WO2000004065A1 - Contact lens material - Google Patents
Contact lens material Download PDFInfo
- Publication number
- WO2000004065A1 WO2000004065A1 PCT/AU1999/000575 AU9900575W WO0004065A1 WO 2000004065 A1 WO2000004065 A1 WO 2000004065A1 AU 9900575 W AU9900575 W AU 9900575W WO 0004065 A1 WO0004065 A1 WO 0004065A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dma
- polymer
- tris
- alkyl group
- weight
- Prior art date
Links
- 239000000463 material Substances 0.000 title description 36
- 229920000642 polymer Polymers 0.000 claims abstract description 67
- 239000000178 monomer Substances 0.000 claims abstract description 59
- 239000001301 oxygen Substances 0.000 claims abstract description 58
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 58
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 57
- 230000035699 permeability Effects 0.000 claims abstract description 37
- 239000000203 mixture Substances 0.000 claims abstract description 29
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 20
- 239000001257 hydrogen Substances 0.000 claims abstract description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 16
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims abstract description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 10
- 150000002734 metacrylic acid derivatives Chemical class 0.000 claims abstract description 9
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims abstract description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 7
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims abstract description 6
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims abstract description 6
- BESKSSIEODQWBP-UHFFFAOYSA-N 3-tris(trimethylsilyloxy)silylpropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC[Si](O[Si](C)(C)C)(O[Si](C)(C)C)O[Si](C)(C)C BESKSSIEODQWBP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims abstract description 5
- 150000003926 acrylamides Chemical class 0.000 claims abstract description 4
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical class CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 claims abstract description 4
- YHHSONZFOIEMCP-UHFFFAOYSA-O phosphocholine Chemical group C[N+](C)(C)CCOP(O)(O)=O YHHSONZFOIEMCP-UHFFFAOYSA-O 0.000 claims abstract description 4
- 150000003440 styrenes Chemical class 0.000 claims abstract description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims abstract description 4
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 claims abstract description 3
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 3
- 239000000017 hydrogel Substances 0.000 claims description 54
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 239000011737 fluorine Substances 0.000 claims description 22
- 229910052731 fluorine Inorganic materials 0.000 claims description 22
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical group FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 claims description 14
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 claims description 14
- 230000002209 hydrophobic effect Effects 0.000 claims description 11
- 230000009477 glass transition Effects 0.000 claims description 8
- 239000003431 cross linking reagent Substances 0.000 claims description 7
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 7
- ZAZJGBCGMUKZEL-UHFFFAOYSA-N 2-[ethyl(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctylsulfonyl)amino]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCN(CC)S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F ZAZJGBCGMUKZEL-UHFFFAOYSA-N 0.000 claims description 5
- XSXVOVXVHBSSSN-UHFFFAOYSA-N 6-o-tert-butyl 3-o-ethyl 2-amino-5,7-dihydro-4h-thieno[2,3-c]pyridine-3,6-dicarboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCC2=C1SC(N)=C2C(=O)OCC XSXVOVXVHBSSSN-UHFFFAOYSA-N 0.000 claims description 5
- DBCGADAHIXJHCE-UHFFFAOYSA-N 2-[ethyl(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctylsulfonyl)amino]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCN(CC)S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F DBCGADAHIXJHCE-UHFFFAOYSA-N 0.000 claims description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 claims 1
- 238000012377 drug delivery Methods 0.000 claims 1
- 239000007983 Tris buffer Substances 0.000 abstract description 30
- 125000004435 hydrogen atom Chemical group [H]* 0.000 abstract description 2
- WHNPOQXWAMXPTA-UHFFFAOYSA-N 3-methylbut-2-enamide Chemical compound CC(C)=CC(N)=O WHNPOQXWAMXPTA-UHFFFAOYSA-N 0.000 description 40
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 19
- 230000008961 swelling Effects 0.000 description 17
- 229920001577 copolymer Polymers 0.000 description 15
- 238000005259 measurement Methods 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 12
- 239000012071 phase Substances 0.000 description 11
- 229920001897 terpolymer Polymers 0.000 description 9
- 239000004971 Cross linker Substances 0.000 description 8
- -1 Poly(2-hydroxyethylmethacrylate) Polymers 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 230000002522 swelling effect Effects 0.000 description 6
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- 229920001519 homopolymer Polymers 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000003869 coulometry Methods 0.000 description 2
- 238000004980 dosimetry Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920005604 random copolymer Polymers 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 239000002195 soluble material Substances 0.000 description 2
- 238000001757 thermogravimetry curve Methods 0.000 description 2
- FMQPBWHSNCRVQJ-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-yl 2-methylprop-2-enoate Chemical group CC(=C)C(=O)OC(C(F)(F)F)C(F)(F)F FMQPBWHSNCRVQJ-UHFFFAOYSA-N 0.000 description 1
- MNSWITGNWZSAMC-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-yl prop-2-enoate Chemical group FC(F)(F)C(C(F)(F)F)OC(=O)C=C MNSWITGNWZSAMC-UHFFFAOYSA-N 0.000 description 1
- LVJZCPNIJXVIAT-UHFFFAOYSA-N 1-ethenyl-2,3,4,5,6-pentafluorobenzene Chemical compound FC1=C(F)C(F)=C(C=C)C(F)=C1F LVJZCPNIJXVIAT-UHFFFAOYSA-N 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- JMWGZSWSTCGVLX-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;2-methylprop-2-enoic acid Chemical compound CC(=C)C(O)=O.CC(=C)C(O)=O.CC(=C)C(O)=O.CCC(CO)(CO)CO JMWGZSWSTCGVLX-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 208000032370 Secondary transmission Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical class C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000011243 crosslinked material Substances 0.000 description 1
- UUZLJPRHSPEASP-UHFFFAOYSA-N cyclohexylmethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC1CCCCC1 UUZLJPRHSPEASP-UHFFFAOYSA-N 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000007933 dermal patch Substances 0.000 description 1
- SDIXRDNYIMOKSG-UHFFFAOYSA-L disodium methyl arsenate Chemical compound [Na+].[Na+].C[As]([O-])([O-])=O SDIXRDNYIMOKSG-UHFFFAOYSA-L 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 238000000710 polymer precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- GGIGLACILMMYPT-UHFFFAOYSA-N prop-2-enoic acid sulfamoyl fluoride Chemical class NS(F)(=O)=O.OC(=O)C=C GGIGLACILMMYPT-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- USPTVMVRNZEXCP-UHFFFAOYSA-N sulfamoyl fluoride Chemical compound NS(F)(=O)=O USPTVMVRNZEXCP-UHFFFAOYSA-N 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 125000000565 sulfonamide group Chemical group 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 125000003142 tertiary amide group Chemical group 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
- G02B1/043—Contact lenses
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/06—Hydrocarbons
- C08F212/08—Styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/06—Hydrocarbons
- C08F212/12—Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/22—Esters containing halogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/38—Esters containing sulfur
- C08F220/387—Esters containing sulfur and containing nitrogen and oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/52—Amides or imides
- C08F220/54—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/52—Amides or imides
- C08F220/54—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
- C08F220/56—Acrylamide; Methacrylamide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F226/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
- C08F226/06—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
- C08F226/10—N-Vinyl-pyrrolidone
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F230/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
- C08F230/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
- C08F230/08—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
Definitions
- the invention relates to a polymer having high oxygen permeability and to hydrated compositions including such polymer particularly in the form of a contact lens.
- hydrogel contact lens materials must possess optical clarity, resistance to tear and high oxygen permeability.
- Poly(2-hydroxyethylmethacrylate) is used for hydrogel contact lenses as it is hard enough to be easily fabricated by machining and polishing in the dry state yet soft and comfortable to wear in the water swollen state.
- Other hydrophilic monomers are also used, such as dimethylacrylamide (DMA) polymers and N-vinylpyrrolidone (NVP) polymers with methacrylates.
- DMA dimethylacrylamide
- NDP N-vinylpyrrolidone
- the oxygen permeability of such hydrogel contact lenses is determined by the water content and thickness of the lens and can be improved by increasing the water content or decreasing the thickness. Both strategies, however, can lead to lenses with insufficient strength which are easily damaged.
- siloxane or fluorinated groups improves oxygen permeability without loss of good mechanical properties. While siloxane groups give slightly higher oxygen permeability, fluorinated groups are especially desirable as they allow the manufacture of polymers with higher dry hardness and therefore better machineability while at the same time reducing lipophilicity and deposit formation on the hydrated polymer.
- the fluorine has been introduced into polymeric materials by polymerising hydrophilic monomers such as N-vinylpyrrolidone (NVP) and 2-hydroxyethyl methacrylate (HEMA) with fluorinated styrenes and methacrylates.
- hydrophilic monomers such as N-vinylpyrrolidone (NVP) and 2-hydroxyethyl methacrylate (HEMA)
- NVP N-vinylpyrrolidone
- HEMA 2-hydroxyethyl methacrylate
- TS Patent No 5011275 by Mueller discloses a hydrogel based on a polymer of 15 - 85% dimethylacrylamide and 15 - 85% fluorine containing monomer and optionally other acrylates or methacrylates and a polyviny ⁇ functional cross-linking agent.
- the polymers form clear hydrogels with about 25 - 75% water content.
- Ri is hydrogen or methyl
- n is an integer from 1 - 4
- in is an integer from 0 - 11
- X is hydrogen or fluorine with the proviso that, when m is 0.
- X is fluorine; hexafluoroisopropyl acrylate, hexafluoroisopropyl methacrylate, undecafluoro cyclohexyl-methyl methacrylate and 2, 3, 4, 5, 6- pentafluorostyrene.
- the present inventors have found a group of fluorine-containing sulfanomido monomers which when polymerised with dimethylacrylamide give high water content and unexpectedly high oxygen permeability.
- the present invention consists in a polymer including the polymerisation product of (a) N. N-dimethylacrylamide, and (b) a monomer of the formula (I) :
- n F 2lJ+ 1 S0 2 N(CH 2 ) 2 COOC CH 2 wherein n is an integer from 1 to 8. preferably 4 to 8.
- R' is an alkyl group, preferably a lower alkyl group containing up to 4 carbon atoms, more preferably ethyl or butyl, and
- R" is hydrogen or an alkyl group which may be the same as or different from R'. preferably hydrogen or a lower alkyl group containing up to 4 carbon atoms, more preferably hydrogen or methyl.
- Preferred polymers are those containing 40 - 90% by weight of component (a) and 10 - 60% by weight of component (b). based on the total weight of the monomers (a) and (b).
- a second aspect of the present invention consists in a hydrated composition in the form of a contact lens which includes a polymer including the polymerisation product of (a) N. N-dimethylacrylamide, and
- the hydrated composition in the form of a contact lens has an oxygen permeability of at least 30 Dk.
- a third aspect of the present invention consists in a hydrated composition in the form of an ophthalmic prosthetic device, a drug deliveiy device or bandage which includes a polymer, said polymer including the polymerisation product of:
- the polymer may include additional monomers, preferably in an amount of from 2 to 50% by weight based on the total weight of the polymer.
- additional monomers may be included selected from the group consisting of: styrene and styrene derivatives, methacrylates - especially 3- [tris(trimethylsilyloxy)silyl] propyl methacrylate (TRIS).
- styrene and styrene derivatives methacrylates - especially 3- [tris(trimethylsilyloxy)silyl] propyl methacrylate (TRIS).
- vinyl pyrrolidone vinyl monomers containing phosphoryl choline functional groups, and partly or fully fluorinated derivatives of the foregoing.
- the polymer may be formed in the presence or absence of crosslinking agents.
- crosslinking agents may be multi-functional vinyl compounds such as ethylene glycol dimethacrylate or 1,1.1- trimethylolpropane trimethacrylate. although a wide range of commercial crosslinkers are available and any polymerizable crosslinker is suitable for use in these compositions.
- Crosslinking agents are preferably included in an amount of up to 8% by weight based on the total weight of the polymer.
- a fourth aspect of the present invention consists in a hydrogel having an equilibrium water content in the range of from 30 to 90% by weight, the hydrogel being suitable for use as a contact lens and including a polymer having a fluorine and/or siloxane rich hydrophobic phase separated from a hydrophilic phase.
- the equilibrium water content of the hydrogel is in the range of from 40 to 80% by weight.
- the fluorine and/or siloxane rich hydrophobic phase preferably includes units of the monomer of formula
- the hydrophobic phase preferably includes units of DMA.
- the hydrophilic phase may include other monomers known to those skilled in the art. for example, methacrylic/acrylic acids and their ester derivatives. N-Vinyl-2- pyrrolidone. acrylamides, methacrylamides and functional zwitterionic monomers introduced to confer biocompatibility such as phosphoryl choline derivatives.
- the polymers are prepared by free radical polymerization, either in bulk, solution, suspension or emulsion using heat- or UV activated initiators or redox systems. Alternatively gamma radiation can be used to initiate polymerisation.
- initiators can be used based on azo-or peroxy compounds for thermally initiated systems or photoinitiators based on benzoin derivatives or other compounds capable of generating radicals which absorb in the UV or visible regions.
- the polymers can be produced in sheet form or films by casting monomer solutions and subsequently carrying out the polymerization or by casting polymer solutions into moulds.
- the polymers can also be fabricated in a spin-casting process. For contact lens manufacture, the polymer may be formed as a rod. button or sheet and subsequently machined, cut and polished to the finished article. For use as a hydrogel material the polymer is often made as a crosslinked material.
- Any organic solvent may be used for the polymerization process provided it prevents polymer precipitation and inhomogeneity of the polymer product.
- Figure 1 Structure of fluorine sulphonamide acrylic monomers used in the examples.
- Figure 2 Photographs of uncrosslinked xerogels where A is N.N- Dimethylacrylamide (DMA) homopolymer and (a) B-G are 2-(N- butyl perfluoro octane sulfonamido) ethyl acrylate (BFA) /DMA copolymers containing (sequentially), 10, 20, 30. 40. 50 and 60wt% BFA (b) H-M are 2- (N- ethyl perfluoro octane sulfonamido) ethyl acrylate (EFA) /DMA copolymers containing (sequentially). 10. 20. 30. 40.
- DMA N.N- Dimethylacrylamide
- BFA 2-(N- butyl perfluoro octane sulfonamido) ethyl acrylate
- BFA butyl perfluoro octane sulfonamid
- N-S are 2-(N- ethyl perfluoro octane sulfonamido) ethyl methacrylate (EFMA) /DMA copolymers containing (sequentially). 10, 20. 30. 40. 50 and 60wt% EFMA.
- Figure 3 Thermograms for uncrosslinked BFA/DMA xerogels.
- the solid vertical lines indicate the T g values for the two glass transition homopolymers where A is DMA homopolymer.
- B is
- BFA-20/DMA-80 C is BFA-40/DMA-60
- D is BFA-60/DMA-40
- E is BFA homopolymer.
- Figure 4 Structure of BFA DMA copolymer showing the origin of the two distinct regions giving rise to the two glass transition temperatures. MODES FOR CARRYING OUT THE INVENTION
- N.N-Dimethylacrylamide (supplied by Sigma-Aldrich Pty. Ltd) was purified by passing over a short column of basic alumina to remove the inhibitor.
- Fluorinated monomers were selected as follows:
- Monomer mixtures were made up gravimetrically. deoxygenated with nitrogen for lOmins and irradiated in sealed polypropylene ampoules.
- the ⁇ -irradiation dose was 1 Mrad obtained from a o ⁇ Co source , the dose rate being 0.01 Mrad If 1 as determined by Fricke dosimetry.
- the resultant solid rods of xerogel were post-cured at 90°C for 24 firs and then lathe cut to produce thin discs (diameter 10mm: thickness 1mm) for swelling measurements and thin discs (diameter 10mm: thickness 0.1-0.5mm) for oxygen permeability measurements.
- hydrogels are referred to on the basis of the corresponding xerogels.
- compositions are expressed percentage by weight.
- BFA-20 / DMA-80 means that crosslinker is absent and that BFA/DMA is 20/80 (w/w).
- BFA-20 / DMA-80 / EDMA-5 a terpolymer designated BFA-20 / DMA-80 / EDMA-5.
- EDMA comprises 5wt% of the total monomers (BFA + DMA + EDMA). As conversion in these polymerizations is close to 100%. the compositions of xerogels are virtually identical to those of the feed mixtures.
- the equilibrium water content (EWC) of the hydrogels is defined as:
- the volume fraction of polymer within a hydrogel is given as
- D and D 0 are the diameters of the hydrogel and xerogel respectively.
- Measurements were made on swollen samples over a range of thicknesses (at least three) on a JDF DklOOO I M coulometric oxygen permeation instrument under wet cell conditions.
- T g glass transition temperatures
- the xerogel rods were lathe cut into discs: the visual appearance of the discs is shown in Figure (2a-c).
- the polymers containing EFMA. the methacrylate derivative proved to be either hazy or opaque indicating that this copolymer may be unsuitable for contact lens applications.
- a crosslinker (l%wt. EDMA, for example) enabled the production of transparent materials. All of the xerogels maintained their transparency on swelling.
- the xerogel rods often appeared to contain residual stresses (clearly shown via observation between cross- polarising lenses) which may be due to either inhomogeneities in the original monomer mixing and/or a substantial gel effect observed in these reactions. It was found that the dominant cause of the residual stresses was the gel (or
- the T g values for the xerogels were determined and are shown in Table 1. In all three copolymer systems, two T g s were observed. The thermograms for the BFA/ DMA series are shown in Figure 3. The higher T g is assumed to originate from the DMA component and the lower T g from the BFA side-chain. Random copolymers usually exhibit only one T g . given by the weighted average of the T g s of the two polymeric components. The T g behaviour observed is relatively unusual for random copolymers and is normally associated with graft copolymers, where the grafted chain is incompatible with the backbone polymer, or with incompatible polymer blends.
- the long perfluorinated side-chains are sufficiently long and flexible to form domains with a sub-ambient glass transition.
- the high T g (corresponding to DMA) is seen to reduce as the concentration of fluoro-monomer increases, there is also a concomitant reduction in the lower glass transition.
- the reduction in both T g s is possibly explicable as follows.
- the structure of the copolymer is shown in Figure 4.
- the high T g corresponds to the backbone polymer chain region which comprises both DMA and fluoro-monomer segments.
- the high DMA T g is mediated by a contribution from the fluoro-monomer component.
- the low T g originates solely from the flexible side-chain most distant from the polymer backbone forming icrodomains this value is lower than the T g obtained for the pure fluoropolymer as it excludes contributions from the fixed polymer backbone.
- these copolymers manifest transparency, as it is evident that the materials are inhomogeneous. It may be conjectured that some compatibility may be introduced from two sources.
- the pure fluoro-monomers used in this current study are in fact a mixture of monomers with different length side-chains and thus the extent of incompatibility of the perfluoro sidechains with DMA rich areas may be tempered by a contribution from the smaller side-chains acting as compatibilisers. It is also conceivable that the sulphonamide group in the perfluoro side-chains acts to some extent as a compatibilizer via favourable interactions with the tertiary amide group in DMA.
- Table 2 shows the swelling data obtained for the three different copolymer systems at selected compositions, prepared in the absence of a crosslinker. As expected the presence of higher fluorine concentrations induces a decrease in the equilibrium swelling. Despite this, it is possible to achieve high water contents whilst maintaining a reasonable fluorine content. This is clearly demonstrated by comparison of these new materials with PHEMA with an EWC of about 40wt% - a similar water content is achieved with 60%wt of the fluoro- monomers in these new materials. The sol fractions are all fairly low indicating that most of the DMA has copolymerized. There appears to be no significant differences among the swelling behaviours of the three different copolymer sets.
- Table 3 shows the swelling characteristics of the same copolymer systems prepared with 1. 2 and 5wt% EDMA crosslinker. Increasing concentrations of crosslinker lead to lower EWC values and (generally) lower sol fractions consistent with previous observations made on hydrogel materials.
- the oxygen permeabilities obtained on the uncrosslinked hydrogels are given in Table 4. Each reported value is an average of at least three independent measurements. The important factor is the large oxygen permeability of these hydrogel materials compared with non-fluorinated materials. This can be clearly demonstrated by comparing those hydrogels with about 60wt% fluoro-monomer that have water contents around 40wt% (similar to PHEMA). The oxygen permeability is about five times higher than PHEMA. This indicates that oxygen transmission in these hydrogels occurs not only via the dissolved oxygen in the aqueous phase but also by another route (which predominates) and which is assumed to be via a co-continuous polymeric phase, which is rich in fluorine.
- Table 1 Glass transition temperatures for uncrosslinked xerogels.
- Table 2 Swelling properties of uncrosslinked hydrogels at 296K.
- Table 3 Swelling properties of crosslinked hydrogels at 296K.
- BFA-20/DMA-80/EDMA-1 71 0.28 6.94
- BFA-40/DMA-60/EDMA- 1 55 0.40 1.61
- BFA-60/DMA-40/EDMA-1 37 0.60 1.02
- EFA-20/DMA-80/EDMA-1 66 0.31 2.19
- EFA-40/DMA-60/EDMA-1 52 0.44 1.47
- EFA-60/DMA-40 EDMA-1 34 0.64 0.85
- EFMA-20/DMA-80/EDMA-1 72 0.26 2.79 EFMA-40/DMA-60/EDMA-1 57 0.39 2.97 EFMA-60/DMA-40/EDMA-1 43 0.53 2.86
- EFA-20/DMA-80/EDMA-2 64 0.39 8.75 EFA-40/DMA-60/EDMA-2 51 0.51 4.90 EFA-60 DMA-40/EDMA-2 34 0.67 2.63
- N,N-Dimethylacrylamide (DMA) supplied by Sigma-Aldrich Pty. Ltd
- 3- [tris (trimethylsilyloxy)] propyl methacrylate (TRIS) also supplied by Sigma- Aldrich Pty. Ltd
- Fluorinated monomers were selected as follows:
- Monomer mixtures were made up gravimetrically, deoxygenated with nitrogen for lOmins and irradiated in sealed polypropylene ampoules.
- the ⁇ -irradiation dose was 1 Mrad obtained from a 60 Co source, the dose rate being O.OlMrad h "1 as determined by Fricke dosimetry.
- the resultant solid rods of xerogel were post-cured at 90°C for 24 hrs and then lathe cut to produce thin discs (diameter 10mm; thickness 1mm) for swelling measurements and thin discs (diameter 10mm; thickness 0.1-0.5mm) for oxygen permeability measurements.
- hydrogels are referred to on the basis of the corresponding xerogels.
- conversion in these polymerizations is close to 100%, the compositions of xerogels are virtually identical to those of the feed mixtures.
- the equilibrium water content (EWC) of the hydrogels is defined as:
- volume fraction of polymer within a hydrogel is given as ⁇ 2 J ⁇ [6]
- D and D 0 are the diameters of the hydrogel and xerogel respectively
- the terpolymer compositions in Tables (5) and (6) are expressed on a mole percentage basis, relative to the total moles of (EFA or BFA + DMA) for the principal monomers and to the total moles of the whole for TRIS.
- DMA-96/BFA-4/TRIS-1.4 means that DMA comprises 96 mol.-% of (DMA + BFA), BFA comprises 4 mol wt.-% of (DMA + BFA) and TRIS is present at a concentration of 1.4 mol.-% of (MMA + BFA
- Table (5) shows the swelling data obtained for the different copolymer systems at selected compositions, prepared in the absence of a crosslinker with ⁇ 5, 10 and 20 wt.-% TRIS.
- higher concentrations of TRIS increase the total amount of hydrophobic monomer in the terpolymer compositions causing lower EWC values.
- 20wt.-% 5.3 mol.-%
- TRIS has a similar impact on the EWC as the inclusion of only lwt.-% ethylene glycol dimathacrylate (EDMA).
- EDMA ethylene glycol dimathacrylate
- TRIS is often used as a monomer to increase the oxygen permeability of polymeric materials. Consequently, it was assumed that the incorporation of
- TRIS would ameliorate the oxygen permeability of these hydrogels.
- the high oxygen permeability of these hydrogels (without TRIS) was attributed to two mechanisms for oxygen transmission: via the aqueous phase and through a fluorine-rich co-continuous polymeric phase.
- the oxygen permeability results for the current TRIS-containing terpolymers are given in Table 6. Each reported value is an average of at least three independent measurements. It is evident from these results that when the fluorinated monomer (BFA or EFA) is present at 4 mol.-% (20 wt-%) the addition of TRIS induces a decrease in the Dk value. This is consistent with a decrease in oxygen transmission that can be attributed solely to a decrease in the EWC.
- the oxygen permeability result for BFA-96/DMA-4/TRIS-1.4 appears to be veiy low in comparison with the other data and may simply be an anomalous result.
- Overall this oxygen permeability data may indicate that the TRIS is having no influence on the secondaiy transmission route via the F-rich polymeric phase and is simply acting as a hydrophobic comonomer.
- the fluorinated monomer BFA or EFA
- BFA or EFA fluorinated monomer
- DMA-96/BFA-3/TRIS-1 now means that DMA comprises 96 mol.-% of (DMA + BFA + TRIS), BFA comprises 3 mol.-% of (DMA + BFA + TRIS) and TRIS is present at a concentration of 1 mol.-% of (MMA + BFA + TRIS). It is also pertinent to note that compositions containing 96 mol.-% and 90 mol.-% DMA correspond to compositions of 80 wt.-% and 60 wt.-% DMA respectively.
- Table 5 Swelling properties of hydrogels with added TRIS at 296K.
- Table 7 Swelling properties of hydrogels with constant DMA at 296K.
- the polymers of this invention are useful for ophthalmic devices such as soft contact lenses. They are also useful for a variety of other applications which benefit from the hydrophilic nature and high oxygen permeability of the polymer, such as oxygen permeable wound dressings or bandages, carriers for controlled delivery of drugs either as dermal patches, orally taken beads, body implants or eye inserts and gas separation membranes.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Eyeglasses (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU47641/99A AU4764199A (en) | 1998-07-13 | 1999-07-13 | Contact lens material |
EP99930948A EP1109846A1 (en) | 1998-07-13 | 1999-07-13 | Contact lens material |
JP2000560170A JP2002520456A (en) | 1998-07-13 | 1999-07-13 | Contact lens material |
KR1020017000524A KR20010074704A (en) | 1998-07-13 | 1999-07-13 | Contact lens material |
CA002337173A CA2337173A1 (en) | 1998-07-13 | 1999-07-13 | Contact lens material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPP4639 | 1998-07-13 | ||
AUPP4639A AUPP463998A0 (en) | 1998-07-13 | 1998-07-13 | Contact lens material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000004065A1 true WO2000004065A1 (en) | 2000-01-27 |
Family
ID=3808877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU1999/000575 WO2000004065A1 (en) | 1998-07-13 | 1999-07-13 | Contact lens material |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1109846A1 (en) |
JP (1) | JP2002520456A (en) |
KR (1) | KR20010074704A (en) |
AU (1) | AUPP463998A0 (en) |
CA (1) | CA2337173A1 (en) |
WO (1) | WO2000004065A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010070522A1 (en) * | 2008-12-17 | 2010-06-24 | Koninklijke Philips Electronics N.V. | Method for the production of labelled scaffolds, comprising at least one reactive fluorinated surfactant, and scaffold produced therewith |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0351364A2 (en) * | 1988-07-05 | 1990-01-17 | Ciba-Geigy Ag | Dimethylacrylamide-copolymer hydrogels with high oxygen permeability |
JPH0580278A (en) * | 1991-09-24 | 1993-04-02 | Seiko Epson Corp | Soft contact lens |
US5786434A (en) * | 1995-09-12 | 1998-07-28 | Menicon Co., Ltd. | Water-absorptive soft contact lens material and contact lens made thereof |
-
1998
- 1998-07-13 AU AUPP4639A patent/AUPP463998A0/en not_active Abandoned
-
1999
- 1999-07-13 KR KR1020017000524A patent/KR20010074704A/en not_active Withdrawn
- 1999-07-13 CA CA002337173A patent/CA2337173A1/en not_active Abandoned
- 1999-07-13 EP EP99930948A patent/EP1109846A1/en not_active Withdrawn
- 1999-07-13 JP JP2000560170A patent/JP2002520456A/en active Pending
- 1999-07-13 WO PCT/AU1999/000575 patent/WO2000004065A1/en not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0351364A2 (en) * | 1988-07-05 | 1990-01-17 | Ciba-Geigy Ag | Dimethylacrylamide-copolymer hydrogels with high oxygen permeability |
JPH0580278A (en) * | 1991-09-24 | 1993-04-02 | Seiko Epson Corp | Soft contact lens |
US5786434A (en) * | 1995-09-12 | 1998-07-28 | Menicon Co., Ltd. | Water-absorptive soft contact lens material and contact lens made thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010070522A1 (en) * | 2008-12-17 | 2010-06-24 | Koninklijke Philips Electronics N.V. | Method for the production of labelled scaffolds, comprising at least one reactive fluorinated surfactant, and scaffold produced therewith |
Also Published As
Publication number | Publication date |
---|---|
KR20010074704A (en) | 2001-08-09 |
EP1109846A1 (en) | 2001-06-27 |
CA2337173A1 (en) | 2000-01-27 |
JP2002520456A (en) | 2002-07-09 |
AUPP463998A0 (en) | 1998-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1197782B1 (en) | Material for ocular lens | |
WO2002050144A2 (en) | Polymeric biomaterials containing silsesquixane monomers | |
JP2008001905A (en) | Fluorosilicone hydrogels | |
JP6857784B2 (en) | Polymer material | |
JP3056546B2 (en) | Ophthalmic lens materials | |
JP5668062B2 (en) | Ionic compounds, compositions, cured products, hydrogels and ophthalmic lenses | |
EP0940414B1 (en) | Ocular lens material and process for producing the same | |
WO2000004065A1 (en) | Contact lens material | |
JP6974633B2 (en) | Polymer material | |
US5391591A (en) | Oxygen permeable hard contact lens materials comprising a fluoroalkyl(silicon-containing alkyl) fumarate copolymer | |
KR102715262B1 (en) | Silicone hydrogel lens having improved properties | |
JP3063877B2 (en) | Hydrous soft contact lens | |
AU4764199A (en) | Contact lens material | |
JP3974673B2 (en) | Hydrous soft contact lens | |
WO2013110911A1 (en) | Silicone hydrogels and methods for manufacture | |
JP3453226B2 (en) | Oxygen-permeable hard ophthalmic lens material and method for producing the same | |
JPH10170874A (en) | Plastic molding | |
WO2022118697A1 (en) | Modifier for ophthalmological device | |
JPH11171929A (en) | Molded plastic article | |
JPH0764029A (en) | contact lens | |
JPS62209512A (en) | Lens materials for eye | |
JPH04264421A (en) | Contact lens | |
JPH04159319A (en) | Production of oxygen-passable polymeric material | |
JPS6330819A (en) | Material for hard contact lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 47641/99 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2000 560170 Country of ref document: JP Kind code of ref document: A Ref document number: 2337173 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020017000524 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1999930948 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09743703 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1999930948 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020017000524 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1999930948 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1020017000524 Country of ref document: KR |