WO1999063456A1 - Dispositif de preparation de regles de conversion du langage, dispositif de conversion du langage et support d'enregistrement de programme - Google Patents
Dispositif de preparation de regles de conversion du langage, dispositif de conversion du langage et support d'enregistrement de programme Download PDFInfo
- Publication number
- WO1999063456A1 WO1999063456A1 PCT/JP1999/002954 JP9902954W WO9963456A1 WO 1999063456 A1 WO1999063456 A1 WO 1999063456A1 JP 9902954 W JP9902954 W JP 9902954W WO 9963456 A1 WO9963456 A1 WO 9963456A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- language
- phrase
- sentence
- rules
- rule
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/40—Processing or translation of natural language
- G06F40/42—Data-driven translation
- G06F40/45—Example-based machine translation; Alignment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/40—Processing or translation of natural language
- G06F40/55—Rule-based translation
Definitions
- the present invention relates to a language conversion device that converts an input speech or input text into another language or another stylistic type and outputs the same, and a language conversion rule creating device that creates the conversion rules.
- the interpreter translates the utterance sentence input as an acoustic signal into an output sentence displayed as a word text string, and a language that inputs the sentence displayed as a word text string and translates it into another language sentence Interpretation is realized by sequentially executing translation.
- the language translator includes a language analyzer for analyzing a syntactic or semantic structure of the input sentence, a language converter for converting the sentence to another language based on the analysis result, and generates a natural output sentence from the translation result. And an output sentence generation unit.
- phrases within phrases are described in a tree structure like phrase ⁇ rule 302 based on grammar rules common to written words, and rules between phrases are learned. It is described by the probability of adjacency between phrases in the corpus.
- an inter-phrase rule is described as an inter-phrase rule 303.
- the rules within the phrase are applied sequentially from the beginning of the sentence, and at the end of the phrase, the input sentence analysis is performed while connecting the phrases so that the phrase candidates with high adjacent probabilities are adjacent to each phrase.
- the phrase analysis of the part that does not include the misrecognition is performed correctly.
- the corresponding source language and target language sentences are extracted from utterance examples that include utterances that cannot be analyzed by the conventional grammar.
- a method of extracting a bilingual frame of creating a bilingual phrase dictionary in which the phrase pair is described in a generalized form, and performing language analysis and language conversion using the dictionary.
- Furuse, Sumida, Iida: IPSJ Transactions Vol.35, no3, 1994-3 It is a language conversion rule creation device.
- a bilingual phrase dictionary is created from the utterance bilingual corpus in advance.
- the utterance example is divided into phrases, and rules within phrases and rules between phrases are created.
- the morphological analysis unit 360 performs a morphological analysis of the original language sentence and the target language sentence, and converts each sentence into a morphological sequence.
- the phrase determination unit 361 the morpheme examples of the source language and the target language are divided into phrase units, and rules within phrases and rules for dependency relations between phrases are created.
- the phrase unit is determined manually by considering not only a semantically united unit but also a partial sentence whose correspondence is clear in the translation.
- the phrase handled is a language-dependent phrase that depends only on the source language, and often does not match the phrase unit of the target language. Therefore, even if the correct phrase is input to the language converter in the source language, it is often not accepted after all. Have a title.
- the framework of the first conventional example is a framework that can be used even if language-independent phrases are used, but in that case, analysis of language-independent phrases must be manually created, and development takes time. However, a new problem arises in that the fluctuations in the manual creation standards distort the rule performance.
- the dictionary since there is no means for automatically analyzing the semantic information and grammatical information of the utterance sentence, the dictionary must be created manually. Therefore, there is a problem in that development takes time, and fluctuations in the creation standards of the hands distort the rule performance. For example, if the target task of the interpreter is changed, or if the language of the source language and the target language is changed, the rules that have been constructed cannot be applied and rules must be created from the beginning. The development efficiency is poor and it takes time.
- phrase dictionary 36 2 and the inter-phrase rule 36 3 determine the phrase unit with emphasis on the correspondence of the bilingual corpus, and the phrase unit suitable for the speech recognition unit 365 recognizes. It is not something that has been evaluated whether it is. It is difficult to determine the phrase unit while manually determining whether the phrase is appropriate for speech recognition, and there is no guarantee that the recognition rate can be secured if the recognition is performed using the determined phrase. have. Disclosure of the invention
- the object of the present invention is to solve the above-mentioned problems. Even if there is an unlearned part in the input speech sentence or a part of speech recognition error, conversion to the target language is always possible. It is an object of the present invention to provide a language conversion device that can automatically create a phrase dictionary and rules between phrases required for a computer without using as much labor as possible.
- a first invention is a sentence to be subjected to language conversion input by voice or text (hereinafter referred to as a source language sentence, A sentence that has been converted into a language is called a target language sentence), and a grammar for a word or word string is obtained from a learning database (hereinafter referred to as a bilingual co-path) in which the target language sentence is paired.
- a learning database hereinafter referred to as a bilingual co-path
- a speech recognition unit that performs speech recognition of the input speech using the stored language rules and outputs a recognition result in a sentence to be subjected to language conversion
- a language conversion unit for converting a sentence to be subjected to language conversion into a language-converted sentence using the same language rule used in the speech recognition unit. is there.
- the language rule is that a sentence to be subjected to language conversion and a converted sentence together form a semantic unit (body-type independent phrase)
- the present invention is characterized in that the language rules in the body-type-independent phrases and the language rules between the body-type-independent phrases are separated and regularized.
- the language rule regularizes co-occurrence or connection between the grammatical or semantic rule in the type-independent phrase and the type-independent phrase.
- a language conversion device according to the second invention characterized in that the language conversion device is made by being made.
- a fourth invention comprises a speech synthesis unit for speech-synthesizing the language-converted sentence using the same language rule as that used in the language conversion unit.
- a language conversion device characterized in that:
- a fifth aspect of the present invention is that, among the language rules, a language rule group in which language rules having the same target language sentence are grouped in the same category
- a rule-to-rule distance calculating unit that calculates an acoustic rule-to-rule distance of a sentence to be subjected to language conversion of a language rule included in
- An optimal rule creating unit for optimizing the rule group by merging the calculated language rules with a short distance to increase the recognition level of speech recognition A language conversion device according to any one of the above-described inventions.
- the sixth invention (corresponding to claim 6) includes a bilingual corpus
- phrase a partial sentence that forms a semantic unity by connecting the frequently occurring words and parts of speech.
- a phrase extraction unit to be extracted a phrase determination unit that determines a corresponding phrase by examining a relationship between phrases in a source language and a target language in the phrases extracted by the phrase extraction unit;
- phrase dictionary for storing the determined corresponding phrase.
- the phrase dictionary is used when performing language conversion, and the language conversion is performed when the original language sentence is input.
- a language conversion rule creating apparatus is characterized in that language or style conversion is performed by collating with a corresponding phrase stored in the phrase dictionary.
- a seventh aspect of the present invention is characterized in that the phrase determination unit determines a corresponding phrase by examining a co-occurrence relationship between a phrase in an original language and a phrase in a target language.
- a sixth aspect of the present invention is a language conversion rule creating device according to the present invention.
- An eighth invention is a morphological analysis unit that converts a source language sentence of the bilingual corpus into a word string,
- a part-of-speech generation unit that creates a bilingual corpus in which part or all of the words in the source language sentence and the target language sentence are replaced with part-of-speech names using the results of the morphological analysis unit;
- the language conversion rule creating device according to a sixth aspect of the present invention, wherein the phrase extracting unit extracts a phrase from the bilingual corpus that has been categorized by the POS unit.
- the ninth invention (corresponding to claim 9) has a bilingual word dictionary for a source language and a target language,
- the language conversion rule creating apparatus wherein the part of speech part converts a word associated with the bilingual word dictionary and a word whose original language is a content word into a part of speech. It is.
- a tenth aspect of the present invention is a morphological analysis unit that converts an original language sentence of the bilingual corpus into a word string
- a classified vocabulary table Utilizing the results of the morphological analysis unit, words with similar meaning are regarded as being in the same class and words are classified, and a table in which words in the same class are given the same code (hereinafter referred to as a classified vocabulary table). And further comprising a semantic coding unit for creating a bilingual corpus in which some or all of the words of the source language sentence and the target language sentence are replaced with the codes of the classification vocabulary table,
- the language conversion rule creating device has a translation word dictionary between a source language and a target language
- the language conversion rule creating device according to the tenth aspect, wherein the meaning coding unit converts only words associated with the bilingual word dictionary into meaning codes.
- the phrase extraction unit stores in advance a word or a part of speech string to be preferentially regarded as a phrase with a source language and a target language paired.
- a sixth aspect of the present invention is a language conversion rule creating apparatus according to the sixth aspect, wherein a phrase is extracted by using a phrase definition table.
- a thirteenth aspect of the present invention includes a sentence complexity calculating unit for calculating a perplexity (sentence complexity) of a corpus,
- the language conversion rule creating device according to any one of the sixth to thirteenth inventions, wherein the phrase extracting unit extracts a phrase by using the adjacent frequency of a word or a word class and the sentence complexity. .
- a fourteenth invention may include all or one of the components of the language conversion device or language conversion rule creation device according to any one of the first to thirteenth inventions.
- a program recording medium storing a program for causing a computer to execute the functions of the unit.
- FIG. 1 is a block diagram showing a configuration of the language conversion device according to the first embodiment of the present invention.
- FIG. 2 is a block diagram illustrating a configuration of a language conversion device according to a second embodiment of the present invention.
- FIG. 3 is a diagram illustrating creation of a language rule according to the first embodiment of the present invention.
- FIG. 4 is a diagram illustrating creation of an optimal language rule according to the second embodiment of the present invention.
- FIG. 5 is a block diagram showing a configuration of a language conversion device and a language rule creation device according to the third embodiment of the present invention.
- FIG. 6 is a diagram illustrating the creation of a language conversion rule according to the third embodiment of the present invention.
- FIG. 7 shows an example of a bilingual phrase rule table and a bilingual phrase dictionary according to the third embodiment of the present invention.
- FIG. 8 is a block diagram showing a configuration of a language conversion device and a language rule creation device according to the fourth embodiment of the present invention.
- FIG. 9 is a diagram illustrating an example of a phrase definition table according to the fourth embodiment of the present invention.
- FIG. 10 is a block diagram showing a configuration of a language conversion device and a language rule creation device according to the fifth embodiment of the present invention.
- FIG. 11 is a diagram for explaining creation of a language rule according to the fifth embodiment of the present invention.
- FIG. 12 is a block diagram showing a configuration of a language conversion rule creation device according to the sixth embodiment of the present invention.
- FIG. 13 is a block diagram illustrating a configuration example of a language conversion device having a speech synthesis unit.
- FIG. 14 is a diagram showing an example of a language rule used in a conventional language conversion device.
- FIG. 15 is a block diagram showing a configuration of a conventional language conversion device.
- FIG. 1 is a block diagram of the interpreter of the present embodiment.
- the interpreter of the present embodiment uses the language analyzer 2 to extract the language rules of the source language and the target language of the utterance sentence from the learning database 1 having a bilingual corpus and a bilingual word dictionary in advance. learn.
- Figure 3 shows an example of language rule learning.
- the language rule creator 2 converts the content words of the source language sentence and the target language sentence into parts of speech using, for example, a bilingual corpus with a part of speech tag. Furthermore, when the phrase in the source language and the phrase in the target language correspond as a group, the group is defined as a body-independent phrase to delimit the boundary. In other words, when the body-type-dependent phrase in the source language and the body-type-dependent phrase in the target language correspond as a group, the group is defined as the boundary of the body-type-independent phrase. Objectives for source language dependent phrases If the language-dependent phrases do not correspond as a unit, the link of the type-dependent phrases and the modification of the phrase boundaries are performed until the corresponding parts exist as a unit, so that the phrase is independent of the type.
- the co-occurrence relation of the rules within each phrase is described as rule 4 between body-type independent phrases.
- the co-occurrence relation is to be regularized as a phrase bi-gram, the adjacent frequency of each type-independent phrase is described.
- the above-mentioned contents mean that in FIG. 3, the description of the rule between phrases 32 2 power 28 is described.
- 28 is an example of the phrase bigram.
- the rule number pair is "(rule 1) (rule 2))", and its appearance frequency is 4. This is the process of learning from the bilingual corpus. This means that there were four appearances.
- the number of times that rules 2 and 3 appear side by side in a sentence is 6 in the example of 28.
- Sentence generation rule 5 describes the target language rules that are missing in language rules 3 and 4 above. For example, in the case of a Japanese-English translation, articles, indefinite article rules, third person singularization rules, etc. are described as their contents.
- the intra-phrase language rules 3 and Z or the inter-phrase language rules 4 are examples of storage means of the present invention.
- the uttered source language voice is input from the microphone 6 and input to the voice recognition unit 7.
- the speech recognition unit for example, a mixed sequence of part-of-speech and words described as a body-independent phrase-in-phrase language rule 3 and a phrase bi-gram as a body-independent phrase-to-phrase language rule 4 are used in time series.
- a sequential recognition word candidate is predicted.
- the sum of the acoustic score based on the distance value between the previously learned acoustic model 8 and the input speech and the language score based on the phrase bigram is used as the recognition score, and the Nword-search determines the continuous word sequence that is a recognition candidate. Is determined.
- the continuous word string determined in this way is input to the language conversion unit 9.
- the source language and the target language are specified in advance while corresponding to each other.
- the language conversion unit 9 converts the continuous word string into a phrase string in the target language using the above rule and outputs the converted word string. At this time, If the input source language phrase sequence matches the syntactic structure between the phrases that have already been learned, the target language phrase sequence is output after being modified according to the syntactic structure.
- the output target language sentence is input to output sentence generation 10 to correct grammatical unnaturalness. For example, definite and indefinite articles are assigned, and third-person, pluralization, and past tense optimizations of pronouns and verbs are performed.
- the corrected target language translation result sentence is output, for example, as text.
- FIG. 2 is a block diagram of the interpreter of the present embodiment.
- the interpreting apparatus is configured such that, before interpreting, first, the language rule creating unit 11 outputs a speech sentence from the learning database 1 having a bilingual corpus and a bilingual word dictionary.
- the learned rules are the same as those in the language rule learning in the first embodiment.
- the learned language rules are optimized.
- Figure 4 shows an example of optimization.
- phrases that have the same target language phrase in the learned type-independent phrases are grouped in the same category.
- reference numeral 12 denotes a language rule.
- the rules are grouped as category 1 as indicated by 33.
- Rules 1, 2, and 3 are in the same category because the target language rule is the same as "I 'd like toj.”
- rule 4 is because the target language rule is "please.” It falls into a different category from Rules 2 and 3.
- the acoustic distance between the source language phrases included in the same category is calculated by the rule distance calculating unit 14.
- 15 is an example of calculating the acoustic distance between source language phrases. In 1 5 the distance between Rule 1 and Rule 2 is 7, and the distance between Rule 1 and Rule 3 is 2.
- the acoustic distance of the source language phrase in the same category rule is calculated as follows. First, the same word is applied to the part-of-speech part of the mixed sequence in all target language phrases within one category, and the same word is applied if it is the same part of speech, and all the mixed sequences are converted into a word sequence. Next, in order to check whether the pronunciation of each word string is similar, the distance to the difference in the character string of each word string is calculated using (Equation 1), and the rule distance table
- Sentence generation rule 5 describes the target language rules that are missing from the above language rules created from the corpus. For example, in the case of a Japanese-English translation, articles, indefinite article rules, third person singularity rules, etc. are described as the contents.
- the spoken source language voice is input from microphone 6 It is input to the voice recognition unit 7.
- the speech recognition unit for example, a mixed sequence of part-of-speech and column words described as language rules in body-independent phrases 17 and phrase adjacency frequency as language rules between body-independent phrases 18 are used in time series. Along with this, the recognition unit is predicted.
- the recognition score is the sum of the acoustic score based on the distance between the previously learned acoustic model 8 and the input speech and the language score based on the phrase bi-gram.
- the word sequence is determined.
- the continuous word string determined in this way is input to the language conversion unit 9.
- the language rules 17 and 18 the source language and the target language are specified in advance while corresponding to each other.
- the language conversion unit 9 converts the continuous word string into a phrase string in the target language using the above rules and outputs the string.
- the object phrase sequence is corrected and output according to the syntactic structure.
- the output target language sentence is input to the output sentence generator 10 and corrects grammatical unnaturalness. For example, definite and indefinite articles are assigned, and third-person, plural, and past tense optimizations of pronouns and verbs are performed.
- the corrected target language translation sentence is output, for example, as text.
- the source language and the target language are ruled in units of a unit having both meanings. If the source language phrases with the same target language part are acoustically similar, only the rule with the highest frequency of appearance among the similarities is adopted, and the remaining rules are deleted. Therefore, an interpreting device that suppresses the increase in the number of rules by using a body-independent phrase as a unit without reducing the performance of language rules as much as possible, and thus enables high-performance recognition and language conversion. It is a manifestation.
- an interpreter has been described as an example of a language converter, but this is not the case with other language converters, for example, converting a spoken utterance into a text sentence such as a written word. It can be used in a language conversion device that performs the same operation.
- FIG. 5 is a block diagram of the interpreter of the present embodiment.
- the bilingual corpus 101 the content word definition table 103, the bilingual word dictionary 107, the morphological analyzer 102, the part-of-speech generator 104, the phrase extracting unit 105
- the phrase determination unit 106 is a bilingual phrase rule table 108
- the bilingual phrase dictionary 109 is an example of the language conversion rule creation device of the present invention.
- the bilingual phrase dictionary 109 of the present embodiment is an example of the phrase dictionary according to claim 6 of the present invention.
- the translator first performs a morphological analysis of the source language sentences in the bilingual corpus 101 by the morpheme angle analyzer 102 before interpreting, so that only the source language sentences are given a part-of-speech tag.
- Create a translated bilingual corpus For example, in the example of the utterance sentence “I would like to request a room reservation” at 120 in Fig. 6, a part of speech tag such as 121 is given to the source language sentence.
- a part-of-speech section 1Q4 a part-of-speech bilingual corpus in which part of the word names are replaced with part-of-speech names in the part-of-speech tagged language parts of the corpus is created.
- the words converted to the part of speech names satisfy the following conditions. (1) A word corresponding to the part of speech described in the content word table.
- the phrase extraction unit 105 separated the source language sentence and target language sentence separately into two-chain occurrence frequencies of each word or part of speech (hereinafter bi -Call it gram).
- the calculation formula is shown in (Equation 2).
- Equation 2 After calculating bigrams for all source language sentences and target language sentences in the corpus, the phrase extraction unit 5 considers the two most frequently occurring words or part-of-speech pairs as one word and concatenates them. Calculate the bi-gram again. As a result, for example, frequently-adjacent word pairs such as “O”, “Wish”, “Wish”, “Shi”, “Shi” and “Masu” are concatenated to form a phrase candidate of “Please, please”. In the target language, the word pairs "I 'd” riikej and riikej "to” are concatenated. The above concatenation and bi-gram calculation are performed separately for all source language sentences and target language sentences. Repeat until the threshold is not exceeded. Then, individual words including the connected words are extracted as phrase candidates.
- the phrase determination unit 106 calculates the frequency at which each phrase appears simultaneously in the source language sentence and the target language sentence pair. If the i-th source language phrase is J [i] and the j-th target language phrase is E [j], the co-occurrence frequency K [i, j] of the phrases J [i] and E [j] is calculated. The formula is calculated by (Equation 3).
- K [i, j] (the number of co-occurrence of the phrase J [i] and the phrase E “j] in the bilingual sentence pair ⁇
- the phrase registration is performed in this way, the phrase number co-occurring in one sentence is recorded, and registered in the bilingual phrase rule table 108 as a phrase number pair.
- the phrase number co-occurring in one sentence is recorded, and registered in the bilingual phrase rule table 108 as a phrase number pair.
- the phrase bigram of the above phrase number pair is obtained, and this is also recorded in the bilingual inter-phrase rule table 108.
- the source language corpus is represented by a phrase number sequence registered in the bilingual phrase dictionary
- a phrase bi-gram is obtained using the corpus represented by the phrase number, and this is also recorded in the bilingual phrase rule table 8.
- the phrase bi-gram representing the probability of occurrence of the phrase j following the phrase i is represented by (Equation 4).
- the uttered source language voice is input to the voice recognition unit 110.
- the speech recognition unit 113 uses the network of words described as phrases in the bilingual phrase dictionary 10.9 and the phrase bi-gram described in the bilingual phrase rule table 108 to determine the time. Recognized word candidates are predicted sequentially along the sequence. The sum of the acoustic score based on the distance value between the previously learned acoustic model 1 1 3 and the input speech and the linguistic score based on the phrase bi-gram is used as the recognition score, and the continuous word that is a recognition candidate is obtained using Nbest-search The columns are determined. The recognized continuous word string is input to the language conversion unit 111.
- step 1 the input continuous word string is converted into a phrase string in the bilingual phrase dictionary 109 ⁇ , and a rule between phrases corresponding to each phrase string is searched. Then, the input source language recognition result sentence is converted into the target language sentence based on the target language phrase which is a translation of each phrase and the inter-phrase rules of the target language.
- both the speech recognition unit 110 and the language conversion unit 111 use the bilingual phrase dictionary 109 and the bilingual phrase rule table 108.
- the converted target language sentence is input to the output sentence generation unit 112, and corrects syntactic unnaturalness. For example, definite and indefinite articles are assigned, and third-person, pluralization, and past tense optimizations of pronouns and verbs are performed.
- the corrected target language translation result sentence is output, for example, as text.
- rules are described in a form in which the source language phrase and the target language phrase correspond to each other, and recognition is performed in units of this phrase, so that a part of the input sentence is an unknown partial sentence. Even if the speech recognition is partially erroneous, the correctly recognized and analyzed part enables a language conversion device to be appropriately processed and output.
- bilingual phrases and inter-phrase rules are automatically determined using the adjacent frequency of words or parts of speech in the source language sentence and the target language sentence, and the co-occurrence relationship of frequently-used word strings or part of speech strings in parallel translation.
- an interpreter has been described as an example of a language converter, but this is not the case with other language converters, for example, converting a spoken utterance into a text sentence such as a written word. It can be used in a language conversion device that performs the same operation. (Embodiment 4)
- FIG. 8 is a block diagram of the interpreter of the present embodiment.
- the bilingual corpus 101, the content word definition table 103, the bilingual word dictionary 107, the morphological analysis unit 102, the part-of-speech generation unit 104, and the phrase extraction unit 144 is a bilingual phrase-to-phrase rule table 144, a bilingual phrase dictionary 144, and a phrase definition table 144 are examples of a language conversion rule creation device of the present invention.
- the bilingual phrase dictionary 144 of the present embodiment is an example of the phrase dictionary described in claim 6 of the present invention.
- the translator first creates a bilingual corpus to which a part-of-speech tag is attached after morphological analysis, as in the third embodiment, before translating.
- phrase extracting section 142 words or parts of speech corresponding to the rules are connected in accordance with a phrase definition table 141 in which words or parts of speech strings that are to be extracted as phrases in advance are regularized and described.
- a phrase definition table 141 in which words or parts of speech strings that are to be extracted as phrases in advance are regularized and described.
- the words "+ (verb) + want” are concatenated according to the rules such as "verb + auxiliary verb" and "case particle + verb".
- some of the above-mentioned content words are replaced with part-of-speech names, and the words or parts-of-speech strings are concatenated and regarded as one word.
- bi-gram Calculate the frequency of two-chain occurrences of each word or part of speech (hereinafter referred to as bi-gram).
- the calculation formula is the same as (Equation 2).
- the processing is repeated in the same manner as in the third embodiment until all the bigram values do not exceed the certain threshold.
- individual words, including connected words Are extracted as phrase candidates, and the phrase determination unit creates a bilingual phrase dictionary 144 and a bilingual phrase rule table 144 as in the third embodiment.
- 15 in FIG. 9 is an example of a corpus in which words or parts of speech are linked according to a phrase definition table, and 152 is an example of a bilingual phrase dictionary 144 in which a translation is made.
- the bilingual phrases and rules between phrases are automatically determined, and by using these bilingual phrase rules, language or style conversion is performed.
- a language conversion rule creation device that can more efficiently generate a high-quality bilingual phrase dictionary within a range in which is minimized.
- an interpreter has been described as an example of a language converter, but this is not the case with other language converters, for example, an unspoken utterance sentence is converted into a text sentence such as a written word. The same can be used in a language converter for conversion.
- a more general and high-quality rule is realized by constructing a part of words of a corpus when constructing a language rule.
- the same effect can be expected by coding the meanings into the meanings. Less than This embodiment will be described below with reference to FIG. Also in the present embodiment, description will be made using an interpreter that performs conversion between different languages.
- the bilingual corpus 201, the classified vocabulary table 211, the bilingual word dictionary 207, the morphological analysis unit 202, the semantic coding unit 215, the phrase extraction unit 205, the phrase determination unit 206, the bilingual phrase rule table 208, and the bilingual phrase dictionary 209 are examples of the language conversion rule creation device of the present invention.
- the bilingual phrase dictionary 209 of the present embodiment is an example of the phrase dictionary according to claim 6 of the present invention.
- the translator performs a morphological analysis of the source language sentence in the bilingual corpus 201 by the morphological analysis unit 202 to give a part-of-speech tag to the source language sentence.
- the semantic coding unit 2 15 compares each morpheme in the morpheme sequence of the source language sentence with the words written in the classification vocabulary table 2 16, and the semantic code in the classification vocabulary table 2 16 For morphemes that match the word given with, the morpheme name is replaced with a semantic code, and the input morpheme sequence is converted into a morpheme sequence in which some morphemes are semantically coded.
- the morphemes to be semantically coded shall satisfy the following conditions.
- a word registered in the bilingual word dictionary and corresponding to the target language translation of the bilingual word dictionary exists in the corresponding target language bilingual sentence in the corpus.
- the phrase extraction unit After calculating bi-grams for all source language sentences and target language sentences in the corpus, the phrase extraction unit considers the two most frequently occurring words or semantic code pairs as one word and concatenates them. , Calculate bi-gram again. As a result, for example, frequently-adjacent pairs of words such as “O”, “Wish”, “Wish”, “Shi”, “Shi” and “Masu” are concatenated to form a phrase candidate of “Please” . In the target language, the word pairs "I 'd” riikej and riikej "to” are concatenated. The above connection and bigram calculation are repeated for all source language sentences and target language sentences separately until all the values of bi-gram do not exceed a certain threshold.
- the bilingual phrase is determined by the phrase determining unit 206 and registered in the bilingual phrase dictionary 209. Furthermore, as in the third embodiment, an inter-phrase language rule and a phrase bi-gram are created and registered in the bilingual inter-phrase rule Table 208.
- the rules are described in a form in which the source language phrase and the target language phrase correspond to each other, and recognition is performed in units of this phrase, so that the input is performed.
- the bilingual phrases and inter-phrase rules are automatically determined by using the co-occurrence relationship between words or semantic code strings in the source language and target language sentence and the frequently occurring word strings or semantic code strings in the parallel translation.
- an interpreter has been described as an example of a language converter, but this is not the case with other language converters, for example, converting a spoken utterance into a text sentence such as a written word. It can also be used in a language converter that performs the same.
- a phrase is created by connecting words or parts of speech and semantic codes that are frequently adjacent to each other. By evaluating, phrases with higher quality and a guaranteed recognition rate can be formed.
- the bilingual phrase dictionary in the present embodiment is an example of the phrase dictionary described in claim 6 of the present invention.
- the semantic encoding unit 213 creates a bilingual corpus in which some morphemes are converted into semantic codes. Furthermore, phrase extraction The section calculates the bi-gram of each word or semantic code separately for the source language sentence and the target language sentence.
- the calculation formula is the same as (Equation 5).
- the sentence complexity calculator 218 calculates the bi-gram of each word or semantic code, and concatenates each word pair when performing the concatenation process using the bi-gram value.
- the sentence complexity is calculated and compared with the case where no connection is made and the case where the connection is made.
- the bilingual phrase when a bilingual phrase is determined, the bilingual phrase is automatically extracted from the corpus by determining using the sentence complexity of the bilingual co-path that has been word-classified by the semantic code. Enable human resources A high-quality bilingual phrase dictionary can be efficiently generated without using it. Also, since the sentence complexity measure is closely related to the measure of whether or not the phrase is appropriate for speech recognition, it is possible to automatically extract phrases while guaranteeing recognition accuracy.
- the language conversion device has been described as including the speech recognition unit, the language conversion unit, and the output sentence generation unit, but is not limited thereto. As shown in FIG. 13, a speech synthesizing unit for synthesizing the translation result sentence output by the output sentence generating unit 2 12 may be provided.
- This speech synthesis unit uses the same bilingual phrase rule table 208 and bilingual phrase dictionary 209 used in the speech recognition unit 210 and the language conversion unit 211 for speech synthesis. To perform speech synthesis. This solves the problem that even if there is an unlearned part in the input speech sentence, or if some errors occur in speech recognition, no speech synthesis result is output for the entire sentence at all. Can expect to output appropriate audio.
- each component of the language conversion device or the language conversion rule creation device of the present invention may be realized using dedicated hardware. Alternatively, it may be realized by software using a computer program.
- the present invention provides a program recording medium storing a program for causing a computer to execute all or some of the functions of each component of the language conversion device or the language conversion rule creation device of the present invention. Belongs to. Industrial applicability
- the present invention can always output a recognition result that can be converted to the target language sentence, and therefore, some of the input sentence is an unknown partial sentence, and some of the speech recognition is not. Even if erroneous, it is possible to provide a language conversion rule creating device and a language conversion device that enable a correctly recognized and analyzed portion to be appropriately processed and output.
- the present invention can convert only a part that is correctly recognized and has an appropriate analysis rule applied, even if there is an unlearned part in an input speech sentence or a part of speech recognition is erroneous. It is possible to provide a language conversion rule creation device and a language conversion device capable of always outputting a proper conversion result.
- the present invention can provide a language conversion rule creation device that can automatically create a language rule with minimum effort.
- the present invention can provide a language conversion rule creation device that can create a high-quality language rule automatically and more efficiently with as little labor as possible.
- the present invention can provide a language conversion rule creation device that can automatically and efficiently create a high-quality language rule.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Machine Translation (AREA)
Description
明 細 書 言語変換規則作成装置、 言語変換装置及びプロダラム記録媒体 技術分野
本発明は、 入力音声または入力テキストを、 他言語または他の文体型な どに変換して出力する言語変換装置とその変換規則を作成する言語変換規則 作成装置に関する。 背景技術
以下、 従来の技術を言語変換装置の 1つである、 入力音声を他言語に翻 訳 (以下通訳と呼ぶ) する装置を例にして説明する。
通訳装置は、 音響信号として入力された発声文を単語テキスト列で表示さ れた出力文に変換するための音声認識と、 単語テキスト列で表示された文を 入力し他言語文に翻訳する言語翻訳とを順次実行することで通訳を実現して いる。 さらに上記言語翻訳部は、 入力文の統語的または意味的構造を解析す る言語解析部と、 解析結果に基づいて他言語に変換する言語変換部と、 翻訳 結果から自然な出力文を生成する出力文生成部とから構成されている。
しかし、 音声認識部が発声文の一部を誤認識した場合や、 文にあいづちや 言い直しなどが挿入されたり、 文として不完結なまま発声を終えてしまうな ど、 発声文自体が統語的または意味的にも不自然な場合は、 音声認識結果を 言語解析部に入力しても解析が失敗し、 結果的に翻訳結果が出力されないと いう問題があった。
この問題を解決するために、 フレーズに分割し、 フレーズ内とフレーズ間 とを分けて規則化し、 不完結な発声にはフレーズ内規則のみを用いて解析し 、 解析結果の出力を可能にするように構成することである。 (たとえば 竹 沢、 森元:電子通信学会論文誌 D-II, Vol. J79-D-II (12) ) 。 図 1 4は従来の フレーズ内及びフレーズ間規則例である。 この例では、 コーパス例 3 0 1の
「今晚 シングルの部屋の予約 お願いね」 に対して、 フレーズ内規則は、 書き言葉にも共通な文法規則に基づきフレーズ內規則 3 0 2のような木構造 で記述し、 フレーズ間規則は、 学習用コーパスにおけるフレーズ間の隣接確 率で記述されている。 例えばフレーズ間規則はフレーズ間規則 3 0 3のよう に記述される。
入力文を解析する際には、 文頭から順次フレーズ内規則を当てはめ、 フレ ーズの終端では、 各フレーズ毎に隣接確率の高いフレーズ候補が隣接するよ うにフレーズを接続しながら入力文解析が行われる。 このような文解析方法 では、 文の一部が誤認識を起こし通常の文全体の解析が失敗する場合でも、 誤認識を含まない部分のフレーズ解析は正しく行われるため、 解析された部 分フレーズのみを翻訳することにより、 翻訳結果を部分的に出力できる枠組 みになっている。
また、 この問題に解決するために、 従来の文法に則って言語解析を行うの ではなく、 従来の文法では解析できないような発声文も含めた発声文例から 、 対応する原言語文と目的言語文の対訳フレー を抽出し、 このフレーズ対 をなるベく一般化した形で記述された対訳フレーズ辞書を作成し、 この辞書 を用いて言語解析と言語変換とを行う方法も提案されている。 (たとえば、 古瀬、 隅田、 飯田 :情報処理学会論文誌 Vol35, no3, 1994- 3) 図 1 5は従来の
言語変換規則作成装置である。 通訳を行う前に、 予め発声文対訳コーパスか ら対訳フレーズ辞書を作成する。 ここでも、 一部の単語が誤ったり省略され たりすることを考慮し、 発声文例をフレーズ毎に分割し、 フレーズ内規則と フレーズ間の依存規則とを作成している。 まず形態素解析部 3 6 0で、 原言 語文と目的言語文との形態素解析を行ない、 各文を形態素列に変換する。 次 にフレーズ決定部 3 6 1で、 原言語及び目的言語の形態素例をフレーズ単位 に分割し、 フレーズ内規則とフレーズ間の依存関係規則を作成する。 この際 のフレーズ単位は、 意味的にまとまった単位であることに加えて、 対訳にお いて対応関係が明らかな部分文であることを考慮して人手で決定される。 た とえば、 「部屋の予約をお願いしたいんですが」 「 d like to reserve a room」 とレヽぅ対訳文例は、 (a) 「部屋の予約」 「reserve a room」 ,(b) 「 をお願いしたいんですが」 「 d like toj という(a) (b) 2つの対訳フレー ズに分割され、 「(&)を0))する」 「(b) to (a)」 という依存関係が規則化さ れる。 上記対訳フレーズは対訳フレーズ辞書 3 6 2に、 フレーズ間の依存関 係を対訳の形で表されたものはフレーズ間規則テーブル 3 6 3に各々保管さ れる。 このような処理が対訳コーパスに含まれた全発声文分について行われ る。 このフレーズの分割と依存関係は、 文の意味的情報やどの程度文法的に 崩れていないかの度合いなどのファクターから決定されるため、 自動的に各 文について決定することが難しく、 従来は人手で決定されている。
しかしながら、 第 1の従来例における文解析手段においては、 扱っている フレーズは原言語のみに依存した言語依存フレーズであり、 目的言語のフレ ーズ単位とは合わない場合が多い。 そのため、 原言語においては正しいフレ ーズを言語変換部に入力しても、 結局は受理できない場合が多い、 という問
題を有している。 この第 1の従来例の枠組みは、 言語非依存フレーズを用い ても可能な枠組みではあるが、 その場合は、 言語非依存フレーズの解析を人 手で作成する必要があり、 開発に時間がかかる、 人手の作成基準の揺れが規 則性能を歪ませるという新たな問題が生じる。
また、 第 2の従来例における対訳フレーズ辞書作成方法においては、 発声 文の意味的情報や文法的情報を自動的に解析できる手段がないために、 人手 で作成しなければならない。 そのため、 開発に時間がかかり、 人手の作成基 準の揺れが規則性能を歪ませるという問題点がある。 たとえば、 通訳装置の 目標となるタスクを変更したり、 原言語及び目的言語の言語種が変更になつ た場合は、 一度構築した規則を適応できずにはじめから規則を作成しなけれ ばならず、 開発効率が悪く手間がかかる。
また、 上記フレーズ辞書 3 6 2やフレーズ間規則 3 6 3は、 対訳コーパス の対応関係を重視してフレーズ単位を決定しており、 音声認識部 3 6 4が認 識するのに適切なフレーズ単位であるかどうかの評価がなされているもので はなレ、。 音声認識にとつて適切なフレーズかどうかを人手で判断しながらフ レーズ単位を決めることは困難であり、 決定されたフレーズを用いて認識し た場合、 認識率が確保できる保証がない、 という課題を有している。 発明の開示
• 本発明の目的は以上の問題点を解決し、 入力音声文に未学習部分があった り、 音声認識が一部誤りを起こしても、 必ず目的言語への変換を可能とし、 さらに、 変換に必要なフレーズ辞書作成やフレーズ間規則を、 なるべく人手 をかけずに自動的に作成できる言語変換装置を提供することにある。
上述した課題を解決するために、 第 1の本発明 (請求項 1に対応) は、 音 声またはテキストで入力される言語変換の対象となる文 (以下、 原言語文と 呼ぶ、 これに対応して言語変換された文を目的言語文と呼ぶ) と、 目的言語 文とが対になった学習用データべ一ス (以下、 対訳コ一パスと呼ぶ) から単 語または単語列に対する文法的または意味的制約規則を学習して得られた言 語規則を格納する格納手段と、
格納された前記言語規則を用いて入力音声の音声認識を行い、 言語変換の 対象となる文で認識結果を出力する音声認識部と、
前記音声認識部で用いられたのと同じ前記言語規則を用いて言語変換の対 象となる文を言語変換された文に変換する言語変換部とを備えたことを特徴 とする言語変換装置である。
また、 第 2の本発明 (請求項 2に対応) は、 前記言語規則は、 言語変換の 対象となる文と、 変換された文とが共に意味的なまとまりを形成する部分 ( 体型非依存フレーズと呼ぶ) に分割し、 前記体型非依存フレーズ内の言語規 則と前記体型非依存フレーズ間の言語規則とを分けて規則化されて作られる ものであることを特徴とする第 1の本発明に記載の言語変換装置である。 また、 第 3の本発明 (請求項 3に対応) は、 前記言語規則は、 前記体型非 依存フレーズ内の文法的または意味的規則と前記体型非依存フレーズ間の共 起または連接関係を規則化されて作られるものであることを特徴とする第 2 の発明に記載の言語変換装置である。
また、 第 4の本発明 (請求項 4に対応) は、 前記言語変換部で用いられた のと同じ言語規則を用いて前記言語変換された文を音声合成する音声合成部 とを備えたことを特徴とする第 1の発明に記載の言語変換装置である。
また、 第 5の本発明 (請求項 5に対応) は、 前記言語規則のうち、 目的言 語文が同じである言語規則を同じカテゴリ一としてまとめられた言語規則群 に対して、 前記言語規則群に含まれる言語規則の言語変換の対象となる文の 音響的規則間距離を算出する規則間距離算出部と、
音声認識の認識レベルを上げるために、 算出された前記距離が近い言語規 則どうしをマージすることで前記規則群の最適化を行う最適規則作成部と、 を備えたことを特徴とする第 1〜 4の発明のいずれかに記載の言語変換装置 である。
また、 第 6の本発明 (請求項 6に対応) は、 対訳コーパスと、
その対訳コーパス中の原言語文及び目的言語文における単語または品詞の 隣接頻度を算出し、 頻度の高い単語及び品詞を連結して意味的なまとまりを 形成する部分文 (以下、 フレーズと呼ぶ) を抽出するフレーズ抽出部と、 前記フレーズ抽出部で抽出された前記フレーズで、 原言語及び目的言語の フレーズの関係を調べることで対応するフレーズを決定するフレーズ決定部 と、
決定された前記対応するフレーズを保管しておくフレーズ辞書とを備え、 前記フレーズ辞書は、 言語変換を行う際に用いられ、 その言語変換は、 原 言語文が入力された際にこの入力文と前記フレーズ辞書に格納されている前 記対応するフレーズとを照合することで言語または文体変換を行うものであ るたことを特徴とする言語変換規則作成装置である。
また、 第 7の本発明 (請求項 7に対応) は、 前記フレーズ決定部は、 原言 語及び目的言語のフレーズの共起関係を調べることで対応するフレーズを決 定することを特徴とする第 6の本発明に記載の言語変換規則作成装置である。
また、 第 8の本発明 (請求項 8に対応) は、 前記対訳コーパスの原言語文 を単語列に変換する形態素解析部と、
その形態素解析部の結果を利用して原言語文及び目的言語文の一部または 全部の単語を品詞名で置き換えた対訳コーパスを作成する品詞化部を更に有 し、
前記フレーズ抽出部は、 前記品詞化部で品詞化された対訳コーパスからフ レーズを抽出することを特徴とする第 6の本発明に記載の言語変換規則作成 装置である。
また、 第 9の本発明 (請求項 9に対応) は、 原言語と目的言語との対訳単 語辞書を有し、
前記品詞化部は、 前記対訳単語辞書で対応付けされている単語でかつ原言 語が内容語である単語を品詞化することを特徴とする第 8の発明に記載の言 語変換規則作成装置である。
また、 第 1 0の本発明 (請求項 1 0に対応) は、 前記対訳コーパスの原言 語文を単語列に変換する形態素解析部と、
その形態素解析部の結果を利用して、 意味的類似した単語を同クラスと見 なして単語を分類し、 同クラス内の単語に同コードを与えている表 (以下、 分類語彙表という) に基づき、 原言語文及び目的言語文の一部または全部の 単語を前記分類語彙表のコードに置き換えた対訳コーパスを作成する意味コ 一ド化部を更に有し、
前記フレーズ抽出部は、 前記意味コード化部でコードに置き換えられた対 訳コーパスからフレーズを抽出することを特徴とする請求項 6記載の言語変 換規則作成装置である。
また、 第 1 1の本発明 (請求項 1 1に対応) は、 原言語と目的言語との対 訳単語辞書を有し、
前記意味コード化部は、 前記対訳単語辞書で対応つけられている単語のみ 意味コ一ド化することを特徴とする第 1 0の発明に記載の言語変換規則作成 装置である。
また、 第 1 2の本発明 (請求項 1 2に対応) は、 前記フレーズ抽出部は、 予め優先的にフレーズとみなしたい単語または品詞列を原言語と目的言語を 対にして保管しておくフレーズ定義表をも利用して、 フレーズを抽出するこ とを特徴とする第 6の本発明に記載の言語変換規則作成装置である。
また、 第 1 3の本発明 (請求項 1 3に対応) は、 コーパスのパ一プレキシ ティー (文複雑度) を算出する文複雑度算出部を有し、
前記フレーズ抽出部は、 単語または単語クラスの隣接頻度と前記文複雑度 を用いてフレーズを抽出することを特徴とする第 6〜 1 3の発明のいずれか に記載の言語変換規則作成装置である。
また、 第 1 4の本発明 (請求項 1 4に対応) は、 第 1〜 1 3の発明のいず れかに記載の言語変換装置または言語変換規則作成装置の各構成要素の全部 または一部の機能をコンピュータに実行するためのプログラムを格納してい ることを特徴とするプログラム記録媒体である。 図面の簡単な説明
図 1は、 本発明の第 1の実施の形態における言語変換装置の構成を示すブ 口ック図である。
図 2は、 本発明の第 2の実施の形態における言語変換装置の構成を示すブ
口ック図である。
図 3は、 本発明の第 1の実施の形態における言語規則の作成を説明する図 である。
図 4は、 本発明の第 2の実施の形態における最適言語規則の作成を説明す る図である。
図 5は、 本発明の第 3の実施の形態における言語変換装置及び言語規則作 成装置の構成を示すプロック図である。
図 6は、 本発明の第 3の実施の形態における言語変換規則の作成を説明す る図である。
図 7は、 本発明の第 3の実施の形態における対訳フレーズ間規則表と対訳 フレーズ辞書の例を示す図である。
図 8は、 本発明の第 4の実施の形態における言語変換装置及び言語規則作 成装置の構成を示すプロック図である。
図 9は、 本発明の第 4の実施の形態におけるフレーズ定義表の例を説明す る図である。
図 1 0は、 本発明の第 5の実施の形態における言語変換装置及び言語規則 作成装置の構成を示すプロック図である。
図 1 1は、 本発明の第 5の実施の形態における言語規則の作成を説明する 図である。
図 1 2は、 本発明の第 6の実施の形態における言語変換規則作成装置の構 成を示すブロック図である。
図 1 3は、 音声合成部を有する言語変換装置の構成例を示すブロック図で ある。
図 14は、 従来の言語変換装置で用いられる言語規則の例を示す図である。 図 1 5は、 従来の言語変換装置の構成を示すブロック図である。
(符号の説明)
1 対訳コーパス
2 言語規則再生部
3 フレーズ内言語規則
4 フレーズ間言語規則
5 文生成規則
6 マイクロフオン
7 音声認識部
8 音響モデル
9 言語変換部
10 出力文生成部
101 対訳コーパス
102 形態素解析部
103 内容語定義表
104 品詞化部
105 フレーズ抽出部
106 フレーズ決定部
107 対訳単語辞書
108 対訳フレーズ間規則表
109 対訳フレーズ辞書
1 10 音声認識
1 1 1 言語変換
1 1 2 出力文生成
1 1 3 音響モデル
1 1 4 文生成規則 発明を実施するための最良の形態
以下に、 本発明の実施の形態について図面を参照して説明する。
(第 1の実施の形態)
まず第 1の実施の形態について説明する。
第 1の実施の形態では、 言語変換装置の一例として、 従来例同様、 異なる 言語間の変換を行う通訳装置を用いて説明する。 図 1は本実施の形態の通訳 装置のブロック図である。
本実施の形態の通訳装置は、 まず通訳する前に、 言語解析部 2で予め対訳 コーパスや対訳単語辞書などを有している学習用データベース 1から発声文 の原言語及び目的言語の言語規則を学習する。 言語規則の学習例を図 3に示 す。
言語規則作成部 2では、 たとえば、 品詞タグが付与されている対訳コーパ スを用いて原言語文及び目的言語文の内容語を品詞化する。 さらに、 原言語 におけるフレーズと目的言語におけるフレーズとがーまとまりとして対応し ている場合に、 その一まとまりを体型非依存フレーズとしてその境界を区切 る。 すなわち、 原言語における体型依存フレーズと目的言語における体型依 存フレーズとがーまとまりとして対応している場合に、 その一まとまりを体 型非依存フレーズの境界とする。 原言語の体型依存フレーズに対応する目的
言語の体型依存フレーズがひとまとまりとして対応しない場合には、 対応す る部分が一まとまりとして存在するまで体型依存フレーズの連結やフレーズ 境界の修正を行い体型非依存フレーズとする。 図 3において、 対訳コーパス の文 「今晩、 部屋の予約をしたいんですが」 「I' d l ike to room- res ervati on tonight;」 2 6が、 内容語の品詞化 3 0で、 「く普通名詞 > | <普通名詞 〉の<サ変名詞〉 I をしたいんですが」 2 7のように品詞化されている。 ま た 「く普通名詞〉」 、 「く普通名詞〉の <サ変名詞〉」 、 「をしたいんです 力^ のように体型非依存フレーズとして境界を区切られている。 次に各体型 非依存フレーズにおいて、 品詞と単語の混合列、 および品詞で表されている 部分の単語名、 さらに各体型非依存フレーズの対訳コーパスにおける出現頻 度を体型非依存フレーズ内規則 3として記述する。 対訳コーパスの全文に対 して上記規則を記述する。 図 3においては、 上述した内容は、 フレーズ内規 則の記述 3 1により 3に記述される。 図 3の 3において、 規則 1は、 日本語 「く普通名詞〉」 であり、 英語が 「く noun〉」 である。 品詞の內容として は、 日本語が 「今晩」 、 英語が 「tonight」 となっている。 対訳コーパスに現 れていれば、 「明日」 、 「tomorrow」 等も規則 1に記述されるものである。
さらに、 各フレーズ内規則の共起関係を体型非依存フレーズ間規則 4とし て記述する。 たとえば、 共起関係をフレーズ bi-gramとして規則化する場合は 、 各体型非依存フレーズの隣接頻度を記述しておく。
上述した内容は、 図 3において、 フレーズ間規則の記述 3 2力 2 8を記 述することを意味する。 2 8がフレーズ bi- gramの例である。 規則番号対が例 えば 「 (規則 1 ) (規則 2 ) ) 」 となっており、 その出現頻度が 4となって いる。 これは対訳コーパスから学習する過程で、 規則 1と規則 2が文中にな
らんで出現する回数が 4回あったことを意味する。 規則 2と規則 3が文中で ならんで出現する回数は 2 8の例では 6回あったことになる。
さらに、 各体型非依存フレーズ間の構文構造も体型非依存フレーズ間規則 4に記述しておく。 これは図 3において、 フレ一ズ間規則の記述 3 2が 2 9 を記述することである。 つまりフレーズ間規則の記述 3 2が、 日本語と英語 で体型非依存フレーズが現れる順序が違うので、 順序関係の対応をつけるた めに 2 5で言語構造をッリ一状にして対応をとっている。
文生成規則 5には、 上記言語規則 3および 4で不足している目的言語規則 を記述しておく。 たとえば、 日英翻訳の場合には、 冠詞および不定冠詞規則 や三人称単数化規則などがその内容として記述されている。
なお、 フレーズ内言語規則 3及び Zまたはフレーズ間言語規則 4が本発明 の格納手段の例である。
通訳の際には、 まず発声された原言語音声はマイクロホン 6から入力され 音声認識部 7に入力される。 音声認識部では、 たとえば、 体型非依存フレー ズ内言語規則 3として記述されている品詞および単語の混合列と体型非依存 フレーズ間言語規則 4としてのフレーズ bi - gramとにより、 時系列に沿って順 次認識単語候補が予測される。 予め学習されている音響モデル 8と入力音声 との距離値をベースとした音響スコアとフレーズ bi- gramによる言語スコアと の和を認識スコアとし、 Nbest- searchにより認識候補である連続単語列が決 定される。 このように決定された連続単語列は言語変換部 9に入力される。 フレーズ内言語規則 3、 フレーズ間言語規則 4では、 予め原言語と目的言語 とが対応しながら規則化されている。 言語変換部 9では、 上記規則を用いて 、 本連続単語列は目的言語のフレーズ列に変換され出力される。 この際、 入
力された原言語フレーズ列が、 既に学習されたフレーズ間の構文構造に当て はまる場合には、 目的言語のフレーズ列は構文構造に沿って修正された後出 力される。
出力された目的言語文は出力文生成 1 0に入力され、 文法的な不自然さを 修正する。 例えば、 定冠詞や不定冠詞の付与、 代名詞、 動詞における 3人称 化や複数化や過去形化などの最適化などが行われる。 修正後の目的言語翻訳 結果文はたとえばテキストとして出力される。
以上の実施の形態では、 音声認識で使用する言語規則を学習する際に、 原 言語と目的言語とがともに意味をもつ一かたまりとなった部分を単位として 規則化を行い、 この規則の制約に基づいて認識を行うことにより、 入力音声 文に未学習部分があったり、 音声認識が一部誤りを起こしても、 全文に対す る翻訳結果が全く出力されないという問題点を解決し、 正しく認識された部 分については、 適切な翻訳結果を出力できる言語変換装置を実現できる。 なお、 本実施の形態では、 言語変換装置の 1つの例として通訳装置を例に あげて説明したが、 これは他の言語変換装置、 例えばくだけた発話文を書き 言葉のようなテキスト文に変換する言語変換装置においても、 同様に使用す ることが出来る。
(第 2の実施の形態)
次に第 2の実施の形態について図面を参照しながら説明する。 本実施の形 態でも、 第 1の実施の形態同様、 通訳装置を用いて説明する。 図 2は本実施 の形態の通訳装置のブロック図である。
本実施の形態の通訳装置は、 まず通訳する前に、 予め言語規則作成部 1 1 で対訳コーパスや対訳単語辞書を有している学習データベース 1から発声文
の原言語及び目的言語のフレーズ内言語規則 1 2、 フレーズ間言語規則 1 3 を学習する。 学習される規則は、 第 1の実施の形態における言語規則の学習 と同様である。 次に学習された言語規則の最適化を行う。 最適化の例を図 4 に示す。
まず、 学習された体型非依存フレーズにおいて、 目的言語フレーズが同じ であるフレーズを同カテゴリ一としてまとめる。 図 4において、 1 2は言語 規則であり、 規則間距離算出 1 4で、 3 3のようにカテゴリ一としてまとめ る。 規則 1、 規則 2、 規則 3は目的言語規則が 「I' d like toj と同じである ので、 同カテゴリーになる。 また、 規則 4は、 目的言語規則が 「please」 と なっているので、 規則 規則 2、 規則 3とは別のカテゴリーに分類される。 次に同カテゴリーに含まれる原言語フレーズ間の音響的距離を規則間距離算 出部 1 4で算出する。 図 4において、 1 5が原言語フレーズ間の音響的距離 を算出した例である。 1 5では、 規則 1と規則 2の距離は 7となっており、 規則 1と規則 3の距離は 2となっている。
同カテゴリー規則における原言語フレーズの音響的距離は次のように算出 する。 まず、 カテゴリ一内の全ての目的言語フレーズにおける混合列の品詞 部分に、 同品詞であれば同じ単語を当てはめ、 全ての混合列を単語列に変換 する。 次に各単語列の発音が類似しているかを調べるために、 各単語列の文 字列の違いに対する距離を、 (数 1 ) を用いて算出し、 規則間距離テーブル
1 5に記述する。 n個の単語からなるフレーズ X = { xl,x2, x3, . · . xn} ( xは 各単語) と m個の単語からなるフレーズ Y = { yl,y2, y3, . . ym}との間の距離 を D(Xn, Ym)として、
【数 1】
D (Xi, Yj) = rain D (Xi - l, Yj) + d(xi, yj)
D (Xi— l, Yj - 1) + d(Xi, Yj)
D (Xi,Yj— 1) + d(Xi, Yj)
但し、. if xi=yj then d (xi, yj) =0
else d(xi, yj) =l 次に最適規則作成部 1 6で、 距離値が一定値以内であるフレーズの中で、 最も出現数の多い規則のみを残し、 他の規則を消去する。 たとえば、 図 4の 例では、 上記一定値を 2とした場合、 3 3において、 同カテゴリーである規 則 1と規則 3との規則間距離は 2であり、 上記一定値 2以下である。 従って 、 この 2つの規則の出現頻度の多い規則 1を採用し、 規則 3を規則から削除 する。 それに合わせて出現数も書き換える。
フレーズ内言語規則 1 2に書かれている全ての規則に対して上記最適規則 化を行った後、 消去されなかった言語規則のみをフレーズ内最適言語規則 1 7として保管する。 最適化された規則に従い、 フレーズ間規則 1 3の中の除 去された規則を採用した規則で書き換え、 合わせて出現数も修正する。 図 4 において、 最適規則作成 1 6により規則 3は削除され、 規則 1として 1本化 される。 それにあわせて、 規則 1の出現数は、 1 7のように削除された規則 3との和である 1 5となっている。
文生成規則 5には、 コーパスから作成された上記言語規則で不足している 目的言語規則を記述しておく。 たとえば、 日英翻訳の場合には、 冠詞および 不定冠詞規則や三人称単数化規則などがその内容として記述されている。 通訳の際には、 まず発声された原言語音声はマイクロホン 6から入力され
音声認識部 7に入力される。 音声認識部では、 たとえば、 体型非依存フレー ズ内言語規則 1 7として記述されている品詞および列単語の混合列と体型非 依存フレーズ間言語規則 1 8としてのフレーズ隣接頻度とにより、 時系列に 沿って順次認識単 Μ 補が予測される。 予め学習されている音響モデル 8と 入力音声との距離値をベースとした音響スコアとフレ一ズ bi - gramによる言語 スコアとの和を認識スコ ァとし、 Nbest- searchにより認識候補である連続単 語列が決定される。 このように決定された連続単語列は言語変換部 9に入力 される。 言語規則 1 7、 1 8では、 予め原言語と目的言語とが対応しながら 規則化されている。 言語変換部 9では、 上記規則を用いて、 本連続単語列は 目的言語のフレーズ列に変換され出力される。 この際、 入力された原言語フ レーズ列が、 既に学習されたフレーズ間の構文構造に当てはまる場合には、 目的語のフレーズ列は構文構造に沿って修正された後出力される。
出力された目的言語文は出力文生成部 1 0に入力され、 文法的な不自然さ を修正する。 たとえば、 定冠詞や不定冠詞の付与、 代名詞、 動詞における 3 人称化や複数化や過去形化などの最適化などが行われる。 修正後の目的言語 翻訳結果文はたとえばテキストとして出力される。
以上の実施の形態では、 音声認識で使用する言語規則を学習する際に、 原 言語と目的言語とがともに意味をもつ一かたまりとなった部分を単位として 規則化を行った後、 規則化されている目的言語部分が同じである原言語フレ ーズが音響的に類似している場合には、 類似している中から最も出現頻度の 高い規則のみを採用し残りの規則を消去することにより、 なるべく言語規則 の性能を落とさずに、 体型非依存フレーズを単位にすることによる規則数の 増加を押さえ、 従って高性能な認識及び言語変換を可能にする通訳装置を実
現するものである。
なお、 本実施の形態では、 言語変換装置の 1つの例として通訳装置を例に あげて説明したが、 これは他の言語変換装置、 例えばくだけた発話文を書き 言葉のようなテキスト文に変換する言語変換装置においても、 同様に使用す ることが出来る。
(実施の形態 3 )
本実施の形態では、 言語変換装置の一例として、 従来例同様、 異なる言語 間の変換を行う通訳装置を用いて説明する。 図 5は本実施の形態の通訳装置 のブロック図である。
なお、 本実施の形態のうち、 対訳コーパス 1 0 1、 内容語定義表 1 0 3、 対訳単語辞書 1 0 7、 形態素解析部 1 0 2、 品詞化部 1 0 4、 フレーズ抽出 部 1 0 5、 フレーズ決定部 1 0 6は、 対訳フレーズ間規則表 1 0 8、 対訳フ レーズ辞書 1 0 9は、 本発明の言語変換規則作成装置の例である。 また、 本 実施の形態の対訳フレーズ辞書 1 0 9は本発明の請求項 6記載のフレーズ辞 書の例である。
本実施の形態の通訳装置は、 まず通訳する前に、 形態素角军析部 1 0 2で対 訳コーパス 1 0 1内の原言語文の形態素解析を行うことで原言語文のみ品詞 タグが付与された対訳コーパスを作成する。 たとえば、 図 6の 1 2 0の 「部 屋の予約をお願いしたいんですが」 の発声文例では、 1 2 1のような品詞タ グが原言語文に与えられる。 次に、 品詞化部 1 Q 4で、 上記コーパスの品詞 タグ付き原言語文において、 一部の単語名を品詞名に置きかえた品詞化対訳 コーパスを作成する。 この際に品詞名に変換される単語は以下の条件を満た すものとする。
( 1 ) 内容語テーブルに記載の品詞に対応する単語である。
( 2 ) 対訳単語辞書に登録されている単語で、 対訳単語辞書の目的言語訳に 相当する単語が、 コーパス内の相当する目的言語対訳文に存在する。
図 6の内容語定義表 1 0 3の例では、 内容語テーブルに記載されている一 般名詞、 さ変名詞、 動詞の中で、 対訳単語辞書 1 0 7に登録されている 「部 屋」 と 「予約」 のみが品詞化され、 1 2 2のようにこれらの単語を品詞名に 置き換えたコーパスが作成される。 さらに、 相当する目的言語対訳文内の単 語名も 1 2 3のように日本語品詞名に置き換える。
次に、 上記の一部の内容語が品詞名に置き換えられたコーパスについて、 フレーズ抽出部 1 0 5は、 原言語文、 目的言語文別々に、 各単語または品詞 の 2連鎖出現頻度 (以後 bi - gramと呼ぶ) を算出する。 算出式を (数 2 ) に 示す。
【数 2】
コーパス内の全原言語文及び目的言語文を対象に bi- gramを算出した後、 フ レーズ抽出部 5で、 最も出現頻度の高かった 2単語または品詞対を 1つの単 語とみなして連結し、 再度 bi-gramを算出する。 これにより、 たとえば頻度高 く隣接する 「お」 「願い」 、 「願い」 「し」 、 し」 「ます」 などの単語対 が連結され、 「お願いします」 というフレーズ候補が形成される。 目的言語 では 「I' d」 riikej 、 riikej 「to」 の単語対が連結される。 全原言語文及 び目的言語文別々に、 以上の連結と bi - gram算出とを、 bi - gramの値が全て一
定閾値を超えなくなるまで繰り返す。 そして、 連結された単語も含めた個々 の単語をフレーズ候補として抽出する。
次にフレーズ決定部 106で、 原言語文と目的言語文対において、 各フレ ーズが同時に出現している頻度を算出する。 i番目の原言語フレーズを J [ i ], j番目の目的言語フレーズを E[j ]とすると、 フレーズ J [ i]と E[ j ]と の共起頻度 K[ i, j ]は、 算出式を (数 3) にて算出される。
【数 3】
K[ i, j ] = (フレーズ J [ i ]とフレーズ E「j ]とが、 対訳文対に共起する数 }
1フレース J L i」の出現数 +フレーズ EL j」の出現数 } たとえば、 図 7の例では、 フレーズ列として記述された 3つの対訳文 1 3 0のうち、 原言語フレーズの 「お願いします」 と目的言語フレーズの 「I'd like toj との共起頻度は 2/ (2 + 3) 、 「したいんですが」 と目的言語フ レーズの共起頻度は 1/ (1 + 3)となる。 この頻度が一定値以上のフレーズ 対を対訳フレーズとして決定し、 頻度と共にフレーズ番号を付けて対訳フレ ーズ辞書 109に登録する。 さらに、 対訳フレーズとして決定されなかった フレーズ候補の中で、 既に品詞化されている単語は、 それ単独で対訳フレー ズとして対訳フレーズ辞書 1 09に登録する。 それ以外の部分は、 対訳対の 中で各々の単語列どうしを一対としてフレーズ辞書に登録する。
たとえば、 図 7の例では、 131のように対訳フレーズ辞書 109に登録 される。
このようにして、 フレーズ登録を行なった後、 一文に共起するフレーズ番 号を記録し、 フレーズ番号対として対訳フレーズ間規則表 108に登録する。
図 7の例では 1 3 2となる。
また、 上記フレーズ番号対のフレーズ bi- gramを求め、 これも対訳フレーズ 間規則表 1 0 8に記録する。 すなわち、 原言語コーパスを、 対訳フレーズ辞 書に登録されたフレーズ番号列で表し、 フレーズ番号で表されたコーパスを 用いてフレーズ b i- gramを求め、 これも対訳フレーズ間規則表 8に記録する。 フレーズ iに続くフレーズ jの出現確立を表すフレーズ bi - gramは (数 4 ) で表 される。
【数 4】
{フレーズ i とフレーズ〗がこの順序で隣接して出現した数 }
{フレース iの虫 数} 例えば図 7の 1 3 2では、 例えばフレーズ 3とフレーズ 1のフレーズ bi - g ramを求める。 またフレーズ 4、 フレーズ 5、 フレーズ 2のフレーズ間規則に 関してはフレーズ 4、 フレーズ 5及びフレーズ 5、 フレーズ 2の bi-gramをそ れぞれ求め、 対訳フレーズ間規則表 1 0 8に記録する。
通訳の際には、 まず発声された原言語音声は音声認識部 1 1 0に入力され る。 音声認識部 1 1 3では、 たとえば、 対訳フレーズ辞書 1 0 .9にフレーズ として記述されている単語のネットワークと対訳フレーズ間規則表 1 0 8に て記述されているフレーズ bi- gramとにより、 時系列に沿って順次認識単語候 補が予測される。 予め学習されている音響モデル 1 1 3と入力音声との距離 値をベースとした音響スコアとフレーズ bi-gramによる言語スコアとの和を認 識スコアとし、 Nbest- searchにより認識候補である連続単語列が決定される。 認識された連続単語列は、 言語変換部 1 1 1に入力される。 言語変換部 1
1 1では、 入力された連続単語列を対訳フレーズ辞書 1 0 9內のフレーズ列 に変換し、 各フレーズ列に相当するフレーズ間規則を探索する。 そして、 各 フレーズの対訳である目的言語フレーズと目的言語のフレーズ間規則とから 、 入力原言語認識結果文を目的言語文に変換する。
このように本実施の形態では、 音声認識部 1 1 0と言語変換部 1 1 1とで ともに対訳フレーズ辞書 1 0 9と対訳フレーズ間規則表 1 0 8が使用される。 変換された目的言語文は出力文生成部 1 1 2に入力され、 統語的な不自然 さを修正する。 たとえば、 定冠詞や不定冠詞の付与、 代名詞、 動詞における 3人称化や複数化や過去形化などの最適化などが行われる。 修正後の目的言 語翻訳結果文はたとえばテキストとして出力される。
以上の実施例では、 原言語フレーズと目的言語フレーズが対応した形で規 則を記述しておき、 このフレーズの単位で認識を行ないうことで、 入力文の 一部が未知部分文であったり、 音声認識が一部誤ったとしても、 正しく認識 および解析された部分は適切に処理され出力される言語変換装置を可能にす る。 また、 原言語文及び目的言語文各々における単語または品詞の隣接頻度 と、 対訳における頻度の高い単語列または品詞列の共起関係を用いて自動的 に対訳フレ一ズとフレーズ間規則を決定し、 この対訳フレ一ズ規則を用いて 通訳を行うことにより、 なるべく人手をかけずに、 自動的に効率よく しかも 品質の高い対訳フレーズ辞書を生成できる言語規則作成装置を可能とする。 なお、 本実施の形態では、 言語変換装置の 1つの例として通訳装置を例に あげて説明したが、 これは他の言語変換装置、 例えばくだけた発話文を書き 言葉のようなテキスト文に変換する言語変換装置においても、 同様に使用す ることが出来る。
(実施の形態 4 )
本実施の形態も、 言語変換装置の一例として、 第 3の実施の形態同様、 異 なる言語間の変換を行う通訳装置を用いて説明する。 図 8は本実施の形態の 通訳装置のプロック図である。
なお、 本実施の形態のうち、 対訳コーパス 1 0 1、 内容語定義表 1 0 3、 対訳単語辞書 1 0 7、 形態素解析部 1 0 2、 品詞化部 1 0 4、 フレーズ抽出 部 1 4 2、 フレーズ決定部 1 4 3は、 対訳フレーズ間規則表 1 4 5、 対訳フ レーズ辞書 1 4 4、 フレーズ定義表 1 4 1は、 本発明の言語変換規則作成装 置の例である。 また、 本実施の形態の対訳フレーズ辞書 1 4 4は本発明の請 求項 6記載のフレーズ辞書の例である。
本実施の形態の通訳装置は、 まず通訳する前に、 第 3の実施の形態同様、 形態素解析後、 品詞タグが付与された対訳コーパスを作成する。
次に、 フレーズ抽出部 1 4 2で、 予めフレーズとして抽出したい単語また は品詞列を規則化して記述してあるフレーズ定義表 1 4 1に従い、 規則に相 当する単語または品詞を連結する。 たとえば図 9の 1 4 1の例では、 「動詞 +助動詞」 や 「格助詞 +動詞」 などの規則により、 「を + (動詞) +たい」 力 S 単語として連結される。 このように、 上記の一部の内容語が品詞名に置き換 えられ、 さらに上記のような単語または品詞列が連結され一単語とみなされ たコーパスについて、 原言語文、 目的言語文別々に、 各単語または品詞の 2 連鎖出現頻度 (以後 bi - gramと呼ぶ) を算出する。 算出式は (数 2 ) と同様 である。
さらに、 bi- gramの値が全て一定閾値を超えなくなるまで、 第 3の実施の形 態と同等に、 処理を繰り返す。 そして、 連結された単語も含めた個々の単語
をフレーズ候補として抽出し、 フレーズ決定部で、 第 3の実施の形態と同様 に対訳フレーズ辞書 1 4 4と対訳フレーズ間規則表 1 4 5を作成する。 図 9 の 1 5 1はフレーズ定義表に従って単語または品詞が連結されたコーパスの 例であり、 1 5 2が作成された対訳フレーズ辞書 1 4 4の例である。
通訳の際の動作も第 3の実施の形態と同様である。
以上の実施の形態では、 予め定義されているフレーズとみなしたい単語ま たは品詞列の規則に従って単語または品詞を連結した後、 原言語文及び目的 言語文各々における単語または品詞の隣接頻度と、 対訳における頻度の高い 単語列または品詞列の共起関係を用いて自動的に対訳フレーズとフレーズ間 規則を決定し、 この対訳フレーズ規則を用レ、て言語または文体変換とを行う ことにより、 人手を最小限度に押さえた範囲で、 さらに効率よく品質の高い 対訳フレーズ辞書を生成できる言語変換規則作成装置を提供することが出来 る。
なお、 本実施の形態の対訳フレーズは、 本発明の対応するフレーズの例で ある。
さらに、 本実施の形態では、 言語変換装置の 1つの例として通訳装置を例 にあげて説明したが、 これは他の言語変換装置、 例えばくだけた発話文を書 き言葉のようなテキスト文に変換する言語変換装置においても、 同様に使用 することが出来る。
(実施の形態 5 )
第 3の実施の形態では、 言語規則を構築する際に、 コーパスの一部の単語 を品詞化することで、 より一般的で品質の高い規則の構築を実現しているが 、 品詞化の代わりに意味コード化することでも同様の効果が期待できる。 以
下に図 1 0を参照しながら、 本実施の形態を説明する。 本実施の形態でも、 異なる言語間の変換を行う通訳装置を用いて説明する。
なお、 本実施の形態のうち、 対訳コーパス 2 0 1、 分類語彙表 2 1 6、 対 訳単語辞書 2 0 7、 形態素解析部 2 0 2、 意味コ一ド化部 2 1 5、 フレーズ 抽出部 2 0 5、 フレーズ決定部 2 0 6は、 対訳フレ一ズ間規則表 2 0 8、 対 訳フレーズ辞書 2 0 9は、 本発明の言語変換規則作成装置の例である。 また 、 本実施の形態の対訳フレーズ辞書 2 0 9は本発明の請求項 6記載のフレー ズ辞書の例である。
本実施の形態の通訳装置は、 第 3の実施の形態同様、 形態素解析部 2 0 2 で対訳コーパス 2 0 1内の原言語文の形態素解析を行うことで品詞タグが原 言語文に与えられる。 次に、 意味コード化部 2 1 5で、 原言語文の形態素列 において、 各形態素と分類語彙表 2 1 6に書かれている単語とを比較し、 分 類語彙表 2 1 6で意味コードが与えられている単語と一致した形態素につい ては、 形態素名を意味コードに置きかえることで、 入力形態素列を一部の形 態素が意味コード化された形態素列に変換する。 この際に意味コード化され る形態素には以下の条件を満たすものとする。
(条件) 対訳単語辞書に登録されている単語で、 対訳単語辞書の目的言語訳 に相当する単語が、 コーパス内の相当する目的言語対訳文に存在する。
図 1 1の例では、 対訳単語辞書に登録されておりしかも分類語彙表でコ一 ドが与えられている 「部屋」 と 「予約」 のみが意味コード化され、 2 1 3 2 のようにこれらの形態素を意味コードに置き換えた形態素列が作成される。 さらに、 相当する目的言語対訳文内の単語名も 2 1 3 3のように意味コード に置き換える。
次に、 上記の一部の内容語が意味コードに置き換えられたコーパスについ て、 フレーズ抽出部 2 0 5で、 原言語文、 目的言語文別々に、 各単語または 意味コードの 2連鎖出現頻度を算出する。 算出式を (数 5 ) に示す。 【数 5】
{単語 (または意味コ-ト") i と単語 (または意味コ -に) 丄が隣接して出現した数 _] (単語 (または意味コ-に) iの全出現数十単語 (またはコ- ) j .の全出現数) ~
コーパス内の全原言語文及び目的言語文を対象に bi-gramを算出した後、 フ レーズ抽出部で、 最も出現頻度の高かった 2単語または意味コード対を 1つ の単語とみなして連結し、 再度 bi - gramを算出する。 これにより、 たとえば頻 度高く隣接する 「お」 「願い」 、 「願い」 「し」 、 「し」 「ます」 などの単 語対が連結され、 「お願いします」 というフレーズ候補が形成される。 目的 言語では 「I' d」 riikej 、 riikej 「to」 の単語対が連結される。 全原言語文及び目的言語文別々に、 以上の連結と bi- gram算出とを、 bi-gr amの値が全て一定閾値を超えなくなるまで繰り返す。 そして、 連結された単 語も含めた個々の単語をフレーズ候補として抽出する。 以下第 3の実施の形態と同様にフレーズ決定部 2 0 6にて対訳フレーズを 決定し、 対訳フレーズ辞書 2 0 9に登録する。 さらに第 3の実施の形態と同 様にフレーズ間言語規則及ぴフレーズ bi- gramを作成し、 対訳フレーズ間規則 表 2 0 8に登録する。 通訳の際も第 3の実施の形態と同様に動作する。 以上の実施の形態では、 原言語フレーズと目的言語フレ一ズが対応した形 で規則を記述しておき、 このフレーズの単位で認識を行ないうことで、 入力
文の一部が未知部分文であったり、 音声認識が一部誤ったとしても、 正しく 認識および解析された部分は適切に処理され出力される言語変換装置を可能 にする。 また、 原言語文及び目的言語文各々における単語または意味コード の隣接頻度と、 対訳における頻度の高い単語列または意味コード列の共起関 係を用いて自動的に対訳フレーズとフレーズ間規則を決定し、 この対訳フレ ーズ規則を用いて通訳を行うことにより、 なるべく人手をかけずに、 自動的 に効率よく しかも.品質の高い対訳フレーズ辞書を生成できる言語規則作成装 置を可能とする。
なお、 本実施の形態では、 言語変換装置の 1つの例として通訳装置を例に あげて説明したが、 これは他の言語変換装置、 例えばくだけた発話文を書き 言葉のようなテキスト文に変換する言語変換装置においても同様に使用する ことが出来る。
(実施の形態 6 )
第 5の実施の形態では、 言語規則を構築する際に、 隣接頻度の高い単語ま たは品詞、 意味コードを連結してフレーズを作成していたが、 フレーズを作 成した後に、 文複雑度を評価することで、 より品質が高く、 認識率を保証で きるフレーズを形成することができる。
以下に図 1 2を参照しながら、 言語変換規則作成装置の実施の形態を説明 する。
なお、 本実施の形態における対訳フレーズ辞書は本発明の請求項 6記載の フレーズ辞書の例である。
先の実施の形態同様、 形態素解析後、 意味コード化部 2 1 3で一部の形態 素を意味コードに変換した対訳コーパスを作成する。 さらに、 フレーズ抽出
部で、 原言語文、 目的言語文別々に、 各単語または意味コードの bi- gramを算 出する。 算出式は (数 5 ) と同様である。
さらに、 bi - gramの値が全て一定閾値を超えなくなるまで、 先の実施の形態 と同等に、 処理を繰り返す。 そして、 連結された単語も含めた個々の単語を フレーズ候補として抽出する。
上記の処理を行う際に、 文複雑度算出部 2 1 8で、 各単語または意味コー ドの bi- gramを算出し、 bi- gramの値によって連結処理を行う際に、 各単語対 を連結した場合と連結しなレ、場合との文複雑度を算出し比較する。 文複雑度 は (数 6 ) で算出されるものである。 【数 6】 文複雑度 F = 2 H(L)
M
H(L) - ― ∑ P (Wi I Wi-1) log P (Wi I Wi-1) /M
P (Wi | Wi-l) : i-1番目の形態素が Wi-1であった時に i番目の形態素が Wiである確率 M : 全コーパスにおける 2単語連鎖の種類数 比較した結果、 フレーズ抽出部 2 1 7で各単語または意味コードを連結す ることで文複雑度が増加するものについては、 フレーズ候補から除去する。 上記処理でフレーズ候補に残ったフレーズを対象に、 先の実施の形態と同 条件でフレーズを決定し、 対訳フレーズ辞書 2 0 9とフレーズ間規則表 2 0 8を決定する。
以上の実施の形態では、 対訳フレーズを決定する際に、 意味コードによる 単語クラス化された対訳コ一パスの文複雑度を用いて決定することにより、 コーパスから対訳フレーズを自動的に抽出することを可能とし、 人手をなる
ベく用いずに、 効率よく品質の高い対訳フレーズ辞書を生成できる。 また、 文複雑度の尺度が、 音声認識に適切なフレーズかどうかの尺度と密接に関係 があるため、 認識精度を保証しながら、 自動的にフレーズ抽出することが可 能となる。
なお、 本実施の形態では、 一部の単語を意味コード化したコーパスを扱つ てフレーズ抽出する例を説明したが、 品詞化したコ一パスを扱ってフレーズ 抽出する場合でも同様の効果が期待できる。
さらに、 第 4の実施の形態では、 品詞タグが付与された対訳コーパスを扱 つてフレーズ定義表によりフレーズを抽出する例を説明したが、 第 5の実施 の形態で説明したように一部の単語を意味コード化したコーパスを扱って、 フレーズ定義表によりフレーズを抽出する場合でも同様の効果が期待できる。 さらに、 第 1〜5の実施の形態では言語変換装置は、 音声認識部、 言語変 換部、 出力文生成部から構成されるとして説明したが、 これに限らない。 図 1 3に示すように、 出力文生成部 2 1 2が出力した翻訳結果文を音声合成す る音声合成部を設けても構わない。 そしてこの音声合成部は、 音声合成する 際に音声認識部 2 1 0、 言語変換部 2 1 1で用いられたのと同じ対訳フレー ズ間規則表 2 0 8、 対訳フレーズ辞書 2 0 9を用いて音声合成を行う。 この ようにすれば入力音声文に未学習部分があったり、 音声認識が一部誤りを起 こしても、 全文に対する音声合成結果が全く出力されないという問題点を解 決し、 正しく認識された部分については、 適切な音声を出力できることが期 待できる。
さらに、 本発明の言語変換装置または言語変換規則作成装置の各構成要素 の全部または一部の機能を専用のハードウェアを用いて実現しても構わない
し、 またコンピュータのプログラムによってソフトウエア的に実現しても構 わない。
さらに、 本発明の言語変換装置または言語変換規則作成装置の各構成要素 の全部または一部の機能をコンピュータに実行させるためのプログラムを格 納していることを特徴とするプログラム記録媒体も本発明に属する。 産業上の利用可能性
以上説明したところから明らかなように、 本発明は、 必ず目的言語文に変 換可能な認識結果を出力でき、 従って、 入力文の一部が未知部分文であった り、 音声認識が一部誤ったとしても、 正しく認識および解析された部分は適 切に処理され出力されることを可能にする言語変換規則作成装置および言語 変換装置を提供することが出来る。
また、 本発明は、 入力音声文に未学習部分があったり、 音声認識が一部誤 りを起こしても、 正しく認識され適切な解析規則が当てはまった部分のみの 変換が可能であり、 部分的な変換結果を必ず出力することを可能にする言語 変換規則作成装置および言語変換装置を提供することが出来る。
また、 本発明は、 なるべく人手をかけずに自動的に言語規則を作成するこ とを可能にする言語変換規則作成装置を提供することが出来る。
また、 本発明は、 なるべく人手をかけずに自動的に、 かつ、 より効率よく 高品質な言語規則を作成することを可能にする言語変換規則作成装置を提供 することが出来る。
また、 本発明は、 自動的に、 かつ、 より効率よく高品質な言語規則を作成 することを可能にする言語変換規則作成装置を提供することが出来る。
Claims
1 . 音声またはテキストで入力される言語変換の対象となる文 (以下、 原言語文と呼ぶ、 これに対応して言語変換された文を目的言語文と呼ぶ) と 、 目的言語文とが対になった学習用データベース (以下、 対訳コーパスと呼 ぶ) 力 ら単語または単語列に対する文法的または意味的制約規則を学習して 得られた言語規則を格納する格納手段と、
格納された前記言語規則を用いて入力音声の音声認識を行い、 言語変換の 対象となる文で認識結果を出力する音声認識部と、
前記音声認識部で用いられたのと同じ前記言語規則を用いて言語変換の対 象となる文を言語変換された文に変換する言語変換部とを備えたことを特徴 とする言語変換装置。
2 . 前記言語規則は、 言語変換の対象となる文と、 変換された文とが共 に意味的なまとまりを形成する部分 (体型非依存フレーズと呼ぶ) に分割し 、 前記体型非依存フレーズ內の言語規則と前記体型非依存フレーズ間の言語 規則とを分けて規則化されて作られるものであることを特徴とする請求項 1 記載の言語変換装置。
3 . 前記言語規則は、 前記体型非依存フレーズ内の文法的または意味的 規則と前記体型非依存フレーズ間の共起または連接関係を規則化されて作ら れるものであることを特徴とする請求項 2記載の言語変換装置。
4 . 前記言語変換部で用いられたのと同じ言語規則を用いて前記言語変
換された文を音声合成する音声合成部とを備えたことを特徴とする請求項 1 記載の言語変換装置。
5 . 前記言語規則のうち、 目的言語文が同じである言語規則を同じカテ ゴリーとしてまとめられた言語規則群に対して、 前記言語規則群に含まれる 言語規則の言語変換の対象となる文の音響的規則間距離を算出する規則間距 離算出部と、
音声認識の認識レベルを上げるために、 算出された前記距離が近い言語規 則どうしをマージすることで前記規則群の最適化を行う最適規則作成部と、 を備えたことを特徴とする請求項 1〜 4のいずれかに記載の言語変換装置。
6 . 対訳コーパスと、
その対訳コーパス中の原言語文及び目的言語文における単語または品詞の 隣接頻度を算出し、 頻度の高い単語及び品詞を連結して意味的なまとまりを 形成する部分文 (以下、 フレーズと呼ぶ) を抽出するフレーズ抽出部と、 前記フレーズ抽出部で抽出された前記フレーズで、 原言語及び目的言語の フレーズの関係を調べることで対応するフレーズを決定するフレーズ決定部 と、
決定された前記対応するフレーズを保管しておくフレーズ辞書とを備え、 前記フレーズ辞書は、 言語変換を行う際に用いられ、 その言語変換は、 原 言語文が入力された際にこの入力文と前記フレーズ辞書に格納されている前 記対応するフレーズとを照合することで言語または文体変換を行うものであ るたことを特徴とする言語変換規則作成装置。
7 . 前記フレーズ決定部は、 原言語及び目的言語のフレーズの共起関係 を調べることで対応するフレーズを決定することを特徴とする請求項 6記載 の言語変換規則作成装置。
8 . 前記対訳コーパスの原言語文を単語列に変換する形態素解析部と、 その形態素解析部の結果を利用して原言語文及び目的言語文の一部または 全部の単語を品詞名で置き換えた対訳コーパスを作成する品詞化部を更に有 し、
前記フレーズ抽出部は、 前記品詞化部で品詞化された対訳コーパスからフ レーズを抽出することを特徴とする請求項 6記載の言語変換規則作成装置。
9 . 原言語と目的言語との対訳単語辞書を有し、
前記品詞化部は、 前記対訳単語辞書で対応付けされている単語でかつ原言 語が内容語である単語を品詞化することを特徴とする請求項 8記載の言語変 換規則作成装置。
1 0 . 前記対訳コ一パスの原言語文を単語列に変換する形態素解析部と その形態素解析部の結果を利用して、 意味的羯似した単語を同クラスと見 なして単語を分類し、 同クラス内の単語に同コードを与えている表 (以下、 分類語彙表という) に基づき、 原言語文及び目的言語文の一部または全部の 単語を前記分類語彙表のコードに置き換えた対訳コーパスを作成する意味コ
一ド化部を更に有し、
前記フレーズ抽出部は、 前記意味コード化部でコードに置き換えられた対 訳コーパスからフレーズを抽出することを特徴とする請求項 6記載の言語変 換規則作成装置。
1 1 . 原言語と目的言語との対訳単語辞書を有し、
前記意味コード化部は、 前記対訳単語辞書で対応つけられている単語のみ 意味コード化することを特徴とする請求項 1 0記載の言語変換規則作成装置。
1 2 . 前記フレーズ抽出部は、 予め優先的にフレーズとみなしたい単語 または品詞列を原言語と目的言語を対にして保管しておくフレーズ定義表を も利用して、 フレーズを抽出することを特徴とする請求項 6記載の言語変換 規則作成装置。
1 3 . コーパスのパープレキシティ一 (文複雑度) を算出する文複雑度 算出部を有し、
前記フレーズ抽出部は、 単語または単語クラスの隣接頻度と前記文複雑度 を用いてフレーズを抽出することを特徴とする請求項 6〜 1 3のいずれかに 記載の言語変換規則作成装置。
1 4 . 請求項 1〜 1 3のいずれかに記載の言語変換装置または言語変換 規則作成装置の各構成要素の全部または一部の機能をコンピュータに実行す るためのプログラムを格納していることを特徴とするプログラム記録媒体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/701,921 US7072826B1 (en) | 1998-06-04 | 1999-06-02 | Language conversion rule preparing device, language conversion device and program recording medium |
US11/344,027 US7321850B2 (en) | 1998-06-04 | 2006-01-31 | Language transference rule producing apparatus, language transferring apparatus method, and program recording medium |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15555098 | 1998-06-04 | ||
JP10/155550 | 1998-06-04 | ||
JP3925399 | 1999-02-17 | ||
JP11/39253 | 1999-02-17 | ||
JP11/41186 | 1999-02-19 | ||
JP4118699 | 1999-02-19 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09701921 A-371-Of-International | 1999-06-02 | ||
US11/344,027 Continuation US7321850B2 (en) | 1998-06-04 | 2006-01-31 | Language transference rule producing apparatus, language transferring apparatus method, and program recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999063456A1 true WO1999063456A1 (fr) | 1999-12-09 |
Family
ID=27290089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1999/002954 WO1999063456A1 (fr) | 1998-06-04 | 1999-06-02 | Dispositif de preparation de regles de conversion du langage, dispositif de conversion du langage et support d'enregistrement de programme |
Country Status (3)
Country | Link |
---|---|
US (2) | US7072826B1 (ja) |
CN (2) | CN1652107A (ja) |
WO (1) | WO1999063456A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7050979B2 (en) | 2001-01-24 | 2006-05-23 | Matsushita Electric Industrial Co., Ltd. | Apparatus and method for converting a spoken language to a second language |
Families Citing this family (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4517260B2 (ja) * | 2000-09-11 | 2010-08-04 | 日本電気株式会社 | 自動通訳システム、自動通訳方法、および自動通訳用プログラムを記録した記憶媒体 |
US7660740B2 (en) | 2000-10-16 | 2010-02-09 | Ebay Inc. | Method and system for listing items globally and regionally, and customized listing according to currency or shipping area |
US7860706B2 (en) * | 2001-03-16 | 2010-12-28 | Eli Abir | Knowledge system method and appparatus |
US7752266B2 (en) | 2001-10-11 | 2010-07-06 | Ebay Inc. | System and method to facilitate translation of communications between entities over a network |
EP1306775A1 (en) * | 2001-10-29 | 2003-05-02 | BRITISH TELECOMMUNICATIONS public limited company | Machine translation |
US7716207B2 (en) * | 2002-02-26 | 2010-05-11 | Odom Paul S | Search engine methods and systems for displaying relevant topics |
US20060004732A1 (en) * | 2002-02-26 | 2006-01-05 | Odom Paul S | Search engine methods and systems for generating relevant search results and advertisements |
US7340466B2 (en) * | 2002-02-26 | 2008-03-04 | Kang Jo Mgmt. Limited Liability Company | Topic identification and use thereof in information retrieval systems |
US7398209B2 (en) | 2002-06-03 | 2008-07-08 | Voicebox Technologies, Inc. | Systems and methods for responding to natural language speech utterance |
US7941348B2 (en) | 2002-06-10 | 2011-05-10 | Ebay Inc. | Method and system for scheduling transaction listings at a network-based transaction facility |
US8719041B2 (en) | 2002-06-10 | 2014-05-06 | Ebay Inc. | Method and system for customizing a network-based transaction facility seller application |
US8078505B2 (en) | 2002-06-10 | 2011-12-13 | Ebay Inc. | Method and system for automatically updating a seller application utilized in a network-based transaction facility |
US7693720B2 (en) * | 2002-07-15 | 2010-04-06 | Voicebox Technologies, Inc. | Mobile systems and methods for responding to natural language speech utterance |
JP3494376B1 (ja) * | 2002-12-05 | 2004-02-09 | 株式会社システムズ | プログラム解析装置およびプログラム |
EP1576462B1 (en) * | 2002-12-26 | 2008-03-05 | Casio Computer Co., Ltd. | Electronic dictionary with example sentences |
JP4038211B2 (ja) * | 2003-01-20 | 2008-01-23 | 富士通株式会社 | 音声合成装置,音声合成方法および音声合成システム |
US7742985B1 (en) | 2003-06-26 | 2010-06-22 | Paypal Inc. | Multicurrency exchanges between participants of a network-based transaction facility |
WO2005033909A2 (en) * | 2003-10-08 | 2005-04-14 | Any Language Communications Inc. | Relationship analysis system and method for semantic disambiguation of natural language |
US20050125218A1 (en) * | 2003-12-04 | 2005-06-09 | Nitendra Rajput | Language modelling for mixed language expressions |
US7383171B2 (en) * | 2003-12-05 | 2008-06-03 | Xerox Corporation | Semantic stenography using short note input data |
US9189568B2 (en) | 2004-04-23 | 2015-11-17 | Ebay Inc. | Method and system to display and search in a language independent manner |
US20050289463A1 (en) * | 2004-06-23 | 2005-12-29 | Google Inc., A Delaware Corporation | Systems and methods for spell correction of non-roman characters and words |
JP3998668B2 (ja) * | 2004-07-14 | 2007-10-31 | 沖電気工業株式会社 | 形態素解析装置、方法及びプログラム |
KR100731283B1 (ko) * | 2005-05-04 | 2007-06-21 | 주식회사 알에스엔 | 질의어에 따른 대량문서기반 성향 분석시스템 |
CN100377089C (zh) * | 2005-07-22 | 2008-03-26 | 中国科学院计算技术研究所 | 二进制翻译中经由跳转表的多目标分支语句的识别方法 |
US7640160B2 (en) | 2005-08-05 | 2009-12-29 | Voicebox Technologies, Inc. | Systems and methods for responding to natural language speech utterance |
US7620549B2 (en) * | 2005-08-10 | 2009-11-17 | Voicebox Technologies, Inc. | System and method of supporting adaptive misrecognition in conversational speech |
US7949529B2 (en) | 2005-08-29 | 2011-05-24 | Voicebox Technologies, Inc. | Mobile systems and methods of supporting natural language human-machine interactions |
WO2007064639A2 (en) * | 2005-11-29 | 2007-06-07 | Scientigo, Inc. | Methods and systems for providing personalized contextual search results |
JP4100637B2 (ja) * | 2005-12-08 | 2008-06-11 | インターナショナル・ビジネス・マシーンズ・コーポレーション | 翻訳のための装置、方法、プログラム及び翻訳支援サービス提供方法 |
JP2007219880A (ja) * | 2006-02-17 | 2007-08-30 | Fujitsu Ltd | 評判情報処理プログラム、方法及び装置 |
WO2007105615A1 (ja) * | 2006-03-10 | 2007-09-20 | Nec Corporation | 要求内容識別システム、自然言語による要求内容の識別方法及びプログラム |
US20080213734A1 (en) * | 2006-04-02 | 2008-09-04 | Steve George Guide | Method for Decoding Pictographic Signs Present on Ancient Artifacts |
US7562811B2 (en) | 2007-01-18 | 2009-07-21 | Varcode Ltd. | System and method for improved quality management in a product logistic chain |
JP2009537038A (ja) | 2006-05-07 | 2009-10-22 | バーコード リミティド | 製品ロジスティックチェーンにおける品質管理を改善するためのシステムおよび方法 |
JP2008032834A (ja) * | 2006-07-26 | 2008-02-14 | Toshiba Corp | 音声翻訳装置及びその方法 |
US8639782B2 (en) | 2006-08-23 | 2014-01-28 | Ebay, Inc. | Method and system for sharing metadata between interfaces |
JP2008090555A (ja) * | 2006-09-29 | 2008-04-17 | Oki Electric Ind Co Ltd | 訳文評価装置、訳文評価方法およびコンピュータプログラム |
US8073681B2 (en) | 2006-10-16 | 2011-12-06 | Voicebox Technologies, Inc. | System and method for a cooperative conversational voice user interface |
JP5082374B2 (ja) * | 2006-10-19 | 2012-11-28 | 富士通株式会社 | フレーズアラインメントプログラム、翻訳プログラム、フレーズアラインメント装置およびフレーズアラインメント方法 |
US7818176B2 (en) | 2007-02-06 | 2010-10-19 | Voicebox Technologies, Inc. | System and method for selecting and presenting advertisements based on natural language processing of voice-based input |
JP2010526386A (ja) | 2007-05-06 | 2010-07-29 | バーコード リミティド | バーコード標識を利用する品質管理のシステムと方法 |
WO2009016631A2 (en) * | 2007-08-01 | 2009-02-05 | Ginger Software, Inc. | Automatic context sensitive language correction and enhancement using an internet corpus |
US8548791B2 (en) * | 2007-08-29 | 2013-10-01 | Microsoft Corporation | Validation of the consistency of automatic terminology translation |
US8540156B2 (en) | 2007-11-14 | 2013-09-24 | Varcode Ltd. | System and method for quality management utilizing barcode indicators |
US8140335B2 (en) | 2007-12-11 | 2012-03-20 | Voicebox Technologies, Inc. | System and method for providing a natural language voice user interface in an integrated voice navigation services environment |
US9305548B2 (en) | 2008-05-27 | 2016-04-05 | Voicebox Technologies Corporation | System and method for an integrated, multi-modal, multi-device natural language voice services environment |
US8589161B2 (en) | 2008-05-27 | 2013-11-19 | Voicebox Technologies, Inc. | System and method for an integrated, multi-modal, multi-device natural language voice services environment |
US11704526B2 (en) | 2008-06-10 | 2023-07-18 | Varcode Ltd. | Barcoded indicators for quality management |
US8812304B2 (en) * | 2008-08-12 | 2014-08-19 | Abbyy Infopoisk Llc | Method and system for downloading additional search results into electronic dictionaries |
US8326637B2 (en) | 2009-02-20 | 2012-12-04 | Voicebox Technologies, Inc. | System and method for processing multi-modal device interactions in a natural language voice services environment |
US8798983B2 (en) * | 2009-03-30 | 2014-08-05 | Microsoft Corporation | Adaptation for statistical language model |
US8473555B2 (en) * | 2009-05-12 | 2013-06-25 | International Business Machines Corporation | Multilingual support for an improved messaging system |
JP5471106B2 (ja) * | 2009-07-16 | 2014-04-16 | 独立行政法人情報通信研究機構 | 音声翻訳システム、辞書サーバ装置、およびプログラム |
WO2011029011A1 (en) * | 2009-09-04 | 2011-03-10 | Speech Cycle, Inc. | System and method for the localization of statistical classifiers based on machine translation |
KR101266361B1 (ko) * | 2009-09-10 | 2013-05-22 | 한국전자통신연구원 | 구조화된 번역 메모리 기반의 자동 번역 시스템 및 자동 번역 방법 |
US9502025B2 (en) | 2009-11-10 | 2016-11-22 | Voicebox Technologies Corporation | System and method for providing a natural language content dedication service |
US9171541B2 (en) * | 2009-11-10 | 2015-10-27 | Voicebox Technologies Corporation | System and method for hybrid processing in a natural language voice services environment |
CN102884518A (zh) | 2010-02-01 | 2013-01-16 | 金格软件有限公司 | 尤其用于小键盘装置的使用互联网语料库的自动的上下文相关的语言校正 |
JP5505234B2 (ja) | 2010-09-29 | 2014-05-28 | 富士通株式会社 | 文字列比較プログラム、文字列比較装置及び文字列比較方法 |
TWI489862B (zh) * | 2011-11-09 | 2015-06-21 | Inst Information Industry | Digital TV instant translation system and its method |
US8807422B2 (en) | 2012-10-22 | 2014-08-19 | Varcode Ltd. | Tamper-proof quality management barcode indicators |
US9575965B2 (en) * | 2013-03-13 | 2017-02-21 | Red Hat, Inc. | Translation assessment based on computer-generated subjective translation quality score |
US9741339B2 (en) * | 2013-06-28 | 2017-08-22 | Google Inc. | Data driven word pronunciation learning and scoring with crowd sourcing based on the word's phonemes pronunciation scores |
US20150057994A1 (en) * | 2013-08-20 | 2015-02-26 | Eric Hong Fang | Unified Mobile Learning Platform |
EP3195145A4 (en) | 2014-09-16 | 2018-01-24 | VoiceBox Technologies Corporation | Voice commerce |
WO2016044321A1 (en) | 2014-09-16 | 2016-03-24 | Min Tang | Integration of domain information into state transitions of a finite state transducer for natural language processing |
EP3007467B1 (en) * | 2014-10-06 | 2017-08-30 | Oticon A/s | A hearing device comprising a low-latency sound source separation unit |
US9747896B2 (en) | 2014-10-15 | 2017-08-29 | Voicebox Technologies Corporation | System and method for providing follow-up responses to prior natural language inputs of a user |
JP6466138B2 (ja) * | 2014-11-04 | 2019-02-06 | 株式会社東芝 | 外国語文作成支援装置、方法及びプログラム |
US10614799B2 (en) | 2014-11-26 | 2020-04-07 | Voicebox Technologies Corporation | System and method of providing intent predictions for an utterance prior to a system detection of an end of the utterance |
US10431214B2 (en) | 2014-11-26 | 2019-10-01 | Voicebox Technologies Corporation | System and method of determining a domain and/or an action related to a natural language input |
CA2985160C (en) | 2015-05-18 | 2023-09-05 | Varcode Ltd. | Thermochromic ink indicia for activatable quality labels |
WO2017006326A1 (en) | 2015-07-07 | 2017-01-12 | Varcode Ltd. | Electronic quality indicator |
CN106372053B (zh) * | 2015-07-22 | 2020-04-28 | 华为技术有限公司 | 句法分析的方法和装置 |
WO2017017738A1 (ja) * | 2015-07-24 | 2017-02-02 | 富士通株式会社 | 符号化プログラム、符号化装置、及び符号化方法 |
CN106383818A (zh) * | 2015-07-30 | 2017-02-08 | 阿里巴巴集团控股有限公司 | 一种机器翻译方法及装置 |
CN105512110B (zh) * | 2015-12-15 | 2018-04-06 | 江苏科技大学 | 一种基于模糊匹配与统计的错字词知识库构建方法 |
CN106156848B (zh) * | 2016-06-22 | 2018-08-14 | 中国民航大学 | 一种基于lstm-rnn的陆空通话语义一致性校验方法 |
US10331784B2 (en) | 2016-07-29 | 2019-06-25 | Voicebox Technologies Corporation | System and method of disambiguating natural language processing requests |
US11836454B2 (en) * | 2018-05-02 | 2023-12-05 | Language Scientific, Inc. | Systems and methods for producing reliable translation in near real-time |
US10977439B2 (en) * | 2019-04-01 | 2021-04-13 | International Business Machines Corporation | Controllable style-based text transformation |
US12223948B2 (en) | 2022-02-03 | 2025-02-11 | Soundhound, Inc. | Token confidence scores for automatic speech recognition |
US11991133B2 (en) * | 2022-09-27 | 2024-05-21 | Discord Inc. | Real-time message moderation |
US12019976B1 (en) * | 2022-12-13 | 2024-06-25 | Calabrio, Inc. | Call tagging using machine learning model |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6470871A (en) * | 1987-09-11 | 1989-03-16 | Hitachi Ltd | Maintenance system for word order relation dictionary |
JPH08328585A (ja) * | 1995-05-31 | 1996-12-13 | Sony Corp | 自然言語処理装置および自然言語処理方法、並びに音声認識装置および音声認識方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5351189A (en) * | 1985-03-29 | 1994-09-27 | Kabushiki Kaisha Toshiba | Machine translation system including separated side-by-side display of original and corresponding translated sentences |
JPH083815B2 (ja) * | 1985-10-25 | 1996-01-17 | 株式会社日立製作所 | 自然言語の共起関係辞書保守方法 |
US5225981A (en) * | 1986-10-03 | 1993-07-06 | Ricoh Company, Ltd. | Language analyzer for morphemically and syntactically analyzing natural languages by using block analysis and composite morphemes |
US5418717A (en) * | 1990-08-27 | 1995-05-23 | Su; Keh-Yih | Multiple score language processing system |
JP2815714B2 (ja) * | 1991-01-11 | 1998-10-27 | シャープ株式会社 | 翻訳装置 |
US5477451A (en) * | 1991-07-25 | 1995-12-19 | International Business Machines Corp. | Method and system for natural language translation |
JP3258079B2 (ja) | 1992-08-14 | 2002-02-18 | 富士通株式会社 | 複合語辞書登録装置 |
US5867812A (en) | 1992-08-14 | 1999-02-02 | Fujitsu Limited | Registration apparatus for compound-word dictionary |
JP3476237B2 (ja) * | 1993-12-28 | 2003-12-10 | 富士通株式会社 | 構文解析装置 |
US5819221A (en) * | 1994-08-31 | 1998-10-06 | Texas Instruments Incorporated | Speech recognition using clustered between word and/or phrase coarticulation |
US6567778B1 (en) * | 1995-12-21 | 2003-05-20 | Nuance Communications | Natural language speech recognition using slot semantic confidence scores related to their word recognition confidence scores |
US6024571A (en) * | 1996-04-25 | 2000-02-15 | Renegar; Janet Elaine | Foreign language communication system/device and learning aid |
US6467778B1 (en) * | 1998-09-16 | 2002-10-22 | Jas D. Easton, Inc. | Ice skate |
US6349276B1 (en) * | 1998-10-29 | 2002-02-19 | International Business Machines Corporation | Multilingual information retrieval with a transfer corpus |
US6282507B1 (en) * | 1999-01-29 | 2001-08-28 | Sony Corporation | Method and apparatus for interactive source language expression recognition and alternative hypothesis presentation and selection |
US6601026B2 (en) * | 1999-09-17 | 2003-07-29 | Discern Communications, Inc. | Information retrieval by natural language querying |
US7027975B1 (en) * | 2000-08-08 | 2006-04-11 | Object Services And Consulting, Inc. | Guided natural language interface system and method |
EP1576586A4 (en) * | 2002-11-22 | 2006-02-15 | Transclick Inc | LANGUAGE TRANSLATION SYSTEM AND METHOD |
US6999934B2 (en) * | 2003-05-22 | 2006-02-14 | Holtran Technology Ltd. | Method and system for processing, storing, retrieving and presenting information with an extendable interface for natural and artificial languages |
-
1999
- 1999-06-02 CN CNA2005100526145A patent/CN1652107A/zh active Pending
- 1999-06-02 WO PCT/JP1999/002954 patent/WO1999063456A1/ja active Application Filing
- 1999-06-02 CN CN99809205A patent/CN1311881A/zh active Pending
- 1999-06-02 US US09/701,921 patent/US7072826B1/en not_active Expired - Lifetime
-
2006
- 2006-01-31 US US11/344,027 patent/US7321850B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6470871A (en) * | 1987-09-11 | 1989-03-16 | Hitachi Ltd | Maintenance system for word order relation dictionary |
JPH08328585A (ja) * | 1995-05-31 | 1996-12-13 | Sony Corp | 自然言語処理装置および自然言語処理方法、並びに音声認識装置および音声認識方法 |
Non-Patent Citations (1)
Title |
---|
KUMIKO OOMORI et al., "Kyouki Kankei o Riyou Shita Taiyaku Corpus Kara No Rengo No Taiyaku Hyougen Takishutsu", JOHO SHORI GAKKAI KENKYUU HOUKOKU, Vol. 97, No. 109, 21 November 1997, pages 13-20. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7050979B2 (en) | 2001-01-24 | 2006-05-23 | Matsushita Electric Industrial Co., Ltd. | Apparatus and method for converting a spoken language to a second language |
Also Published As
Publication number | Publication date |
---|---|
US20060129381A1 (en) | 2006-06-15 |
US7072826B1 (en) | 2006-07-04 |
CN1311881A (zh) | 2001-09-05 |
CN1652107A (zh) | 2005-08-10 |
US7321850B2 (en) | 2008-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1999063456A1 (fr) | Dispositif de preparation de regles de conversion du langage, dispositif de conversion du langage et support d'enregistrement de programme | |
US6278968B1 (en) | Method and apparatus for adaptive speech recognition hypothesis construction and selection in a spoken language translation system | |
US6374224B1 (en) | Method and apparatus for style control in natural language generation | |
US6282507B1 (en) | Method and apparatus for interactive source language expression recognition and alternative hypothesis presentation and selection | |
US6223150B1 (en) | Method and apparatus for parsing in a spoken language translation system | |
US6243669B1 (en) | Method and apparatus for providing syntactic analysis and data structure for translation knowledge in example-based language translation | |
US6442524B1 (en) | Analyzing inflectional morphology in a spoken language translation system | |
US6266642B1 (en) | Method and portable apparatus for performing spoken language translation | |
US6356865B1 (en) | Method and apparatus for performing spoken language translation | |
AU2004201089B2 (en) | Syntax tree ordering for generating a sentence | |
Nießen et al. | Statistical machine translation with scarce resources using morpho-syntactic information | |
US8566076B2 (en) | System and method for applying bridging models for robust and efficient speech to speech translation | |
JPH05189481A (ja) | 翻訳用コンピュータ操作方法、字句モデル生成方法、モデル生成方法、翻訳用コンピュータシステム、字句モデル生成コンピュータシステム及びモデル生成コンピュータシステム | |
WO2010046782A2 (en) | Hybrid machine translation | |
US7379870B1 (en) | Contextual filtering | |
Wang et al. | MUXING: a telephone-access Mandarin conversational system. | |
JP3441400B2 (ja) | 言語変換規則作成装置、及びプログラム記録媒体 | |
Gao et al. | MARS: A statistical semantic parsing and generation-based multilingual automatic translation system | |
JP3009636B2 (ja) | 音声言語解析装置 | |
JP3825645B2 (ja) | 表現変換方法及び表現変換装置 | |
JP3737817B2 (ja) | 表現変換方法及び表現変換装置 | |
JP3903820B2 (ja) | 自然言語処理システム及び自然言語処理方法、並びにコンピュータ・プログラム | |
JP4033093B2 (ja) | 自然言語処理システム及び自然言語処理方法、並びにコンピュータ・プログラム | |
JP2003345797A (ja) | 言語変換装置及びプログラム記録媒体 | |
JP2001117583A (ja) | 音声認識装置および音声認識方法、並びに記録媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 99809205.3 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09701921 Country of ref document: US |