WO2000020595A1 - Homologues de l'interleukine-1 - Google Patents
Homologues de l'interleukine-1 Download PDFInfo
- Publication number
- WO2000020595A1 WO2000020595A1 PCT/US1999/023533 US9923533W WO0020595A1 WO 2000020595 A1 WO2000020595 A1 WO 2000020595A1 US 9923533 W US9923533 W US 9923533W WO 0020595 A1 WO0020595 A1 WO 0020595A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- zil1a3
- seq
- amino acid
- cells
- Prior art date
Links
- 102000000589 Interleukin-1 Human genes 0.000 title abstract description 4
- 108010002352 Interleukin-1 Proteins 0.000 title abstract description 4
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 197
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 154
- 238000000034 method Methods 0.000 claims abstract description 73
- 125000000539 amino acid group Chemical group 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 210000004027 cell Anatomy 0.000 claims description 105
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 102
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 95
- 229920001184 polypeptide Polymers 0.000 claims description 91
- 241001465754 Metazoa Species 0.000 claims description 22
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 21
- 230000003248 secreting effect Effects 0.000 claims description 14
- 239000013604 expression vector Substances 0.000 claims description 12
- 238000013518 transcription Methods 0.000 claims description 12
- 230000035897 transcription Effects 0.000 claims description 12
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 210000004748 cultured cell Anatomy 0.000 claims description 4
- 238000012258 culturing Methods 0.000 claims description 3
- 230000028993 immune response Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 30
- 230000004054 inflammatory process Effects 0.000 abstract description 9
- 206010061218 Inflammation Diseases 0.000 abstract description 8
- 238000011160 research Methods 0.000 abstract description 6
- 230000001225 therapeutic effect Effects 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 2
- 235000018102 proteins Nutrition 0.000 description 134
- 108020004414 DNA Proteins 0.000 description 42
- 108091033319 polynucleotide Proteins 0.000 description 41
- 102000040430 polynucleotide Human genes 0.000 description 41
- 239000002157 polynucleotide Substances 0.000 description 41
- 102100026018 Interleukin-1 receptor antagonist protein Human genes 0.000 description 27
- 101710144554 Interleukin-1 receptor antagonist protein Proteins 0.000 description 27
- 230000027455 binding Effects 0.000 description 25
- 108020004635 Complementary DNA Proteins 0.000 description 22
- 238000003556 assay Methods 0.000 description 22
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 21
- 102000005962 receptors Human genes 0.000 description 21
- 108020003175 receptors Proteins 0.000 description 21
- 239000000523 sample Substances 0.000 description 19
- 239000013598 vector Substances 0.000 description 19
- 235000001014 amino acid Nutrition 0.000 description 17
- 210000001519 tissue Anatomy 0.000 description 17
- 238000010804 cDNA synthesis Methods 0.000 description 16
- 239000002299 complementary DNA Substances 0.000 description 16
- 239000002773 nucleotide Substances 0.000 description 16
- 125000003729 nucleotide group Chemical group 0.000 description 16
- 108020004705 Codon Proteins 0.000 description 15
- 230000014509 gene expression Effects 0.000 description 15
- 206010052428 Wound Diseases 0.000 description 14
- 208000027418 Wounds and injury Diseases 0.000 description 14
- 108091028043 Nucleic acid sequence Proteins 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 12
- 239000005557 antagonist Substances 0.000 description 12
- 230000000295 complement effect Effects 0.000 description 12
- 238000011282 treatment Methods 0.000 description 12
- 241000588724 Escherichia coli Species 0.000 description 11
- 150000001413 amino acids Chemical class 0.000 description 11
- 230000002068 genetic effect Effects 0.000 description 11
- 229940024606 amino acid Drugs 0.000 description 10
- 230000004927 fusion Effects 0.000 description 10
- 238000001727 in vivo Methods 0.000 description 10
- 108020004999 messenger RNA Proteins 0.000 description 10
- 239000013612 plasmid Substances 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 241000894007 species Species 0.000 description 10
- 102000004127 Cytokines Human genes 0.000 description 9
- 108090000695 Cytokines Proteins 0.000 description 9
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 9
- 239000000556 agonist Substances 0.000 description 9
- 210000004369 blood Anatomy 0.000 description 9
- 239000008280 blood Substances 0.000 description 9
- 239000013615 primer Substances 0.000 description 9
- 238000006467 substitution reaction Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 8
- 238000003776 cleavage reaction Methods 0.000 description 8
- 239000003446 ligand Substances 0.000 description 8
- 239000003550 marker Substances 0.000 description 8
- 230000007017 scission Effects 0.000 description 8
- 241000701161 unidentified adenovirus Species 0.000 description 8
- 241000701447 unidentified baculovirus Species 0.000 description 8
- 102000003777 Interleukin-1 beta Human genes 0.000 description 7
- 108090000193 Interleukin-1 beta Proteins 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 230000004071 biological effect Effects 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 238000009396 hybridization Methods 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 210000004185 liver Anatomy 0.000 description 7
- 230000035772 mutation Effects 0.000 description 7
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 7
- 206010039073 rheumatoid arthritis Diseases 0.000 description 7
- 210000003491 skin Anatomy 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 6
- 241000700605 Viruses Species 0.000 description 6
- 150000007513 acids Chemical class 0.000 description 6
- 230000004075 alteration Effects 0.000 description 6
- 239000012148 binding buffer Substances 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 6
- 210000002615 epidermis Anatomy 0.000 description 6
- 108020001507 fusion proteins Proteins 0.000 description 6
- 102000037865 fusion proteins Human genes 0.000 description 6
- 238000001502 gel electrophoresis Methods 0.000 description 6
- 208000024908 graft versus host disease Diseases 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000001890 transfection Methods 0.000 description 6
- 230000014616 translation Effects 0.000 description 6
- 230000029663 wound healing Effects 0.000 description 6
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 5
- PHEDXBVPIONUQT-UHFFFAOYSA-N Cocarcinogen A1 Natural products CCCCCCCCCCCCCC(=O)OC1C(C)C2(O)C3C=C(C)C(=O)C3(O)CC(CO)=CC2C2C1(OC(C)=O)C2(C)C PHEDXBVPIONUQT-UHFFFAOYSA-N 0.000 description 5
- 108091029865 Exogenous DNA Proteins 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 5
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 5
- 238000000636 Northern blotting Methods 0.000 description 5
- 230000001154 acute effect Effects 0.000 description 5
- 229940098773 bovine serum albumin Drugs 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 210000003734 kidney Anatomy 0.000 description 5
- 239000002502 liposome Substances 0.000 description 5
- 210000004962 mammalian cell Anatomy 0.000 description 5
- 230000035755 proliferation Effects 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 229920000856 Amylose Polymers 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 4
- 208000009329 Graft vs Host Disease Diseases 0.000 description 4
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 4
- 102000019223 Interleukin-1 receptor Human genes 0.000 description 4
- 108050006617 Interleukin-1 receptor Proteins 0.000 description 4
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- 201000004681 Psoriasis Diseases 0.000 description 4
- 206010040070 Septic Shock Diseases 0.000 description 4
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 4
- 229960000723 ampicillin Drugs 0.000 description 4
- 230000000692 anti-sense effect Effects 0.000 description 4
- 206010003246 arthritis Diseases 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- -1 c/s-4-hydroxyproline Chemical compound 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 238000002703 mutagenesis Methods 0.000 description 4
- 231100000350 mutagenesis Toxicity 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 4
- 210000002826 placenta Anatomy 0.000 description 4
- 230000000770 proinflammatory effect Effects 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 230000036303 septic shock Effects 0.000 description 4
- 230000001131 transforming effect Effects 0.000 description 4
- 230000009261 transgenic effect Effects 0.000 description 4
- 230000003612 virological effect Effects 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- 208000011231 Crohn disease Diseases 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 101150029662 E1 gene Proteins 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 241000672609 Escherichia coli BL21 Species 0.000 description 3
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 102000015696 Interleukins Human genes 0.000 description 3
- 108010063738 Interleukins Proteins 0.000 description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 108091061960 Naked DNA Proteins 0.000 description 3
- 241001452677 Ogataea methanolica Species 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 206010033645 Pancreatitis Diseases 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 102000006382 Ribonucleases Human genes 0.000 description 3
- 108010083644 Ribonucleases Proteins 0.000 description 3
- 241000256251 Spodoptera frugiperda Species 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 230000003110 anti-inflammatory effect Effects 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 208000037976 chronic inflammation Diseases 0.000 description 3
- 208000037893 chronic inflammatory disorder Diseases 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000002538 fungal effect Effects 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 239000003102 growth factor Substances 0.000 description 3
- 238000002744 homologous recombination Methods 0.000 description 3
- 230000006801 homologous recombination Effects 0.000 description 3
- 210000003917 human chromosome Anatomy 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 3
- 208000032839 leukemia Diseases 0.000 description 3
- 210000000265 leukocyte Anatomy 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 210000001322 periplasm Anatomy 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 229960004072 thrombin Drugs 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- PDRJLZDUOULRHE-ZETCQYMHSA-N (2s)-2-amino-3-pyridin-2-ylpropanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=N1 PDRJLZDUOULRHE-ZETCQYMHSA-N 0.000 description 2
- DFZVZEMNPGABKO-ZETCQYMHSA-N (2s)-2-amino-3-pyridin-3-ylpropanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=CN=C1 DFZVZEMNPGABKO-ZETCQYMHSA-N 0.000 description 2
- FQFVANSXYKWQOT-ZETCQYMHSA-N (2s)-2-azaniumyl-3-pyridin-4-ylpropanoate Chemical compound OC(=O)[C@@H](N)CC1=CC=NC=C1 FQFVANSXYKWQOT-ZETCQYMHSA-N 0.000 description 2
- AZKSAVLVSZKNRD-UHFFFAOYSA-M 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide Chemical compound [Br-].S1C(C)=C(C)N=C1[N+]1=NC(C=2C=CC=CC=2)=NN1C1=CC=CC=C1 AZKSAVLVSZKNRD-UHFFFAOYSA-M 0.000 description 2
- XWHHYOYVRVGJJY-QMMMGPOBSA-N 4-fluoro-L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(F)C=C1 XWHHYOYVRVGJJY-QMMMGPOBSA-N 0.000 description 2
- WRDABNWSWOHGMS-UHFFFAOYSA-N AEBSF hydrochloride Chemical compound Cl.NCCC1=CC=C(S(F)(=O)=O)C=C1 WRDABNWSWOHGMS-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000201370 Autographa californica nucleopolyhedrovirus Species 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 201000006474 Brain Ischemia Diseases 0.000 description 2
- 206010008120 Cerebral ischaemia Diseases 0.000 description 2
- 208000017667 Chronic Disease Diseases 0.000 description 2
- 206010009900 Colitis ulcerative Diseases 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 206010059866 Drug resistance Diseases 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 208000037487 Endotoxemia Diseases 0.000 description 2
- 108010074860 Factor Xa Proteins 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 206010018364 Glomerulonephritis Diseases 0.000 description 2
- KOSRFJWDECSPRO-WDSKDSINSA-N Glu-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(O)=O KOSRFJWDECSPRO-WDSKDSINSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 102000039996 IL-1 family Human genes 0.000 description 2
- 108091069196 IL-1 family Proteins 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 102000000646 Interleukin-3 Human genes 0.000 description 2
- 108010002386 Interleukin-3 Proteins 0.000 description 2
- 102000004889 Interleukin-6 Human genes 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 241000581650 Ivesia Species 0.000 description 2
- 241000235058 Komagataella pastoris Species 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 208000016604 Lyme disease Diseases 0.000 description 2
- 108091092878 Microsatellite Proteins 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 108020004485 Nonsense Codon Proteins 0.000 description 2
- 108091060545 Nonsense suppressor Proteins 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 108091034057 RNA (poly(A)) Proteins 0.000 description 2
- 108091081021 Sense strand Proteins 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 108090000190 Thrombin Proteins 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 2
- 201000006704 Ulcerative Colitis Diseases 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 108020005202 Viral DNA Proteins 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 210000004100 adrenal gland Anatomy 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000975 bioactive effect Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 125000000837 carbohydrate group Chemical group 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 206010008118 cerebral infarction Diseases 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 206010009887 colitis Diseases 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 230000000447 dimerizing effect Effects 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 239000003797 essential amino acid Substances 0.000 description 2
- 235000020776 essential amino acid Nutrition 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000001605 fetal effect Effects 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 108010055341 glutamyl-glutamic acid Proteins 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 125000001165 hydrophobic group Chemical group 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 229940047122 interleukins Drugs 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 238000001638 lipofection Methods 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 210000002864 mononuclear phagocyte Anatomy 0.000 description 2
- 230000037434 nonsense mutation Effects 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000010647 peptide synthesis reaction Methods 0.000 description 2
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 2
- 239000002644 phorbol ester Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002704 polyhistidine Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002987 primer (paints) Substances 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 230000001185 psoriatic effect Effects 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 210000000278 spinal cord Anatomy 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 210000001550 testis Anatomy 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 208000035408 type 1 diabetes mellitus 1 Diseases 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- UJXJZOCXEZPHIE-YFKPBYRVSA-N (2s)-2-(2-hydroxyethylamino)-4-sulfanylbutanoic acid Chemical compound OCCN[C@H](C(O)=O)CCS UJXJZOCXEZPHIE-YFKPBYRVSA-N 0.000 description 1
- KUHSEZKIEJYEHN-BXRBKJIMSA-N (2s)-2-amino-3-hydroxypropanoic acid;(2s)-2-aminopropanoic acid Chemical compound C[C@H](N)C(O)=O.OC[C@H](N)C(O)=O KUHSEZKIEJYEHN-BXRBKJIMSA-N 0.000 description 1
- JQFLYFRHDIHZFZ-RXMQYKEDSA-N (2s)-3,3-dimethylpyrrolidine-2-carboxylic acid Chemical compound CC1(C)CCN[C@@H]1C(O)=O JQFLYFRHDIHZFZ-RXMQYKEDSA-N 0.000 description 1
- CNPSFBUUYIVHAP-AKGZTFGVSA-N (2s)-3-methylpyrrolidine-2-carboxylic acid Chemical compound CC1CCN[C@@H]1C(O)=O CNPSFBUUYIVHAP-AKGZTFGVSA-N 0.000 description 1
- FXGZFWDCXQRZKI-VKHMYHEASA-N (2s)-5-amino-2-nitramido-5-oxopentanoic acid Chemical compound NC(=O)CC[C@@H](C(O)=O)N[N+]([O-])=O FXGZFWDCXQRZKI-VKHMYHEASA-N 0.000 description 1
- LOGFVTREOLYCPF-KXNHARMFSA-N (2s,3r)-2-[[(2r)-1-[(2s)-2,6-diaminohexanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxybutanoic acid Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H]1CCCN1C(=O)[C@@H](N)CCCCN LOGFVTREOLYCPF-KXNHARMFSA-N 0.000 description 1
- CCAIIPMIAFGKSI-DMTCNVIQSA-N (2s,3r)-3-hydroxy-2-(methylazaniumyl)butanoate Chemical compound CN[C@@H]([C@@H](C)O)C(O)=O CCAIIPMIAFGKSI-DMTCNVIQSA-N 0.000 description 1
- CNPSFBUUYIVHAP-WHFBIAKZSA-N (2s,3s)-3-methylpyrrolidin-1-ium-2-carboxylate Chemical compound C[C@H]1CCN[C@@H]1C(O)=O CNPSFBUUYIVHAP-WHFBIAKZSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- OMGHIGVFLOPEHJ-UHFFFAOYSA-N 2,5-dihydro-1h-pyrrol-1-ium-2-carboxylate Chemical compound OC(=O)C1NCC=C1 OMGHIGVFLOPEHJ-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- XEVFXAFXZZYFSX-UHFFFAOYSA-N 3-azabicyclo[2.1.1]hexane-4-carboxylic acid Chemical compound C1C2CC1(C(=O)O)NC2 XEVFXAFXZZYFSX-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- 241000228431 Acremonium chrysogenum Species 0.000 description 1
- 208000030090 Acute Disease Diseases 0.000 description 1
- 241000589156 Agrobacterium rhizogenes Species 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 102100024321 Alkaline phosphatase, placental type Human genes 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 241000024188 Andala Species 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 206010006895 Cachexia Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000222128 Candida maltosa Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 208000031404 Chromosome Aberrations Diseases 0.000 description 1
- 208000018652 Closed Head injury Diseases 0.000 description 1
- 101100007328 Cocos nucifera COS-1 gene Proteins 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 108020004394 Complementary RNA Proteins 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 235000004035 Cryptotaenia japonica Nutrition 0.000 description 1
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 241000283014 Dama Species 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 206010051392 Diapedesis Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 108010075944 Erythropoietin Receptors Proteins 0.000 description 1
- 102100036509 Erythropoietin receptor Human genes 0.000 description 1
- 241001288713 Escherichia coli MC1061 Species 0.000 description 1
- 206010063560 Excessive granulation tissue Diseases 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 206010017533 Fungal infection Diseases 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 206010017964 Gastrointestinal infection Diseases 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 102000005720 Glutathione transferase Human genes 0.000 description 1
- 108010070675 Glutathione transferase Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108010054017 Granulocyte Colony-Stimulating Factor Receptors Proteins 0.000 description 1
- 102100039622 Granulocyte colony-stimulating factor receptor Human genes 0.000 description 1
- 108010092372 Granulocyte-Macrophage Colony-Stimulating Factor Receptors Proteins 0.000 description 1
- 102000016355 Granulocyte-Macrophage Colony-Stimulating Factor Receptors Human genes 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 102100020948 Growth hormone receptor Human genes 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 102100027685 Hemoglobin subunit alpha Human genes 0.000 description 1
- 108091005902 Hemoglobin subunit alpha Proteins 0.000 description 1
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 1
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 101000690301 Homo sapiens Aldo-keto reductase family 1 member C4 Proteins 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101001076407 Homo sapiens Interleukin-1 receptor antagonist protein Proteins 0.000 description 1
- 101000741885 Homo sapiens Protection of telomeres protein 1 Proteins 0.000 description 1
- 101001116548 Homo sapiens Protein CBFA2T1 Proteins 0.000 description 1
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 description 1
- 101000946843 Homo sapiens T-cell surface glycoprotein CD8 alpha chain Proteins 0.000 description 1
- YZJSUQQZGCHHNQ-UHFFFAOYSA-N Homoglutamine Chemical compound OC(=O)C(N)CCCC(N)=O YZJSUQQZGCHHNQ-UHFFFAOYSA-N 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 235000003332 Ilex aquifolium Nutrition 0.000 description 1
- 241000209027 Ilex aquifolium Species 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 229940119178 Interleukin 1 receptor antagonist Drugs 0.000 description 1
- 102000051628 Interleukin-1 receptor antagonist Human genes 0.000 description 1
- 102000004125 Interleukin-1alpha Human genes 0.000 description 1
- 108010082786 Interleukin-1alpha Proteins 0.000 description 1
- 108010038452 Interleukin-3 Receptors Proteins 0.000 description 1
- 102000010790 Interleukin-3 Receptors Human genes 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010038501 Interleukin-6 Receptors Proteins 0.000 description 1
- 102000010781 Interleukin-6 Receptors Human genes 0.000 description 1
- 208000003456 Juvenile Arthritis Diseases 0.000 description 1
- 244000285963 Kluyveromyces fragilis Species 0.000 description 1
- 235000014663 Kluyveromyces fragilis Nutrition 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 1
- HXEACLLIILLPRG-YFKPBYRVSA-N L-pipecolic acid Chemical compound [O-]C(=O)[C@@H]1CCCC[NH2+]1 HXEACLLIILLPRG-YFKPBYRVSA-N 0.000 description 1
- DZLNHFMRPBPULJ-VKHMYHEASA-N L-thioproline Chemical compound OC(=O)[C@@H]1CSCN1 DZLNHFMRPBPULJ-VKHMYHEASA-N 0.000 description 1
- KKJQZEWNZXRJFG-UHFFFAOYSA-N L-trans-4-Methyl-2-pyrrolidinecarboxylic acid Chemical compound CC1CNC(C(O)=O)C1 KKJQZEWNZXRJFG-UHFFFAOYSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 206010024305 Leukaemia monocytic Diseases 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- 102100030856 Myoglobin Human genes 0.000 description 1
- 108010062374 Myoglobin Proteins 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 241000221960 Neurospora Species 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 241000320412 Ogataea angusta Species 0.000 description 1
- 238000002944 PCR assay Methods 0.000 description 1
- 108091008606 PDGF receptors Proteins 0.000 description 1
- 206010033647 Pancreatitis acute Diseases 0.000 description 1
- 208000030852 Parasitic disease Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 240000007711 Peperomia pellucida Species 0.000 description 1
- 108010047620 Phytohemagglutinins Proteins 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 102000011653 Platelet-Derived Growth Factor Receptors Human genes 0.000 description 1
- 102100038745 Protection of telomeres protein 1 Human genes 0.000 description 1
- 108010019653 Pwo polymerase Proteins 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 108020004518 RNA Probes Proteins 0.000 description 1
- 239000003391 RNA probe Substances 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 230000004570 RNA-binding Effects 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 206010072170 Skin wound Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 108010068542 Somatotropin Receptors Proteins 0.000 description 1
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 1
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 1
- 102000002933 Thioredoxin Human genes 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 108090000253 Thyrotropin Receptors Proteins 0.000 description 1
- 102100029337 Thyrotropin receptor Human genes 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 208000030886 Traumatic Brain injury Diseases 0.000 description 1
- 102000007641 Trefoil Factors Human genes 0.000 description 1
- 241000255993 Trichoplusia ni Species 0.000 description 1
- 235000015724 Trifolium pratense Nutrition 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- IVOMOUWHDPKRLL-UHFFFAOYSA-N UNPD107823 Natural products O1C2COP(O)(=O)OC2C(O)C1N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-UHFFFAOYSA-N 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 244000301083 Ustilago maydis Species 0.000 description 1
- 235000015919 Ustilago maydis Nutrition 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 102000005421 acetyltransferase Human genes 0.000 description 1
- 108020002494 acetyltransferase Proteins 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 201000003229 acute pancreatitis Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 238000012867 alanine scanning Methods 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 230000000689 aminoacylating effect Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 208000036878 aneuploidy Diseases 0.000 description 1
- 231100001075 aneuploidy Toxicity 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 230000002391 anti-complement effect Effects 0.000 description 1
- 230000002682 anti-psoriatic effect Effects 0.000 description 1
- 108010008730 anticomplement Proteins 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 108010062796 arginyllysine Proteins 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 102000012740 beta Adrenergic Receptors Human genes 0.000 description 1
- 108010079452 beta Adrenergic Receptors Proteins 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 102000023732 binding proteins Human genes 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 210000004671 cell-free system Anatomy 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 108091008394 cellulose binding proteins Proteins 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 231100000005 chromosome aberration Toxicity 0.000 description 1
- 230000014107 chromosome localization Effects 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000007398 colorimetric assay Methods 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229940095074 cyclic amp Drugs 0.000 description 1
- 239000000430 cytokine receptor antagonist Substances 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000030609 dephosphorylation Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 210000004207 dermis Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- JNSGIVNNHKGGRU-JYRVWZFOSA-N diethoxyphosphinothioyl (2z)-2-(2-amino-1,3-thiazol-4-yl)-2-methoxyiminoacetate Chemical compound CCOP(=S)(OCC)OC(=O)C(=N/OC)\C1=CSC(N)=N1 JNSGIVNNHKGGRU-JYRVWZFOSA-N 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 210000003989 endothelium vascular Anatomy 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 235000020774 essential nutrients Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005713 exacerbation Effects 0.000 description 1
- 229920000295 expanded polytetrafluoroethylene Polymers 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000012224 gene deletion Methods 0.000 description 1
- 230000004545 gene duplication Effects 0.000 description 1
- 238000012254 genetic linkage analysis Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 210000001126 granulation tissue Anatomy 0.000 description 1
- 239000005090 green fluorescent protein Substances 0.000 description 1
- 238000001631 haemodialysis Methods 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000000322 hemodialysis Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 230000002962 histologic effect Effects 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 102000054751 human RUNX1T1 Human genes 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- MWFRVMDVLYIXJF-BYPYZUCNSA-N hydroxyethylcysteine Chemical compound OC(=O)[C@@H](N)CSCCO MWFRVMDVLYIXJF-BYPYZUCNSA-N 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 238000000760 immunoelectrophoresis Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000004001 inositols Chemical class 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000003407 interleukin 1 receptor blocking agent Substances 0.000 description 1
- 230000018276 interleukin-1 production Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 208000023589 ischemic disease Diseases 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 238000011813 knockout mouse model Methods 0.000 description 1
- HXEACLLIILLPRG-RXMQYKEDSA-N l-pipecolic acid Natural products OC(=O)[C@H]1CCCCN1 HXEACLLIILLPRG-RXMQYKEDSA-N 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- VNYSSYRCGWBHLG-AMOLWHMGSA-N leukotriene B4 Chemical compound CCCCC\C=C/C[C@@H](O)\C=C\C=C\C=C/[C@@H](O)CCCC(O)=O VNYSSYRCGWBHLG-AMOLWHMGSA-N 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- 108020001756 ligand binding domains Proteins 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 210000003584 mesangial cell Anatomy 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- CWWARWOPSKGELM-SARDKLJWSA-N methyl (2s)-2-[[(2s)-2-[[2-[[(2s)-2-[[(2s)-2-[[(2s)-5-amino-2-[[(2s)-5-amino-2-[[(2s)-1-[(2s)-6-amino-2-[[(2s)-1-[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-5 Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)OC)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CCCN=C(N)N)C1=CC=CC=C1 CWWARWOPSKGELM-SARDKLJWSA-N 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 201000006894 monocytic leukemia Diseases 0.000 description 1
- 230000036457 multidrug resistance Effects 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 230000007171 neuropathology Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000037311 normal skin Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 210000004976 peripheral blood cell Anatomy 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 230000001885 phytohemagglutinin Effects 0.000 description 1
- 108010031345 placental alkaline phosphatase Proteins 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 230000035409 positive regulation of cell proliferation Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 230000012743 protein tagging Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000003156 radioimmunoprecipitation Methods 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000004017 serum-free culture medium Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000037432 silent mutation Effects 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000012289 standard assay Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 210000000498 stratum granulosum Anatomy 0.000 description 1
- 108010018381 streptavidin-binding peptide Proteins 0.000 description 1
- 210000004003 subcutaneous fat Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000001179 synovial fluid Anatomy 0.000 description 1
- 201000004595 synovitis Diseases 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229960000814 tetanus toxoid Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 108060008226 thioredoxin Proteins 0.000 description 1
- 229940094937 thioredoxin Drugs 0.000 description 1
- 208000008732 thymoma Diseases 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 229940100615 topical ointment Drugs 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- PMMYEEVYMWASQN-IMJSIDKUSA-N trans-4-Hydroxy-L-proline Natural products O[C@@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-IMJSIDKUSA-N 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 230000004862 vasculogenesis Effects 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000010388 wound contraction Effects 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
- C07K14/545—IL-1
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
Definitions
- the interleukins are a family of cytokines that mediate immune and inflammatory responses
- IL-1 lnterleukin-1
- IL-1 ⁇ and IL-1 ⁇ are pro-inflammatory cytokines
- IL-1 receptor antagonist (IL-1ra) is an antagonist of IL-1 ⁇ and IL-1 ⁇ activities.
- IL-1ra is unusual in that it is the only known, naturally occuring cytokine receptor antagonist with no apparent agonist function. The ability of IL-1ra to bind, but not activate, the IL-1 receptor suggests that IL-1ra is a negative regulator of inflammation (Dripps et al., J. Biol. Chem. 266:10331-10336, 1991 ; Granowitz et al., Blood 79:2356-2363, 1992).
- the interleukins mediate a variety of inflammatory pathologies.
- 11-1 ⁇ and IL-1 ⁇ act locally on mononuclear phagocytes and the vascular endothelium to induce further IL-1 and IL-6 synthesis.
- IL-1 does not act directly on leukocytes and neutrophils, but causes the mononuclear phagocytes and endothelial cells to activate leukocytes.
- IL-1 When secreted in large quantities into the bloodstream, IL-1 has endocrine effects, including fever, synthesis of acute phase plasma proteins, and cachexia.
- IL-1 receptor antagonist human peripheral blood mononuclear cells (PMNC) cultured on IgG-coated plates and from the human monocytic cell line U937 activated with phorbol ester (PMA) (Carter et al., Nature 344:633-638, 1990; Hannum et al., Nature 343:336-340, 1990; Eisenberg et al., Nature 343:341-346, 1990).
- PMNC peripheral blood mononuclear cells
- PMA phorbol ester
- Serum from healthy people has a low level of circulating IL-1ra activity (200-400 pg/ml). Serum IL-1ra levels are dramatically increased in patients with acute or chronic inflammatory disease, certain cancers, infectious diseases, and septic shock (Fisher et al., Blood 79:2196-2200, 1992), major surgery for Hirshsprung's disease (O Nuallain et al., C//t7. Exp. Immunol. 93:218-222, 1993), liver disease (Sekiyama et al., Clin. Exp. Immunol.
- IL-1ra has been investigated for use in treating several chronic inflammatory disorders including rheumatoid arthritis (Henderson et al., Cytokine 3:246-249, 1991), chronic myelogenous leukemia (CML) (Schiro et al., Blood 83:460-465, 1994), and inflammatory bowel disease (IBD) (Cominelli et al., Gastroenterolo ⁇ y 103:65-71 , 1992).
- CML chronic myelogenous leukemia
- IBD inflammatory bowel disease
- IL-1ra normal skin expresses IL-1ra mainly in the differentiated stratum granulosum of the epidermis, whereas psoriatic skin expresses IL-1ra in basal midbasal layers (Hammerberg et al, d. Clin. Invest. 90:571-583, 1992). Changes in the IL- 1 ⁇ :IL1-ra ratio in different strata of the epidermis may affect keratinocyte proliferation and differentiation. Chronic inflammatory bowel disease may also involve an altered IL-1 :ll-1 ra ratio since it is markedly increased in Crohn's disease and ulcerative colitis (Cominelli et al., Cytokine 6:A171 , 1994).
- IL-1ra may be useful in chronic and acute cerebral neuropathologies (Relton et al., Exp. Neurol. 138:206-213, 1996; Loddick et al., Biochem. Biophys. Res. Comm. 234:211-215, 1997), insulin dependent diabetes mellitus (Madrup-Poulsen et al., Cytokine 5:185- 191 , 1993), glomerulonephritis (Lan et al., Kidney Int. 47:1303-1309, 1995), and pancreatitis (Norman et al., Ann. Surg. 221 :625. 1995).
- Increased IL-1 production has been reported in patients with various viral, bacterial, fungal, and parasitic infections; intravascular coagulation; high-dose IL-2 therapy; solid tumors; leukemias; Alzheimer's disease; HIV-1 infection; autoimmune disorders; trauma (surgery); hemodialysis; ischemic diseases (myocardial infarction); noninfectious hepatitis; asthma; UV radiation; closed head injury; pancreatitis; peridontitis; graft-versus-host disease; transplant rejection; and in healthy subjects after strenuous exercise (Dinarello, Blood 87:2095-2147, 1996).
- IL-1ra has been shown to be well tolerated in clinical trials in humans (Campion et al., Arthritis and Rhematism 39: 1092- 1101 , 1996), and to be potentially efficacious in the treatment of septic shock (Fisher et al., dAMA 271:1836-1843, 1994), rheumatoid arthritis (Campion et al., Arthritis & Rheumatism 39:1092-1101 , 1996), and graft vs. host disease (GVHD) (Antin et al., Blood 84:1342-1348, 1994).
- GVHD graft vs. host disease
- the present invention provides novel interleukin-1 (IL-1) homologs, as well as materials and methods for making the IL-1 homologs, compositions comprising them, and methods for using them.
- the invention thus provides an isolated protein comprising a sequence of amino acid residues as shown in SEQ ID NO:7.
- the protein comprises a Lys residue at position 148 of SEQ ID NO:7 or an Asp residue at position 148 of SEQ ID NO:7.
- the protein comprises the amino acid sequence of SEQ ID NO:8.
- the protein is from 155 to 1200 amino acid residues in length.
- the protein is 155 amino acid residues in length.
- an isolated polypeptide of at least 15 amino acid residues comprising an epitope- bearing portion of a protein of SEQ ID NO:7.
- an expression vector comprising the following operably linked elements: (a) a transcription promoter; (b) a DNA segment encoding a protein comprising a sequence of amino acid residues as shown in SEQ ID NO:7; and (c) a transcription terminator.
- the expression vector further comprises a secretory signal sequence operably linked to the DNA segment.
- the protein comprises a Lys residue or an Asp residue at position 148 of SEQ ID NO:7.
- the protein comprises the amino acid sequence of SEQ ID NO:8.
- the protein is from 155 to 1200 amino acid residues in length.
- the protein is 155 amino acid residues in length.
- a cultured cell comprising an expression vector as disclosed above.
- the invention provides a method of making a protein, comprising culturing a cell as disclosed above under conditions wherein the DNA segment is expressed, and recovering the protein encoded by the DNA segment.
- the invention provides an antibody that specifically binds to a protein as disclosed above.
- a method of modulating an immune response in an animal comprising administering to the animal a composition comprising a protein as disclosed above in combination with a pharmaceutically acceptable vehicle.
- the figure is a Hopp/Woods hydrophilicity profile of the amino acid sequence shown in SEQ ID NO:2.
- the profile is based on a sliding six- residue window. Buried G, S, and T residues and exposed H, Y, and W residues were ignored. These residues are indicated in the figure by lower case letters.
- affinity tag is used herein to denote a polypeptide segment that can be attached to a second polypeptide to provide for purification of the second polypeptide or provide sites for attachment of the second polypeptide to a substrate.
- Affinity tags include a poly-histidine tract, protein A (Nilsson et al., EMBO d. 4:1075, 1985; Nilsson et al., Methods Enzymol. 198:3, 1991), glutathione S transferase (Smith and Johnson, Gene 67:31 , 1988), Glu-Glu affinity tag (Grussenmeyer et al., Proc. Natl.
- allelic variant is used herein to denote any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in phenotypic polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequences.
- allelic variant is also used herein to denote a protein encoded by an allelic variant of a gene.
- amino-terminal and “carboxyl-terminal” are used herein to denote positions within polypeptides. Where the context allows, these terms are used with reference to a particular sequence or portion of a polypeptide to denote proximity or relative position. For example, a certain sequence positioned carboxyl-terminal to a reference sequence within a polypeptide is located proximal to the carboxyl terminus of the reference sequence, but is not necessarily at the carboxyl terminus of the complete polypeptide.
- a "complement of a polynucleotide molecule” is a polynucleotide molecule having a complementary base sequence and reverse orientation as compared to a reference sequence. For example, the sequence 5' ATGCACGGG 3" is complementary to 5' CCCGTGCAT 3'.
- corresponding to when applied to positions of amino acid residues in sequences, means corresponding positions in a plurality of sequences when the sequences are optimally aligned.
- degenerate nucleotide sequence denotes a sequence of nucleotides that includes one or more degenerate codons (as compared to a reference polynucleotide molecule that encodes a polypeptide).
- Degenerate codons contain different triplets of nucleotides, but encode the same amino acid residue (i.e., GAU and GAC triplets each encode Asp).
- expression vector is used to denote a DNA molecule, linear or circular, that comprises a segment encoding a polypeptide of interest operably linked to additional segments that provide for its transcription. Such additional segments include promoter and terminator sequences, and may also include one or more origins of replication, one or more selectable markers, an enhancer, a polyadenylation signal, etc. Expression vectors are generally derived from plasmid or viral DNA, or may contain elements of both.
- isolated when applied to a polynucleotide, denotes that the polynucleotide has been removed from its natural genetic milieu and is thus free of other extraneous or unwanted coding sequences, and is in a form suitable for use within genetically engineered protein production systems.
- isolated molecules are those that are separated from their natural environment and include cDNA and genomic clones.
- Isolated DNA molecules of the present invention are free of other genes with which they are ordinarily associated, but may include naturally occurring 5' and 3' untranslated regions such as promoters and terminators. The identification of associated regions will be evident to one of ordinary skill in the art (see for example, Dynan and Tijan, Nature 316:774-78. 1985).
- An "isolated" polypeptide or protein is a polypeptide or protein that is found in a condition other than its native environment, such as apart from blood and animal tissue. In a preferred form, the isolated polypeptide is substantially free of other polypeptides, particularly other polypeptides of animal origin.
- polypeptides in a highly purified form, i.e. greater than 95% pure, more preferably greater than 99% pure.
- isolated does not exclude the presence of the same polypeptide in alternative physical forms, such as dimers or alternatively glycosylated or derivatized forms.
- a "motif is a series of amino acid positions in a protein sequence for which certain amino acid residues are required. A motif defines the set of possible residues at each such position.
- operably linked when referring to DNA segments, indicates that the segments are arranged so that they function in concert for their intended purposes, e.g., transcription initiates in the promoter and proceeds through the coding segment to the terminator.
- ortholog denotes a polypeptide or protein obtained from one species that is the functional counterpart of a polypeptide or protein from a different species. Sequence differences among orthologs are the result of speciation.
- Parenters are distinct but structurally related proteins made by an organism. Paralogs are believed to arise through gene duplication. For example, ⁇ -globin, ⁇ -globin, and myoglobin are paralogs of each other.
- polynucleotide is a single- or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5' to the 3' end.
- Polynucleotides include RNA and DNA, and may be isolated from natural sources, synthesized in vitro, or prepared from a combination of natural and synthetic molecules. Sizes of polynucleotides are expressed as base pairs (abbreviated "bp"), nucleotides (“nt”), or kilobases ("kb”). Where the context allows, the latter two terms may describe polynucleotides that are single- stranded or double-stranded.
- double-stranded molecules When the term is applied to double-stranded molecules it is used to denote overall length and will be understood to be equivalent to the term "base pairs". It will be recognized by those skilled in the art that the two strands of a double-stranded polynucleotide may differ slightly in length and that the ends thereof may be staggered as a result of enzymatic cleavage; thus all nucleotides within a double-stranded polynucleotide molecule may not be paired. Such unpaired ends will in general not exceed 20 nt in length.
- polypeptide is a polymer of amino acid residues joined by peptide bonds, whether produced naturally or synthetically. Polypeptides of less than about 10 amino acid residues are commonly referred to as “peptides”.
- promoter is used herein for its art-recognized meaning to denote a portion of a gene containing DNA sequences that provide for the binding of RNA polymerase and initiation of transcription. Promoter sequences are commonly, but not always, found in the 5' non- coding regions of genes.
- a “protein” is a macromolecule comprising one or more polypeptide chains.
- a protein may also comprise non-peptidic components, such as carbohydrate groups. Carbohydrates and other non-peptidic substituents may be added to a protein by the cell in which the protein is produced, and will vary with the type of cell. Proteins are defined herein in terms of their amino acid backbone structures; substituents such as carbohydrate groups are generally not specified, but may be present nonetheless.
- the term "receptor” denotes a cell-associated protein that binds to a bioactive molecule (i.e., a ligand) and mediates the effect of the ligand on the cell.
- Membrane-bound receptors are characterized by a multi-domain structure comprising an extracellular ligand-binding domain and an intracellular effector domain that is typically involved in signal transduction.
- Many cell-surface receptors are, in their active forms, multi-peptide structures in which the ligand-binding and signal transduction functions may reside in separate subunits. Binding of ligand to receptor results in a conformational change in the receptor that causes an interaction between the effector domain and other molecule(s) in the cell. This interaction in turn leads to an alteration in the metabolism of the cell.
- Metabolic events that are linked to receptor- ligand interactions include gene transcription, phosphorylation, dephosphorylation, increases in cyclic AMP production, mobilization of cellular calcium, mobilization of membrane lipids, cell adhesion, hydrolysis of inositol lipids, and hydrolysis of phospholipids.
- receptors can be membrane bound, cytosolic or nuclear; monomeric (e.g., thyroid stimulating hormone receptor, beta-adrenergic receptor) or multimeric (e.g., PDGF receptor, growth hormone receptor, IL-3 receptor, GM-CSF receptor, G-CSF receptor, erythropoietin receptor and IL-6 receptor).
- secretory signal sequence denotes a DNA sequence that encodes a polypeptide (a "secretory peptide") that, as a component of a larger polypeptide, directs the larger polypeptide through a secretory pathway of a cell in which it is synthesized.
- the larger polypeptide is commonly cleaved to remove the secretory peptide during transit through the secretory pathway.
- a “segment” is a portion of a larger molecule (e.g., polynucleotide or polypeptide) having specified attributes. For example, a polynucleotide or polypeptide having specified attributes.
- DNA segment encoding a specified polypeptide is a portion of a longer DNA molecule, such as a plasmid or plasmid fragment, that, when read from the 5' to the 3' direction, encodes the sequence of amino acids of the specified polypeptide.
- the term "splice variant" is used herein to denote alternative forms of RNA transcribed from a gene. Splice variation arises naturally through use of alternative splicing sites within a transcribed RNA molecule, or less commonly between separately transcribed RNA molecules, and may result in several mRNAs transcribed from the same gene. Splice variants may encode polypeptides having altered amino acid sequence.
- the term splice variant is also used herein to denote a protein encoded by a splice variant of an mRNA transcribed from a gene.
- the present invention provides a group of novel proteins, designated "zil1a3", that are members of the IL-1 family.
- Analysis of the human zil1a3 sequence indicates that this protein, like other members of the family, contains a core structure of 12 ⁇ -strands wound into a ⁇ -barrel, with the ⁇ -strands separated from each other by loops.
- loops between these ⁇ -strands are highly variable among the family members and are believed to be involved in receptor binding. These loops, which each contain at least three amino acid residues and may contain up to
- 17 residues do not form ⁇ -strands or helices, but may (and often do) contain ⁇ -turns.
- the twelve ⁇ -strands are formed by residues 8-13, 17-21 , 26-28, 41-47, 56-61 , 66-71 , 77-83, 99-105, 109-113, 119-123, 131-133, and 149-153.
- These strands are characterized by a high content of hydrophobic amino acid residues (Leu, Val, Phe, and lie).
- the loops include residues 14-16, 22-25, 29-40, 48-55, 62-65, 72-76, 84-98, 106- 108, 114-118, 124-130, and 134-148.
- the zil1a3 proteins are characterized by the presence of conserved motifs at positions corresponding to (1) residues 111-115 of SEQ ID NO:2, (2) residues 117-121 of SEQ ID NO:2, (3) residues 130-134 of SEQ ID NO:2, and (4) residues 146-149 of SEQ ID NO:2. These motifs are shown in Table 1 using the standard single- letter codes for amino acid residues.
- the higher-order structure of the IL-1 family of proteins can also be envisioned as three 4-stranded covalent monomers assembled into a 12- stranded structure (a "trefoil").
- a "trefoil” When these monomers are superimposed on each other, residues 41 , 99, and 148 of SEQ ID NO:2, SEQ ID NO:7, and SEQ ID NO:8 occupy like positions in their respective monomers.
- the proteins of the present invention have pro-inflammatory (agonist) or anti-inflammatory (antagonist) activity, depending on the particular amino acid sequence.
- zil1a3 proteins having a Lys residue corresponding to position 148 of SEQ ID NO:2 will have anti-inflammatory activity, while those having an Asp or Glu residue at this position will have pro-inflammatory activity.
- Sequence variations at positions corresponding to residues 41 and 99 of SEQ ID NO:2 may also influence biological activity.
- the present invention includes zil1a3 proteins having Lys or Glu at a position corresponding to residue 41 of SEQ ID NO:2 and Ala, lie, or Thr at a position corresponding to residue 99 of SEQ ID NO:2.
- zil1a3 proteins act through IL-1 receptors. Pro- and anti-inflammatory activities can be assayed using standard assays of IL-1 activity known in the art.
- Non-naturally occurring amino acids include, without limitation, trans-3- methylproline, 2,4-methanoproline, c/s-4-hydroxyproline, trans-4- hydroxyproline, ⁇ /-methylglycine, a//o-threonine, methylthreonine, hydroxyethylcysteine, hydroxyethylhomocysteine, nitroglutamine, homoglutamine, pipecolic acid, thiazolidine carboxylic acid, dehydroproline, 3- and 4-methylproline, 3,3-dimethylproline, tetf-leucine, norvaline, 2- azaphenylalanine, 3-azaphenylalanine, 4-azaphenylalanine, and 4- fluorophenylalanine.
- coli cells are cultured in the absence of a natural amino acid that is to be replaced (e.g., phenylalanine) and in the presence of the desired non-naturally occurring amino acid(s) (e.g., 2-azaphenylalanine, 3-azaphenylalanine, 4- azaphenylalanine, or 4-fluorophenylalanine).
- the non-naturally occurring amino acid is incorporated into the protein in place of its natural counterpart. See, Koide et al., Biochem. 33:7470-6, 1994.
- Naturally occurring amino acid residues can be converted to non-naturally occurring species by in vitro chemical modification. Chemical modification can be combined with site- directed mutagenesis to further expand the range of substitutions (Wynn and Richards, Protein Sci. 2:395-403, 1993).
- the effects of amino acid sequence changes can be predicted by computer modeling using available software (e.g., the Insight II® viewer and homology modeling tools; MSI, San Diego, CA) or determined by alignment and analysis of crystal structures. See, Priestle et al., EMBO d. 7:339-343, 1988; Priestle et al., Proc. Natl. Acad. Sci. USA 86:9667-9671 , 1989; Finzel et al., d. Mol. Biol. 209:779-791 , 1989; Graves et al., Biochem. 29:2679-2684, 1990; Clore and Gronenbom, d. Mol. Biol. 221 :47-53.
- available software e.g., the Insight II® viewer and homology modeling tools; MSI, San Diego, CA
- Alignment of zil1a3 with other family members also provides guidance in selecting amino acid substitutions, particularly if information about the effects of amino acid substitutions in other family members is available. For example, alignment suggests that residue 148 (Asp) can be replaced with Lys, resulting in a change in activity from agonist to antagonist (Ju et al., Proc. Natl. Acad. Sci. USA 88:2658-2662, 1991 ; Oldfield et al., Protein Eng. 6:865-871 , 1993).
- This variant of SEQ ID NO:2 (designated "hzil1a3-D148K”) is shown in SEQ ID NO:8.
- Aromatic phenylalanine tryptophan tyrosine
- the proteins of the present invention can further comprise amino- or carboxyl-terminal extensions, such as an amino-terminal methionine residue, a small linker peptide of up to about 20-25 residues, or an affinity tag as disclosed above. Two or more affinity tags may be used in combination. Polypeptides comprising affinity tags can further comprise a polypeptide linker and/or a proteolytic cleavage site between the zil1a3 polypeptide and the affinity tag. Preferred cleavage sites include thrombin cleavage sites and factor Xa cleavage sites. The present invention further provides a variety of other polypeptide fusions.
- a zil1a3 polypeptide can be prepared as a fusion to a dimerizing protein as disclosed in U.S. Patents Nos. 5,155,027 and 5,567,584.
- Preferred dimerizing proteins in this regard include immunoglobulin constant region domains.
- lmmunoglobulin-zil1a3 polypeptide fusions can be expressed in genetically engineered cells to produce a variety of multimeric zil1a3 analogs.
- a zil1a3 polypeptide can be joined to another bioactive molecule, such as a cytokine, to provide a multi-functional molecule.
- zil1a3 polypeptide can be joined to another cytokine to enhance or otherwise modify its biological properties.
- Auxiliary domains can be fused to zil1a3 polypeptides to target them to specific cells, tissues, or macromolecules (e.g., collagen).
- a zil1a3 polypeptide or protein can be targeted to a predetermined cell type by fusing a zil1a3 polypeptide to a ligand that specifically binds to a receptor on the surface of the target cell.
- a zil1a3 polypeptide can be fused to two or more moieties, such as an affinity tag for purification and a targeting domain.
- Polypeptide fusions can also comprise one or more cleavage sites, particularly between domains. See, Tuan et al., Connective Tissue Research 34:1-9, 996.
- Polypeptide fusions of the present invention will generally contain not more than about 1 ,500 amino acid residues, preferably not more than about 1 ,200 residues, more preferably not more than about 1 ,000 residues, and will in many cases be considerably smaller.
- a zil1a3 polypeptide of 155 residues can be fused to E. coli /?-galactosidase (1 ,021 residues; see Casadaban et al., d. Bacteriol.
- residues 1-155 of SEQ ID NO:2 can be fused to maltose binding protein (approximately 370 residues), a 4-residue cleavage site, and a 6-residue polyhistidine tag.
- Essential amino acids in the proteins of the present invention can be identified according to procedures known in the art, such as site- directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, Science 244, 1081-1085, 1989; Bass et al., Proc. Natl. Acad. Sci. USA 88:4498-4502, 1991).
- site- directed mutagenesis or alanine-scanning mutagenesis
- Single alanine mutations are introduced at every residue in the molecule, and the resultant mutant molecules are tested for biological activity or other properties to identify amino acid residues that are critical to the activity of the molecule.
- Variants of the disclosed zil1a3 DNA and polypeptide sequences can be generated through DNA shuffling as disclosed by Stemmer, Nature 370:389-391 , 1994 and Stemmer, Proc. Natl. Acad. Sci. USA 91:10747-10751, 1994. Briefly, variant genes are generated by in vitro homologous recombination by random fragmentation of a parent gene followed by reassembly using PCR, resulting in randomly introduced point mutations. This technique can be modified by using a family of parent genes, such as allelic variants or genes from different species, to introduce additional variability into the process. Selection or screening for the desired activity, followed by additional iterations of mutagenesis and assay provides for rapid "evolution" of sequences by selecting for desirable mutations while simultaneously selecting against detrimental changes.
- Mutagenesis methods as disclosed above can be combined with high volume or high-throughput screening methods to detect biological activity of zil1a3 variant proteins.
- Mutagenized DNA molecules that encode active zil1a3 polypeptides can be recovered from the host cells and rapidly sequenced using modern equipment. These methods allow the rapid determination of the importance of individual amino acid residues in a polypeptide of interest, and can be applied to polypeptides of unknown structure.
- Assays for IL-1 biological activity and receptor binding are known in the art.
- Exemplary activity assays include mitogenesis assays in which IL-1 responsive cells (e.g., D10.N4.M cells) are incubated in the presence of IL-1 or a test zil1a3 protein for 72 hours at 37°C in a 5% CO 2 atmosphere.
- IL-2 (and optionally IL-4) is added to the culture medium to enhance sensitivity and specificity of the assay. [ 3 H]thymidine is then added, and incubation is continued for six hours. The amount of label incorporated is indicative of agonist activity. See, Hopkins and Humphreys, J. Immunol. Methods 120:271-276, 1989; Greenfeder et al., J. Biol. Chem. 270:22460-22466, 1995. IL-1 stimulation of cell proliferation can also be measured using thymocytes cultured in IL-1 in combination with phytohemagglutinin.
- MTT 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide
- Receptor binding can be measured by the competition binding method of Labriola-Tompkins et al., Proc. Natl. Acad. Sci. USA 88:11182-11186, 1991. Briefly, membranes pepared from EL-4 thymoma cells (Paganelli et al., J. Immunol. 138:2249-2253, 1987) are incubated in the presence of the test protein for 30 minutes at 37°C. Labeled IL-1 ⁇ or IL-1 ⁇ is then added, and the incubation is continued for 60 minutes. The assay is terminated by membrane filtration. The amount of bound label is determined by conventional means (e.g., ⁇ counter).
- the ability of a ziha3 protein to compete with labeled IL-1 for binding to cultured human dermal fibroblasts is measured according to the method of Dower et al. (Nature 324:266-268, 1986). Briefly, cells are incubated in a round-bottomed, 96-well plate in a suitable culture medium (e.g., RPMI 1640 containing 1% BSA, 0.1% Na azide, and 20 mM HEPES pH 7.4) at 8°C on a rocker platform in the presence of labeled IL-1. Various concentrations of zil1a3 protein are added.
- a suitable culture medium e.g., RPMI 1640 containing 1% BSA, 0.1% Na azide, and 20 mM HEPES pH 7.4
- Receptor binding can also be measured using immobilized receptors or ligand-binding receptor fragments.
- an immobilized IL-1 receptor can be exposed to labeled IL-1 and unlabeled test protein, whereby a reduction in IL-1 binding compared to a control is indicative of receptor-binding activity in the test protein.
- a receptor or ligand-binding receptor fragment is immobilized on a biosensor (e.g., BIACoreTM, Pharmacia Biosensor, Piscataway, NJ) and binding is determined.
- a biosensor e.g., BIACoreTM, Pharmacia Biosensor, Piscataway, NJ
- IL-1 antagonists will exhibit receptor binding but will exhibit essentially no activity in IL-1 activity assays or will reduce the IL-1-mediated response when combined with IL-1.
- a large excess of antagonist typically a 10- to 1000-fold molar excess may be necessary to neutralize IL-1 activity.
- polypeptides can also include additional polypeptide segments as generally disclosed above.
- the present invention further provides polynucleotide molecules, including DNA and RNA molecules, encoding zil1a3 proteins.
- the polynucleotides of the present invention include the sense strand; the anti- sense strand; and the DNA as double-stranded, having both the sense and anti-sense strand annealed together by hydrogen bonds.
- a representative DNA sequence encoding a human zil1a3 protein is set forth in SEQ ID NO:1.
- DNA sequences encoding other zil1a3 proteins can be readily generated by those of ordinary skill in the art based on the genetic code.
- Counterpart RNA sequences can be generated by substitution of U for T.
- SEQ ID NO:9 is a degenerate DNA sequence that encompasses all DNAs that encode the zil1a3 polypeptide of SEQ ID NO:2.
- SEQ ID NO: 10 is a degenerate DNA sequence that encompasses all DNAs that encode the zil1a3 polypeptide of SEQ ID NO:8.
- the degenerate sequences of SEQ ID NO:9 and SEQ ID NO: 10 also provide all RNA sequences encoding SEQ ID NO:2 and SEQ ID NO:8, respectively, by substituting U for T.
- zil1a3 polypeptide-encoding polynucleotides comprising nucleotide 1 to nucleotide 465 of SEQ ID NO:9, nucleotide 1 to nucleotide 465 of SEQ ID NO: 10, and their respective RNA equivalents are contemplated by the present invention.
- Table 3 sets forth the one-letter codes used within SEQ ID NOS:9 and 10 to denote degenerate nucleotide positions.
- “Resolutions” are the nucleotides denoted by a code letter.
- “Complement” indicates the code for the complementary nucleotide(s). For example, the code Y denotes either C or T, and its complement R denotes A or G, A being complementary to T, and G being complementary to C.
- any X NNN One of ordinary skill in the art will appreciate that some ambiguity is introduced in determining a degenerate codon, representative of all possible codons encoding each amino acid.
- the degenerate codon for serine can, in some circumstances, encode arginine (AGR), and the degenerate codon for arginine (MGN) can, in some circumstances, encode serine (AGY).
- WSN can, in some circumstances, encode arginine
- MGN degenerate codon for arginine
- AGY serine
- some polynucleotides encompassed by a degenerate sequence may encode variant amino acid sequences, but one of ordinary skill in the art can easily identify such variant sequences by reference to the amino acid sequence shown in SEQ ID NO:2. Variant sequences can be readily tested for functionality as described herein.
- codon sequences into recombinant DNA can, for example, enhance production of the protein by making protein translation more efficient within a particular cell type or species. Therefore, the degenerate codon sequences disclosed in SEQ ID NOS:9 and 10 serve as templates for optimizing expression of polynucleotides in various cell types and species commonly used in the art and disclosed herein. Sequences containing preferred codons can be tested and optimized for expression in various host cell species, and tested for functionality as disclosed herein.
- zil1a3 polynucleotides provided by the present invention include DNA and RNA.
- Methods for preparing DNA and RNA are well known in the art.
- RNA is isolated from a tissue or cell that produces large amounts of zil1a3 RNA. Such tissues and cells are identified by Northern blotting (Thomas, Proc. Natl. Acad. Sci. USA 77:5201 , 1980), and include stomach and skin.
- Total RNA can be prepared using guanidine-HCI extraction followed by isolation by centrifugation in a CsCI gradient (Chirgwin et al., Biochemistry 18:52-94, 1979).
- Poly (A) + RNA is prepared from total RNA using the method of Aviv and Leder (Proc. Natl.
- cDNA Complementary DNA
- genomic DNA can be isolated.
- Polynucleotides encoding zil1a3 polypeptides are then identified and isolated by, for example, hybridization or PCR.
- the polynucleotides of the present invention can also be synthesized using automated equipment ("gene machines") according to methods known in the art. See, for example, Glick and Pasternak, Molecular Biotechnology, Principles & Applications of Recombinant DNA, ASM Press, Washington, D.C., 1994; Itakura et al., Annu. Rev. Biochem. 53: 323-356, 1984; and Climie et al., Proc. Natl. Acad. Sci. USA 87:633-637, 1990.
- zil1a3 polynucleotide sequences disclosed herein can be used to isolate polynucleotides encoding other zil1a3 proteins.
- Such other polynucleotides include alternatively spliced cDNAs (including cDNAs encoding secreted zil1a3 proteins) and counterpart polynucleotides from other species (orthologs).
- orthologous polynucleotides can be used, inter alia, to prepare the respective orthologous proteins.
- a cDNA can be cloned using mRNA obtained from a tissue or cell type that expresses zil1a3 as disclosed herein.
- Suitable sources of mRNA can be identified by probing Northern blots with probes designed from the sequences disclosed herein.
- a library is then prepared from mRNA of a positive tissue or cell line.
- a zil1a3-encoding cDNA can then be isolated by a variety of methods, such as by probing with a complete or partial human cDNA or with one or more sets of degenerate probes based on the disclosed sequences.
- Hybridization will generally be done under low stringency conditions, wherein washing is carried out in 1 x SSC with an initial wash at 40°C and with subsequent washes at 5°C higher intervals until background is suitably reduced.
- a cDNA can also be cloned using the polymerase chain reaction, or PCR (Mullis, U.S. Patent No. 4,683,202), using primers designed from the representative human zil1a3 sequence disclosed herein.
- the cDNA library can be used to transform or transfect host cells, and expression of the cDNA of interest can be detected with an antibody to zil1a3 polypeptide. Similar techniques can also be applied to the isolation of genomic clones.
- sequences disclosed in SEQ ID NO:1 and SEQ ID NO:2 represent a single allele of human ziha3, and that natural variation, including allelic variation and alternative splicing, is expected to occur. Allelic variants of these sequences can be cloned by probing cDNA or genomic libraries from different individuals according to standard procedures. Allelic variants of the DNA sequence shown in SEQ ID NO:1 , including those containing silent mutations and those in which mutations result in amino acid sequence changes, are within the scope of the present invention, as are proteins which are allelic variants of SEQ ID NO:2.
- cDNAs generated from alternatively spliced mRNAs that retain the inflammation modulating activity of zil1a3 are included within the scope of the present invention, as are polypeptides encoded by such cDNAs and mRNAs.
- the sequence disclosed in SEQ ID NO:1 and SEQ ID NO:2 is believed to represent a cytoplasmically expressed form of the protein in view of the lack of a signal peptide sequence.
- An additional, larger band is seen on northern blots, indicating the existence of such an alternate form.
- sequence upstream of the initiation ATG may encode an alternatively spliced form of the protein or an alternative form that is translated from an upstream ATG.
- Allelic variants and splice variants of these sequences can be cloned by probing cDNA or genomic libraries from different individuals or tissues according to standard procedures known in the art.
- the proteins of the present invention can be produced in genetically engineered host cells according to conventional techniques.
- Suitable host cells are those cell types that can be transformed or transfected with exogenous DNA and grown in culture, and include bacteria, fungal cells, and cultured higher eukaryotic cells.
- Eukaryotic cells particularly cultured cells of multicellular organisms, are preferred.
- a DNA sequence encoding a zil1a3 protein is operably linked to other genetic elements required for its expression, generally including a transcription promoter and terminator, within an expression vector.
- the vector will also commonly contain one or more selectable markers and one or more origins of replication, although those skilled in the art will recognize that within certain systems selectable markers may be provided on separate vectors, and replication of the exogenous DNA may be provided by integration into the host cell genome. Selection of promoters, terminators, selectable markers, vectors and other elements is a matter of routine design within the level of ordinary skill in the art. Many such elements are described in the literature and are available through commercial suppliers.
- a secretory signal sequence (also known as a leader sequence, prepro sequence or pre sequence) is provided in the expression vector.
- the secretory signal sequence may be that of a zil1a3 gene, or may be derived from another secreted protein (e.g., t-PA) or synthesized de novo.
- the secretory signal sequence is operably linked to the zil1a3 DNA sequence, i.e., the two sequences are joined in the correct reading frame and positioned to direct the newly sythesized polypeptide into the secretory pathway of the host cell.
- Secretory signal sequences are commonly positioned 5' to the DNA sequence encoding the polypeptide of interest, although certain signal sequences may be positioned elsewhere in the DNA sequence of interest (see, e.g., Welch et al., U.S. Patent No. 5,037,743; Holland et al., U.S. Patent No. 5,143,830).
- a zil1a3 protein is expressed cytoplasmically and is isolated after lysing the host cells.
- Cultured mammalian cells are suitable hosts for use within the present invention.
- Methods for introducing exogenous DNA into mammalian host cells include calcium phosphate-mediated transfection (Wigler et al., Cell 14:725, 1978; Corsaro and Pearson, Somatic Cell Genetics 7:603, 1981 : Graham and Van der Eb, Virology 52:456, 1973), electroporation (Neumann et al., EMBO d.
- Suitable cultured mammalian cells include the COS-1 (ATCC No. CRL 1650), COS-7 (ATCC No. CRL 1651), BHK (ATCC No. CRL 1632), BHK 570 (ATCC No. CRL 10314), 293 (ATCC No. CRL 1573; Graham et al., d. Gen. Virol. 36:59-72, 1977) and Chinese hamster ovary (e.g. CHO-K1 ; ATCC No. CCL 61) cell lines. Additional suitable cell lines are known in the art and available from public depositories such as the American Type Culture Collection, Rockville, Maryland. In general, strong transcription promoters are preferred, such as promoters from SV-40 or cytomegalovirus.
- promoters include those from metallothionein genes (U.S. Patent Nos. 4,579,821 and 4,601 ,978) and the adenovirus major late promoter.
- Drug selection is generally used to select for cultured mammalian cells into which foreign DNA has been inserted. Such cells are commonly referred to as “transfectants”. Cells that have been cultured in the presence of the selective agent and are able to pass the gene of interest to their progeny are referred to as “stable transfectants.”
- An exemplary selectable marker is a gene encoding resistance to the antibiotic neomycin. Selection is carried out in the presence of a neomycin-type drug, such as G- 418 or the like.
- Selection systems can also be used to increase the expression level of the gene of interest, a process referred to as "amplification.” Amplification is carried out by culturing transfectants in the presence of a low level of the selective agent and then increasing the amount of selective agent to select for cells that produce high levels of the products of the introduced genes.
- An exemplary amplifiable selectable marker is dihydrofolate reductase, which confers resistance to methotrexate.
- Other drug resistance genes e.g. hygromycin resistance, multi-drug resistance, puromycin acetyltransferase
- drug resistance genes e.g. hygromycin resistance, multi-drug resistance, puromycin acetyltransferase
- Alternative markers that produce an altered phenotype such as green fluorescent protein, or cell surface proteins such as CD4, CD8, Class I MHC, and placental alkaline phosphatase may be used to sort transfected cells from untransfected cells by such means as FACS sorting or magnetic bead separation technology.
- eukaryotic cells can also be used as hosts, including insect cells, plant cells and avian cells.
- Agrobacterium rhizogenes as a vector for expressing genes in plant cells has been reviewed by Sinkar et al., d. Biosci. (Bangalore) 11:47-58, 1987. Transformation of insect cells and production of foreign polypeptides therein is disclosed by Guarino et al., U.S. Patent No. 5,162,222 and WIPO publication WO 94/06463.
- Insect cells can be infected with recombinant baculovirus, commonly derived from Autographa californica nuclear polyhedrosis virus (AcNPV).
- Recombinant baculovirus can also be produced through the use of a transposon-based system described by Luckow et al. (d. Virol. 67:4566-4579, 1993). This system, which utilizes transfer vectors, is commercially available in kit form (Bac-to-BacTM kit; Life Technologies, Rockville, MD).
- the transfer vector (e.g., pFastBadTM; Life Technologies) contains a Tn7 transposon to move the DNA encoding the protein of interest into a baculovirus genome maintained in E. coli as a large plasmid called a "bacmid.” See, Hill-Perkins and Possee, d. Gen. Virol. 71:971-976, 1990; Bonning et al., d. Gen. Virol. 75:1551-1556, 1994; and Chazenbalk and Rapoport, d. Biol. Chem. 270:1543-1549, 1995.
- transfer vectors can include an in-frame fusion with DNA encoding a polypeptide extension or affinity tag as disclosed above.
- a transfer vector containing a zil1a3-encoding sequence is transformed into E. coli host cells, and the cells are screened for bacmids which contain an interrupted lacZ gene indicative of recombinant baculovirus.
- the bacmid DNA containing the recombinant baculovirus genome is isolated, using common techniques, and used to transfect Spodoptera frugiperda cells, such as Sf9 cells.
- Recombinant virus that expresses zil1a3 protein is subsequently produced.
- Recombinant viral stocks are made by methods commonly used the art.
- the recombinant virus is used to infect host cells, typically a cell line derived from the fall armyworm, Spodoptera frugiperda (e.g., Sf9 or Sf21 cells) or Trichoplusia ni (e.g., High FiveTM cells; Invitrogen, Carlsbad, CA).
- host cells typically a cell line derived from the fall armyworm, Spodoptera frugiperda (e.g., Sf9 or Sf21 cells) or Trichoplusia ni (e.g., High FiveTM cells; Invitrogen, Carlsbad, CA).
- Spodoptera frugiperda e.g., Sf9 or Sf21 cells
- Trichoplusia ni e.g., High FiveTM cells; Invitrogen, Carlsbad, CA.
- Serum-free media are used to grow and maintain the cells. Suitable media formulations are known in the art and can be obtained from commercial suppliers.
- the cells are grown up from an inoculation density of approximately 2-5 x 10 5 cells to a density of 1-2 x 10 6 cells, at which time a recombinant viral stock is added at a multiplicity of infection (MOI) of 0.1 to 10, more typically near 3.
- MOI multiplicity of infection
- Fungal cells including yeast cells, can also be used within the present invention.
- Yeast species of particular interest in this regard include Saccharomyces cerevisiae, Pichia pastoris, and Pichia methanolica.
- Methods for transforming S. cerevisiae cells with exogenous DNA and producing recombinant polypeptides therefrom are disclosed by, for example, Kawasaki, U.S. Patent No. 4,599,311 ; Kawasaki et al., U.S. Patent No. 4,931 ,373; Brake, U.S. Patent No. 4,870,008; Welch et al., U.S. Patent No. 5,037,743; and Murray et al., U.S. Patent No.
- Transformed cells are selected by phenotype determined by the selectable marker, commonly drug resistance or the ability to grow in the absence of a particular nutrient (e.g., leucine).
- a preferred vector system for use in Saccharomyces cerevisiae is the POT1 vector system disclosed by Kawasaki et al. (U.S. Patent No. 4,931 ,373), which allows transformed cells to be selected by growth in glucose-containing media.
- Suitable promoters and terminators for use in yeast include those from glycolytic enzyme genes (see, e.g., Kawasaki, U.S. Patent No. 4,599,311 ; Kingsman et al., U.S. Patent No. 4,615,974; and Bitter, U.S. Patent No. 4,977,092) and alcohol dehydrogenase genes. See also U.S.
- Aspergillus cells may be utilized according to the methods of McKnight et al., U.S. Patent No. 4,935,349. Methods for transforming Acremonium chrysogenum are disclosed by Sumino et al., U.S. Patent No. 5,162,228. Methods for transforming Neurospora are disclosed by Lambowitz, U.S. Patent No. 4,486,533. Production of recombinant proteins in Pichia methanolica is disclosed in U.S. Patents No. 5,716,808, 5,736,383, 5,854,039, and 5,888,768; and WIPO publications WO 99/14347 and WO 99/14320. Prokaryotic host cells, including strains of the bacteria
- Escherichia coli, Bacillus and other genera are also useful host cells within the present invention. Techniques for transforming these hosts and expressing foreign DNA sequences cloned therein are well known in the art (see, e.g., Sambrook et al., ibid.).
- the polypeptide When expressing a zil1a3 polypeptide in bacteria such as E. coli, the polypeptide may be retained in the cytoplasm or may be directed to the periplasmic space by a bacterial secretion sequence. In the former case, the cells are lysed, and the protein is recovered from the soluble fraction.
- the polypeptide can be recovered from the periplasmic space in a soluble and functional form by disrupting the cells (by, for example, sonication or osmotic shock) to release the contents of the periplasmic space and recovering the protein.
- Transformed or transfected host cells are cultured according to conventional procedures in a culture medium containing nutrients and other components required for the growth of the chosen host cells.
- suitable media including defined media and complex media, are known in the art and generally include a carbon source, a nitrogen source, essential amino acids, vitamins and minerals. Media may also contain such components as growth factors or serum, as required.
- the growth medium will generally select for cells containing the exogenously added DNA by, for example, drug selection or deficiency in an essential nutrient which is complemented by the selectable marker carried on the expression vector or co-transfected into the host cell.
- proteins of the present invention it is preferred to purify the proteins of the present invention to >80% purity, more preferably to >90% purity, even more preferably >95% purity, and particularly preferred is a pharmaceutically pure state, that is greater than 99.9% pure with respect to contaminating macromolecules, particularly other proteins and nucleic acids, and free of infectious and pyrogenic agents.
- a purified protein is substantially free of other polypeptides or proteins, particularly those of animal origin.
- Expressed recombinant zil1a3 proteins are purified by conventional protein purification methods, typically by a combination of chromatographic techniques. See, in general, Affinity Chromatographv: Principles & Methods, Pharmacia LKB Biotechnology, Uppsala, Sweden, 1988; and Scopes, Protein Purification: Principles and Practice. Springer-Verlag, New York, 1994. Proteins comprising a polyhistidine affinity tag (typically about 6 histidine residues) are purified by affinity chromatography on a nickel chelate resin. See, for example, Houchuli et al., Bio/Technol. 6: 1321-1325, 1988.
- Proteins comprising a glu-glu tag can be purified by immunoaffinity chromatography according to conventional procedures. See, for example, Grussenmeyer et al., ibid. Maltose binding protein fusions are purified on an amylose column according to methods known in the art.
- Zil1a3 polypeptides can also be prepared through chemical synthesis according to methods known in the art, including exclusive solid phase synthesis, partial solid phase methods, fragment condensation or classical solution synthesis. See, for example, Merrifield, J. Am. Chem. Soc. 85:2149, 1963; Stewart et al., Solid Phase Peptide Synthesis (2nd edition), Pierce Chemical Co., Rockford, IL, 1984; Bayer and Rapp, Chem. Pept. Prot. 3:3, 1986; and Atherton et al., Solid Phase Peptide Synthesis: A Practical Approach, IRL Press, Oxford, 1989. In vitro synthesis is particularly advantageous for the preparation of smaller polypeptides. Zil1a3 proteins of the present invention can be used to modulate inflammation and related processes.
- zil1a3 e.g., SEQ ID NO:8
- certain zil1a3 proteins may be used to treat or prevent chronic inflammatory diseases such as arthritis (including rheumatoid arthritis, osteoarthritis, and Lyme arthritis) and psoriasis; to reduce tissue damage after ischemia; and to treat septic shock, graft-versus-host disease, and leukemia.
- arthritis including rheumatoid arthritis, osteoarthritis, and Lyme arthritis
- psoriasis to reduce tissue damage after ischemia
- septic shock graft-versus-host disease
- leukemia leukemia
- Antagonists are expected to have in vivo activity like of that of IL-1 receptor antagonist (IL-1 ra), which has shown beneficial effects in clinical trials directed to the treatment of rheumatoid arthritis (Campion et al., Arthritis & Rheumatism 39:1092-1101, 1996), graft-versus-host disease (Antin et al., Blood 84:1342-1348, 1994), septic shock (Fisher et al., JAMA 271 :1836-1843, 1994), and leukemia (Dinarello, Blood 87:2095-2147, 1996).
- IL-1 ra IL-1 receptor antagonist
- Agonists may promote wound healing in view of the effects of IL-1 on growth factor secretion and cell proliferation or be useful in the treatment of infections, in particular gastrointestinal infections.
- Zil1a3 proteins can be tested in animal models of disease.
- Animal models of psoriasis include the analysis of histological alterations in adult mouse tail epidermis (Hofbauer et al, Brit. J. Dermatol. 118:85-89, 1988; Bladon et al., Arch Dermatol. Res. 277:121-125, 1985).
- anti- psoriatic activity is indicated by the induction of a granular layer and orthokeratosis in areas of scale between the hinges of the tail epidermis.
- a topical ointment is applied daily for seven consecutive days, then the animal is sacrificed, and tail skin is examined histologically.
- inflammation is induced in guinea pig epidermis by topically applying phorbol ester (phorbol-12-myristate-13- acetate; PMA), typically at ca. 2 g/ml in acetone, to one ear and vehicle to the contralateral ear.
- PMA phorbol ester
- Test compounds are applied concurrently with the PMA, or may be given orally. Histological analysis is performed at 96 hours after application of PMA.
- This model duplicates many symptoms of human psoriasis, including edema, inflammatory cell diapedesis and infiltration, high LTB4 levels and epidermal proliferation. Cerebral ischemia can be studied in a rat model as disclosed by Relton et al.
- Wound-healing models include the linear skin incision model of Mustoe et al. (Science 237:1333, 1987). In a typical procedure, a 6-cm incision is made in the dorsal pelt of an adult rat, then closed with wound clips. Test substances and controls (in solution, gel, or powder form) are applied before primary closure. It is preferred to limit administration to a single application, although additional applications can be made on succeeding days by careful injection at several sites under the incision. Wound breaking strength is evaluated between 3 and 21 days post wounding. In a second model, multiple, small, full-thickness excisions are made on the ear of a rabbit.
- the cartilage in the ear splints the wound, removing the variable of wound contraction from the evaluation of closure.
- Experimental treatments and controls are applied.
- the geometry and anatomy of the wound site allow for reliable quantification of cell ingrowth and epithelial migration, as well as quantitative analysis of the biochemistry of the wounds (e.g., collagen content). See, Mustoe et al., J. Clin. Invest. 87:694, 1991.
- the rabbit ear model can be modified to create an ischemic wound environment, which more closely resembles the clinical situation (Ahn et al., Ann. Plast. Surg. 24:17, 1990).
- the wound closes by a combination of contraction and cell ingrowth and proliferation.
- Measurable endpoints include time to wound closure, histologic score, and biochemical parameters of wound tissue.
- Impaired wound healing models are also known in the art (e.g., Cromack et al., Surgery 113:36, 1993; Pierce et al., Proc. Natl. Acad. Sci. USA 86:2229, 1989; Greenhalgh et al., Amer. J. Pathol. 136:1235, 1990).
- Delay or prolongation of the wound healing process can be induced pharmacologically by treatment with steroids, irradiation of the wound site, or by concomitant disease states (e.g., diabetes).
- Implants are prepared in a porous, relatively non-inflammatory container (e.g., polyethylene sponges or expanded polytetrafluoroethylene implants filled with bovine collagen) and placed subcutaneously in mice or rats.
- the interior of the implant is empty of cells, producing a "wound space" that is well-defined and separable from the preexisting tissue.
- Zil1a3-encoding polynucleotides can be introduced into test animals, such as mice, using viral vectors or naked DNA, or transgenic animals can be produced.
- test animals such as mice
- viral vectors or naked DNA or transgenic animals can be produced.
- viral delivery systems include adenovirus, herpesvirus, retroviruses, vaccinia virus, and adeno- associated virus (AAV).
- viruses for this purpose include adenovirus, herpesvirus, retroviruses, vaccinia virus, and adeno- associated virus (AAV).
- Adenovirus a double-stranded DNA virus, is currently the best studied gene transfer vector for delivery of heterologous nucleic acids. For review, see Becker et al., Meth. Cell Biol. 43:161-89, 1994; and Douglas and Curiel, Science & Medicine 4:44-53, 1997.
- the adenovirus system offers several advantages. Adenovirus can (i) accommodate relatively large DNA inserts; (ii) be grown to high-titer; (iii) infect a broad range of mammalian cell types; and (iv) be used with many different promoters including ubiquitous, tissue specific, and regulatable promoters. Because adenoviruses are stable in the bloodstream, they can be administered by intravenous injection.
- adenovirus By deleting portions of the adenovirus genome, larger inserts (up to 7 kb) of heterologous DNA can be accommodated. These inserts can be incorporated into the viral DNA by direct ligation or by homologous recombination with a co-transfected plasmid.
- the essential E1 gene is deleted from the viral vector, and the virus will not replicate unless the E1 gene is provided by the host cell (e.g., the human 293 cell line).
- the host cell e.g., the human 293 cell line.
- a zil1a3 gene can be introduced in a retroviral vector as described, for example, by Anderson et al., U.S. Patent No. 5,399,346; Mann et al., Cell 33:153, 1983; Temin et al., U.S. Patent No. 4,650,764; Temin et al., U.S. Patent No. 4,980,289; Markowitz et al., J. Virol.
- the vector can be introduced by "lipofection" in vivo using liposomes.
- Synthetic cationic lipids can be used to prepare liposomes for in vivo transfection of a gene encoding a marker (Feigner et al., Proc. Natl. Acad. Sci. USA 84:7413-7, 1987; Mackey et al., Proc. Natl. Acad. Sci. USA 85:8027-31 , 1988).
- lipofection to introduce exogenous genes into specific organs in vivo has certain practical advantages, including molecular targeting of liposomes to specific cells. Directing transfection to particular cell types is particularly advantageous in a tissue with cellular heterogeneity, such as the pancreas, liver, kidney, and brain.
- Lipids may be chemically coupled to other molecules for the purpose of targeting.
- Targeted peptides e.g., hormones or neurotransmitters
- proteins such as antibodies, or non-peptide molecules can be coupled to liposomes chemically.
- target cells are removed from the the animal, and the DNA is introduced as a naked DNA plasmid.
- the transformed cells are then re-implanted into the body of the animal.
- naked DNA vectors can be introduced into the desired host cells by methods known in the art, e.g., transfection, electroporation, microinjection, transduction, cell fusion, DEAE dextran, calcium phosphate precipitation, use of a gene gun or use of a DNA vector transporter. See, e.g., Wu et al., J. Biol. Chem. 267:963- 7, 1992; Wu et al., J. Biol. Chem. 263:14621-4, 1988.
- Transgenic animals engineered to express a zil1a3 gene, and animals that exhibit a complete absence of zil1a3 gene function, referred to as "knockout mice” (Snouwaert et a!., Science 257:1083, 1992), can be generated (Lowell et al., Nature 366:740-42, 1993). See also, Brinster et al., Proc. Natl. Acad. Sci. USA 85: 836-840, 1988; Palmiter et al., Proc. Natl. Acad. Sci. USA 88: 478-482, 1991 ; Whitelaw et al., Transgenic Res. V.
- Polynucleotides used in generating transgenic animals that express a zil1a3 gene will preferably contain one or more introns; genomic sequences are thus preferred.
- Antisense methodology can be used to inhibit zil1a3 gene transcription to examine the effects of such inhibition in vivo.
- a polynucleotide as set froth in SEQ ID NO:1 are designed to bind to zil1a3-encoding mRNA and to inhibit translation of such mRNA.
- the proteins of the present invention are formulated for local, including topical; or parenteral, including intravenous, subcutaneous, or intraperitoneal delivery according to conventional methods.
- Intravenous administration will be by injection or infusion. In many instances it will be beneficial to administer the protein by infusion or multiple injections per day over a period of several days to several weeks, sometimes preceded by a bolus injection.
- pharmaceutical formulations will include a zil1a3 protein in combination with a pharmaceutically acceptable vehicle, such as saline, buffered saline, 5% dextrose in water or the like.
- Formulations may further include one or more excipients, preservatives, solubilizers, buffering agents, albumin to prevent protein loss on vial surfaces, etc.
- Methods of formulation are well known in the art and are disclosed, for example, in Remington: The Science and Practice of Pharmacy, Gennaro, ed., Mack Publishing Co., Easton, PA, 19th ed., 1995.
- inhibition of IL-1 activity requires a large molar excess of antagonist.
- Doses of zil1a3 antagonist proteins will in general be quite large, particularly when treating life-threatening conditions. IL-1ra appears safe in high doses.
- doses of zil1a3 antagonist proteins will range from as low as 10 mg per patient per day to as high as 100 mg or more per hour infused over a period of days.
- Doses of IL-1ra found to be efficacious in clinical studies include 70 mg per patient per day in rheumatoid arthritis and up to 3,400 mg per patient per day in graft-versus-host disease. The exact dose will be determined by the clinician according to accepted standards, taking into account the nature and severity of the condition to be treated, patient traits, etc. Determination of dose is within the level of ordinary skill in the art.
- the proteins may be administered for acute treatment, over one week or less, but will often be used in treatment of chronic conditions requiring administration over several weeks to several months or longer.
- a therapeutically effective amount of a zil1a3 protein is an amount sufficient to produce a clinically significant improvement in one or more standard indicators appropriate to the treated condition. Therapeutic endpoints will be apparent to those skilled in the art.
- Zil1a3 proteins can be used as standards in assays of IL-1 and IL-1 inhibitor.
- Such assays can comprise any of a number of standard formats, include radioreceptor assays and ELISAs.
- Zil1a3 protein standards can be prepared in labeled form using a radioisotope, enzyme, fluorophore, or other compound that produces a detectable signal.
- the proteins can be packaged in kit form, such kits comprising one or more vials containing the zil1a3 protein and, optionally, a diluent, an antibody, a labeled binding protein, etc.
- Assay kits can also be used in the research laboratory to detect IL-1 and IL-1 inhibitor activities produced by cultured cells or test animals.
- Zil1a3 proteins are also useful as research reagents.
- zil1a3 agonist proteins can be used as cell culture components to promote the growth of IL-1 responsive cells, including fibroblasts, smooth muscle cells, and mesangial cells.
- Agonists can be combined with IL-3 and other cytokines to expand CD34 + peripheral blood cells, and with IL-3 and IL-6 to promote the proliferation of stem cells.
- the invention further provides polypeptides that comprise an epitope-bearing portion of a protein as shown in SEQ ID NO:7.
- An "epitope” is a region of a protein to which an antibody can bind. See, for example, Geysen et al., Proc. Natl. Acad. Sci. USA 8J_:3998-4002, 1984.
- Epitopes can be linear or conformational, the latter being composed of discontinuous regions of the protein that form an epitope upon folding of the protein.
- Linear epitopes are generally at least 6 amino acid residues in length. Relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein.
- Antigenic, epitope-bearing zil1a3 polypeptides useful for raising antibodies, including monoclonal antibodies, that specifically bind to a zil1a3 protein contain a sequence of at least six, preferably at least nine, more preferably from 15 to about 30 contiguous amino acid residues of a zil1a3 protein (e.g., SEQ ID NO:2 or SEQ ID NO:8). Polypeptides comprising a larger portion of a zil1a3 protein, i.e. from 30 to 50 residues up to the entire sequence are included.
- amino acid sequence of the epitope-bearing polypeptide is selected to provide substantial solubility in aqueous solvents, that is the sequence includes relatively hydrophilic residues, and hydrophobic residues are substantially avoided. Sequences containing proline residues are preferred. Preferred such regions include residues 10-15, 38-43, 91-96, 92-97, and 124- 129 of SEQ ID NO:2. As noted above, it is generally preferred to use somewhat longer peptides as immunogens, such as a peptide comprising residues 91-104 SEQ ID NO:2.
- antibodies includes polyclonal antibodies, monoclonal antibodies, antigen-binding fragments thereof such as F(ab')2 and Fab fragments, single chain antibodies, and the like, including genetically engineered antibodies.
- Non-human antibodies can be humanized by grafting non-human CDRs onto human framework and constant regions, or by incorporating the entire non-human variable domains (optionally "cloaking" them with a human-like surface by replacement of exposed residues, wherein the result is a "veneered” antibody).
- humanized antibodies may retain non-human residues within the human variable region framework domains to enhance proper binding characteristics. Through humanizing antibodies, biological half-life may be increased, and the potential for adverse immune reactions upon administration to humans is reduced.
- One skilled in the art can generate humanized antibodies with specific and different constant domains (i.e., different Ig subclasses) to facilitate or inhibit various immune functions associated with particular antibody constant domains.
- Alternative techniques for generating or selecting antibodies useful herein include in vitro exposure of lymphocytes to a zil1a3 protein, and selection of antibody display libraries in phage or similar vectors (for instance, through use of immobilized or labeled zil1a3 polypeptide).
- Antibodies are defined to be specifically binding if they bind to a zil1a3 protein with an affinity at least 10-fold greater than the binding affinity to control (non-zil1a3) polypeptide.
- the antibodies exhibit a binding affinity (K a ) of 10 6 M “1 or greater, preferably 10 7 M “1 or greater, more preferably 10 8 M “1 or greater, and most preferably 10 9 M “1 or greater.
- K a binding affinity
- the affinity of a monoclonal antibody can be readily determined by one of ordinary skill in the art (see, for example, Scatchard, Ann. NY Acad. Sci. 51; 660-672, 1949). Methods for preparing polyclonal and monoclonal antibodies are well known in the art (see for example, Hurrell, J. G. R., Ed., Monoclonal Hybridoma Antibodies: Techniques and Applications, CRC Press, Inc., Boca Raton, FL, 1982).
- polyclonal antibodies can be generated from a variety of warm-blooded animals such as horses, cows, goats, sheep, dogs, chickens, rabbits, mice, and rats.
- the immunogenicity of a zil1a3 protein may be increased through the use of an adjuvant such as alum (aluminum hydroxide) or Freund's complete or incomplete adjuvant.
- Polypeptides useful for immunization also include fusion polypeptides, such as fusions of a zil1a3 protein or a portion thereof with an immunoglobulin polypeptide or with maltose binding protein.
- the polypeptide immunogen may be a full-length molecule or a portion thereof.
- polypeptide portion is "hapten-like"
- such portion may be advantageously joined or linked to a macromolecular carrier (such as keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA) or tetanus toxoid) for immunization.
- a macromolecular carrier such as keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA) or tetanus toxoid
- assays known to those skilled in the art can be used to detect antibodies that specifically bind to a zil1a3 protein. Exemplary assays are described in detail in Antibodies: A Laboratory Manual, Harlow and Lane (Eds.), Cold Spring Harbor Laboratory Press, 1988. Representative examples of such assays include concurrent immunoelectrophoresis, radio- immunoassays, radio-immunoprecipitations, enzyme-linked immunosorbent assays (ELISA), dot blot assays, Western blot assays, inhibition or competition assays, and sandwich assays.
- ELISA enzyme-linked immunosorbent assays
- Antibodies to zil1a3 may be used for affinity purification of zil1a3 proteins; within diagnostic assays for determining circulating levels of ziha3 proteins; for detecting or quantitating soluble zil1a3 protein as a marker of underlying pathology or disease; for immunolocalization within whole animals or tissue sections, including immunodiagnostic applications; for immunohistochemistry; for screening expression libraries; and for other uses that will be evident to those skilled in the art. For certain applications, including in vitro and in vivo diagnostic uses, it is advantageous to employ labeled antibodies.
- Suitable direct tags or labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent markers, chemiluminescent markers, magnetic particles and the like; indirect tags or labels may feature use of biotin-avidin or other complement/anti-complement pairs as intermediates.
- Zil1a3 polynucleotides can be used to determine the presence of mutations at or near the zil1a3 locus on human chromosome 2 (2q14).
- Detectable chromosomal aberrations at the zil1a3 gene locus include, but are not limited to, aneuploidy, gene copy number changes, insertions, deletions, restriction site changes, and rearrangements. These aberrations can occur within the coding sequence, within introns, or within flanking sequences, including upstream promoter and regulatory regions, and may be manifested as physical alterations within a coding sequence or changes in gene expression level.
- Analytical probes will generally be at least 20 nucleotides in length, although somewhat shorter probes (14-17 nucleotides) can be used.
- PCR primers are at least 5 nucleotides in length, preferably 15 or more nt, more preferably 20-30 nt. Short polynucleotides can be used when a small region of the gene is targetted for analysis.
- a polynucleotide probe may comprise an entire exon or more. Probes will generally comprise a polynucleotide linked to a signal-generating moiety such as a radionucleotide.
- these diagnostic methods comprise the steps of (a) obtaining a genetic sample from a patient; (b) incubating the genetic sample with a polynucleotide probe or primer as disclosed above, under conditions wherein the polynucleotide will hybridize to complementary polynucleotide sequence, to produce a first reaction product; and (c) comparing the first reaction product to a control reaction product. A difference between the first reaction product and the control reaction product is indicative of a genetic abnormality in the patient.
- Genetic samples for use within the present invention include genomic DNA, cDNA, and RNA.
- the polynucleotide probe or primer can be RNA or DNA, and will comprise at least a portion of SEQ ID NO:1 , the complement of SEQ ID NO:1 , or an RNA equivalent thereof.
- Suitable assay methods in this regard include molecular genetic techniques known to those in the art, such as restriction fragment length polymorphism (RFLP) analysis, short tandem repeat (STR) analysis employing PCR techniques, ligation chain reaction (Barany, PCR Methods and Applications 1:5-16, 1991), ribonuclease protection assays, and other genetic linkage analysis techniques known in the art (Sambrook et al., ibid.; Ausubel et. al., ibid.; A.J.
- RFLP restriction fragment length polymorphism
- STR short tandem repeat
- Ribonuclease protection assays comprise the hybridization of an RNA probe to a patient RNA sample, after which the reaction product (RNA-RNA hybrid) is exposed to RNase. Hybridized regions of the RNA are protected from digestion.
- RNA-RNA hybrid reaction product
- PCR assays a patient genetic sample is incubated with a pair of polynucleotide primers, and the region between the primers is amplified and recovered. Changes in size or amount of recovered product are indicative of mutations in the patient.
- Another PCR-based technique that can be employed is single strand conformational polymorphism (SSCP) analysis (Hayashi, PCR Methods and Applications 1:34-38, 1991 ). The invention is further illustrated by the following non-limiting examples.
- SSCP single strand conformational polymorphism
- Example 1 Recombinant human zil1a3 was produced in E. coli using a His 6 tag/maltose binding protein (MBP) double affinity fusion system as generally disclosed by Pryor and Leiting, Prot. Expr. Pur. 10:309-319, 1997. A thrombin cleavage site was placed at the junction between the affinity tag and zil1a3 sequences.
- the fusion construct was assembled in the vector pTAP98, which comprised sequences for replication and selection in E. coli and yeast, the E. coli tac promoter, and a unique Smal site just downstream of the MBP- His 6 -thrombin site coding sequences.
- the zil1a3 cDNA (SEQ ID NO:1) was amplified by PCR using primers each comprising 40 bp of sequence homologous to vector sequence and 25 bp of sequence that annealed to the cDNA.
- the reaction was run using Pwo DNA polymerase (Boehringer Mannheim, Indianapolis, IN) for 30 cycles of 94°C, 30 seconds; 60°C, 60 seconds; and 72°C, 60 seconds.
- One microgram of the resulting fragment was mixed with 100 ng of Smal-cut pTAP98, and the mixture was transformed into yeast to assemble the vector by homologous recombination (Oldenburg et al., Nucl. Acids. Res. 25:451-452, 1997). Ura + transformants were selected.
- Plasmid DNA was prepared from yeast transformants and transformed into E. coli MC1061. Pooled plasmid DNA was then prepared from the MC1061 transformants by the miniprep method after scraping an entire plate. Plasmid DNA was analyzed by restriction digestion using Ncol and EcoRI.
- E. coli strain BL21 was used for expression of zil1a3. Cells were transformed by electroporation and grown on minimal glucose plates containing casamino acids and ampicillin.
- Protein expression was analyzed by gel electrophoresis. Cells were grown in liquid media containing ampicillin. After one hour at 37°C, IPTG was added to a final concentration of 1 mM, and the cells were grown for an additional 2-3 hours at 37°C. Cells were disrupted using glass beads, and extracts were prepared. Seven of nine isolates were found to produce large amounts of the fusion protein.
- E. coli BL21 expressing the zil1a3-MBP-His 6 fusion protein are prepared essentially as disclosed in Example 3.
- Cell pellets are resuspended in 100 ml of binding buffer (20 mM Tris, pH 7.58, 100 mM NaCI, 20 mM NaH 2 PO 4 , 0.4 mM 4-(2- Aminoethyl)-benzenesulfonyl fluoride hydrochloride [Pefabloc® SC; Boehringer-Mannheim], 2 ⁇ g/ml Leupeptin, 2 ⁇ g/ml Aprotinin).
- the cells are lysed in a French press at 30,000 psi, and the lysate is centrifuged at 18,000 x g for 45 minutes at 4°C to clarify it. Protein concentration is estimated by gel electrophoresis with a BSA standard.
- Recombinant zil1a3 fusion protein is purified from the lysate by affinity chromatography.
- Immobilized cobalt resin (Talon® resin; Clontech Laboratories, Inc., Palo Alto, CA) is equilibrated in binding buffer.
- One ml of packed resin per 50 mg protein is combined with the clarified supernatant in a tube, and the tube is capped and sealed, then placed on a rocker overnight at 4°C. The resin is then pelleted by centrifugation at 4°C and washed three times with binding buffer. Protein is eluted with binding buffer containing 0.2 M imidazole.
- the resin and elution buffer are mixed for at least one hour at 4°C, the resin is pelleted, and the supernatant is removed. An aliquot is analyzed by gel electrophoresis, and concentration is estimated.
- Amylose resin is equilibrated in amylose binding buffer (20 mM Tris-HCI, pH 7.0, 100 mM NaCI, 10 mM EDTA) and combined with the supernatant from the Talon resin at a ratio of 2 mg fusion protein per ml of resin. Binding and washing steps are carried out as disclosed above. Protein is eluted with amylose binding buffer containing 10 mM maltose using as small a volume as possible to minimize the need for subsequent concentration. The eluted protein is analyzed by gel electrophoresis and staining with Coomassie blue using a BSA standard, and by Western blotting using an anti-MBP antibody.
- Zil1a3 was mapped to human chromosome 2 using the commercially available version of the Stanford G3 Radiation Hybrid Mapping
- Each of the 85 PCR reaction mixtures consisted of 2 ⁇ l buffer (10X KlenTaq PCR reaction buffer, Clontech Laboratories, Inc., Palo Alto, CA), 1.6 ⁇ l dNTPs mix (2.5 mM each, PERKIN-ELMER, Foster City, CA), 1 ⁇ l sense primer, ZC 20,354 (SEQ ID NO: 11), 1 ⁇ l antisense primer, ZC 20,355 (SEQ ID NO:12), 2 ⁇ l of a density increasing agent and tracking dye (RediLoadTM, Research Genetics, Inc., Huntsville, AL), 0.4 ⁇ l of a commercially available DNA polymerase/antibody mix (50X AdvantageTM KlenTaq Polymerase Mix, obtained from Clontech Laboratories, Inc.), 25 ng of DNA from an individual hybrid clone or control and x ⁇ l ddH 2 O for a total volume of 20 ⁇ l.
- 2 ⁇ l buffer 10X KlenTaq PCR
- the mixtures were overlaid with an equal amount of mineral oil and sealed.
- the PCR cycler conditions were as follows: an initial 5-minute denaturation at 94°C; 35 cycles of 45 seconds denaturation at 94°C, 45 seconds annealing at 64°C, and 75 seconds extension at 72°C; followed by a final extension of 7 minutes at 72°C.
- the reactions were separated by electrophoresis on a 2% agarose gel.
- the 2q14 region also contains the genes for interleukin 1 alpha (IL-1 ⁇ ), interleukin 1 beta (IL-1 ⁇ ), and the interleukin 1 receptor antagonist (IL-1ra).
- Example 6 Northern blot analysis was performed using human multiple tissue blots (MTN® I, MTN® II, and MTN® III) (Clontech Laboratories, Inc., Palo Alto, CA) and human fetal multiple tissue blots (Clontech Laboratories, Inc.).
- MTN® I, MTN® II, and MTN® III human multiple tissue blots
- human fetal multiple tissue blots Clontech Laboratories, Inc.
- a 595-bp human probe was generated by amplification of an Xhol-Ncol cDNA fragement.
- the 595-bp fragment was gel purified using a spin column containing a silica gel membrane (QIAquickTM Gel Extraction Kit; Qiagen, Inc., Valencia, CA).
- the probe was radioactively labeled with 32 P using a commercially available kit (RediprimeTM II random-prime labeling system; Amersham Corp., Arlington Heights, IL) according to the manufacturer's specifications.
- the probe was purified using a push column (NucTrap® column; Stratagene, La Jolla, CA).
- a commercially available hybridization solution (ExpressHybTM Hybridization Solution; Clontech Laboratories, Inc.) was used for the hybridizing solution for the blots. Hybridization took place overnight at 65°C.
- the blots were then washed 4 times in 2X SCC and 0.05% SDS at room temperature, followed by two washes in 0.1X SSC and 0.1% SDS at 50°C.
- Two transcripts were detected at approximately 1.8kb and 2.8kb in placenta. Signal intensity was strong for placenta. A faint signal was seen at 2.8 kb in testis, thyroid, spinal cord, and trachea
- Dot blots (Human RNA Master BlotsTM; Clontech Laboratories, Inc.) were analyzed essentially as disclosed above. A signal was seen in placenta.
- Human northern blots (MTN® I, MTN® II, MTN® III, and human fetal multiple tissue blots; Clontech Laboratories, Inc.) were analyzed with a mouse zil1a3 probe.
- a 350-bp mouse probe was generated from a mouse cDNA (SEQ ID NO:14) by PCR using oligonucleotide primers zc18,609 (SEQ ID NO:15) and zc18,610 (SEQ ID NO:16). The reaction was run at 94°C for 2 minutes; then 35 cycles of 94°C for 30 seconds, 60°C for 30 seconds, 72°C for 5 minutes.
- the PCR product was gel purified using a spin column containing a silica gel membrane.
- the probe was radioactively labeled with 32 P using a commercially available kit (RediprimeTM II random-prime labeling system; Amersham Corp.) according to the manufacturer's specifications.
- the probe was purified using a push column. Hybridization and washing were carried out essentially as disclosed in Example 6, except the final wash was perfomed four times.
- Two transcripts, of approximately 1.0 kb and 1.5 kb, were seen in heart, brain, lung, liver, skeletal muscle, kidney, pancreas, adrenal gland, spinal cord, peripheral blood leukocytes, colon, small intestine, testis, and prostate. Signal intensity was strongest in heart and liver.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU62968/99A AU6296899A (en) | 1998-10-08 | 1999-10-08 | Interleukin-1 homolog |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16974598A | 1998-10-08 | 1998-10-08 | |
US09/169,745 | 1998-10-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000020595A1 true WO2000020595A1 (fr) | 2000-04-13 |
Family
ID=22617008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/023533 WO2000020595A1 (fr) | 1998-10-08 | 1999-10-08 | Homologues de l'interleukine-1 |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU6296899A (fr) |
WO (1) | WO2000020595A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001002571A2 (fr) * | 1999-07-07 | 2001-01-11 | Hyseq, Inc. | Nouvel antagoniste du recepteur d'interleukin-1 et ses utilisations |
WO2001005974A2 (fr) * | 1999-07-16 | 2001-01-25 | Interleukin Genetics, Inc. | Gène il-1l1 et produits polypeptidiques |
WO2003010291A2 (fr) * | 2001-07-25 | 2003-02-06 | Hyseq, Inc. | Traitement de troubles concernant les cellules immunitaires et les cellules b |
AU778759B2 (en) * | 1998-12-23 | 2004-12-16 | Genentech Inc. | IL-1 related polypeptides |
WO2007034465A2 (fr) * | 2005-09-21 | 2007-03-29 | The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth, Near Dublin | Compositions et methodes associees a la modulation d'une reaction a mediation immunitaire |
US7285648B1 (en) | 1998-01-09 | 2007-10-23 | Immunex Corporation | IL-1 delta DNA and polypeptides |
JP2010162016A (ja) * | 2002-09-25 | 2010-07-29 | Genentech Inc | 乾癬の治療のための新規組成物と方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0541920A1 (fr) * | 1988-05-27 | 1993-05-19 | Synergen, Inc. | Inhibiteurs de l'interleukine-1 |
WO1998047921A1 (fr) * | 1997-04-21 | 1998-10-29 | Schering Corporation | Cytokines de mammifere; reactifs et procedes connexes |
WO1999035268A1 (fr) * | 1998-01-09 | 1999-07-15 | Immunex Corporation | Adn codant il-1 delta et polypeptides il-1 delta |
WO1999051744A2 (fr) * | 1998-04-03 | 1999-10-14 | Hyseq, Inc. | Antagoniste du recepteur de l'interleukine-1 et ses utilisations |
-
1999
- 1999-10-08 AU AU62968/99A patent/AU6296899A/en not_active Abandoned
- 1999-10-08 WO PCT/US1999/023533 patent/WO2000020595A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0541920A1 (fr) * | 1988-05-27 | 1993-05-19 | Synergen, Inc. | Inhibiteurs de l'interleukine-1 |
WO1998047921A1 (fr) * | 1997-04-21 | 1998-10-29 | Schering Corporation | Cytokines de mammifere; reactifs et procedes connexes |
WO1999035268A1 (fr) * | 1998-01-09 | 1999-07-15 | Immunex Corporation | Adn codant il-1 delta et polypeptides il-1 delta |
WO1999051744A2 (fr) * | 1998-04-03 | 1999-10-14 | Hyseq, Inc. | Antagoniste du recepteur de l'interleukine-1 et ses utilisations |
Non-Patent Citations (3)
Title |
---|
J.J. MULERO ET AL: "iL1HY1: a novel Interleukin-1 receptor antagonist gene", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS., vol. 263, no. 3, 5 October 1999 (1999-10-05), ACADEMIC PRESS INC. ORLANDO, FL., US, pages 702 - 706, XP002126222, ISSN: 0006-291X * |
JOURNAL OF BIOLOGICAL CHEMISTRY., vol. 275, no. 2, January 2000 (2000-01-01), AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD., US, pages 1169 - 1175, ISSN: 0021-9258 * |
SMITH D.E. ET AL: "Four new members expand the iL-1 superfamily", EMBL DATBASE ENTRY AAF25210, ACCESSION NUMBER AAF25210, 27 January 2000 (2000-01-27), XP002131487 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7285648B1 (en) | 1998-01-09 | 2007-10-23 | Immunex Corporation | IL-1 delta DNA and polypeptides |
AU778759B2 (en) * | 1998-12-23 | 2004-12-16 | Genentech Inc. | IL-1 related polypeptides |
US8628777B2 (en) | 1998-12-23 | 2014-01-14 | Genentech, Inc. | Antibodies binding IL-1 related polypeptides |
US7951916B2 (en) | 1998-12-23 | 2011-05-31 | Genentech, Inc. | Il-1 related polypeptides |
WO2001002571A3 (fr) * | 1999-07-07 | 2001-05-31 | Hyseq Inc | Nouvel antagoniste du recepteur d'interleukin-1 et ses utilisations |
WO2001002571A2 (fr) * | 1999-07-07 | 2001-01-11 | Hyseq, Inc. | Nouvel antagoniste du recepteur d'interleukin-1 et ses utilisations |
WO2001005974A3 (fr) * | 1999-07-16 | 2001-05-10 | Interleukin Genetics Inc | Gène il-1l1 et produits polypeptidiques |
WO2001005974A2 (fr) * | 1999-07-16 | 2001-01-25 | Interleukin Genetics, Inc. | Gène il-1l1 et produits polypeptidiques |
WO2003010291A3 (fr) * | 2001-07-25 | 2004-02-19 | Hyseq Inc | Traitement de troubles concernant les cellules immunitaires et les cellules b |
WO2003010291A2 (fr) * | 2001-07-25 | 2003-02-06 | Hyseq, Inc. | Traitement de troubles concernant les cellules immunitaires et les cellules b |
JP2010162016A (ja) * | 2002-09-25 | 2010-07-29 | Genentech Inc | 乾癬の治療のための新規組成物と方法 |
WO2007034465A2 (fr) * | 2005-09-21 | 2007-03-29 | The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth, Near Dublin | Compositions et methodes associees a la modulation d'une reaction a mediation immunitaire |
WO2007034465A3 (fr) * | 2005-09-21 | 2007-11-29 | Trinity College Dublin | Compositions et methodes associees a la modulation d'une reaction a mediation immunitaire |
Also Published As
Publication number | Publication date |
---|---|
AU6296899A (en) | 2000-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7855269B2 (en) | Method for treating inflammation | |
US7084253B2 (en) | Protease-activated receptor PAR4 (ZCHEMR2) | |
CA2298439A1 (fr) | Homologues de lipocaline | |
WO2001029221A2 (fr) | Nouvelles proteines et polynucleotides codant ces proteines | |
WO2000020595A1 (fr) | Homologues de l'interleukine-1 | |
AU744152B2 (en) | Beta-defensins | |
EP1129194B1 (fr) | Homologues zil 1a4 d'interleukine-1 | |
CA2350623A1 (fr) | Proteine de type chondromoduline de mammmifere | |
US20030148467A1 (en) | Interleukin-1 homolog zil1a4 | |
WO1998054326A1 (fr) | Chemokine humaine zchemo-8 | |
US6756214B2 (en) | Protein zlmda33 | |
US7122342B1 (en) | Protease-activated receptor PAR4 (ZCHEMR2) | |
US20030170205A1 (en) | Interleukin-1 homolog zil1a7 | |
MXPA01004171A (es) | Homologo zil-1a4 de interleucina-1 | |
US20030166268A1 (en) | Mammalian transforming growth factor beta-10 | |
CA2360584A1 (fr) | Proteine-12 a mammalienne helice alpha | |
US20040058354A1 (en) | Mammalian alpha-helical protein-53 | |
US20030207793A1 (en) | Secreted alpha-helical protein - 32 | |
WO1998044117A1 (fr) | Chimiokine zsig-35 d'origine humaine | |
WO2001000664A2 (fr) | Proteine-36 en helice alpha secretee | |
CA2374520A1 (fr) | Proteine 32 alpha helicoidale secretee | |
WO2001004307A1 (fr) | Proteine alpha-27 | |
EP1355937A2 (fr) | Proteine-53 alpha helicoidale secretee par des mammiferes | |
CA2301043A1 (fr) | Facteur de transcription zgcl-1 specifique aux testicules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase |