WO2000012431A1 - Process for producing iron carbide - Google Patents
Process for producing iron carbide Download PDFInfo
- Publication number
- WO2000012431A1 WO2000012431A1 PCT/JP1998/003868 JP9803868W WO0012431A1 WO 2000012431 A1 WO2000012431 A1 WO 2000012431A1 JP 9803868 W JP9803868 W JP 9803868W WO 0012431 A1 WO0012431 A1 WO 0012431A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iron
- raw material
- reaction
- containing raw
- reduction
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/0033—In fluidised bed furnaces or apparatus containing a dispersion of the material
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/134—Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
Definitions
- the present invention steel to iron Carbide de the (F e 3 C) as main components, a raw material for steelmaking, for example, a method of manufacturing a suitable iron force one by de steelmaking raw material used in the electric furnace or the like. (Background technology)
- steel production consists of converting iron ore to pig iron using a blast furnace, and then converting pig iron to steel using a furnace or a converter.
- Such traditional manufacturing methods require large amounts of energy, equipment, and cost.
- iron ore is conventionally converted to raw material for steelmaking furnaces by direct steelmaking.
- a method has been adopted which consists of converting steelmaking furnace raw materials into steel using an electric furnace or the like.
- direct steelmaking there is a direct reduction method that converts iron ore to reduced iron.However, the reduced iron produced by this method has strong reaction activity and generates heat by reacting with oxygen in the atmosphere. In this case, it is necessary to provide a treatment such as sealing with an inert gas.
- steel raw materials mainly composed of iron carbide are not only easy to transport and store, but also carbon combined with iron atoms can be used as a fuel source for iron or steelmaking furnaces. In this case, there is also an advantage that it is a source of fine bubbles that promote the reaction. Due to these forces, raw materials for steelmaking and steelmaking mainly composed of iron carbide Attention has been paid.
- such a method of producing iron carbide is a method in which iron ore is powdered and charged into a fluidized bed reactor or the like, and a mixed gas of a reducing gas (hydrogen gas) and a carbonizing gas (for example, methane gas) is used.
- a mixed gas of a reducing gas (hydrogen gas) and a carbonizing gas for example, methane gas
- the iron oxide hematite (Fe) 2 0 3
- F e 3 ⁇ 4 refers to Usutai bets (F e O)
- a reducing and carbonizing gases simultaneously in a single operation (in one reactor operation) It is to be reduced and carbonized.
- the reaction time until the completion of iron carbide conversion may be long. This is because, as shown in the above equations (1) to (3), when iron oxide is reduced, H 20 is generated in the reaction system ⁇ , and particularly, a large amount of H is generated in the initial stage of the reduction. 20 occurs.
- the partial pressure of H 2 O in the reaction system must be reduced in order to start Fe 3 C conversion. H 2 0 partial pressure because higher Ri sweet when F e 3 C reduction is inhibited.
- the present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide a method of manufacturing an iron carbide capable of efficiently promoting the conversion of iron-containing raw materials to iron carbide. It is to provide [Disclosure of the Invention]
- the density in the system of H 2 O to inhibit iron Carbide de reduction is not uniform, the density of H 2 0 Since the thin and dark portions are mixed, the formation of iron carbide is promoted as compared with the case where the iron-containing raw material having a uniform reduction rate is used as the raw material.
- the present invention relates to a method for producing a raw material for iron and steel making mainly composed of iron carbide by reducing and carbonizing an iron-containing raw material mainly containing iron oxides and iron hydroxides. Further, the iron-containing raw material is characterized by being a mixture of an iron-containing raw material having a high reduction rate and a iron-containing raw material having a low reduction rate.
- the density in the system of H 2 O to inhibit iron Carbide de reduction is not uniform, H 2 Starting from the iron-containing raw material portion with a low density of 0 and a high reduction ratio, iron carbide is promoted.
- the reaction is divided into a first reaction operation that performs part of the reduction reaction and a second reaction operation that performs the remaining reduction reaction and carbonization reaction, the gas used in the first reaction operation can be reduced to only the reduction reaction. And the gas used in the second reaction operation is reduced to the rest.
- the reaction rate is higher than that of the iron carbide production method in which reduction and carbonization are performed in a single operation using a mixed gas of a reducing gas and a carbonized gas.
- the time time required to convert iron-containing raw materials to iron carbide
- the present invention is configured as described above, and has the following effects.
- the reaction time can be reduced, and if the same production volume is sufficient, the size of the reactor can be reduced.
- the reaction operation conditions can be made flexible.
- By mixing iron-containing raw materials with an appropriate reduction rate it is possible to suppress excessive consumption of the reaction gas (hydrogen, methane). According to the invention described in claim 2, the reaction time can be further reduced.
- Fig. 1 is a diagram showing a comparison of the progress of iron carbide conversion due to differences in the reduction rates of iron-containing raw materials.
- FIG. 2 is a diagram showing an embodiment of a method of mixing iron-containing raw materials having different reduction ratios to form iron carbide in the case of one fluidized bed reactor.
- FIG. 3 is a diagram showing another embodiment of a method of mixing iron-containing raw materials having different reduction rates to form iron carbide when one fluidized bed reactor is used.
- FIG. 4 is a view showing still another embodiment of a method of mixing iron-containing raw materials having different reduction ratios to form iron carbide in the case where one fluidized bed reactor is used.
- FIG. 5 shows a case where a hobber is provided separately from one fluidized bed reactor.
- FIG. 3 is a view showing one embodiment of a method of mixing iron-containing raw materials having different reduction rates to form iron carbide.
- FIG. 6 is a view showing an embodiment of a method of mixing iron-containing raw materials having different reduction rates to form iron carbide when two fluidized bed reactors are used.
- FIG. 7 is a diagram showing another embodiment of a method of mixing iron-containing raw materials having different reduction rates to form iron carbide when two fluidized bed reactors are used.
- FIG. 8 is a diagram showing still another embodiment of a method of mixing iron-containing raw materials having different reduction rates to form iron carbide when two fluidized bed reactors are used.
- FIG. 9 is a view showing still another embodiment of a method of mixing iron-containing raw materials having different reduction rates to form iron carbide when two fluidized bed reactors are used.
- FIG. 10 is a view showing one embodiment of a method of mixing iron-containing raw materials having different reduction rates to form iron carbide when a hopper is provided separately from two fluidized bed reactors.
- Fig. 1 the reaction time (hr) is plotted on the horizontal axis, and the vertical axis is Fe 3 C (weight 0 / o) in the product.
- the meaning of each symbol in Fig. 1 is as follows.
- ⁇ Iron-containing raw material obtained by reducing hematite powder by 53%
- iron carbide raw materials with a relatively low reduction rate and a uniform reduction rate have an iron carbide conversion rate of 90% or more. It takes about 5 hours to get the product.
- a mixture of iron-containing raw materials with different reduction rates ( ⁇ , ⁇ ) can obtain an iron carbide product with the same conversion rate in about 4 hours. It is possible to carbonize in the same short time as when carbonizing.
- the lower part of the fluidized bed reactor 1 is divided into three sections 1a, lb, 1c, and a pipe through which the reaction gas (reducing gas and carbon gas) flows into the bottom of the reactor 1.
- Line 2 is connected, and a line 3 for discharging the same reaction gas is connected to the top of the reactor 1.
- An iron-containing raw material is charged into the reaction furnace 1 and a predetermined reduction and carbonization reaction is performed in the reaction furnace 1, and then a raw material for iron making mainly composed of iron carbide is discharged from a pipe 5.
- the iron-containing raw material having a low reduction rate in the section 1a near the inlet of the reactor 1 is added to and mixed with the iron-containing raw material having a high reduction rate in the section 1c near the outlet.
- a hopper 6 is provided above the fluidized bed reactor 1, and the hopper 6 is connected to the vicinity of the center of the top of the reactor 1 via a pipe 7.
- This is a method in which a low (or unreduced) iron-containing raw material is added to and mixed with the iron-containing raw material in the section 1b having a moderate reduction rate.
- the pipe 7 can be connected to a position corresponding to the upper part of the section 1c.
- another fluidized bed reactor 8 is arranged behind the lower part of the fluidized bed reactor 1, and the lower part of the reactor 8 is partitioned into three sections 8a, 8b, 8c.
- a pipe 9 through which a reaction gas (reducing gas and carbonizing gas) flows is connected in the same manner as the reaction furnace 1, and at the top of the reaction furnace 8, a pipe 10 through which the reaction gas is discharged is connected.
- the reaction gas flowing from the pipe 2 to the bottom of the reactor 1 is mainly a reducing gas, and a part of the reduction reaction is performed in the reactor 1.
- the remaining reduction reaction and carbonization reaction are performed.
- the pipeline 5 for discharging the iron-containing raw material having a high reduction rate in the section 1c near the outlet of the reactor 1 and the pipeline 11 for discharging the iron-containing raw material having a medium reduction rate in the section 1b are connected.
- a mixture of these iron-containing raw materials having different reduction rates is supplied to a reaction furnace 8 via a pipe 12, and a predetermined reduction reaction and a carbonization reaction are performed in the reaction furnace 8.
- the raw materials for iron making, mainly composed of iron carbide, are discharged.
- the mixing ratio of the iron-containing raw materials having different reduction rates can be changed by adjusting the opening degrees of the valves 14 and 15.
- the iron-containing raw material with a low reduction rate (or unreduced) sent through pipe line 16 (reduction and carbonization) in section 8b of reactor 8 is used.
- the pipeline 16 can be connected to the section 8c.
- the opening of the valve 17 may be adjusted.
- the iron-containing raw material in section 1b of fluidized-bed reactor 1 is added to and mixed with the iron-containing raw material in section 8b of reactor 8 through line 11. It is.
- the pipeline 11 can be connected to the section 8c.
- This embodiment is a modification of FIG. 6, and as shown in FIG. 9, the pipeline 5 for feeding the iron-containing raw material having a relatively high reduction rate in the section 1 c of the reactor 1 and the section 1 b in the section 1 b.
- the pipeline 11 for discharging the iron-containing raw material having a slightly lower reduction rate is directly connected to the section 8 a of the reactor 8.
- a hopper 18 is provided above the fluidized bed reactor 8, and the hopper 18 and the vicinity of the center of the top of the reactor 8 are connected by a pipe 19.
- the iron-containing raw material having a low reduction rate (or unreduced) in the hopper 18 is added to and mixed with the iron-containing raw material in the section 8b.
- pipeline 19 corresponds to above section 8c It can be connected to a different position.
- the circulating gas contains not only hydrogen but also methane, so it is necessary to release methane at the same time as hydrogen.
- the reduction rate of the iron oxide was 60 By adjusting the content to the range of not more than%, the consumption of the reaction gas such as methane can be suppressed.
- the number of sections in the fluidized bed reactor is preferably 3 to 4.
- the present invention is suitable as an iron carbide manufacturing apparatus capable of efficiently promoting the conversion of iron-containing raw materials to iron carbide.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
A process for producing iron carbide by efficiently converting iron-containing starting material into iron carbide, which comprises reducing and carbonizing a mixture of an iron-containing starting material having a high reduction rate and an iron-containing starting material having a low reduction rate.
Description
明 細 書 鉄カーバイ ドの製造方法 〔技術分野〕 Description Manufacturing method of iron carbide [Technical field]
本発明は、 鉄カーバイ ド ( F e 3 C ) を主成分とする製鉄、 製鋼用の原料、 例えば電気炉等に用いる製鋼原料に好適な鉄力 一バイ ドの製造方法に関する。 〔背景技術〕 The present invention steel to iron Carbide de the (F e 3 C) as main components, a raw material for steelmaking, for example, a method of manufacturing a suitable iron force one by de steelmaking raw material used in the electric furnace or the like. (Background technology)
一般的に鋼の製造は、 高炉によ り鉄鉱石を銑鉄に転化し、 そ の後、 平炉または転炉などによ り銑鉄を鋼に転化する工程から なる。 このような伝統的な製法は、 必要なエネルギー、 設備規 模およびコス ト等が大きなものになるため、 小規模の製鋼には、 従来、 直接製鋼により鉄鉱石を製鋼炉原料に転化し、 この製鋼 炉原料を電気炉等により鋼に転化する工程からなる方法が採用 されている。 かかる直接製鋼には、 鉄鉱石を還元鉄に転化する 直接還元法があるが、 この方法で製造される還元鉄は反応活性 が強く、 大気中の酸素と反応して発熱するため、 輸送、 貯蔵に は不活性ガスによるシール等の手当が必要となる。 このため、 反応活性が低く、 容易に輸送、 貯蔵が可能で、 比較的高パーセ ンテージの鉄 (F e ) を含有する鉄カーバイ ドが、 近年、 電気 炉等による製鋼原料と して使用されつつある。 In general, steel production consists of converting iron ore to pig iron using a blast furnace, and then converting pig iron to steel using a furnace or a converter. Such traditional manufacturing methods require large amounts of energy, equipment, and cost.Therefore, for small-scale steelmaking, iron ore is conventionally converted to raw material for steelmaking furnaces by direct steelmaking. A method has been adopted which consists of converting steelmaking furnace raw materials into steel using an electric furnace or the like. In such direct steelmaking, there is a direct reduction method that converts iron ore to reduced iron.However, the reduced iron produced by this method has strong reaction activity and generates heat by reacting with oxygen in the atmosphere. In this case, it is necessary to provide a treatment such as sealing with an inert gas. For this reason, iron carbide containing a relatively high percentage of iron (Fe), which has a low reaction activity, can be easily transported and stored, and has a relatively high percentage of iron (Fe) has recently been used as a steelmaking raw material for electric furnaces and the like. is there.
さらに、 鉄カーバイ ドを主成分とする鉄鋼原料は、 輸送 · 貯 蔵が容易であるばかりでなく、 鉄原子と化合している炭素が製 銑あるいは製鋼炉の燃料源となる他、 製鋼炉内では反応を促進 する微細な気泡の発生源となる利点もある。 このよ うなこと力 ら、 鉄カーバイ ドを主成分とする製鉄、 製鋼用原料は近年特に
注目されている。 In addition, steel raw materials mainly composed of iron carbide are not only easy to transport and store, but also carbon combined with iron atoms can be used as a fuel source for iron or steelmaking furnaces. In this case, there is also an advantage that it is a source of fine bubbles that promote the reaction. Due to these forces, raw materials for steelmaking and steelmaking mainly composed of iron carbide Attention has been paid.
かかる鉄カーバイ ドを製造する方法は、 従来、 鉄鉱石を粉体 にして流動層式反応器等に充填し、 還元ガス (水素ガス) と炭 化ガス (例えば、 メ タ ンガスなど) の混合ガスと所定温度で反 応させることで、 以下の反応式 ((1), (2), (3), (4) ) に示すよ うに、 鉄鉱石内の鉄酸化物 (へマタイ ト (F e 203) 、 マグネ タイ ト ( F e 3〇4) 、 ウスタイ ト (F e O) ) を単一操作 (一 つの反応器内に還元および炭化ガスを同時に導入して行う操作 をいう) で還元および炭化させるものである。 Conventionally, such a method of producing iron carbide is a method in which iron ore is powdered and charged into a fluidized bed reactor or the like, and a mixed gas of a reducing gas (hydrogen gas) and a carbonizing gas (for example, methane gas) is used. At a predetermined temperature, as shown in the following reaction equations ((1), (2), (3), (4)), the iron oxide (hematite (Fe) 2 0 3), with a magnetic Thailand preparative (F e 3 〇 4) refers to Usutai bets (F e O)) is carried out by introducing a reducing and carbonizing gases simultaneously in a single operation (in one reactor operation) It is to be reduced and carbonized.
3 F e 203+H2→ 2 F e 304+ H20 · · · ( 1 ) 3 F e 2 0 3 + H 2 → 2 F e 3 0 4 + H 2 0 (1)
F e 304 + H 2→ 3 F e O + H 2〇 · · · ( 2 ) F e 3 0 4 + H 2 → 3 F e O + H 2 〇 - - - (2)
F e O + H2→F e +H20 · · · ( 3 ) F e O + H 2 → F e + H 2 0
3 F e + C H4→F e :iC + 2 H2 · · · ( 4 ) なお、 この種の先行技術と しては、 例えば、 特表平 6— 5 0 1 9 8 3号公報に記載のものがある。 3 F e + C H4 → F e : i C + 2 H 2 ··· (4) As this kind of prior art, see, for example, Japanese Patent Application Laid-Open No. 6-5019803. Some are listed.
ところが、 鉄カーバイ ド化の開始が一様に行われる均一な還 元率の含鉄原料を原料とする場合、 鉄カーバイ ド化が完了する までの反応時間が長くなることがある。 というのは、 上記 ( 1 ) 〜 ( 3 ) 式に示すように、 鉄酸化物の還元が行われると、 反 応系內に H20が発生し、 特に、 還元の初期には多量の H20が 発生する。 一方、 F e 3C化が始まるためには、 反応系内の H2 Oの分圧が減少する必要がある。 H20 分圧があま り高く なる と F e 3C 化が阻害されるからである。 すなわち、 均一な還元 率の含鉄原料を原料とする場合には、 還元反応の結果発生する H20によ り F e 3C化が阻害されやすく なる。 特に、 還元率が 比較的低い含鉄原料を原料とする場合には、 大量の H20 が発 生するので、 より F e 3C 化が阻害される。 このような理由で、 均一な還元率の含鉄原料を原料とする場合には、 鉄カーバイ ド
化が完了するまでの反応時間が長くなることがある。 However, when using an iron-containing raw material having a uniform reduction rate at which the start of iron carbide conversion is performed uniformly, the reaction time until the completion of iron carbide conversion may be long. This is because, as shown in the above equations (1) to (3), when iron oxide is reduced, H 20 is generated in the reaction system 、, and particularly, a large amount of H is generated in the initial stage of the reduction. 20 occurs. On the other hand, the partial pressure of H 2 O in the reaction system must be reduced in order to start Fe 3 C conversion. H 2 0 partial pressure because higher Ri sweet when F e 3 C reduction is inhibited. That is, when an iron-containing raw material having a uniform reduction rate is used as a raw material, the formation of Fe 3 C is easily inhibited by H 20 generated as a result of the reduction reaction. In particular, when the reduction rate is relatively low iron-containing raw material as a raw material, a large amount of H 2 0 since occurs, the more F e 3 C reduction is inhibited. For this reason, when iron-containing raw materials with a uniform reduction rate are used as raw materials, iron carbide In some cases, the reaction time until the completion of the reaction becomes longer.
本発明は従来の技術の有するこのよ うな問題点に鑑みてなさ れたものであって、 その目的は、 含鉄原料の鉄カーバイ ド化を 効率的に推進することができる鉄カーバイ ドの製造方法を提供 することにある。 〔発明の開示〕 The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide a method of manufacturing an iron carbide capable of efficiently promoting the conversion of iron-containing raw materials to iron carbide. It is to provide [Disclosure of the Invention]
上記目的を達成するために本発明は、 還元率の異なる含鉄原 料を原料とすることにより、 鉄カーバイ ド化を阻害する H 2 O の系内の密度が均一ではなく、 H 2 0 の密度が薄い部分と濃い 部分とが混在するので、 均一な還元率の含鉄原料を原料とする 場合に比べて鉄カーバイ ド化が促進される。 To accomplish the above object, by a different ferrous raw materials of reduced rate as a raw material, the density in the system of H 2 O to inhibit iron Carbide de reduction is not uniform, the density of H 2 0 Since the thin and dark portions are mixed, the formation of iron carbide is promoted as compared with the case where the iron-containing raw material having a uniform reduction rate is used as the raw material.
すなわち、 本発明は、 酸化鉄類および水酸化鉄類を主成分と する製鉄用含鉄原料を還元および炭化して鉄カーバイ ドを主成 分とする製鉄、 製鋼用の原料を製造する方法であって、 上記含 鉄原料が高還元率の含鉄原料と低還元率の含鉄原料を混合した ものであることを特徴と している。 That is, the present invention relates to a method for producing a raw material for iron and steel making mainly composed of iron carbide by reducing and carbonizing an iron-containing raw material mainly containing iron oxides and iron hydroxides. Further, the iron-containing raw material is characterized by being a mixture of an iron-containing raw material having a high reduction rate and a iron-containing raw material having a low reduction rate.
また、 後記する理由により、 製鉄用含鉄原料の還元反応の一 部を行う第一反応操作の後に、 残りの還元反応と炭化反応を行 う第二反応操作を進めることが好ましい。 For the reasons described below, it is preferable to proceed with the second reaction operation for performing the remaining reduction reaction and the carbonization reaction after the first reaction operation for performing a part of the reduction reaction of the iron-containing raw material for iron making.
上記のよ うに構成される本発明によれば、 還元率の異なる含 鉄原料を原料とすることにより、 鉄カーバイ ド化を阻害する H 2 Oの系内の密度が一様ではなく、 H 2 0の密度が低い高還元率 の含鉄原料部分を起点と して鉄カーバイ ド化が促進される。 また、 還元反応の一部を行う第一反応操作と、 残りの還元反 応と炭化反応を行う第二反応操作に分けて反応を進めれば、 第 一反応操作において使用するガスを還元反応のみに最適な組成 にし、 また、 第二反応操作において使用するガスを残りの還元
反応と炭化反応に最適な組成にすることができるため、 還元お よび炭化を還元ガスおよび炭化ガスの混合ガスによる単一の操 作で行う鉄カーバイ ドの製造方法より も反応速度を高め、 反応 時間 (含鉄原料を鉄カーバイ ドに転化するために要する時間) の短縮を図ることができる。 According to the good urchin constructed present invention, by different containing iron raw materials having reducing ratio as the raw material, the density in the system of H 2 O to inhibit iron Carbide de reduction is not uniform, H 2 Starting from the iron-containing raw material portion with a low density of 0 and a high reduction ratio, iron carbide is promoted. In addition, if the reaction is divided into a first reaction operation that performs part of the reduction reaction and a second reaction operation that performs the remaining reduction reaction and carbonization reaction, the gas used in the first reaction operation can be reduced to only the reduction reaction. And the gas used in the second reaction operation is reduced to the rest. Since the composition can be optimized for the reaction and the carbonization reaction, the reaction rate is higher than that of the iron carbide production method in which reduction and carbonization are performed in a single operation using a mixed gas of a reducing gas and a carbonized gas. The time (time required to convert iron-containing raw materials to iron carbide) can be reduced.
本発明は上記のとおり構成されているので、 次の効果を奏す る。 The present invention is configured as described above, and has the following effects.
効率的に鉄カーバイ ド化が進行するので、 反応時間の短縮が 可能であり、 同一生産量でよい場合、 反応装置を小型化できる。 含鉄原料の還元率の混合比率を変えることにより、 反応操作条 件のフ レキシブル化が可能になる。 適正な還元率の含鉄原料を 混合することにより、 反応ガス (水素、 メタン) の過剰な消費 を抑制することができる。 そして、 請求の範囲第 2項記載の発 明によれば、 一層の反応時間の短縮が可能である。 Since the conversion to iron carbide proceeds efficiently, the reaction time can be reduced, and if the same production volume is sufficient, the size of the reactor can be reduced. By changing the mixing ratio of the reduction ratio of the iron-containing raw material, the reaction operation conditions can be made flexible. By mixing iron-containing raw materials with an appropriate reduction rate, it is possible to suppress excessive consumption of the reaction gas (hydrogen, methane). According to the invention described in claim 2, the reaction time can be further reduced.
〔図面の簡単な説明〕 [Brief description of drawings]
第 1図は、 含鉄原料の還元率の違いによる鉄カーバイ ド化の 進行状況を比較して示す図である。 Fig. 1 is a diagram showing a comparison of the progress of iron carbide conversion due to differences in the reduction rates of iron-containing raw materials.
第 2図は、 流動層反応炉が 1基の場合に、 還元率の異なる含 鉄原料を混合して鉄カーバイ ド化する方法の一実施例を示す図 である。 FIG. 2 is a diagram showing an embodiment of a method of mixing iron-containing raw materials having different reduction ratios to form iron carbide in the case of one fluidized bed reactor.
第 3図は、 流動層反応炉が 1基の場合に、 還元率の異なる含 鉄原料を混合して鉄カーバイ ド化する方法の別の実施例を示す 図である。 FIG. 3 is a diagram showing another embodiment of a method of mixing iron-containing raw materials having different reduction rates to form iron carbide when one fluidized bed reactor is used.
第 4図は、 流動層反応炉が 1基の場合に、 還元率の異なる含 鉄原料を混合して鉄カーバイ ド化する方法のさらに別の実施例 を示す図である。 FIG. 4 is a view showing still another embodiment of a method of mixing iron-containing raw materials having different reduction ratios to form iron carbide in the case where one fluidized bed reactor is used.
第 5図は、 1基の流動層反応炉とは別にホツバを有する場合
に、 還元率の異なる含鉄原料を混合して鉄カーバイ ド化する方 法の一実施例を示す図である。 Fig. 5 shows a case where a hobber is provided separately from one fluidized bed reactor. FIG. 3 is a view showing one embodiment of a method of mixing iron-containing raw materials having different reduction rates to form iron carbide.
第 6図は、 流動層反応炉が 2基の場合に、 還元率の異なる含 鉄原料を混合して鉄カーバイ ド化する方法の一実施例を示す図 である。 FIG. 6 is a view showing an embodiment of a method of mixing iron-containing raw materials having different reduction rates to form iron carbide when two fluidized bed reactors are used.
第 7図は、 流動層反応炉が 2基の場合に、 還元率の異なる含 鉄原料を混合して鉄カーバイ ド化する方法の別の実施例を示す 図である。 FIG. 7 is a diagram showing another embodiment of a method of mixing iron-containing raw materials having different reduction rates to form iron carbide when two fluidized bed reactors are used.
第 8図は、 流動層反応炉が 2基の場合に、 還元率の異なる含 鉄原料を混合して鉄カーバイ ド化する方法のさらに別の実施例 を示す図である。 FIG. 8 is a diagram showing still another embodiment of a method of mixing iron-containing raw materials having different reduction rates to form iron carbide when two fluidized bed reactors are used.
第 9図は、 流動層反応炉が 2基の場合に、 還元率の異なる含 鉄原料を混合して鉄カーバイ ド化する方法のさらに別の実施例 を示す図である。 FIG. 9 is a view showing still another embodiment of a method of mixing iron-containing raw materials having different reduction rates to form iron carbide when two fluidized bed reactors are used.
第 1 0図は、 2基の流動層反応炉とは別にホッパを有する場 合に、 還元率の異なる含鉄原料を混合して鉄カーバイ ド化する 方法の一実施例を示す図である FIG. 10 is a view showing one embodiment of a method of mixing iron-containing raw materials having different reduction rates to form iron carbide when a hopper is provided separately from two fluidized bed reactors.
〔発明を実施するための最良の形態〕 [Best mode for carrying out the invention]
以 :下、 本発明の実施例を図面を参照しながら説明する。 第 1 図は、 反応時間 ( h r ) を横軸にとって、 縦軸に製品中の F e 3 C (重量0 /o ) をとつたものである。 第 1図における各記号の意 味は次のとおりである。 Following: lower, it will be described with reference to the embodiment of the present invention with reference to the accompanying drawings. In Fig. 1, the reaction time (hr) is plotted on the horizontal axis, and the vertical axis is Fe 3 C (weight 0 / o) in the product. The meaning of each symbol in Fig. 1 is as follows.
へマタイ ト粉末を 5 0 %還元した含鉄原料 Iron-containing raw material with 50% reduction of hematite powder
△ = へマタイ ト粉末を 5 3 %還元した含鉄原料 △ = Iron-containing raw material obtained by reducing hematite powder by 53%
X =へマタイ ト粉末を 7 6 %還元した含鉄原料 X = Iron-containing raw material reduced by 76% of hematite powder
〇=以下の表 1記載のよ うに、 種々の還元率のへマタイ ト粉 末を混合した含鉄原料で、 全体と しての還元率が 5 5 %
であるもの 〇 = As shown in Table 1 below, iron-containing raw materials mixed with various reduction rates of hematite powder, the overall reduction rate is 55% What is
口 =以下の表 1記載のよ うに、 種々の還元率のへマタイ ト粉 末を混合した含鉄原料で、 全体と しての還元率が 5 6 % であるもの Mouth = As shown in Table 1 below, an iron-containing raw material mixed with various reduction rates of hematite powder, with an overall reduction rate of 56%
【表 1 】 【table 1 】
第 1図に明らかなように、 還元率が比較的低くて、 均一の還 元率の含鉄原料からなるもの (▽、 △) は、 鉄カーバイ ドへの 転化率が 9 0 %以上の鉄カーバイ ド製品を得るには、 約 5時間 必要である。 しかし、 還元率の異なる含鉄原料を混合したもの (〇、 □) は、 約 4時間で同じ転化率の鉄カーバイ ド製品を得 ることができ、 高還元率の含鉄原料 (X ) を鉄カーバイ ド化す る場合と同じ程度の短時間で炭化することが可能である。 As is evident from Fig. 1, iron carbide raw materials with a relatively low reduction rate and a uniform reduction rate (▽, △) have an iron carbide conversion rate of 90% or more. It takes about 5 hours to get the product. However, a mixture of iron-containing raw materials with different reduction rates (〇, □) can obtain an iron carbide product with the same conversion rate in about 4 hours. It is possible to carbonize in the same short time as when carbonizing.
以下に、 異なる還元率の含鉄原料を混合したものを原料と し て、 鉄カーバイ ドを主成分とする製鉄用原料を得ることができ る具体的な方法について図面を参照しながら説明する。 Hereinafter, a specific method for obtaining a raw material for iron making containing iron carbide as a main component by using a mixture of iron-containing raw materials having different reduction rates as a raw material will be described with reference to the drawings.
( a ) 反応炉が 1基の場合 (a) When there is one reactor
① 第 2図に示すように、 流動層反応炉 1内の下部を 3区画 1 a、 l b、 1 cに仕切り、 反応炉 1 の底部には反応ガス (還元 ガスおよび炭化ガス) を流入させる管路 2を接続し、 反応炉 1 の頂部には同反応ガスを排出する管路 3を接続し、 管路 4から
反応炉 1 内に含鉄原料を投入し、 反応炉 1内で所定の還元およ び炭化反応を行わせた後、 管路 5から鉄カーバイ ドを主成分と する製鉄用原料を排出する。 この方法は、 反応炉 1 の入口に近 い区画 1 a内の還元率の低い含鉄原料を、 出口に近い区画 1 c 内の還元率の高い含鉄原料に添加混合する方法である。 ① As shown in Fig. 2, the lower part of the fluidized bed reactor 1 is divided into three sections 1a, lb, 1c, and a pipe through which the reaction gas (reducing gas and carbon gas) flows into the bottom of the reactor 1. Line 2 is connected, and a line 3 for discharging the same reaction gas is connected to the top of the reactor 1. An iron-containing raw material is charged into the reaction furnace 1 and a predetermined reduction and carbonization reaction is performed in the reaction furnace 1, and then a raw material for iron making mainly composed of iron carbide is discharged from a pipe 5. In this method, the iron-containing raw material having a low reduction rate in the section 1a near the inlet of the reactor 1 is added to and mixed with the iron-containing raw material having a high reduction rate in the section 1c near the outlet.
② この方法は、 第 3図に示すよ うに、 第 2図とは逆に、 反応 炉 1の出口に近い区画 1 c内の還元率の高い含鉄原料を、 入口 に近い区画 1 a内の還元率の低い含鉄原料に添加混合する方法 である。 ② In this method, as shown in Fig. 3, contrary to Fig. 2, the iron-containing raw material with a high reduction rate in section 1c near the outlet of reactor 1 is reduced in section 1a near the inlet. This is a method of adding and mixing iron-containing raw materials with a low rate.
③ この方法は、 第 4図に示すように、 反応炉 1の出口に近い 区画 1 c内の還元率の高い含鉄原料を、 反応炉 1 の中心部に位 置する区画 1 b内の還元率が中程度の含鉄原料に添加混合する 方法である。 ③ In this method, as shown in Fig. 4, the iron-containing raw material with a high reduction rate in Section 1c near the outlet of Reactor 1 is replaced with a reduction rate in Section 1b located in the center of Reactor 1. Is a method of adding and mixing with a medium iron-containing raw material.
( b ) 反応炉とは別のホッパを有する場合 (b) When there is a separate hopper from the reactor
この方法は、 第 5図に示すように、 流動層反応炉 1 の上方に ホッパ 6を有し、 ホッパ 6 と反応炉 1 の頂部中心付近とを管路 7で接続し、 ホッパ 6内の還元率の低い (または未還元の) 含 鉄原料を、 還元率が中程度である区画 1 b内の含鉄原料に添加 混合する方法である。 この場合、 管路 7を区画 1 cの上方に相 当する位置に接続することもできる。 In this method, as shown in FIG. 5, a hopper 6 is provided above the fluidized bed reactor 1, and the hopper 6 is connected to the vicinity of the center of the top of the reactor 1 via a pipe 7. This is a method in which a low (or unreduced) iron-containing raw material is added to and mixed with the iron-containing raw material in the section 1b having a moderate reduction rate. In this case, the pipe 7 can be connected to a position corresponding to the upper part of the section 1c.
( c ) 反応炉が 2基の場合 (c) Two reactors
① 第 6図に示すよ うに、 流動層反応炉 1 の下部後方に別の流 動層反応炉 8を配し、 反応炉 8内の下部を 3区画 8 a、 8 b、 8 cに仕切り、 この反応炉 8の底部には反応炉 1 と同様に反応 ガス (還元ガスおよび炭化ガス) を流入させる管路 9を接続し、 反応炉 8の頂部には同反応ガスを排出する管路 1 0を接続する。 この場合、 管路 2から反応炉 1の底部に流入させる反応ガスは 還元ガスを主とするガスであり、 反応炉 1 では還元反応の一部
を行い、 反応炉 8では残りの還元反応と炭化反応を行う。 そし て、 反応炉 1の出口に近い区画 1 c内の還元率の高い含鉄原料 を排出する管路 5に、 区画 1 b内の還元率が中程度の含鉄原料 を排出する管路 1 1 を接続し、 これら還元率の異なる含鉄原料 を混合したものを管路 1 2を経て反応炉 8に供給し、 反応炉 8 内で所定の還元反応および炭化反応を行わせた後、 管炉 1 3か ら鉄カーバイ ドを主成分とする製鉄用原料を排出する。 この方 法は、 バルブ 1 4、 1 5の開度を調整することにより、 還元率 の異なる含鉄原料の混合比を変えることができる。 ① As shown in Fig. 6, another fluidized bed reactor 8 is arranged behind the lower part of the fluidized bed reactor 1, and the lower part of the reactor 8 is partitioned into three sections 8a, 8b, 8c. At the bottom of the reaction furnace 8, a pipe 9 through which a reaction gas (reducing gas and carbonizing gas) flows is connected in the same manner as the reaction furnace 1, and at the top of the reaction furnace 8, a pipe 10 through which the reaction gas is discharged is connected. Connect. In this case, the reaction gas flowing from the pipe 2 to the bottom of the reactor 1 is mainly a reducing gas, and a part of the reduction reaction is performed in the reactor 1. In the reactor 8, the remaining reduction reaction and carbonization reaction are performed. Then, the pipeline 5 for discharging the iron-containing raw material having a high reduction rate in the section 1c near the outlet of the reactor 1 and the pipeline 11 for discharging the iron-containing raw material having a medium reduction rate in the section 1b are connected. A mixture of these iron-containing raw materials having different reduction rates is supplied to a reaction furnace 8 via a pipe 12, and a predetermined reduction reaction and a carbonization reaction are performed in the reaction furnace 8. The raw materials for iron making, mainly composed of iron carbide, are discharged. In this method, the mixing ratio of the iron-containing raw materials having different reduction rates can be changed by adjusting the opening degrees of the valves 14 and 15.
② この方法は、 第 7図に示すよ うに、 管路 1 6を経て送給さ れる還元率の低い (または未還元の) 含鉄原料を反応炉 8の区 画 8 b内の (還元および炭化がかなり進行した) 含鉄原料に添 加混合する方法である。 この場合、 管路 1 6を区画 8 cに接続 することもできる。 この方法における含鉄原料の混合比の変更 は、 バルブ 1 7の開度を調整すればよい。 ② In this method, as shown in Fig. 7, the iron-containing raw material with a low reduction rate (or unreduced) sent through pipe line 16 (reduction and carbonization) in section 8b of reactor 8 is used. This is a method of adding and mixing with iron-containing raw materials. In this case, the pipeline 16 can be connected to the section 8c. To change the mixing ratio of the iron-containing raw material in this method, the opening of the valve 17 may be adjusted.
③ この方法は、 第 8図に示すように、 流動層反応炉 1 の区画 1 b内の含鉄原料を管路 1 1 を経て反応炉 8の区画 8 b内の含 鉄原料に添加混合する方法である。 この場合、 管路 1 1 を区画 8 cに接続することもできる。 ③ In this method, as shown in Fig. 8, the iron-containing raw material in section 1b of fluidized-bed reactor 1 is added to and mixed with the iron-containing raw material in section 8b of reactor 8 through line 11. It is. In this case, the pipeline 11 can be connected to the section 8c.
④ 本実施例は第 6図の変形例で、 第 9図に示すよ うに、 反応 炉 1の区画 1 c内の比較的高還元率の含鉄原料を送給する管路 5 と区画 1 b内のやや還元率の低い含鉄原料を排出する管路 1 1 を、 直接反応炉 8の区画 8 aに接続する方法である。 は This embodiment is a modification of FIG. 6, and as shown in FIG. 9, the pipeline 5 for feeding the iron-containing raw material having a relatively high reduction rate in the section 1 c of the reactor 1 and the section 1 b in the section 1 b. In this method, the pipeline 11 for discharging the iron-containing raw material having a slightly lower reduction rate is directly connected to the section 8 a of the reactor 8.
⑤ この方法は、 第 1 0図に示すように、 流動層反応炉 8の上 方にホッパ 1 8を有し、 ホッパ 1 8 と反応炉 8の頂部中心付近 とを管路 1 9で接続し、 ホッパ 1 8内の還元率の低い (または 未還元の) 含鉄原料を、 区画 8 b内の含鉄原料に添加混合する 方法である。 この場合、 管路 1 9は、 区画 8 cの上方に相当す
る位置に接続することもできる。 方法 In this method, as shown in FIG. 10, a hopper 18 is provided above the fluidized bed reactor 8, and the hopper 18 and the vicinity of the center of the top of the reactor 8 are connected by a pipe 19. In this method, the iron-containing raw material having a low reduction rate (or unreduced) in the hopper 18 is added to and mixed with the iron-containing raw material in the section 8b. In this case, pipeline 19 corresponds to above section 8c It can be connected to a different position.
以上のように還元率の異なる含鉄原料を混合して、 この含鉄 原料を還元および炭化して鉄カーバイ ドを主成分とする製鉄 ' 製鋼用原料を得る方法は多数ある。 ところで、 一定程度還元の 進んだ含鉄原料 (鉄酸化物) をメタンにより炭化する場合の反 応は、 次式 ( 5 ) で表せる。 As described above, there are many methods of mixing iron-containing raw materials having different reduction rates, reducing and carbonizing the iron-containing raw materials to obtain iron-based steelmaking raw materials mainly composed of iron carbide. By the way, the reaction when carbonized iron-containing raw material (iron oxide) that has been reduced to a certain extent by methane can be expressed by the following equation (5).
3 F e O x+ C H 4→ F e 3 C + 2 H 2 O · · · ( 5 ) そして、 上式の Xの値は 2ノ 3である。 すなわち、 鉄酸化物 の F e l原子に対して、 ( 2 Z 3 ) 個の O原子が結合している。 還元される前の鉄酸化物はへマタイ ト (F e 2〇3) であるから、 F e 1原子に対して結合している O原子は 3 / 2個である。 こ れを還元率で表せば、 1 一 ( 2 Z 3 ) / ( 3 Z 2 ) =約 0. 5 6 となる。 すなわち、 還元率が約 5 6 %の鉄酸化物を原料とす る場合、 上式 ( 5 ) に従って化学量論通りに炭化反応は進行し、 所定品位の鉄カーバイ ド製品を得ることができる。 ところが、 還元率が 5 6 %未満の鉄酸化物を原料とする場合は、 還元を促 進するために還元ガス (水素) の供給量を増やす必要がある。 一方、 還元率が 5 6 %超の鉄酸化物を原料とする場合、 循環ガ ス中に ( 5 ) 式の Xが 2 Z 3 よ り小なる分だけ水素が余るので、 余剰の水素を放出する必要がある。 しかし、 循環ガスには、 水 素のみならずメタンも含まれているので、 水素と同時にメタン も放出する必要がある。 このよ うに、 還元率が 5 6 %超の鉄酸 化物を原料と して炭化する場合には、 炭化のために必要なメタ ンのみならず、 反応ガス組成を維持するために循環ガスから放 出されるメタンも相当量になり、 かく して還元のために消費し た水素と炭化反応で生成した水素のうち、 余剰部分を循環ガス 系外へ除去するためにメタンの消費量が増大する。 しかし、 本 発明に従って炭化反応の前段階と して鉄酸化物の還元率を 6 0
%以下の範囲に調整することにより、 メタン等の反応ガスの消 費量を抑制することができる。 3 F e O x + CH 4 → F e 3 C + 2 H 2 O · · · (5) And the value of X in the above equation is 2 3. That is, (2 Z 3) O atoms are bonded to the Fe atom of the iron oxide. Since the iron oxide before reduction is hematite (F e 2 〇 3 ), there are 3/2 O atoms bonded to the F e 1 atom. If this is expressed in terms of the reduction rate, then one-one (2Z3) / (3Z2) = about 0.56. That is, when an iron oxide having a reduction ratio of about 56% is used as a raw material, the carbonization reaction proceeds according to the stoichiometry according to the above equation (5), and an iron carbide product of a predetermined grade can be obtained. However, when using iron oxides with a reduction ratio of less than 56% as raw materials, it is necessary to increase the supply of reducing gas (hydrogen) in order to promote reduction. On the other hand, when iron oxide having a reduction ratio of more than 56% is used as a raw material, excess hydrogen is released in the circulation gas because X in equation (5) is smaller than 2Z3 by an amount smaller than 2Z3. There is a need to. However, the circulating gas contains not only hydrogen but also methane, so it is necessary to release methane at the same time as hydrogen. As described above, when iron oxide having a reduction ratio of more than 56% is carbonized as a raw material, not only methane required for carbonization but also circulating gas to maintain a reaction gas composition is released. A considerable amount of methane is produced, and the consumption of methane increases because the surplus portion of the hydrogen consumed in the reduction and the hydrogen produced in the carbonization reaction is removed outside the circulation gas system. However, according to the present invention, the reduction rate of the iron oxide was 60 By adjusting the content to the range of not more than%, the consumption of the reaction gas such as methane can be suppressed.
なお、 流動層反応炉の区画数が少なすぎると、 第一流動層反 応炉 (第 6図の符号 1 ) から排出される製品の還元率が低くな りすぎ、 第二流動層反応炉 (第 6図の符号 8 ) の負担が大きく なりすぎる。 すなわち、 全体と しての処理効率が低下する。 一 方、 反応炉の区画数が多く なりすぎると、 還元率の均一化が進 むので、 本発明の方法を適用しても、 その効果が期待できなく なる。 従って、 流動層反応炉の区画数は 3〜 4が好ま しい。 If the number of sections in the fluidized bed reactor is too small, the reduction rate of the product discharged from the first fluidized bed reactor (1 in Fig. 6) becomes too low, and the second fluidized bed reactor ( The burden of reference numeral 8) in Fig. 6 becomes too large. That is, the processing efficiency as a whole decreases. On the other hand, if the number of sections in the reactor becomes too large, the reduction rate will be made uniform, so that even if the method of the present invention is applied, the effect cannot be expected. Therefore, the number of sections of the fluidized bed reactor is preferably 3 to 4.
〔産業上の利用の可能性〕 [Possibility of industrial use]
本発明は以上説明したよ うに構成されているので、 含鉄原料 の鉄カーバイ ド化を効率的に推進することができる鉄カーバイ ドの製造装置と して適している。
Since the present invention is configured as described above, the present invention is suitable as an iron carbide manufacturing apparatus capable of efficiently promoting the conversion of iron-containing raw materials to iron carbide.
Claims
請 求 の 範 囲 . 酸化鉄類および水酸化鉄類を主成分とする製鉄用含鉄原料 を還元および炭化して鉄カーバイ ドを主成分とする製鉄、 製 鋼用の原料を製造する方法であって、 上記含鉄原料が高還元 率の含鉄原料と低還元率の含鉄原料を混合したものであるこ とを特徴とする鉄カーバイ ドの製造方法。Scope of the request This is a method of reducing and carbonizing an iron-containing raw material containing iron oxides and iron hydroxides as a main component to produce a raw material for iron and steel making mainly containing iron carbide. A method for producing an iron carbide, wherein the iron-containing raw material is a mixture of a high reduction iron-containing raw material and a low reduction iron-containing raw material.
. 製鉄用含鉄原料の還元反応の一部を行う第一反応操作の後 に、 残りの還元反応と炭化反応を行う第二反応操作を進める ことを特徴とする請求の範囲第 1項記載の鉄カーバイ ドの製 造方法。
2. The iron according to claim 1, wherein after the first reaction operation for partially performing the reduction reaction of the iron-containing raw material for iron making, a second reaction operation for performing the remaining reduction reaction and the carbonization reaction is performed. Carbide manufacturing method.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04591797A JP3154949B2 (en) | 1997-02-28 | 1997-02-28 | Manufacturing method of iron carbide |
AU88874/98A AU8887498A (en) | 1997-02-28 | 1998-08-27 | Process for producing iron carbide |
PCT/JP1998/003868 WO2000012431A1 (en) | 1997-02-28 | 1998-08-27 | Process for producing iron carbide |
ZA987851A ZA987851B (en) | 1997-02-28 | 1998-08-28 | Method for producing iron carbide |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04591797A JP3154949B2 (en) | 1997-02-28 | 1997-02-28 | Manufacturing method of iron carbide |
PCT/JP1998/003868 WO2000012431A1 (en) | 1997-02-28 | 1998-08-27 | Process for producing iron carbide |
ZA987851A ZA987851B (en) | 1997-02-28 | 1998-08-28 | Method for producing iron carbide |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000012431A1 true WO2000012431A1 (en) | 2000-03-09 |
Family
ID=27292438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1998/003868 WO2000012431A1 (en) | 1997-02-28 | 1998-08-27 | Process for producing iron carbide |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU8887498A (en) |
WO (1) | WO2000012431A1 (en) |
ZA (1) | ZA987851B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0948604A (en) * | 1995-05-31 | 1997-02-18 | Kawasaki Heavy Ind Ltd | Iron carbide manufacturing method and manufacturing apparatus |
-
1998
- 1998-08-27 WO PCT/JP1998/003868 patent/WO2000012431A1/en active Application Filing
- 1998-08-27 AU AU88874/98A patent/AU8887498A/en not_active Abandoned
- 1998-08-28 ZA ZA987851A patent/ZA987851B/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0948604A (en) * | 1995-05-31 | 1997-02-18 | Kawasaki Heavy Ind Ltd | Iron carbide manufacturing method and manufacturing apparatus |
Also Published As
Publication number | Publication date |
---|---|
ZA987851B (en) | 1999-05-26 |
AU8887498A (en) | 2000-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100560739C (en) | A smelting reduction ironmaking process that comprehensively utilizes coal gas and fine ore | |
KR20230006894A (en) | Method for producing carburized spongy iron | |
US5837031A (en) | Method for producing iron carbide | |
CN114737051B (en) | Iron-containing pellet direct reduction process and system based on hot air external circulation of rotary kiln-melting furnace | |
US2990269A (en) | Refining of ores with hydrocarbon gases | |
US5542963A (en) | Direct iron and steelmaking | |
US5069716A (en) | Process for the production of liquid steel from iron containing metal oxides | |
GB2243840A (en) | Liquid steel production | |
ZA200107867B (en) | Fluidized bed reduction of laterite fines with reducing gases generated in situ. | |
WO2000012431A1 (en) | Process for producing iron carbide | |
JP2938825B2 (en) | Manufacturing method of iron carbide | |
JP3154949B2 (en) | Manufacturing method of iron carbide | |
JP2001522936A (en) | Method for producing a mixture of iron carbide and granular direct reduced iron | |
CN109852424A (en) | A kind of coal gasification iron smelting method and coal gasification smelt iron gasification furnace | |
JP2948771B2 (en) | Manufacturing method of iron carbide | |
CN103154281A (en) | Fine direct reduced irons containing iron carbide and preparation apparatus thereof | |
WO2000049184A1 (en) | Direct reduction method for iron oxides with conversion to iron carbide | |
JP3025253B1 (en) | Manufacturing method of iron carbide | |
CN114807486A (en) | CO (carbon monoxide) 2 Oxidative coupling of CH 4 Method and device for converting hydrogen production base shaft furnace reducing gas | |
CN116768154A (en) | Large-scale pure hydrogen preparation method and system for hydrogen metallurgy | |
WO1999028235A1 (en) | Method of manufacturing iron carbide | |
AU708255B2 (en) | Direct iron and steelmaking | |
JPH032922B2 (en) | ||
CN1871366B (en) | Method and apparatus for reducing metal-oxygen compounds | |
TW202430654A (en) | Molten iron from sintered ore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BR CA CN MX RU TT US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |