 少なくとも 2つの領域に分けて形成され、 該 少なくとも 2つの領域の縮小像を前記フォトマスク製造用の基板上につ なぎ合わせて転写することを特徴とする請求の範囲 7〜 9の何れか一項 記載のフォトマスクの製造方法。  10. The parent pattern is formed by being divided into at least two regions, and the reduced images of the at least two regions are connected and transferred onto the substrate for manufacturing the photomask. The method for producing a photomask according to any one of claims 7 to 9.
1 1 . デバイス製造に用いられる露光装置によって感光基板上に転写さ れるパターンを有するフォトマスクの製造装置であって、  11. An apparatus for manufacturing a photomask having a pattern transferred onto a photosensitive substrate by an exposure apparatus used for manufacturing a device,
前記パターンを拡大した親パターンの少なくとも一部が形成されるマ ス夕一マスクを照明する照明光学系と、 前記マスターマスクの縮小像をフォ卜マスク製造用の基板上に投射す る投影光学系と、 An illumination optical system that illuminates a mask that forms at least a part of the parent pattern obtained by enlarging the pattern; A projection optical system for projecting the reduced image of the master mask on a substrate for manufacturing a photomask,
前記少なくとも一部の親パターンの近接度に応じた前記マスターマス クの照明条件を前記照明光学系に設定する調整装置とを備えたことを特 徴とするフォトマスクの製造装置。  An adjusting device for setting an illumination condition of the master mask in the illumination optical system in accordance with the proximity of the at least a part of the parent pattern.
1 2 . 前記調整装置は、 前記照明光学系内の前記マス夕一マスクのパ夕 ーン面に対するフーリエ変換面上での前記照明光の強度分布を変更する 光学部材を有することを特徴とする請求の範囲 1 1記載のフォトマスク の製造装置。  12. The adjustment device includes an optical member that changes an intensity distribution of the illumination light on a Fourier transform plane with respect to a pattern plane of the mask in the illumination optical system. A photomask manufacturing apparatus according to claim 11.
1 3 . 請求の範囲 1〜4、 7〜 9の何れか一項記載のフォトマスクの製 造方法を用いて製造されることを特徴とするフォトマスク。  13. A photomask manufactured by using the method for manufacturing a photomask according to any one of claims 1 to 4, 7 to 9.
1 4 . 請求の範囲 5、 1 1、 又は 1 2記載のフォトマスクの製造装置を 用いて製造されることを特徴とするフォトマスク。  14. A photomask manufactured by using the photomask manufacturing apparatus according to claim 5, 11, or 12.
1 5 . 請求の範囲 6記載のデバイスの製造方法を用いて製造されること を特徴とするデバイス。  15. A device manufactured by using the device manufacturing method according to claim 6.
PCT/JP1999/006962 1998-12-18 1999-12-10 Photo mask production method and device thereof WO2000038014A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU16842/00A AU1684200A (en) 1998-12-18 1999-12-10 Photo mask production method and device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/360594 1998-12-18
JP36059498 1998-12-18

Publications (1)

Publication Number Publication Date
WO2000038014A1 true WO2000038014A1 (en) 2000-06-29

Family

ID=18470086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006962 WO2000038014A1 (en) 1998-12-18 1999-12-10 Photo mask production method and device thereof

Country Status (2)

Country Link
AU (1) AU1684200A (en)
WO (1) WO2000038014A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189749A (en) * 2004-12-30 2006-07-20 Hynix Semiconductor Inc Multi-transmission phase mask and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156567A (en) * 1976-06-23 1977-12-27 Hitachi Ltd Production of photo mask
JPS60124822A (en) * 1983-12-09 1985-07-03 Fujitsu Ltd Pattern formation method using reduction projection exposure equipment
JPH01278018A (en) * 1988-04-29 1989-11-08 Hoya Corp Patterning process
JPH07152147A (en) * 1993-11-30 1995-06-16 Sony Corp Production and apparatus for producing mask for exposing
JPH0844038A (en) * 1994-08-03 1996-02-16 Matsushita Electron Corp Master mask forming device and production of semiconductor device
JPH09244223A (en) * 1996-03-14 1997-09-19 Toshiba Corp Exposure intensity distribution display method and mask pattern edition device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156567A (en) * 1976-06-23 1977-12-27 Hitachi Ltd Production of photo mask
JPS60124822A (en) * 1983-12-09 1985-07-03 Fujitsu Ltd Pattern formation method using reduction projection exposure equipment
JPH01278018A (en) * 1988-04-29 1989-11-08 Hoya Corp Patterning process
JPH07152147A (en) * 1993-11-30 1995-06-16 Sony Corp Production and apparatus for producing mask for exposing
JPH0844038A (en) * 1994-08-03 1996-02-16 Matsushita Electron Corp Master mask forming device and production of semiconductor device
JPH09244223A (en) * 1996-03-14 1997-09-19 Toshiba Corp Exposure intensity distribution display method and mask pattern edition device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189749A (en) * 2004-12-30 2006-07-20 Hynix Semiconductor Inc Multi-transmission phase mask and method for manufacturing the same

Also Published As

Publication number Publication date
AU1684200A (en) 2000-07-12

Similar Documents

Publication Publication Date Title
US6677088B2 (en) Photomask producing method and apparatus and device manufacturing method
US8023103B2 (en) Exposure apparatus, exposure method, and method for producing device
WO1999050712A1 (en) Exposure method and system, photomask, method of manufacturing photomask, micro-device and method of manufacturing micro-device
WO1999066370A1 (en) Method for producing mask
JP2003092253A (en) Illumination optical system, projection aligner, and manufacturing method of microdevice
WO2000068738A1 (en) Aligner, microdevice, photomask, exposure method, and method of manufacturing device
KR20040086313A (en) Exposure device and exposure method
JP2004207732A (en) Method for manufacturing device
US8009271B2 (en) Projection optical system, exposure apparatus, exposure system, and exposure method
US8343693B2 (en) Focus test mask, focus measurement method, exposure method and exposure apparatus
US20060197933A1 (en) Exposure apparatus
JP2004200701A (en) Lithography projection mask, method for manufacturing device by lithography projection mask, and device manufactured by this method
WO1999036832A1 (en) Illuminating device and exposure apparatus
WO2002042728A1 (en) Method and apparatus for measuring aberration of projection optical system, and method and apparatus for exposure
JP2005175040A (en) Lighting optical system and aligner
JP2001250760A (en) Aberration measuring method, mask detecting method to use said method and exposure method
JP5118407B2 (en) Optical system, exposure apparatus, and device manufacturing method
WO2002031870A1 (en) Projection optical system, aligner comprising the projection optical system, and method for manufacturing apparartus comprising the aligner
JP2004031808A (en) Projection optical system of aligner, aligner equipped with the same, and method for exposure using the aligner
KR101019389B1 (en) Exposure equipment
WO2000038014A1 (en) Photo mask production method and device thereof
JP2002139406A (en) Mask for measuring optical characteristic, method of measuring optical characteristic and production method of exposer
JP2004311896A (en) Method and equipment for exposure, process for fabricating device, and mask
JP2007287885A (en) Illuminating optical apparatus, aligner, and method of manufacturing device
WO2000025351A1 (en) Method and device for producing mask

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: AU

Ref document number: 2000 16842

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 590011

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09868316

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase