WO2000031389A1 - Cooling control device for internal combustion engines - Google Patents
Cooling control device for internal combustion engines Download PDFInfo
- Publication number
- WO2000031389A1 WO2000031389A1 PCT/JP1999/006555 JP9906555W WO0031389A1 WO 2000031389 A1 WO2000031389 A1 WO 2000031389A1 JP 9906555 W JP9906555 W JP 9906555W WO 0031389 A1 WO0031389 A1 WO 0031389A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- command signal
- cooling
- internal combustion
- unit
- heat exchanger
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/167—Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P2007/146—Controlling of coolant flow the coolant being liquid using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2023/00—Signal processing; Details thereof
- F01P2023/08—Microprocessor; Microcomputer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2025/00—Measuring
- F01P2025/08—Temperature
- F01P2025/32—Engine outcoming fluid temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2025/00—Measuring
- F01P2025/60—Operating parameters
- F01P2025/62—Load
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/02—Controlling of coolant flow the coolant being cooling-air
- F01P7/04—Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
- F01P7/048—Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using electrical drives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/02—Controlling of coolant flow the coolant being cooling-air
- F01P7/10—Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers
- F01P7/12—Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers by thermostatic control
Definitions
- the present invention relates to a cooling control device for forming a circulation path of a cooling medium between an internal combustion engine such as an automobile engine and a heat exchanger to cool the internal combustion engine, and is particularly arranged in front of the heat exchanger.
- the present invention relates to a cooling control device that employs a variable grill unit capable of adjusting a flow rate of air to a heat exchanger, thereby controlling a temperature of a cooling medium circulated in an internal combustion engine to an optimal state.
- a typical example is a water-cooled cooling control device using a radiator.
- Most of the current automobile engines employ a water-cooled cooling control device using the radiator.
- Japanese Unexamined Patent Publication No. Hei 6-10671 discloses cooling control means that includes a grill unit that adjusts the amount of ventilation to the radiator, and that controls the amount of ventilation by the grill unit based on the temperature of cooling water. Have been.
- this type of engine has the property of being able to operate at a high temperature that does not cause overheating, thereby improving fuel efficiency and suppressing the generation of harmful gases. It is desirable to be able to maintain a constant high temperature state that does not cause overheating under any operating conditions.
- the present invention has been made in view of such problems, and has a flow control unit that controls a flow rate of cooling water with respect to a radiator, and a flow control unit that is disposed in front of a radiator and that can adjust a ventilation amount to the radiator.
- An object of the present invention is to provide a cooling control device that can sufficiently cope with the above-mentioned severe changes in the operating conditions by using the variable grill unit in combination. Disclosure of the invention
- a cooling control device for an internal combustion engine which has been made to solve the above-mentioned problem, comprises: a circulation path for a cooling medium between a fluid passage formed in the internal combustion engine and a fluid passage formed in a heat exchanger.
- a cooling control device for an internal combustion engine wherein heat generated in the internal combustion engine is radiated by the heat exchanger by circulating a cooling medium in the circulation path.
- a flow control unit for controlling the flow rate of the cooling medium in the circulation path between the units, a variable grill unit disposed in front of the heat exchanger and capable of adjusting the amount of ventilation to the heat exchanger, and at least the cooling medium Based on the temperature information, the flow rate control And a command signal generation unit for generating a command signal for controlling the flow rate of the cooling medium in the knit and a command signal for controlling the amount of air flow to the heat exchanger in the variable grill unit.
- the command signal generation unit controls the flow rate from a control mode in which the flow rate of the cooling medium by the flow rate control unit is controlled to the minimum state and the amount of air flow to the heat exchanger by the variable grill unit is controlled to the minimum state. It is configured to generate a command signal to control a flow rate of the cooling medium by the unit to a maximum state and to reach a control mode in which a variable grill unit controls a ventilation amount to a heat exchanger to a maximum state.
- the command signal generating unit further includes information indicating an operation or non-operation state of a blower fan for forcibly cooling the heat exchanger, information indicating an outside air temperature, and information indicating a traveling speed of the vehicle. It is configured to be added.
- the flow control unit preferably includes a heater that generates heat based on a command signal supplied from a command signal generation unit, a thermoelement driven in response to the heat generated by the heater, and a driving force of the thermoelement. And a flow control valve whose degree of valve opening is controlled by the valve.
- the flow control unit includes an electric motor driven based on a command signal supplied from a command signal generation unit, and a flow control valve whose degree of valve opening is controlled by the driving force of the electric motor. In some cases.
- variable grill unit preferably includes a heater that generates heat based on a command signal supplied from a command signal generation unit, a thermoelement that is driven in response to the heat generated by the heater, and a drive that drives the thermoelement. It is opened and closed by force and controls the air flow to the heat exchanger.
- variable grill unit controls an electric motor driven based on a command signal supplied from a command signal generation unit, and is opened and closed by a driving force of the electric motor, and controls a ventilation amount to a heat exchanger. In some cases.
- the cooling control device in the circulation path between the internal combustion engine and the heat exchanger
- the flow force of the cooling medium is adjusted by, for example, the degree of opening of a flow control valve having a butterfly valve.
- a variable grill unit located in front of the heat exchanger allows the airflow to the heat exchanger to be adjusted.
- the command signal generation unit generates parameters such as information on cooling water temperature, information indicating the operation or non-operation of the blower fan for forcibly cooling the heat exchanger, information indicating the outside air temperature, and information indicating the traveling speed of the vehicle.
- a command signal is generated based on the command signal, and the command signal controls the degree of opening of the flow control valve and the amount of air flow to the heat exchanger by the variable grill unit.
- the flow rate of the cooling medium by the flow rate control unit can be changed from the warm-up control mode in which the flow rate of the cooling medium by the flow rate control unit is controlled to the minimum state, and the amount of air flow to the heat exchanger by the variable grille unit is controlled to the minimum state.
- a maximum cooling control mode is executed in which the maximum cooling state is controlled and the amount of air flow to the heat exchanger by the variable grill unit is controlled to the maximum state.
- FIG. 1 is a configuration diagram showing an embodiment in which a cooling control device according to the present invention is applied to an automobile engine
- FIG. 2 is a flow control unit having a first configuration used in the device shown in FIG.
- FIG. 3 is a configuration diagram showing the flow control unit of a second configuration used in the apparatus shown in FIG. 1 in a partial cross-sectional state.
- FIG. 4 is a configuration diagram showing a partial section of a grill actuator in the variable grill unit used in the apparatus shown in FIG. 1
- FIG. 5 is a command signal generation unit (ECU) shown in FIG. 3 is a block diagram showing a basic configuration of FIG.
- Fig. 6 is a connection diagram showing the configuration of the PTC heater drive circuit in the flow control unit and the heater element drive circuit in the variable grill unit.
- Fig. 7 is a diagram showing the drive of the fan motor.
- FIG. 2 is a connection diagram showing a configuration of a motor drive circuit for performing the above.
- FIG. 1 shows an overall configuration in which the present invention is applied to a cooling control device for an automobile engine.
- reference numeral 1 denotes an engine including a cylinder block 1a and a cylinder head 1b, and a fluid passage indicated by an arrow c is formed in the cylinder block 1a and the cylinder head 1b of the engine 1.
- a fluid passage indicated by an arrow c is formed in the cylinder block 1a and the cylinder head 1b of the engine 1.
- Reference numeral 2 denotes a heat exchanger, that is, a radiator, and a fluid passage 2c is formed in the radiator 2 as is well known, and a cooling water inlet 2a and a cooling water outlet 2b of the radiator 2 It is connected to a cooling water channel 3 that circulates cooling water with the engine 1.
- the cooling water passage 3 includes an outlet-side cooling water passage 3a communicating from a cooling water outlet 1d provided at an upper portion of the engine 1 to a cooling water inlet 2a provided at an upper portion of the radiator 2, and a radiator 2 Connecting the inlet cooling water passage 3b communicating from the cooling water outlet 2b provided in the lower part of the cooling water inlet 1e provided in the lower part of the engine 1 with the cooling water passages 3a and 3b. It consists of a bypass waterway 3c.
- Reference numeral 5 denotes a water pump disposed at the inlet 1e of the engine 1, which rotates a rotation shaft by rotation of a crankshaft (not shown) of the engine 1 to forcibly circulate cooling water.
- Reference numeral 6 denotes a fan unit for forcing cooling air into the radiator 2, and includes a cooling fan 6a and a fan motor 6b for rotating the fan.
- An outlet side cooling water passage 3a disposed between the cooling water outlet 1d of the engine 1 and the cooling water inlet 2a provided at the upper part of the radiator 2 has a flow rate control described in detail later.
- Unit 11 is interposed. Thereby, a circulation path of the cooling medium, that is, the cooling water is formed so as to include the flow control unit 11.
- a temperature sensor 13 such as a thermistor is disposed at an outlet 1 d of the cooling water in the engine 1. The value detected by the temperature sensor 13 is converted by a converter 14 into data recognizable by a command signal generation unit (hereinafter referred to as an ECU) 15, and the ECU 15 controls the operating state of the entire engine. Is configured to be supplied.
- the opening information from the throttle opening sensor 17 for detecting the opening of the throttle valve 16 of the engine 1 is also supplied to the ECU 15. I have. Further, although not shown, the ECU 15 further includes information indicating the operation or non-operation of a blower fan (fan motor) for forcibly cooling the radiator 2, information indicating the outside air temperature, and information regarding the progress of the vehicle. It is configured such that information indicating the speed and the like are further added.
- a blower fan fan motor
- the ECU 15 is configured to supply a PWM signal for heating the PTC heater, which will be described later, to the PTC drive circuit 18, and the ECU 15 supplies a fan motor drive circuit 19 to the fan motor drive circuit 19.
- a PWM signal for fan motor drive control described later is supplied.
- the ECU 15 is configured to supply a PWM signal for heating the heater element to a grill unit drive circuit 20 also described later.
- the PTC drive circuit 18, the fan motor drive circuit 19, and the grill unit drive circuit 20 control the current supplied from the battery 21 by a PWM signal (command signal) generated by the ECU 15, respectively.
- the control power is supplied to a PTC heater described later provided in the flow control unit 11, a fan motor 6b, and a heater element controlling opening and closing of a grill unit described later.
- variable grill unit 22 In front of the radiator 2, a variable grill unit 22 is provided which is capable of adjusting the amount of air passing through the radiator 2.
- the variable grill unit 22 includes, for example, a grill 23 configured so that a plurality of strip-shaped glycerol bodies can be linked to change the tilt angle. By changing the air flow, it is possible to adjust the air flow to the Laje night and the second side.
- the actuator 24 that controls the opening and closing of the grill 23 changes the angle of the grill 23 by being controlled by a command signal (PWM signal) from the drive circuit 20.
- PWM signal a command signal from the drive circuit 20.
- the air flow to the radiator 2 can be adjusted.
- Fig. 2 shows a first configuration of the flow rate control unit "! 1" in a cross-sectional state.
- the flow rate control unit 11 includes a tubular body 31 connected to the engine side.
- a support shaft 32 is disposed at the center of the inner bottom of the cylindrical portion 31, and a butterfly valve 33 rotatably supported by the support shaft 32 is disposed.
- This butterfly valve 33 is closed by a return spring (not shown) arranged on the support shaft 32 as shown in FIG. 2 (a) when a thermoelement described later is not operated. It is configured.
- the valve seat 34 made of a flexible substance disposed on the inner bottom of the cylindrical body 31 is configured to contact the valve body.
- the valve body of the butterfly valve 33 is formed in a disk shape, and the angle of the plane direction with respect to the flowing direction of the cooling water is rotationally driven by the support shaft 32 so that the flow rate of the cooling water is reduced. It is made to be controlled. That is, the valve is closed when the angle in the plane direction is about 90 degrees with respect to the flow direction of the cooling water, and is fully opened when the angle in the plane direction is near 0 degrees. By appropriately setting the intermediate angle, the flow rate of the cooling water is controlled almost linearly.
- thermo-element 35 is disposed on the outflow side of the cooling water of the butterfly valve 33, that is, on the radiator side.
- the thermoelement 35 is disposed in the cooling water of the cooling water passage 3a, and is configured to be able to make thermal contact with the cooling water.
- thermoelement 35 is disposed so as to be positioned in the cooling water by a cylindrical wax element 36 in which wax as a thermal expansion body is sealed. Further, a piston member 37 buried so as to be vertically movable in accordance with the degree of expansion of the wax is disposed in the wax element 36. Above the piston member 37, a cylindrical retainer 38 is arranged so as to surround the piston member 37, and the piston member 37 is moved upward by the support shaft 32.
- the cam member 39 is arranged coaxially with the cam member 39, and can be rotated about the support shaft 32. Therefore, with the rotation of the cam member 39 by the operation of the piston member 37, the butterfly valve 33 is opened as shown in FIG. 2 (b), and the cooling water is circulated.
- annular PTC heater 40 having a positive temperature coefficient thermistor as a heating element is disposed so as to surround the wax element 36, and above and below the PTC heater 40, a current for supplying a current to the PTC heater 40 is provided.
- a pair of electrodes 41 and 42 each formed in an annular shape are arranged. The electrodes 41 and 42 are configured to be supplied with current through a lead wire from a socket 43 formed on a side surface of the flow control unit 11.
- the wax element 36 can be heated. Therefore, due to the thermal expansion of the wax sealed in the wax element 36, the piston member 3 protrudes upward as described above, and the butterfly valve 33 can be opened. According to the flow control unit 11 of the first configuration shown in FIG. 2, the opening degree of the butterfly valve 33 can be controlled in accordance with the temperature of the cooling water and the amount of electric power applied to the PTC heater. .
- FIG. 3 shows a second configuration of the flow control unit 11 in a cross-sectional state.
- the same parts as those in FIG. 2 are denoted by the same reference numerals, and therefore, detailed description thereof will be omitted.
- thermoelement 35 in the flow control unit 11 shown in FIG. 3 is configured to be thermally insulated from the cooling water.
- a wall body 44 is provided at the outlet side of the butterfly valve 33 to shut off the heat of the cooling water with the thermoelement 35.
- the disc-shaped PTC heater 40 is arranged between the disc-shaped electrodes 41 and 42 at the lower bottom of the thermo-element 35.
- the wall 44 can be formed from a material such as a synthetic resin, so that the thermal insulation can be further improved.
- FIG. 3 shows a closed state of the butterfly valve 33, and when the PTC heater 40 is energized, the piston member 37 projects upward due to thermal expansion of the wax sealed in the wax element 36, and The butterfly valve 33 is opened by the same operation as that shown in FIG. Can be made.
- FIG. 4 shows a configuration of the grille cutter 24 in the variable grill unit 22 in a sectional state.
- the actuator 24 includes a thermoelement 51 and a heater element 52.
- the thermoelement 51 has a housing 53 in which a wax 54 as a thermal expansion body is sealed, and the wax 54 is sealed by a diaphragm 55.
- a semi-fluid 56 is sealed with the diaphragm 55 as a partition, and a rubber piston 57, a backup plate 58, and a piston rod 59 are arranged in series with the semi-fluid 56.
- a heater 60 constituting the heater element 52 is disposed so as to abut on the wax-filled position of the housing 53, and the heater 60 is housed together with the housing 53 in an actuator case 61.
- the amount of power (electric power) to the heater 60 By controlling the amount of power (electric power) to the heater 60 by the PWM signal from the drive circuit 20 as described above, the amount of drive (projection) of the piston rod 59 in the direction of arrow A can be adjusted. .
- a return bar 63 having a fulcrum 64 at the center is loosely fitted to the piston rod 59, and the other end of the return bar 63 has a rod 25 for controlling opening and closing of the grill 23 in the variable grill unit 22. One end is connected. Therefore, the degree of opening and closing of the grill 23 is controlled in accordance with the amount of projection of the piston rod 59 in the direction of arrow A, and the amount of air flow from the grill 22 to the radiator 2 is adjusted.
- the piston rod 59 is driven in the direction of arrow A, whereby the grilles 23 are both in the horizontal state and are in the released state, and the radiator 2 is in the open state.
- the airflow is controlled so as to be large.
- FIG. 5 shows a basic configuration of the ECU 15 shown in FIG.
- the ECU 15 includes a signal processing unit 15a that converts a signal supplied from each sensor into a digital signal or the like recognizable by the ECU, input data processed by the signal processing unit 15a, a ROM and the like.
- the PWM signal output from the signal processing unit 15d is sent to the PTC drive circuit 18 or the grill unit drive circuit 20 having the configuration shown in FIG. 6, and the PWM signal output from the signal processing unit 15d is It is configured to be supplied to the fan motor drive circuit 19 having the configuration shown in FIG.
- the PTC drive circuit 18 is composed of an NPN transistor 18b, and the PWM signal output from the signal processing unit 15d is a transistor via a base input resistor 18a. It is configured to be supplied to a base of 18b.
- the collector of the transistor 18b is connected to the battery via the PTC heater 40 arranged in the flow control unit 11, and the emitter is connected to the reference potential point (the body of the automobile).
- a protection diode 18c is connected in parallel with the PTC heater 40.
- a heater heating control pulse signal whose duty (DUTY) value is controlled is supplied from the ECU 15 to the base of the transistor 18b as shown as PWM1 and PWM2 in FIG. Therefore, the transistor 18b allows a current to flow to the PTC heater 40 according to the duty value of the pulse signal, thereby controlling the amount of heat generated by the PTC heater 40, and consequently the amount of cooling water.
- the grill unit drive circuit 20 has the same configuration as that shown in FIG. 6, and connects the heater element 52 of the grill actuator 24 to the collector of the transistor 18b. With this configuration, the amount of heat generated by the heater element 52 is controlled, and as a result, the amount of air flow to the radiator 2 side in the variable grill unit 22 is controlled.
- the fan motor drive circuit 19 shown in FIG. 5 is also configured by an NPN transistor 19b, and the PWM signal output from the signal processing unit 15d is supplied to the transistor 1 via a base input resistor 19a. 9b is configured to be supplied to the base.
- the collector of the transistor 19b is connected to the battery via the fan motor 6b, and its emitter is connected to the reference potential point (the body of the vehicle).
- a pulse signal for controlling the fan motor whose duty (DUTY) value is controlled is supplied from the ECU 15 to the base of the transistor 19b in the same manner as shown in FIG. 6 as PWM1 and PWM2. You. Therefore, the transistor 19b allows a current to flow to the fan motor 6b in accordance with the duty value of the pulse signal, thereby setting the rotation speed of the fan motor 6b and controlling the radiation efficiency of the radiator.
- the ECU 15 stores information on the coolant temperature from the temperature sensor 13, information on the opening degree from the throttle opening degree sensor 17, and information indicating the operation or non-operation state of the fan motor 6 b. , Information indicating the outside air temperature, and information indicating the traveling speed of the vehicle. Based on these parameters, the ECU 15 compares the various data stored in the ROM 15c in Fig. 5 in the form of a table, for example, with the PTC drive circuit 18, the fan motor drive circuit 19, and the grille unit drive. A command signal for the circuit 20, that is, a PWM signal is calculated and output.
- thermo-element 35 is disposed in the cooling water of the cooling water passage 3a and is configured to be in thermal contact with the cooling water. The use will be described.
- the engine is quickly warmed up, the emission harmful gas can be reduced and the fuel efficiency can be improved, and the capacity of the heater for heating the cabin can be quickly increased.
- the wax element 36 in the flow control unit 11 controls the opening degree of the butterfly valve 33 in response to the cooling water temperature, thereby varying the cooling efficiency.
- the ECU 15 outputs the information to the fan motor drive circuit 19 and the grill unit drive circuit 20 based on the information on the outside air temperature, the information on the cooling water temperature, the operation state of the radial fan and the opening degree of the throttle valve. Control the duty factor of the PWM signal. As a result, the rotation speed of the fan motor 6b is controlled, and the amount of air flow to the radiator 2 by the variable grill unit 22 is also controlled. Therefore, the heat radiation effect of the radiator 2 is also controlled by these, and ideal combustion control of the engine is performed.
- the ECU 15 power, the PTC drive circuit 18, the fan motor drive circuit 19, and the grille unit drive circuit
- the duty factor of the PWM signal output to 20 becomes the maximum.
- the conduction angle of the current applied to the PTC heater 40 in the flow control unit 11 is maximized, and the butterfly valve 33 in the flow control unit 11 is almost fully opened.
- the rotation speed of the fan motor 6b is also set to the maximum.
- the conduction angle of the current applied to the heater 60 of the grill actuator 24 is also maximized, whereby the grill 23 is fully opened, and the air flow to the radiator 2 is maximized. Accordingly, the heat radiation effect of the radiator 2 is promoted, and an excessive temperature rise of the engine can be prevented.
- thermoelement 35 As shown in FIG. 3 as the flow control unit 11, the thermoelement 35
- the case where a device configured to be thermally insulated is used has the following effect. That is, in the normal running state of the vehicle, the PTC heater 40 is controlled by the ECU 15 in accordance with the load state of the engine to control the opening state of the butterfly valve. When the engine load is large, such as when the vehicle is climbing a hill or traveling at high speed, the amount of current applied to the PTC heater 40 is maximized, whereby the butterfly valve 33 in the flow control unit 11 is almost completely changed. It is in a fully opened state.
- the flow control unit 11 controls the opening degree of the butterfly valve 33 by using the PTC heater 40 and the thermoelement 35, and the power is controlled by an electric motor. It can also be controlled by driving.
- a worm gear is interposed between the electric motor and the drive shaft of the butterfly valve, and the electric motor is rotated in the forward and reverse directions by a PWM signal supplied from the ECU, thereby opening the butterfly valve. It is possible to control the valve degree.
- the actuator constituted by the heater element 52 and the thermowax element 51 is used as the actuator 24 in the variable grill unit 22, but this is also controlled by the drive by the electric motor. can do.
- the rotation of the gear wheel is reduced by a worm gear or the like, and the rotation of the gear wheel is transmitted to a rod for controlling the opening and closing of the grill, so that the opening and closing of the grill can be controlled.
- cooling control device of the present invention has been described based on the embodiment applied to an automobile engine.However, the present invention is not limited to such a specific one, but may be applied to other internal combustion engines. Thus, the same function and effect can be obtained.
- the cooling control device for an internal combustion engine includes a flow control unit that controls the flow rate of the cooling medium, a variable grill unit that can adjust the amount of air flow to the heat exchanger, A command signal generating unit for generating a command signal for controlling a flow rate of the cooling medium in the flow rate control unit and a flow rate of air to the heat exchanger in the variable grill unit based on at least temperature information of the cooling medium.
- the flow control unit and variable grill By operating with the unit, an appropriate heat radiation effect can be provided from the warm-up operation state of the internal combustion engine to the high load operation state.
- variable grill unit acts synergistically with the action of the flow control unit, it is possible to quickly increase the temperature of the cooling water during warm-up operation. It is possible to effectively suppress an excessive rise in temperature of the internal combustion engine when the load on the internal combustion engine is large, such as during high-speed running.
- the worst case condition of knocking or overheating can be effectively avoided, and the cooling control device can sufficiently follow severe changes in operating conditions. Can be provided.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
A cooling control device capable of improving the heat dissipation effect in engines particularly in a high load state and effectively avoiding the worst situation that can lead to knocking or overheating. The cooling control device comprises a flow control unit (11) for controlling the flow rate of the cooling medium, a variable grille unit (22) making it possible to regulate the amount of draft to a radiator (2), and an instruction signal generating unit (15) for generating an instruction signal to control the flow rate of a cooling medium in the flow control unit (11) and the amount of draft to a heat exchanger (2) in the variable grille unit (22) on the basis of at least the information about the temperature of the cooling medium. The instruction generating unit (15) controls the states of the flow control unit and variable grille unit on the basis of the temperature and other information in the cooling medium in the operating state of the engine, the two functions providing a proper heat dissipation effect covering the range from engine warming-up to high load operation.
Description
明細書 内燃機関の冷却制御装置 技術分野 Description Cooling control device for internal combustion engine
本発明は、例えば自動車用エンジン等の内燃機関と熱交換器間に冷却媒体の循環路を 形成し、内燃機関を冷却するための冷却制御装置に関し、特に熱交換器の前方に配置さ れ、熱交換器への通風量を調節可能とした可変グリルユニットを採用することで、内燃機 関内に循環させる冷却媒体の温度を最適な状態に制御するようにした冷却制御装置に関 する。 背景技術 The present invention relates to a cooling control device for forming a circulation path of a cooling medium between an internal combustion engine such as an automobile engine and a heat exchanger to cool the internal combustion engine, and is particularly arranged in front of the heat exchanger. The present invention relates to a cooling control device that employs a variable grill unit capable of adjusting a flow rate of air to a heat exchanger, thereby controlling a temperature of a cooling medium circulated in an internal combustion engine to an optimal state. Background art
自動車等に使用される内燃機関(以下エンジンと称する)においては、これを冷却するた めのいくつかの冷却制御手段が提案されている。 In an internal combustion engine (hereinafter referred to as an engine) used for an automobile or the like, some cooling control means for cooling the engine have been proposed.
その代表的なものとして、ラジェータを用いる水冷式の冷却制御装置があり、現状の自 動車用エンジンの殆どには、このラジェ一タによる水冷式の冷却制御手段が採用されてい る。そして、例えば特開平 6— 1 0671号公報には、ラジェータへの通風量を調節するグリ ルユニットを備え、冷却水温度に基づいて前記グリルユニットによる通風量を制御するよう にした冷却制御手段が開示されている。 A typical example is a water-cooled cooling control device using a radiator. Most of the current automobile engines employ a water-cooled cooling control device using the radiator. For example, Japanese Unexamined Patent Publication No. Hei 6-10671 discloses cooling control means that includes a grill unit that adjusts the amount of ventilation to the radiator, and that controls the amount of ventilation by the grill unit based on the temperature of cooling water. Have been.
また、前記したような冷却制御手段を制御するための情報として、冷却水温度と共に車 速などの情報も取り入れるといった提案もなされており、さらにまた、ラジェ一タを冷却する ファンを備え、前記した情報に基づいて冷却ファンを駆動制御する方法なども提案されてい る。 It has also been proposed that information such as vehicle speed as well as cooling water temperature be incorporated as information for controlling the above-described cooling control means.Furthermore, a fan for cooling the radiator was provided. A method of driving and controlling a cooling fan based on information has also been proposed.
ところで、例えばガソリンエンジン等においては、冬季のように外気温が低い状態でェン ジンを始動した直後においては、 HC等の有害ガスの排出量が多ぐまた燃費も低下すると し、う問題を抱えている。したがってこのような状態においては、早急にエンジンの冷却水温
度を高める必要がある。 By the way, for example, in a gasoline engine or the like, immediately after starting the engine in a low outside temperature such as in winter, the emission of harmful gases such as HC is increased and the fuel efficiency is reduced. I have. Therefore, in such a situation, the engine cooling water Need to increase the degree.
一方、特に夏季のように外気温が高ぐしかも長い坂道を登坂する場合のようにエンジン に対して長時間にわたり高負荷が加わるような状態においては、冷却水温度が上昇するこ とにより燃焼温度が異常に上昇し、ノッキングが発生したり、最悪の場合にはエンジンがォ —バヒートに至るという問題も抱えている。 On the other hand, especially when the engine is subjected to high loads for a long time, such as in summer when the outside temperature is high and the vehicle is climbing a long sloping road, the combustion temperature rises due to the rise in cooling water temperature. Has risen abnormally, causing knocking and, in the worst case, engine overheating.
一般に、この種のエンジンはオーバヒートに至らない程度の高温度の状態において駆動 することで、燃費が向上し、また有害ガスの発生を抑えることができるという性質を有して おり、理想的にはいかなる運転条件においてもオーバヒートに至らない程度の一定の高温 度の状態に維持できることが望ましい。 Generally, this type of engine has the property of being able to operate at a high temperature that does not cause overheating, thereby improving fuel efficiency and suppressing the generation of harmful gases. It is desirable to be able to maintain a constant high temperature state that does not cause overheating under any operating conditions.
しかしながら、前記公報に開示されたグリルユニットによる冷却制御手段においては、専 らラジェ一夕の前方開口の通風量のみの制御であるため、様々なエンジンの運転環境お よび負荷状態に対する冷却制御が不十分であり、エンジンの暖気運転状態から高負荷運 転状態に至るまで、適切な放熱効果を与えることは不可能であった。 However, in the cooling control means using the grille unit disclosed in the above-mentioned publication, since only the amount of air flowing through the front opening of the Lager is controlled, cooling control for various engine operating environments and load conditions is not possible. It was sufficient, and it was impossible to provide an appropriate heat radiation effect from the warm-up state of the engine to the high-load operation state.
本発明はこのような問題点に鑑みてなされたものであり、ラジェ一夕に対する冷却水の流 量を制御する流量制御ユニットと、ラジェータの前方に配置され、ラジェータへの通風量を 調節可能とした可変グリルユニットを併用することで、前記した運転条件の過酷な変化に 十分対応することができる冷却制御装置を提供することを課題とするものである。 発明の開示 The present invention has been made in view of such problems, and has a flow control unit that controls a flow rate of cooling water with respect to a radiator, and a flow control unit that is disposed in front of a radiator and that can adjust a ventilation amount to the radiator. An object of the present invention is to provide a cooling control device that can sufficiently cope with the above-mentioned severe changes in the operating conditions by using the variable grill unit in combination. Disclosure of the invention
前記した課題を解決するためになされた本発明にかかる内燃機関の冷却制御装置は、 内燃機関内に形成された流体通路と熱交換器に形成された流体通路との間で冷却媒体 の循環路を形成し、前記循環路中に冷却媒体を循環させることによって内燃機関において 発生する熱を前記熱交換器によって放熱させるように構成した内燃機関の冷却制御装置 であって、前記内燃機関と熱交換器間の循環路における冷却媒体の流量を制御する流量 制御ユニットと、前記熱交換器の前方に配置され、熱交換器への通風量を調節可能とした 可変グリルユニットと、少なくとも前記冷却媒体の温度情報に基づいて、前記流量制御ュ
ニットにおける冷却媒体の流量を制御するための指令信号、および前記可変グリルュニッ 卜における熱交換器への通風量を制御するための指令信号を生成する指令信号生成ュニ ットより構成される。 A cooling control device for an internal combustion engine according to the present invention, which has been made to solve the above-mentioned problem, comprises: a circulation path for a cooling medium between a fluid passage formed in the internal combustion engine and a fluid passage formed in a heat exchanger. A cooling control device for an internal combustion engine, wherein heat generated in the internal combustion engine is radiated by the heat exchanger by circulating a cooling medium in the circulation path. A flow control unit for controlling the flow rate of the cooling medium in the circulation path between the units, a variable grill unit disposed in front of the heat exchanger and capable of adjusting the amount of ventilation to the heat exchanger, and at least the cooling medium Based on the temperature information, the flow rate control And a command signal generation unit for generating a command signal for controlling the flow rate of the cooling medium in the knit and a command signal for controlling the amount of air flow to the heat exchanger in the variable grill unit.
この場合、前記指令信号生成ユニットは、流量制御ユニットによる冷却媒体の流量を最 小状態に制御し、且つ可変グリルユニットによる熱交換器への通風量を最小状態に制御 する制御モードから、流量制御ユニットによる冷却媒体の流量を最大状態に制御し、且つ 可変グリルユニットによる熱交換器への通風量を最大状態に制御する制御モードに至る指 令信号を生成するように構成される。 In this case, the command signal generation unit controls the flow rate from a control mode in which the flow rate of the cooling medium by the flow rate control unit is controlled to the minimum state and the amount of air flow to the heat exchanger by the variable grill unit is controlled to the minimum state. It is configured to generate a command signal to control a flow rate of the cooling medium by the unit to a maximum state and to reach a control mode in which a variable grill unit controls a ventilation amount to a heat exchanger to a maximum state.
また好ましくは前記指令信号生成ユニットには、さらに熱交換器を強制冷却する送風ファ ンの動作または不動作状態を示す情報と、外気温度を示す情報と、車輛の進行速度を示 す情報がさらに加えられるように構成される。 Preferably, the command signal generating unit further includes information indicating an operation or non-operation state of a blower fan for forcibly cooling the heat exchanger, information indicating an outside air temperature, and information indicating a traveling speed of the vehicle. It is configured to be added.
そして、前記流量制御ユニットは、好ましくは指令信号生成ユニットから供給される指令 信号に基づいて発熱するヒータと、前記ヒータの発熱に感応して駆動されるサーモエレメン 卜と、前記サーモエレメントの駆動力によって開弁度合いが制御される流量制御バルブとに より構成される。 The flow control unit preferably includes a heater that generates heat based on a command signal supplied from a command signal generation unit, a thermoelement driven in response to the heat generated by the heater, and a driving force of the thermoelement. And a flow control valve whose degree of valve opening is controlled by the valve.
また、前記流量制御ユニットは、指令信号生成ユニットから供給される指令信号に基づい て駆動される電動モータと、前記電動モータの駆動力によって開弁度合いが制御される流 量制御バルブとにより構成される場合もある。 The flow control unit includes an electric motor driven based on a command signal supplied from a command signal generation unit, and a flow control valve whose degree of valve opening is controlled by the driving force of the electric motor. In some cases.
一方、前記可変グリルユニットは、好まし ま指令信号生成ユニットから供給される指令 信号に基づいて発熱するヒータと、前記ヒータの発熱に感応して駆動されるサーモエレメン 卜と、前記サーモエレメントの駆動力によって開閉され、熱交換器への通風量を制御するグ リルとにより構成される。 On the other hand, the variable grill unit preferably includes a heater that generates heat based on a command signal supplied from a command signal generation unit, a thermoelement that is driven in response to the heat generated by the heater, and a drive that drives the thermoelement. It is opened and closed by force and controls the air flow to the heat exchanger.
また、前記可変グリルユニットは、指令信号生成ユニットから供給される指令信号に基づ し、て駆動される電動モータと、前記電動モータの駆動力によって開閉され、熱交換器への 通風量を制御するグリルとにより構成される場合もある。 Also, the variable grill unit controls an electric motor driven based on a command signal supplied from a command signal generation unit, and is opened and closed by a driving force of the electric motor, and controls a ventilation amount to a heat exchanger. In some cases.
以上のように構成された冷却制御装置によると、内燃機関と熱交換器間の循環路におけ
る冷却媒体の流量力 例えばバタフライバルブを具備した流量制御バルブの開弁度合い によって調節される。またこれに加えて熱交換器の前方に配置された、可変グリルユニット により熱交換器への通風量が調節可能とされる。 According to the cooling control device configured as described above, the cooling control device in the circulation path between the internal combustion engine and the heat exchanger The flow force of the cooling medium is adjusted by, for example, the degree of opening of a flow control valve having a butterfly valve. In addition to this, a variable grill unit located in front of the heat exchanger allows the airflow to the heat exchanger to be adjusted.
そして指令信号生成ユニットは、例えば冷却水温の情報、熱交換器を強制冷却する送風 ファンの動作または不動作状態を示す情報、外気温度を示す情報、車輛の進行速度を示 す情報等のパラメータに基づいて指令信号を生成し、この指令信号によって、前記流量制 御バルブの開弁度合い、および可変グリルユニットによる熱交換器への通風量が制御さ れる。 Then, the command signal generation unit generates parameters such as information on cooling water temperature, information indicating the operation or non-operation of the blower fan for forcibly cooling the heat exchanger, information indicating the outside air temperature, and information indicating the traveling speed of the vehicle. A command signal is generated based on the command signal, and the command signal controls the degree of opening of the flow control valve and the amount of air flow to the heat exchanger by the variable grill unit.
この構成によって、流量制御ユニットによる冷却媒体の流量を最小状態に制御し、且つ 可変グリルユニットによる熱交換器への通風量を最小状態に制御する暖気制御モードから、 流量制御ユニットによる冷却媒体の流量を最大状態に制御し、且つ可変グリルユニットに よる熱交換器への通風量を最大状態に制御する最大冷却制御モードが実行される。 With this configuration, the flow rate of the cooling medium by the flow rate control unit can be changed from the warm-up control mode in which the flow rate of the cooling medium by the flow rate control unit is controlled to the minimum state, and the amount of air flow to the heat exchanger by the variable grille unit is controlled to the minimum state. A maximum cooling control mode is executed in which the maximum cooling state is controlled and the amount of air flow to the heat exchanger by the variable grill unit is controlled to the maximum state.
これ【こより、内燃機関の暖気運転における暖気の促進が図られると共に、内燃機関の過 酷な運転条件の変化にも十分に対応することができる冷却制御装置を提供することが可 能となる。 図面の簡単な説明 Thus, it is possible to provide a cooling control device that promotes warm-up in the warm-up operation of the internal combustion engine and can sufficiently cope with severe changes in operating conditions of the internal combustion engine. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明にかかる冷却制御装置を自動車用エンジンに適用した実施の形態を示 した構成図であり、第 2図は第 1図に示す装置に用いられる第 1の構成の流量制御ュニッ トを一部断面状態で示した構成図であり、第 3図は第 1図に示す装置に用いられる第 2の 構成の流量制御ユニットを一部断面状態で示した構成図である。 FIG. 1 is a configuration diagram showing an embodiment in which a cooling control device according to the present invention is applied to an automobile engine, and FIG. 2 is a flow control unit having a first configuration used in the device shown in FIG. FIG. 3 is a configuration diagram showing the flow control unit of a second configuration used in the apparatus shown in FIG. 1 in a partial cross-sectional state.
また、第 4図は第 1図に示す装置に用いられる可変グリルユニットにおけるグリルァクチ エータを一部断面状態で示した構成図であり、第 5図は第 1図に示す指令信号生成ュニッ 卜(ECU)の基本構成を示したブロック図である。 FIG. 4 is a configuration diagram showing a partial section of a grill actuator in the variable grill unit used in the apparatus shown in FIG. 1, and FIG. 5 is a command signal generation unit (ECU) shown in FIG. 3 is a block diagram showing a basic configuration of FIG.
第 6図は流量制御ユニットにおける PTCヒータ駆動回路および可変グリルユニットにおけ るヒータエレメント駆動回路の構成を示した結線図あり、第 7第 7図はファンモータを駆動す
るためのモータ駆動回路の構成を示した結線図ある。 発明を実施するための最良の形態 Fig. 6 is a connection diagram showing the configuration of the PTC heater drive circuit in the flow control unit and the heater element drive circuit in the variable grill unit. Fig. 7 is a diagram showing the drive of the fan motor. FIG. 2 is a connection diagram showing a configuration of a motor drive circuit for performing the above. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明にかかる内燃機関の冷却制御装置について、図に示した実施の形態に基 づいて説明する。 Hereinafter, a cooling control device for an internal combustion engine according to the present invention will be described based on an embodiment shown in the drawings.
第 1図は本発明を自動車用エンジンの冷却制御装置に適用した全体構成を示したもので ある。第 1図において、符号 1はシリンダブロック 1 aおよびシリンダヘッド 1 bより構成された エンジンであり、このエンジン 1のシリンダブロック 1 aおよびシリンダヘッド 1 b内には矢印 c で示した流体通路が形成されている。 FIG. 1 shows an overall configuration in which the present invention is applied to a cooling control device for an automobile engine. In FIG. 1, reference numeral 1 denotes an engine including a cylinder block 1a and a cylinder head 1b, and a fluid passage indicated by an arrow c is formed in the cylinder block 1a and the cylinder head 1b of the engine 1. Have been.
また符号 2は熱交換器、すなわちラジェータを示し、このラジェ一タ 2には周知のとおり流 体通路 2cが形成されており、ラジェ一タ 2の冷却水流入口 2aおよび冷却水流出口 2bは、 前記エンジン 1との間で冷却水を循環させる冷却水路 3に接続されている。 Reference numeral 2 denotes a heat exchanger, that is, a radiator, and a fluid passage 2c is formed in the radiator 2 as is well known, and a cooling water inlet 2a and a cooling water outlet 2b of the radiator 2 It is connected to a cooling water channel 3 that circulates cooling water with the engine 1.
冷却水路 3は、エンジン 1の上部に設けられた冷却水の流出口 1 dからラジェータ 2の上 部に設けられた冷却水の流入口 2aまで連通する流出側冷却水路 3aと、ラジェ一タ 2の下 部に設けられた冷却水の流出口 2bからエンジン 1の下部に設けられた冷却水の流入口 1 eまで連通する流入側冷却水路 3bと、両冷却水路 3a, 3bの途中部位を接続するバイパス 水路 3cより構成されている。 The cooling water passage 3 includes an outlet-side cooling water passage 3a communicating from a cooling water outlet 1d provided at an upper portion of the engine 1 to a cooling water inlet 2a provided at an upper portion of the radiator 2, and a radiator 2 Connecting the inlet cooling water passage 3b communicating from the cooling water outlet 2b provided in the lower part of the cooling water inlet 1e provided in the lower part of the engine 1 with the cooling water passages 3a and 3b. It consists of a bypass waterway 3c.
また、符号 5はエンジン 1の流入口 1 e部分に配置されたウォーターポンプであり、ェンジ ン 1の図示しないクランクシャフトの回転により回転軸が回転されて冷却水を強制的に循環 させるものである。また、符号 6はラジェータ 2に強制的に冷却風を取り入れるためのファ ンユニットであり、冷却ファン 6aと、これを回転駆動するファンモータ 6bより構成されてい る。 Reference numeral 5 denotes a water pump disposed at the inlet 1e of the engine 1, which rotates a rotation shaft by rotation of a crankshaft (not shown) of the engine 1 to forcibly circulate cooling water. . Reference numeral 6 denotes a fan unit for forcing cooling air into the radiator 2, and includes a cooling fan 6a and a fan motor 6b for rotating the fan.
前記エンジン 1の冷却水の流出口 1 dと、ラジェータ 2の上部に設けられた冷却水の流入 口 2aとの間に配置された流出側冷却水路 3aには、後で詳細に説明する流量制御ユニット 1 1が介在されている。これにより、流量制御ユニット 1 1を含んだ形で冷却媒体、すなわち 冷却水の循環路が形成されている。
また、前記エンジン 1における冷却水の流出口 1 dには、例えばサーミスタ等の温度セン サ 1 3が配置されている。この温度センサ 1 3による検出値は、変換器 1 4によって、指令信 号生成ユニット(以下 ECUと称する) 1 5が認識可能なデータに変換され、エンジン全体の 運転状態を制御する前記 ECU 1 5に供給されるように構成されている。 An outlet side cooling water passage 3a disposed between the cooling water outlet 1d of the engine 1 and the cooling water inlet 2a provided at the upper part of the radiator 2 has a flow rate control described in detail later. Unit 11 is interposed. Thereby, a circulation path of the cooling medium, that is, the cooling water is formed so as to include the flow control unit 11. Further, a temperature sensor 13 such as a thermistor is disposed at an outlet 1 d of the cooling water in the engine 1. The value detected by the temperature sensor 13 is converted by a converter 14 into data recognizable by a command signal generation unit (hereinafter referred to as an ECU) 15, and the ECU 15 controls the operating state of the entire engine. Is configured to be supplied.
そして、第 1図に示す実施の形態においては、エンジン 1のスロットルバルブ 1 6の開度を 検出するスロットル開度センサ 1 7からの開度情報も ECU 1 5に供給されるように構成され ている。さらに、図示していないが前記 ECU 1 5には、他にラジェータ 2を強制冷却する送 風ファン(ファンモータ)の動作または不動作状態を示す情報と、外気温度を示す情報と、 車輛の進行速度を示す情報等がさらに加えられるように構成されている。 In the embodiment shown in FIG. 1, the opening information from the throttle opening sensor 17 for detecting the opening of the throttle valve 16 of the engine 1 is also supplied to the ECU 15. I have. Further, although not shown, the ECU 15 further includes information indicating the operation or non-operation of a blower fan (fan motor) for forcibly cooling the radiator 2, information indicating the outside air temperature, and information regarding the progress of the vehicle. It is configured such that information indicating the speed and the like are further added.
一方、 ECU 1 5からは PTC駆動回路 1 8に対して後述する PTCヒータ加熱用の PWM信 号が供給されるように構成されており、また ECU 1 5からはファンモータ駆動回路 1 9に対し て、後述するファンモータ駆動制御用の PWM信号が供給されるようにも構成されている。 さらに ECU 1 5からは同じく後述するグリルユニット駆動回路 20に対してヒータエレメント 加熱用の PWM信号が供給されるように構成されている。 On the other hand, the ECU 15 is configured to supply a PWM signal for heating the PTC heater, which will be described later, to the PTC drive circuit 18, and the ECU 15 supplies a fan motor drive circuit 19 to the fan motor drive circuit 19. In addition, a PWM signal for fan motor drive control described later is supplied. Further, the ECU 15 is configured to supply a PWM signal for heating the heater element to a grill unit drive circuit 20 also described later.
これら PTC駆動回路 1 8、ファンモータ駆動回路 1 9、並びにグリルユニット駆動回路 20 は、バッテリー 21から供給される電流を、 ECU 1 5によって生成される PWM信号(指令信 号)によってそれぞれ制御し、流量制御ユニット 1 1に具備された後述する PTCヒータ、ファ ンモータ 6b、並びに後述するグリルユニットの開閉を制御するヒータエレメントに対する制 御電力が供給されるように構成されている。 The PTC drive circuit 18, the fan motor drive circuit 19, and the grill unit drive circuit 20 control the current supplied from the battery 21 by a PWM signal (command signal) generated by the ECU 15, respectively. The control power is supplied to a PTC heater described later provided in the flow control unit 11, a fan motor 6b, and a heater element controlling opening and closing of a grill unit described later.
前記ラジェータ 2の前方には、ラジェ一夕 2への通風量を調節可能とした可変グリルュニ ット 22が配置されている。この可変グリルユニット 22は、例えば複数本の短冊状のグリソレ 素体が連動して傾斜角度が可変できるように構成したグリル 23を具備し、連動する各グリ ル素体をァクチエータ 24によってその傾斜角度を変化させることで、ラジェ一夕 2側への通 風量を調節できるように構成されている。 In front of the radiator 2, a variable grill unit 22 is provided which is capable of adjusting the amount of air passing through the radiator 2. The variable grill unit 22 includes, for example, a grill 23 configured so that a plurality of strip-shaped glycerol bodies can be linked to change the tilt angle. By changing the air flow, it is possible to adjust the air flow to the Laje night and the second side.
そして、前記グリル 23を開閉制御するァクチエータ 24は、前記駆動回路 20からの指令 信号(PWM信号)によって制御されることによって、グリル 23の角度を可変し、前記したよ
うにラジェ一タ 2への通風量が調節できるように構成されている。 The actuator 24 that controls the opening and closing of the grill 23 changes the angle of the grill 23 by being controlled by a command signal (PWM signal) from the drive circuit 20. The air flow to the radiator 2 can be adjusted.
次に第 2図は、前記流量制御ユニット"! 1の第 1の構成を断面状態で示したものである。 この流量制御ユニット 1 1には、エンジン側に接続される筒体部 31が具備されている。この 筒体部 31の内底部には、その中央部に支持軸 32が配置され、この支持軸 32によって回 転可能に支持されたバタフライバルブ 33が配置されている。 Next, Fig. 2 shows a first configuration of the flow rate control unit "! 1" in a cross-sectional state. The flow rate control unit 11 includes a tubular body 31 connected to the engine side. A support shaft 32 is disposed at the center of the inner bottom of the cylindrical portion 31, and a butterfly valve 33 rotatably supported by the support shaft 32 is disposed.
このバタフライバルブ 33は、後述するサーモエレメントが非作動の状態においては、支 持軸 32に配置された図示せぬリターンスプリングによって第 2図(a)に示すように閉弁状 態となるように構成されている。そして、前記バタフライバルブ 33の閉弁状態においては、 筒体部 31の内底部に配置された可撓性物質により構成されたバルブシート 34が弁体に 接触するように構成されている。 This butterfly valve 33 is closed by a return spring (not shown) arranged on the support shaft 32 as shown in FIG. 2 (a) when a thermoelement described later is not operated. It is configured. When the butterfly valve 33 is in a closed state, the valve seat 34 made of a flexible substance disposed on the inner bottom of the cylindrical body 31 is configured to contact the valve body.
このバタフライバルブ 33の弁体は、周知のとおり円盤状に形成されており、冷却水の流 通方向に対するその平面方向の角度が支持軸 32によって回転駆動されることにより、冷 却水の流量が制御されるように成される。すなわち、冷却水の流通方向に対して、その平 面方向の角度が 90度付近で閉弁状態となり、その平面方向の角度が 0度付近で全開状 態となる。そして、その中間角度を適宜とることにより、冷却水の流量はほぼリニアに制御 される。 As is well known, the valve body of the butterfly valve 33 is formed in a disk shape, and the angle of the plane direction with respect to the flowing direction of the cooling water is rotationally driven by the support shaft 32 so that the flow rate of the cooling water is reduced. It is made to be controlled. That is, the valve is closed when the angle in the plane direction is about 90 degrees with respect to the flow direction of the cooling water, and is fully opened when the angle in the plane direction is near 0 degrees. By appropriately setting the intermediate angle, the flow rate of the cooling water is controlled almost linearly.
前記バタフライバルブ 33の冷却水の流出側、すなわちラジェータ側にはサーモエレメント 35が配置されている。第 2図に示す例においては、このサーモエレメント 35は冷却水路 3 aの冷却水中に配置され、冷却水と熱接触できるように構成されている。 A thermo-element 35 is disposed on the outflow side of the cooling water of the butterfly valve 33, that is, on the radiator side. In the example shown in FIG. 2, the thermoelement 35 is disposed in the cooling water of the cooling water passage 3a, and is configured to be able to make thermal contact with the cooling water.
前記サーモエレメント 35には、熱膨張体としてのワックスを封入した円筒状のワックスェ レメント 36力、冷却水中に位置するように配置されている。そして、ワックスエレメント 36に はワックスの膨張度合いに応じて上下方向に可動されるように埋設されたピストン部材 37 が配置されている。このピストン部材 37の上部には、このピストン部材 37を囲撓するよう に円筒状のリテ一ナ 38が配置されており、ピストン部材 37の上昇にょリリ亍ーナ 38は、前 記支持軸 32に同軸状に配置されたカム部材 39に当接し、これを支持軸 32を中心として 回動させることができるように構成されている。
したがって、ピストン部材 37の作動による前記カム部材 39の回動に伴って、バタフライ バルブ 33は第 2図(b)に示すように開弁され、冷却水が循環するようになされる。 The thermoelement 35 is disposed so as to be positioned in the cooling water by a cylindrical wax element 36 in which wax as a thermal expansion body is sealed. Further, a piston member 37 buried so as to be vertically movable in accordance with the degree of expansion of the wax is disposed in the wax element 36. Above the piston member 37, a cylindrical retainer 38 is arranged so as to surround the piston member 37, and the piston member 37 is moved upward by the support shaft 32. The cam member 39 is arranged coaxially with the cam member 39, and can be rotated about the support shaft 32. Therefore, with the rotation of the cam member 39 by the operation of the piston member 37, the butterfly valve 33 is opened as shown in FIG. 2 (b), and the cooling water is circulated.
一方、ワックスエレメント 36を囲むように正特性サーミスタを発熱体とした環状の PTCヒ ータ 40が配置されており、この PTCヒータ 40の上下には、 PTCヒータ 40に電流を供給す るためのそれぞれ環状に形成された一対の電極 41 , 42が配置されている。そして、この 電極 41 , 42には流量制御ユニット 1 1の側面に形成されたソケット 43よりリード線を介して 電流が供給されるように構成されている。 On the other hand, an annular PTC heater 40 having a positive temperature coefficient thermistor as a heating element is disposed so as to surround the wax element 36, and above and below the PTC heater 40, a current for supplying a current to the PTC heater 40 is provided. A pair of electrodes 41 and 42 each formed in an annular shape are arranged. The electrodes 41 and 42 are configured to be supplied with current through a lead wire from a socket 43 formed on a side surface of the flow control unit 11.
したがって、ソケット 43を介して PTCヒータ 40に通電することにより、前記ワックスエレメ ント 36を加熱することができる。よって、ワックスエレメント 36に封入されたワックスの熱膨 張により、前述したとおりピストン部材 3フが上部に突出して、バタフライバルブ 33を開弁さ せることができる。この第 2図に示す第 1の構成の流量制御ユニット 1 1によれば、冷却水 の温度並びに PTCヒータに加える電力量に応じてノくタフライバルブ 33の開弁度合いを 制御することができる。 Accordingly, by energizing the PTC heater 40 via the socket 43, the wax element 36 can be heated. Therefore, due to the thermal expansion of the wax sealed in the wax element 36, the piston member 3 protrudes upward as described above, and the butterfly valve 33 can be opened. According to the flow control unit 11 of the first configuration shown in FIG. 2, the opening degree of the butterfly valve 33 can be controlled in accordance with the temperature of the cooling water and the amount of electric power applied to the PTC heater. .
次に第 3図は、前記流量制御ユニット 1 1の第 2の構成を断面状態で示したものである。 なお第 3図において、第 2図と同一部分は同一符号で示しており、したがってその詳細な説 明は省略する。 Next, FIG. 3 shows a second configuration of the flow control unit 11 in a cross-sectional state. In FIG. 3, the same parts as those in FIG. 2 are denoted by the same reference numerals, and therefore, detailed description thereof will be omitted.
この第 3図に示す流量制御ユニット 1 1におけるサーモエレメント 35は、冷却水に対して 熱的に絶縁されるように構成されている。このためにバタフライバルブ 33の出口側におい てサーモエレメント 35との間で冷却水の熱を遮断する壁体 44が配置されている。そして、 円盤状の PTCヒータ 40力《、円盤状の各電極 41 , 42によって挟持されてサーモエレメント 35の下底部に配置されている。 The thermoelement 35 in the flow control unit 11 shown in FIG. 3 is configured to be thermally insulated from the cooling water. For this purpose, a wall body 44 is provided at the outlet side of the butterfly valve 33 to shut off the heat of the cooling water with the thermoelement 35. Then, the disc-shaped PTC heater 40 is arranged between the disc-shaped electrodes 41 and 42 at the lower bottom of the thermo-element 35.
なお、前記壁体 44は合成樹脂等の材料により成形することで、熱的な絶縁性をより向上 させること力《できる。 The wall 44 can be formed from a material such as a synthetic resin, so that the thermal insulation can be further improved.
ここで、第 3図はバタフライバルブ 33の閉弁状態を示しており、 PTCヒータ 40に通電する ことにより、ワックスエレメント 36に封入されたワックスの熱膨張によりピストン部材 37が 上部に突出し、第 2図(b)に示した場合と同様の作用によりバタフライバルブ 33を開弁さ
せることができる。 Here, FIG. 3 shows a closed state of the butterfly valve 33, and when the PTC heater 40 is energized, the piston member 37 projects upward due to thermal expansion of the wax sealed in the wax element 36, and The butterfly valve 33 is opened by the same operation as that shown in FIG. Can be made.
この第 3図に示す第 2の構成の流量制御ユニット 1 1によれば、冷却水の温度に関係なぐ p丁 Cヒータに加える電力量に応じてバタフライバルブ 33の開弁度合いを制御させることが できる。 According to the flow control unit 11 of the second configuration shown in FIG. 3, it is possible to control the degree of opening of the butterfly valve 33 in accordance with the amount of power applied to the C heater irrespective of the temperature of the cooling water. it can.
次に第 4図は可変グリルユニット 22におけるグリルァクチェ一タ 24の構成を断面状態で 示したものである。このァクチェ一タ 24は、サーモエレメント 51とヒータエレメント 52により 構成されている。サーモエレメント 51はハウジング 53内に熱膨張体としてのワックス 54が 封入されており、このワックス 54はダイヤフラム 55によって封止されている。そして、ダイ ャフラム 55を隔壁として半流動体 56が封入され、半流動体 56に対してラバーピストン 57、 バックアップ板 58、およびピストンロッド 59が直列に配置されている。 Next, FIG. 4 shows a configuration of the grille cutter 24 in the variable grill unit 22 in a sectional state. The actuator 24 includes a thermoelement 51 and a heater element 52. The thermoelement 51 has a housing 53 in which a wax 54 as a thermal expansion body is sealed, and the wax 54 is sealed by a diaphragm 55. Then, a semi-fluid 56 is sealed with the diaphragm 55 as a partition, and a rubber piston 57, a backup plate 58, and a piston rod 59 are arranged in series with the semi-fluid 56.
前記ハウジング 53のワックス封入位置に当接するように、前記ヒータエレメント 52を構 成するヒータ 60が配置されており、このヒータ 60は、前記ハウジング 53と共にァクチエー タケ一ス 61内に収納されている。 A heater 60 constituting the heater element 52 is disposed so as to abut on the wax-filled position of the housing 53, and the heater 60 is housed together with the housing 53 in an actuator case 61.
したがって、前記ヒータ 60に対して第 1図に示したグリルユニット駆動回路 20を介して通 電することによって、ワックス 54は膨張し、ダイヤフラム 55、半流動体 56、ラバーピストン 57およびバックアップ板 58を押し上げ、この結果、ピストンロッド 59を矢印 A方向へ直進 駆動させることができる。またヒータエレメント 52への通電を停止させることによってピスト ンロッド 59を矢印 Aとは逆方向へ駆動させることができる。 Therefore, by conducting electricity to the heater 60 through the grill unit drive circuit 20 shown in FIG. 1, the wax 54 expands, and the diaphragm 55, the semi-fluid 56, the rubber piston 57 and the backup plate 58 are connected. As a result, the piston rod 59 can be driven straight in the direction of arrow A. By stopping the power supply to the heater element 52, the piston rod 59 can be driven in the direction opposite to the arrow A.
そして、前記したように駆動回路 20による PWM信号によって、ヒータ 60への通電量(電 力)を制御することで、ピストンロッド 59の矢印 A方向へ駆動量(突出量)を調整することが できる。 By controlling the amount of power (electric power) to the heater 60 by the PWM signal from the drive circuit 20 as described above, the amount of drive (projection) of the piston rod 59 in the direction of arrow A can be adjusted. .
前記ピストンロッド 59には、中央部に支点 64を持つリターンバー 63の一端が遊嵌され ており、このリターンバー 63の他端には可変グリルユニット 22におけるグリル 23の開閉を 制御するロッド 25の一端が連結されている。したがってピストンロッド 59の矢印 A方向へ の突出量に応じてグリル 23の開閉度合いが制御され、グリル 22によるラジェータ 2側へ の通風量が調節される。
この構成により、ヒータ 60への通電量を大とすることで、ピストンロッド 59は矢印 A方向 へ駆動され、これに伴いグリル 23は共に水平状態となって解放状態とされ、ラジェータ 2 側への通風量が大となるように制御される。 One end of a return bar 63 having a fulcrum 64 at the center is loosely fitted to the piston rod 59, and the other end of the return bar 63 has a rod 25 for controlling opening and closing of the grill 23 in the variable grill unit 22. One end is connected. Therefore, the degree of opening and closing of the grill 23 is controlled in accordance with the amount of projection of the piston rod 59 in the direction of arrow A, and the amount of air flow from the grill 22 to the radiator 2 is adjusted. With this configuration, by increasing the amount of electricity supplied to the heater 60, the piston rod 59 is driven in the direction of arrow A, whereby the grilles 23 are both in the horizontal state and are in the released state, and the radiator 2 is in the open state. The airflow is controlled so as to be large.
次に第 5図は、第 1図に示した ECU 1 5の基本構成を示したものである。この ECU 1 5に は、各センサから供給される信号を ECUが認識可能なデジタル信号等に変換する信号処 理部 1 5aと、この信号処理部 1 5aにより処理された入力データと、 ROM等のメモリ 1 5cに テーブル形式で格納された各種のデータと比較する比較部 1 5bと、この比較部 1 5b【こよる 比較結果を演算処理して制御信号としての PWM信号を出力する信号処理部 1 5dより構 成されている。 Next, FIG. 5 shows a basic configuration of the ECU 15 shown in FIG. The ECU 15 includes a signal processing unit 15a that converts a signal supplied from each sensor into a digital signal or the like recognizable by the ECU, input data processed by the signal processing unit 15a, a ROM and the like. A comparison unit 15b for comparing with various data stored in a table format in the memory 15c of this unit, and a comparison unit 15b [a signal processing unit for processing the comparison result and outputting a PWM signal as a control signal It consists of 15d.
そして、信号処理部 1 5dより出力される PWM信号は、第 6図に示した構成の PTC駆動 回路 1 8またはグリルユニット駆動回路 20に、さらに信号処理部 1 5dより出力される PWM 信号は、第 7図に示した構成のファンモータ駆動回路 1 9に供給されるように構成されてい る。 Then, the PWM signal output from the signal processing unit 15d is sent to the PTC drive circuit 18 or the grill unit drive circuit 20 having the configuration shown in FIG. 6, and the PWM signal output from the signal processing unit 15d is It is configured to be supplied to the fan motor drive circuit 19 having the configuration shown in FIG.
第 6図に示すように、前記 PTC駆動回路 1 8は NPN型トランジスタ 1 8bにより構成されて おり、前記信号処理部 1 5dより出力される PWM信号は、ベース入力抵抗 1 8aを介してトラ ンジスタ 1 8bのベースに供給されるように構成されている。 As shown in FIG. 6, the PTC drive circuit 18 is composed of an NPN transistor 18b, and the PWM signal output from the signal processing unit 15d is a transistor via a base input resistor 18a. It is configured to be supplied to a base of 18b.
トランジスタ 1 8bのコレクタは、前記流量制御ユニット 1 1に配置された PTCヒータ 40を介 してバッテリーに接続されており、そのェミッタは基準電位点(自動車のボディ一)に接続さ れている。また PTCヒータ 40に対して並列に保護用のダイオード 1 8cが接続されている。 ここで、トランジスタ 1 8bのベースには第 5図に PWM 1および PWM2として示すように、 デューティ(DUTY)値が制御されたヒータ加熱制御用のパルス信号が ECU 1 5より供給さ れる。したがってトランジスタ 1 8bは、パルス信号のデューティ値に応じて PTCヒータ 40に 対して電流を流し、これにより PTCヒータ 40の発熱量が制御され、結果として冷却水の流 量が制御される。 The collector of the transistor 18b is connected to the battery via the PTC heater 40 arranged in the flow control unit 11, and the emitter is connected to the reference potential point (the body of the automobile). A protection diode 18c is connected in parallel with the PTC heater 40. Here, a heater heating control pulse signal whose duty (DUTY) value is controlled is supplied from the ECU 15 to the base of the transistor 18b as shown as PWM1 and PWM2 in FIG. Therefore, the transistor 18b allows a current to flow to the PTC heater 40 according to the duty value of the pulse signal, thereby controlling the amount of heat generated by the PTC heater 40, and consequently the amount of cooling water.
なお、前記グリルユニット駆動回路 20も、第 6図に示した構成と同様になされており、トラ ンジスタ 1 8bのコレクタに、前記グリルァクチエータ 24におけるヒータエレメント 52を接続し
た構成とすることにより、ヒータエレメント 52の発熱量が制御され、結果として可変グリル ユニット 22におけるラジェータ 2側への通風量が制御される。 The grill unit drive circuit 20 has the same configuration as that shown in FIG. 6, and connects the heater element 52 of the grill actuator 24 to the collector of the transistor 18b. With this configuration, the amount of heat generated by the heater element 52 is controlled, and as a result, the amount of air flow to the radiator 2 side in the variable grill unit 22 is controlled.
第フ図に示すファンモータ駆動回路 1 9も同様に、 NPN型トランジスタ 1 9bにより構成され ており、前記信号処理部 1 5dより出力される PWM信号は、ベース入力抵抗 1 9aを介して トランジスタ 1 9bのベースに供給されるように構成されている。トランジスタ 1 9bのコレクタ は、ファンモータ 6bを介してバッテリーに接続されており、そのェミッタは基準電位点(自動 車のボディー)に接続されている。 Similarly, the fan motor drive circuit 19 shown in FIG. 5 is also configured by an NPN transistor 19b, and the PWM signal output from the signal processing unit 15d is supplied to the transistor 1 via a base input resistor 19a. 9b is configured to be supplied to the base. The collector of the transistor 19b is connected to the battery via the fan motor 6b, and its emitter is connected to the reference potential point (the body of the vehicle).
ここで、トランジスタ 1 9bのベースには、第 6図に PWM 1および PWM2として示したもの と同様に、デューティ(DUTY)値が制御されたファンモータ制御用のパルス信号が ECU 1 5より供給される。したがってトランジスタ 1 9bは、パルス信号のデューティ値に応じてファ ンモータ 6bに対して電流を流し、これによりファンモータ 6bの回転数が設定され、ラジェ一 タによる放熱効率を制御することができる。 Here, a pulse signal for controlling the fan motor whose duty (DUTY) value is controlled is supplied from the ECU 15 to the base of the transistor 19b in the same manner as shown in FIG. 6 as PWM1 and PWM2. You. Therefore, the transistor 19b allows a current to flow to the fan motor 6b in accordance with the duty value of the pulse signal, thereby setting the rotation speed of the fan motor 6b and controlling the radiation efficiency of the radiator.
以上の構成において、前記 ECU 1 5には前記したとおり、温度センサ 1 3による冷却水温 の情報、スロットル開度センサ 1 7からの開度情報、ファンモータ 6bの動作または不動作状 態を示す情報、外気温度を示す情報、および車輛の進行速度を示す情報が取り込まれる。 ECU 1 5はこれらのパラメータに基づいて、第 5図における ROM 1 5cに例えばテーブル形 式で格納された各種のデータと対照し、 PTC駆動回路 1 8、ファンモータ駆動回路 1 9、グリ ルユニット駆動回路 20に対する指令信号、すなわち PWM信号を演算出力する。 In the above configuration, as described above, the ECU 15 stores information on the coolant temperature from the temperature sensor 13, information on the opening degree from the throttle opening degree sensor 17, and information indicating the operation or non-operation state of the fan motor 6 b. , Information indicating the outside air temperature, and information indicating the traveling speed of the vehicle. Based on these parameters, the ECU 15 compares the various data stored in the ROM 15c in Fig. 5 in the form of a table, for example, with the PTC drive circuit 18, the fan motor drive circuit 19, and the grille unit drive. A command signal for the circuit 20, that is, a PWM signal is calculated and output.
ここで流量制御ユニット 1 1として、第 2図に示したようにサーモエレメント 35が冷却水路 3 aの冷却水中に配置され、冷却水と熱接触できるように構成されたものを用いた場合の作 用について説明する。 Here, as shown in FIG. 2, as the flow control unit 11, a thermo-element 35 is disposed in the cooling water of the cooling water passage 3a and is configured to be in thermal contact with the cooling water. The use will be described.
先ず、エンジン始動直後の暖気運転時においては、冷却水の目標設定温度に対する温 度センサ 1 3によって得られる冷却水温との偏差は負である。したがって ECU 1 5から PTC 駆動回路 1 8、ファンモータ駆動回路 1 9、グリルユニット駆動回路 20に出力される PWM信 号のデューティファクタは最小( = 0)とされる。 First, during the warm-up operation immediately after the start of the engine, the deviation of the cooling water temperature obtained by the temperature sensor 13 from the target setting temperature of the cooling water is negative. Therefore, the duty factor of the PWM signal output from the ECU 15 to the PTC drive circuit 18, the fan motor drive circuit 19, and the grill unit drive circuit 20 is minimized (= 0).
これにより PTC駆動回路 1 8より PTCヒータ 40に印加される電流の導通角は最小( = 0)
となり、したがって流量制御ユニット 1 1におけるバタフライバルブ 33は閉弁状態とされる。 また、ファンモータ駆動回路 1 9よりファンモータ 6 bに印加される電流の導通角も最小(= 0)となり、ファンモータ 6bは停止状態とされる。さらにグリルユニット駆動回路 20よリグリ ルァクチェ一タ 24におけるヒータ 60に印加される電流の導通角も最小( = 0)となり、した がって前記グリル 23は閉じられ、ラジェ一タ 2側への通風量は最小状態とされる。 As a result, the conduction angle of the current applied from the PTC drive circuit 18 to the PTC heater 40 is minimized (= 0). Therefore, the butterfly valve 33 in the flow control unit 11 is closed. Further, the conduction angle of the current applied from the fan motor drive circuit 19 to the fan motor 6b is also minimum (= 0), and the fan motor 6b is stopped. In addition, the conduction angle of the current applied to the heater 60 in the grill actuator 24 is also minimized (= 0) by the grill unit drive circuit 20, so that the grill 23 is closed and the ventilation to the radiator 2 side is performed. The amount is taken to a minimum.
したがって、エンジンは早急に暖気され、排気有害ガスの低減および燃費の向上が図れ ると共に、キャビン内の暖房用ヒータの能力を早急に高めることができる。 Therefore, the engine is quickly warmed up, the emission harmful gas can be reduced and the fuel efficiency can be improved, and the capacity of the heater for heating the cabin can be quickly increased.
そして、車輛の通常走行状態においては、流量制御ユニット 1 1における前記ワックスェ レメント 36が冷却水温に感応してバタフライバルブ 33の開弁度合いを制御し、これにより 冷却効率を可変する。一方、 ECU 1 5は外気温度の情報、冷却水温の情報、ラジェ一タフ アンの動作状態、およびスロットルバルブの開度情報等に基づいてファンモータ駆動回路 1 9、グリルユニット駆動回路 20に出力される PWM信号のデューティファクタを制御する。 これにより、ファンモータ 6bの回転数が制御されると共に、可変グリルユニット 22による ラジェータ 2側への通風量も制御される。したがって、これらによるラジェータ 2の放熱効果 も制御され、エンジンの理想的な燃焼制御がなされる。 In the normal running state of the vehicle, the wax element 36 in the flow control unit 11 controls the opening degree of the butterfly valve 33 in response to the cooling water temperature, thereby varying the cooling efficiency. On the other hand, the ECU 15 outputs the information to the fan motor drive circuit 19 and the grill unit drive circuit 20 based on the information on the outside air temperature, the information on the cooling water temperature, the operation state of the radial fan and the opening degree of the throttle valve. Control the duty factor of the PWM signal. As a result, the rotation speed of the fan motor 6b is controlled, and the amount of air flow to the radiator 2 by the variable grill unit 22 is also controlled. Therefore, the heat radiation effect of the radiator 2 is also controlled by these, and ideal combustion control of the engine is performed.
また、例えば車輛の登坂時または高速走行時等のようにエンジン負荷が大の場合にお いては、 ECU 1 5力、ら PTC駆動回路 1 8、ファンモータ駆動回路 1 9およびグリルユニット駆 動回路 20に出力する PWM信号のデューティファクタは最大となる。 Also, when the engine load is large, for example, when the vehicle is climbing a hill or traveling at high speed, the ECU 15 power, the PTC drive circuit 18, the fan motor drive circuit 19, and the grille unit drive circuit The duty factor of the PWM signal output to 20 becomes the maximum.
したがって、流量制御ユニット 1 1における PTCヒータ 40に印加される電流の導通角は最 大となり、流量制御ユニット 1 1におけるバタフライバルブ 33はほぼ全開状態とされる。ま たファンモータ 6bの回転数も最大状態とされる。 Therefore, the conduction angle of the current applied to the PTC heater 40 in the flow control unit 11 is maximized, and the butterfly valve 33 in the flow control unit 11 is almost fully opened. The rotation speed of the fan motor 6b is also set to the maximum.
さらに、グリルァクチェ一タ 24のヒータ 60に印加される電流の導通角も最大となり、これに より前記グリル 23は全開状態となり、ラジェ一タ 2側への通風量は最大状態とされる。よつ て、ラジェータ 2の放熱効果が促進され、エンジンの過剰な温度上昇を防止させることがで さる。 In addition, the conduction angle of the current applied to the heater 60 of the grill actuator 24 is also maximized, whereby the grill 23 is fully opened, and the air flow to the radiator 2 is maximized. Accordingly, the heat radiation effect of the radiator 2 is promoted, and an excessive temperature rise of the engine can be prevented.
一方、流量制御ユニット 1 1として第 3図に示したように、サーモエレメント 35が冷却水に
対して熱的に絶縁されるように構成されたものを用いた場合については以下のような作用 となる。すなわち、車輛の通常走行状態においては PTCヒータ 40は、エンジンの負荷状態 に応じた ECU 1 5による制御を受けてバタフライバルブの開弁状態が制御される。そして、 車輛の登坂時または高速走行時等のようにエンジン負荷が大の場合においては、 PTCヒ ータ 40に加わる電流量は最大となされ、これにより流量制御ユニット 1 1におけるバタフラ ィバルブ 33はほぼ全開状態とされる。 On the other hand, as shown in FIG. 3 as the flow control unit 11, the thermoelement 35 On the other hand, the case where a device configured to be thermally insulated is used has the following effect. That is, in the normal running state of the vehicle, the PTC heater 40 is controlled by the ECU 15 in accordance with the load state of the engine to control the opening state of the butterfly valve. When the engine load is large, such as when the vehicle is climbing a hill or traveling at high speed, the amount of current applied to the PTC heater 40 is maximized, whereby the butterfly valve 33 in the flow control unit 11 is almost completely changed. It is in a fully opened state.
なお、以上説明した実施の形態においては、流量制御ユニット 1 1として PTCヒータ 40と サーモエレメント 35とにより、バタフライバルブ 33の開弁度合いを制御するものを用いて し、る力 これは電動モータによる駆動により制御することもできる。 In the above-described embodiment, the flow control unit 11 controls the opening degree of the butterfly valve 33 by using the PTC heater 40 and the thermoelement 35, and the power is controlled by an electric motor. It can also be controlled by driving.
すなわち、電動モータとバタフライバルブの駆動軸との間に例えばウォームギアを介在さ せた構成とし、 ECUから供給される PWM信号によって前記電動モータを正逆方向に回転 駆動させることにより、バタフライバルブの開弁度合いを制御させることが可能である。 また、以上説明した実施の形態においては、可変グリルユニット 22におけるァクチェ一タ 24として、ヒータエレメント 52とサーモワックスエレメント 51とにより構成したものを使用し ているが、これも電動モータによる駆動により制御することができる。すなわち電動モータ による回転駆動力をウォームギア等により減速させて、ギヤホイルの回転力をグリルの開 閉を制御するロッドに伝達するように構成することで、グリルを開閉制御させることができ る。 That is, for example, a worm gear is interposed between the electric motor and the drive shaft of the butterfly valve, and the electric motor is rotated in the forward and reverse directions by a PWM signal supplied from the ECU, thereby opening the butterfly valve. It is possible to control the valve degree. Further, in the embodiment described above, the actuator constituted by the heater element 52 and the thermowax element 51 is used as the actuator 24 in the variable grill unit 22, but this is also controlled by the drive by the electric motor. can do. In other words, the rotation of the gear wheel is reduced by a worm gear or the like, and the rotation of the gear wheel is transmitted to a rod for controlling the opening and closing of the grill, so that the opening and closing of the grill can be controlled.
さらに以上は、本発明の冷却制御装置を自動車用エンジンに適用した実施の形態に基 づいて説明したが、本発明はこのような特定なものに限られることなぐその他の内燃機関 に適用することで、同様の作用効果を得ることができる。 Further, the cooling control device of the present invention has been described based on the embodiment applied to an automobile engine.However, the present invention is not limited to such a specific one, but may be applied to other internal combustion engines. Thus, the same function and effect can be obtained.
以上の説明で明らかなように、本発明にかかる内燃機関の冷却制御装置は、冷却媒体 の流量を制御する流量制御ユニットと、熱交換器への通風量を調節可能とした可変グリル ユニットと、少なくとも冷却媒体の温度情報に基づいて、流量制御ユニットにおける冷却媒 体の流量、および可変グリルユニットにおける熱交換器への通風量を制御するための指 令信号を生成する指令信号生成ユニットとを具備したので、流量制御ユニットと可変グリル
ユニットとの作用によって、内燃機関の暖気運転状態から高負荷運転状態に至るまで、適 切な放熱効果を与えることができる。 As apparent from the above description, the cooling control device for an internal combustion engine according to the present invention includes a flow control unit that controls the flow rate of the cooling medium, a variable grill unit that can adjust the amount of air flow to the heat exchanger, A command signal generating unit for generating a command signal for controlling a flow rate of the cooling medium in the flow rate control unit and a flow rate of air to the heat exchanger in the variable grill unit based on at least temperature information of the cooling medium. The flow control unit and variable grill By operating with the unit, an appropriate heat radiation effect can be provided from the warm-up operation state of the internal combustion engine to the high load operation state.
このように、流量制御ユニットの作用に対して可変グリルユニットによる作用が相乗的に 作用するので、暖気運転においての冷却水温度を早急に高めることが可能であり、また例 えば車輛の登坂時または高速走行時等のように内燃機関に対する負荷が大きい場合に おいての内燃機関の過剰な温度上昇を効果的に抑制することが可能となる。 As described above, since the action of the variable grill unit acts synergistically with the action of the flow control unit, it is possible to quickly increase the temperature of the cooling water during warm-up operation. It is possible to effectively suppress an excessive rise in temperature of the internal combustion engine when the load on the internal combustion engine is large, such as during high-speed running.
そして、特に内燃機関に対する負荷が大きい場合において、ノッキングの発生またはォ ーバヒートに至る最悪な状態を効果的に回避することが可能となり、運転条件の過酷な変 化に十分に追従し得る冷却制御装置を提供することができる。
In particular, in the case where the load on the internal combustion engine is large, the worst case condition of knocking or overheating can be effectively avoided, and the cooling control device can sufficiently follow severe changes in operating conditions. Can be provided.
Claims
1 . 内燃機関内に形成された流体通路と熱交換器に形成された流体通路との間で冷却媒 体の循環路を形成し、前記循環路中に冷却媒体を循環させることによって内燃機関におい て発生する熱を前記熱交換器によって放熱させるように構成した内燃機関の冷却制御装 置であって、 1. A circulation path of a cooling medium is formed between a fluid passage formed in the internal combustion engine and a fluid passage formed in the heat exchanger, and the cooling medium is circulated through the circulation path to reduce the internal combustion engine. A cooling control device for an internal combustion engine configured to radiate heat generated by the heat exchanger,
前記内燃機関と熱交換器間の循環路における冷却媒体の流量を制御する流量制御ュ ニットと、前記熱交換器の前方に配置され、熱交換器への通風量を調節可能とした可変グ リルユニットと、少な〈とも前記冷却媒体の温度情報に基づいて、前記流量制御ユニットに おける冷却媒体の流量を制御するための指令信号、および前記可変グリルユニットにおけ る熱交換器への通風量を制御するための指令信号を生成する指令信号生成ユニットとを 具備したことを特徴とする内燃機関の冷却制御装置。 A flow control unit for controlling a flow rate of a cooling medium in a circulation path between the internal combustion engine and the heat exchanger; and a variable grill disposed in front of the heat exchanger and capable of adjusting a flow rate to the heat exchanger. A command signal for controlling the flow rate of the cooling medium in the flow rate control unit based on at least the temperature information of the cooling medium, and an air flow rate to the heat exchanger in the variable grill unit. A cooling control device for an internal combustion engine, comprising: a command signal generation unit that generates a command signal for control.
2.前記指令信号生成ユニットは、流量制御ユニットによる冷却媒体の流量を最小状態に 制御し、且つ可変グリルユニットによる熱交換器への通風量を最小状態に制御する制御モ ードから、流量制御ユニットによる冷却媒体の流量を最大状態に制御し、且つ可変グリル ユニットによる熱交換器への通風量を最大状態に制御する制御モードに至る指令信号を 生成するように構成されていることを特徴とする請求の範囲第 1項に記載される内燃機関 の冷却制御装置。 2. The command signal generation unit controls the flow rate from the control mode in which the flow rate control unit controls the flow rate of the cooling medium to the minimum state and the variable grille unit controls the flow rate to the heat exchanger to the minimum state. The control unit is configured to control the flow rate of the cooling medium by the unit to a maximum state, and to generate a command signal leading to a control mode for controlling the ventilation amount to the heat exchanger by the variable grill unit to a maximum state. The cooling control device for an internal combustion engine according to claim 1, wherein
3.前記指令信号生成ユニットには、さらに熱交換器を強制冷却する送風ファンの動作ま たは不動作状態を示す情報と、外気温度を示す情報と、車輛の進行速度を示す情報がさ らに加えられるように構成されていることを特徴とする請求の範囲第 1項または第 2項に記 載の内燃機関の冷却制御装置。 3. The command signal generation unit further includes information indicating the operation or non-operation state of the blower fan for forcibly cooling the heat exchanger, information indicating the outside air temperature, and information indicating the traveling speed of the vehicle. 3. The cooling control device for an internal combustion engine according to claim 1, wherein the cooling control device is configured to be added to the internal combustion engine.
4.前記流量制御ユニットは、指令信号生成ユニットから供給される指令信号に基づいて 発熱するヒータと、前記ヒータの発熱に感応して駆動されるサーモエレメントと、前記サーモ エレメントの駆動力によって開弁度合いが制御される流量制御バルブとにより構成されて いることを特徴とする請求の範囲第 1項乃至第 3項記載の内燃機関の冷却制御装置。
4. The flow control unit includes a heater that generates heat based on a command signal supplied from a command signal generation unit, a thermoelement that is driven in response to the heat generated by the heater, and a valve that is opened by a driving force of the thermoelement. 4. The cooling control device for an internal combustion engine according to claim 1, further comprising a flow control valve whose degree is controlled.
5.前記流量制御ユニットは、指令信号生成ユニットから供給される指令信号に基づいて 駆動される電動モータと、前記電動モータの駆動力によって開弁度合いが制御される流量 制御バルブとにより構成されていることを特徴とする請求の範囲第 1項乃第 3項に記載の 内燃機関の冷却制御装置。 5. The flow control unit includes an electric motor driven based on a command signal supplied from a command signal generation unit, and a flow control valve whose valve opening degree is controlled by a driving force of the electric motor. 4. The cooling control device for an internal combustion engine according to claim 1, wherein
6.前記可変グリルユニットは、指令信号生成ユニットから供給される指令信号に基づいて 発熱するヒータと、前記ヒータの発熱に感応して駆動されるサーモエレメントと、前記サ一モ エレメントの駆動力によって開閉され、熱交換器への通風量を制御するグリルとにより構成 されていることを特徴とする請求の範囲第 1項乃至第 5のいずれかに記載の内燃機関の 冷却制御装置。 6. The variable grill unit includes a heater that generates heat based on a command signal supplied from a command signal generation unit, a thermoelement that is driven in response to the heat generated by the heater, and a driving force of the thermoelement. The cooling control device for an internal combustion engine according to any one of claims 1 to 5, further comprising: a grill that is opened and closed and controls a ventilation amount to the heat exchanger.
フ.前記可変グリルユニットは、指令信号生成ユニットから供給される指令信号に基づいて 駆動される電動モータと、前記電動モータの駆動力によって開閉され、熱交換器への通風 量を制御するグリルとにより構成されていることを特徴とする請求の範囲第 1項乃至第 5項 のいずれかに記載の内燃機関の冷却制御装置。
The variable grill unit includes an electric motor that is driven based on a command signal supplied from a command signal generation unit, and a grill that is opened and closed by a driving force of the electric motor and controls a ventilation amount to a heat exchanger. The cooling control device for an internal combustion engine according to any one of claims 1 to 5, characterized by comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10335349A JP2000161063A (en) | 1998-11-26 | 1998-11-26 | Cooling controller for internal combustion engine |
JP10/335349 | 1998-11-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000031389A1 true WO2000031389A1 (en) | 2000-06-02 |
Family
ID=18287540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1999/006555 WO2000031389A1 (en) | 1998-11-26 | 1999-11-25 | Cooling control device for internal combustion engines |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2000161063A (en) |
WO (1) | WO2000031389A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016084386A1 (en) * | 2014-11-28 | 2016-06-02 | Toyota Jidosha Kabushiki Kaisha | Cooling system for internal combustion engine |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4498636B2 (en) * | 2001-04-27 | 2010-07-07 | 日本サーモスタット株式会社 | Thermostat device |
JP4792581B2 (en) * | 2005-11-17 | 2011-10-12 | 国立大学法人鳥取大学 | Mechanical device with heat dissipation structure for reducing thermal deformation |
JP2009185700A (en) * | 2008-02-06 | 2009-08-20 | Fuji Heavy Ind Ltd | Cooling control device for vehicle drive system |
JP5331623B2 (en) * | 2009-09-03 | 2013-10-30 | 本田技研工業株式会社 | Radiator ventilation structure |
KR101338468B1 (en) | 2012-10-17 | 2013-12-10 | 현대자동차주식회사 | Control sytem of electrical thermostat and the system thereof |
KR101550616B1 (en) | 2013-12-18 | 2015-09-08 | 현대자동차 주식회사 | Cooling system of vehicle and control method therefor |
KR101566111B1 (en) | 2014-06-27 | 2015-11-04 | 쌍용자동차 주식회사 | Air flap control thermostat structure works for automobile |
US20160033214A1 (en) * | 2014-08-04 | 2016-02-04 | Kia Motors Corporation | Universal controlling method and system for flow rate of cooling water and active air flap |
KR101646441B1 (en) * | 2015-01-29 | 2016-08-05 | 현대자동차주식회사 | Aaf and ets integrated control method for vehicle and control apparatus thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0084378A1 (en) * | 1982-01-19 | 1983-07-27 | Nippondenso Co., Ltd. | Engine cooling system control apparatus |
EP0154090A1 (en) * | 1984-01-23 | 1985-09-11 | Borg-Warner Corporation | Engine temperature control system |
JPH0610671A (en) * | 1992-06-25 | 1994-01-18 | Honda Motor Co Ltd | Variable grill unit for radiator |
JPH07279666A (en) * | 1994-04-13 | 1995-10-27 | Nippon Thermostat Kk | Cooling controller for engine |
-
1998
- 1998-11-26 JP JP10335349A patent/JP2000161063A/en active Pending
-
1999
- 1999-11-25 WO PCT/JP1999/006555 patent/WO2000031389A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0084378A1 (en) * | 1982-01-19 | 1983-07-27 | Nippondenso Co., Ltd. | Engine cooling system control apparatus |
EP0154090A1 (en) * | 1984-01-23 | 1985-09-11 | Borg-Warner Corporation | Engine temperature control system |
JPH0610671A (en) * | 1992-06-25 | 1994-01-18 | Honda Motor Co Ltd | Variable grill unit for radiator |
JPH07279666A (en) * | 1994-04-13 | 1995-10-27 | Nippon Thermostat Kk | Cooling controller for engine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016084386A1 (en) * | 2014-11-28 | 2016-06-02 | Toyota Jidosha Kabushiki Kaisha | Cooling system for internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JP2000161063A (en) | 2000-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3932277B2 (en) | Control method of electronic control thermostat | |
US6223700B1 (en) | Cooling control system and cooling control method for engine | |
JP3891512B2 (en) | Cooling control device and cooling control method for internal combustion engine | |
JPH10317966A (en) | Cooling controller for internal combustion engine | |
JPH0444084B2 (en) | ||
JPH1077840A (en) | Cooling water control valve and cooling water circuit for internal combustion engine | |
JP4078742B2 (en) | Vehicle heating system | |
WO2000031389A1 (en) | Cooling control device for internal combustion engines | |
JP2004353602A (en) | Control method of electronically controlled thermostat | |
JP2004360509A (en) | Cooling system for internal combustion engine | |
JPH0567768B2 (en) | ||
JPH1071833A (en) | Heating equipment for vehicle | |
JP2020059375A (en) | Temperature control system of battery for vehicle driving | |
JP2004316472A (en) | Cooling system for internal combustion engine | |
JP2002257248A (en) | Flow control valve and cooling device for internal combustion engine using the same | |
JP4491991B2 (en) | Oil temperature control device | |
JP3838528B2 (en) | Cooling control device and cooling control method for internal combustion engine | |
JP3570055B2 (en) | Engine cooling system | |
JPH02125910A (en) | Internal combustion engine cooling water flow control device | |
JPH10131753A (en) | Cooling device for water-cooled engine | |
JPH1071839A (en) | Cooling water circuit for internal combustion engine | |
JP2012031811A (en) | Device for controlling electric water pump | |
KR100384584B1 (en) | A heating device of car | |
JP6361306B2 (en) | Cooling device for internal combustion engine | |
JP2004285830A (en) | Engine cooling system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA CN IN KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |