WO1999049530A1 - Separator for fuel cell and method for producing the same - Google Patents
Separator for fuel cell and method for producing the same Download PDFInfo
- Publication number
- WO1999049530A1 WO1999049530A1 PCT/JP1999/001349 JP9901349W WO9949530A1 WO 1999049530 A1 WO1999049530 A1 WO 1999049530A1 JP 9901349 W JP9901349 W JP 9901349W WO 9949530 A1 WO9949530 A1 WO 9949530A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- resin
- conductive
- molded body
- cell separator
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims description 70
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 229920005989 resin Polymers 0.000 claims abstract description 87
- 239000011347 resin Substances 0.000 claims abstract description 87
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229920003002 synthetic resin Polymers 0.000 claims abstract description 26
- 239000000057 synthetic resin Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 17
- 239000005011 phenolic resin Substances 0.000 claims description 26
- 238000000926 separation method Methods 0.000 claims description 24
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 19
- 239000004917 carbon fiber Substances 0.000 claims description 19
- 239000002131 composite material Substances 0.000 claims description 16
- 229910002804 graphite Inorganic materials 0.000 claims description 16
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 16
- 229920001568 phenolic resin Polymers 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 14
- 239000006258 conductive agent Substances 0.000 claims description 13
- 239000010439 graphite Substances 0.000 claims description 13
- 239000002931 mesocarbon microbead Substances 0.000 claims description 12
- 229920001187 thermosetting polymer Polymers 0.000 claims description 11
- 238000010521 absorption reaction Methods 0.000 claims description 10
- 239000000835 fiber Substances 0.000 claims description 8
- -1 methylol group Chemical group 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 229920005992 thermoplastic resin Polymers 0.000 claims description 7
- 229910021383 artificial graphite Inorganic materials 0.000 claims description 6
- 238000000748 compression moulding Methods 0.000 claims description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000001746 injection moulding Methods 0.000 claims description 5
- 239000010408 film Substances 0.000 claims description 4
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 4
- 239000011342 resin composition Substances 0.000 claims description 4
- 229910021382 natural graphite Inorganic materials 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- 238000000862 absorption spectrum Methods 0.000 claims description 2
- 238000004811 liquid chromatography Methods 0.000 claims description 2
- 238000000465 moulding Methods 0.000 abstract description 34
- 238000005520 cutting process Methods 0.000 abstract description 8
- 238000005452 bending Methods 0.000 abstract description 6
- 238000010000 carbonizing Methods 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 6
- 239000003795 chemical substances by application Substances 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000002184 metal Substances 0.000 description 21
- 239000011888 foil Substances 0.000 description 18
- 229910052782 aluminium Inorganic materials 0.000 description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 16
- 239000007789 gas Substances 0.000 description 12
- 239000003973 paint Substances 0.000 description 12
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 9
- 238000003763 carbonization Methods 0.000 description 8
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 7
- 150000002989 phenols Chemical class 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000005518 polymer electrolyte Substances 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229920005597 polymer membrane Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000011300 coal pitch Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 2
- 239000006232 furnace black Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000011301 petroleum pitch Substances 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- OMIHGPLIXGGMJB-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]hepta-1,3,5-triene Chemical compound C1=CC=C2OC2=C1 OMIHGPLIXGGMJB-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229920001283 Polyalkylene terephthalate Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000003934 aromatic aldehydes Chemical class 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- YXVFYQXJAXKLAK-UHFFFAOYSA-N biphenyl-4-ol Chemical compound C1=CC(O)=CC=C1C1=CC=CC=C1 YXVFYQXJAXKLAK-UHFFFAOYSA-N 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- WTDFFADXONGQOM-UHFFFAOYSA-N formaldehyde;hydrochloride Chemical compound Cl.O=C WTDFFADXONGQOM-UHFFFAOYSA-N 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 239000002946 graphitized mesocarbon microbead Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 125000002256 xylenyl group Chemical class C1(C(C=CC=C1)C)(C)* 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
- H01M8/0256—Vias, i.e. connectors passing through the separator material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0213—Gas-impermeable carbon-containing materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0221—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0226—Composites in the form of mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0228—Composites in the form of layered or coated products
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to separation in a fuel cell (particularly, a polymer electrolyte fuel cell) and a method for producing the same.
- a fuel cell for example, a solid polymer fuel cell uses a solid polymer membrane (such as a Nafion membrane of DuPont or a Dow chemical of Dow Chemical) as an electrolyte membrane, and has a thickness of 0.1 on both sides of the electrolyte membrane.
- a porous graphite paper of about 0.3 mm is provided, and a platinum alloy catalyst is supported as an electrode catalyst on the surface of the paper. Outside the graphite vapor, a porous graphite plate having a thickness of about 1 to 3 mm and a dense carbon plate having a thickness of about 0.5 mm are provided with grooves serving as gas flow paths.
- a cell is constructed by sequentially arranging flat plate separators, or a separate carbon plate, which is a dense carbon plate with a thickness of about 1 to 3 mm with grooves formed as gas passages, Make up.
- the plate separator is required to have gas impermeability to oxygen and hydrogen, electric conductivity, heat conductivity, mechanical strength, acid resistance and the like.
- a grooved separator in addition to the performance required for a flat plate separator, it is required that the dimensional accuracy of the gas flow path be high.
- Such separators are manufactured by forming a flat plate by carbonizing or graphitizing a molded plate of phenolic resin and graphite powder, or by forming grooves on the surface of the flat plate by cutting. It is also manufactured using petroleum or coal pitch instead of phenol resin.
- an object of the present invention is to provide a fuel cell separator (particularly a solid polymer) having excellent properties such as gas impermeability, electrical conductivity, thermal conductivity, mechanical strength, and acid resistance without undergoing a carbonization step. And a method for manufacturing the same.
- Another object of the present invention is to provide a fuel cell capable of forming grooves (gas flow paths) with high dimensional accuracy in addition to characteristics such as high electrical conductivity and thermal conductivity by molding without going through a carbonizing step and a cutting step. It is an object of the present invention to provide a method for producing a separator for a fuel cell (particularly a separator for a polymer electrolyte fuel cell). Disclosure of the invention
- the inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, have formed a non-carbonaceous resin (particularly, a combination of a resin and a specific conductive agent) or a resin molded body and a conductive member. When they were formed together, they found that a high-performance separator could be obtained without going through the carbonization and cutting steps, and completed the present invention.
- the separator for a fuel cell of the present invention contains a non-carbonaceous resin and has a large thickness.
- the thermal conductivity in the thickness direction of the separator may be about 2 to 60 WmK.
- Such separations consist of (a) non-carbon resin, at least one conductive agent selected from spherical graphite, graphite powder with an aspect ratio of 2.0 or less, and conductive carbon black. Included is the separation of molded synthetic resin composites.
- the separation includes a separation consisting of (b) a synthetic resin molded body and a conductive member integrated with the molded body. Separation (b) may have the same characteristics as described above.
- the separator (a) can be manufactured by injection molding or compression molding, and the separator (b) can be manufactured by integrating a synthetic resin molded body and a conductive member by molding.
- Non-carbonaceous resin means a resin selected from thermosetting resin and thermoplastic resin, and is, for example, heat-treated at a temperature of 700 ° C. or less (particularly 500 ° * or less). Carbonized or graphitized resin fired at a temperature of 700 or more (especially 500 or more).
- the synthetic resin molded product is a molded product of a non-carbonaceous resin, or a molded product composed of a non-carbonous resin and a conductive agent, and if necessary, carbon fibers.
- FIG. 1 is a schematic sectional view showing an example of a fuel cell separator according to the present invention.
- FIG. 2 is a schematic sectional view showing another example of the fuel cell separator of the present invention.
- FIG. 3 is a schematic sectional view showing still another example of the fuel cell separator of the present invention.
- FIG. 4 is a schematic sectional view showing another example of the fuel cell separator of the present invention.
- FIG. 5 is a schematic sectional view showing still another example of the fuel cell separator according to the present invention.
- FIG. 6 is a schematic sectional view showing another example of the fuel cell separator of the present invention.
- the separator for a fuel cell of the present invention is characterized by having a small volume resistance in the thickness direction and a high bending strength without going through a carbonization or graphitization step.
- the volume resistance in the thickness direction of the separator is 0.15 Qcm or less (e.g., 0.000 0 1 to 0.15 Qcm), preferably 0.00 0 1 to 0.1 Q. cm, more preferably about 0.001 to 0.08 ⁇ cm.
- Flexural strength 3 ⁇ 2 0 kgf / mm 2 , preferably 5 ⁇ 2 0 kgf / mm 2, more preferably 1 0 ⁇ 2 0 kgi Z mm ⁇ extent.
- the thermal conductivity in the thickness direction of the separator is 2 to 60 WmK, preferably 3 to 60 WZmK, and more preferably about 5 to 60 W / mK.
- the thickness of the separator is, for example, 0.5 to 3 mm, preferably about 0.8 to 2.5 mm, and the bulk density is a range that does not impair the gas barrier properties, for example, 1.1 to 2. It is about 2 gZcm 3 .
- thermosetting resins and thermoplastic resins are at least one type of resin selected from thermosetting resins and thermoplastic resins.
- (Binder) is composed of non-carbonaceous resin.
- the thermosetting resin include a phenol resin, a copna resin (a resin obtained by reacting an aromatic aldehyde and an aromatic compound), a furan resin, an epoxy resin, a polyimide, a resin, and an amino resin. (Melamine resin, urea resin, etc.) and unsaturated polyester resin. These thermosetting resins can be used alone or in combination of two or more.
- thermosetting resins phenolic resins are excellent in heat resistance, acid resistance, strength, hot water resistance, and cost.
- the phenolic resins include ordinary resole resins, novolak resins, phenolic resins formed by a specific reaction of phenols with aldehydes, and phenolic resins formed by the reaction of phenols with aldehydes and nitrogen-containing compounds.
- Hue also includes phenolic resins (copolymerized phenolic resins).
- the phenolic resin obtained by the specific reaction between the above phenols and aldehydes and a method for producing the same are disclosed in Japanese Patent Publication No. Sho 62-32111.
- HCHO formaldehyde
- hydrochloric acid and formaldehyde 15 to 40% by weight in a formaldehyde hydrochloride bath.
- the phenols are brought into contact with each other while maintaining the phenols in a specific ratio.
- the contact causes turbidity of the phenols, and then the contact is carried out so as to form a granular or powdery solid.
- a granular or powdery resin By maintaining the temperature in the reaction system at 45 or less during this contact, a granular or powdery resin can be obtained.
- the resin solid may be separated from the reaction mixture, washed with water, and neutralized with an aqueous alkali solution (aqueous solution containing a base such as alkali metal hydroxide and ammonia).
- the obtained phenolic resin is (1) substantially composed of carbon, hydrogen, and oxygen atoms, and (2) a methylene group, a methylol group, and a phenol group residue having three functions as main binding units. Contained, the trifunctional phenolic residue binds to the methylene group at one of the 2, 4 and 6-positions, and at least one other to the methylene group and Z or the methylol group. are doing.
- the powdery phenol resin contains ( ⁇ ) spherical primary particles having an average particle diameter of 0.1 to 150 and secondary clots, and (B) at least 50% by weight of (C)
- the free phenol content by liquid chromatography is 50 to 500 ppm (preferably 400 ppm or less, more preferably 300 ppm or less). ppm or less).
- the solubility of the resin in methanol is 20% by weight or more (preferably 30% by weight or more, more preferably 40% by weight or more).
- a polyolefin-based resin polypropylene
- polyester-based resin polyalkylene terephthalate, polyalkylene naphthate or their copolyester, polyarylate, etc.
- polycarbonate resin bisphenol A-type polycarbonate
- Styrene-based resin such as styrene alone or copolymer
- acrylic resin alone or copolymerized with acryl-based monomer such as methyl methacrylate.
- Polyamide resin Polyamide 6, Polyamide 66, Polyamide 610, etc.
- Polyamide resin Polyamide 6, Polyamide 66, Polyamide 610, etc.
- examples include phenylene ether resin, polyphenylene sulfide resin, polyester terketone resin, polysulfone resin (polysulfone resin, polyethersulfone resin, etc.) These thermoplastic resins may be used alone or Two or more can be used in combination.
- conductive agent at least one selected from spherical graphite, graphite powder having an aspect ratio of 2.0 or less, and conductive carbon black (such as furnace black) can be used.
- spheroidal graphite examples include graphitized mesocarbon microbeads, spheroidized natural and artificial graphite, Flutcox, and Gilsonie. And tocokes.
- MCMB mesocarbon microbeads
- the average particle size of the spherical MCMB is usually 5 to 50 m (e.g., 5 to 25 m), preferably 10 to 40 m (e.g., 10 to 25 tim), particularly 10 to 50 m. It is about 30 Aim.
- MCM B is formed by heating bituminous substances such as coal tar, coal rubbit, and heavy oil at a temperature of about 300-500. Such a method for producing MCMB is described in, for example, Japanese Patent Publication No. 11-27968 and Japanese Patent Publication No. Hei 1-264691.
- Graphitized MCMB is a graphitized version of MCMB in the usual way.
- Examples of the graphite powder include natural and artificial graphite powder having an aspect ratio of 2.0 or less (1 to 2.0).
- the average particle size of the graphite powder is, for example, 2 to 35 / zm, preferably It is about 5 to 30 m.
- Artificial graphite powder is obtained by using petroleum coke or the like as a raw material, molding, firing, and further graphitizing at a high temperature of 2000 or more.
- the composite material composed of the resin and the conductive agent may further contain carbon fibers.
- the type of carbon fiber is not limited, and petroleum-based or coal-based pitch-based carbon fiber, PAN (polyacrylonitrile) -based carbon fiber, rayon-based carbon fiber, phenol resin-based carbon fiber, and the like can be used.
- the average fiber diameter of the carbon fibers can be selected from the range of, for example, 0.5 to 50 zm, preferably 1 to 30 um., And more preferably 5 to 20 m.
- the average fiber length of the carbon fibers can be appropriately selected and is, for example, about 10 m to 5 mm, and preferably about 20 m to 3 mm.
- the amount of carbon fiber used can be selected from the range of about 1 to 10% by weight of the whole composite material constituting Separé. If the carbon fiber content exceeds 10% by weight, the airtightness is reduced and the gas permeability is increased.
- a synthetic resin composite material composed of a resin, a conductive agent, and, if necessary, carbon fiber, etc.
- a coupling agent a release agent, a lubricant, a plasticizer, a curing agent, a curing aid, if necessary.
- a stabilizer and the like may be appropriately blended.
- Such a separator (a) can be produced by a conventional molding method for a composite material, for example, injection molding or compression molding.
- injection molding the resin, the conductive agent, and if necessary, a composite material component composed of carbon fiber are melt-kneaded (prepared as necessary and melt-kneaded), and injection-molded into a predetermined mold.
- a flat plate separator can be manufactured.
- a thermosetting resin used in the compression molding, for example, at a pressure of about 20 to 100 kg / cm 2 and a temperature of about 100 to 300, the composite material component is placed in a mold. By heating and pressing under pressure, a flat separator can be manufactured.
- the separation (b) of the separation for the fuel cell is composed of a synthetic resin molded body and a conductive member integrated with the molded body.
- the synthetic resin molded body may be formed of the resin alone, and as in the case of the separator (a), a synthetic resin composite material (conductive composite) composed of a resin, a conductive agent, and, if necessary, carbon fiber. Material).
- the type and form of the conductive member are not particularly limited, and a coating (such as a conductive coating film), a fibrous conductive member (a conductive fiber such as a metal fiber or a carbon fiber, or a strand thereof) may be used.
- the volume resistivity of the conductive member for example, as a 1 0 _ 5 to 1 0 "may be about 2 Omega cm.
- the conductive member a metal, e.g., Al Miniumu, copper, gold, silver, and platinum .
- the separation (b) includes various aspects, for example, (b-1) a separation for a fuel cell in which at least one surface of a synthetic resin molded body is covered with a conductive member; (b-2) At least one side or inside of the synthetic resin molded body includes a separator for a fuel cell having a closely adhered or embedded conductive member.
- the conductive member is often a conductive film or a thin-film conductive member.
- the conductive member is a flat conductive member ⁇ rod-shaped conductive member. It is often a member, and the conductive member may be at least partially embedded in the synthetic resin molded body.
- the fuel cell separator (b) can be manufactured by integrating a synthetic resin molded body and a conductive member by molding. More specifically, molding is performed using a compression molding machine including a flat mold (female mold) having a cavity and a mold (male or core) corresponding to the cavity and having an uneven portion. At this time, a step of disposing a conductive member (such as a conductive sheet) on a portion of the mold corresponding to at least one side (one side or both sides) of the molded body; By performing the pressing step, a separator having at least one surface covered with a conductive member or a separator having at least one surface closely adhered to a conductive member can be manufactured.
- a conductive member such as a conductive sheet
- the conductive member may be provided so as to be peelable from the mold, and may be provided (or adhered) using an adhesive if necessary. Further, the conductive member can be disposed on the cavity side and the Z or core side of the mold. . Further, instead of disposing the conductive member, a step of applying a conductive member (such as a conductive resin composition) to at least a portion of the mold corresponding to one side (one side or both sides) of the molded body is adopted, It is also possible to manufacture a fuel cell separator by passing a synthetic resin or the above composite material into the cavity and pressurizing the same.
- the conductive resin composition may be in the form of a conductive paint or the like, and may be releasably applied to the cavity side and / or the core side of the mold.
- a step of previously setting a conductive member such as a conductive metal plate
- a conductive member such as a conductive metal plate
- a member such as a metal plate
- the pressure molding can be performed according to a conventional method according to the type of the resin, for example, when a thermosetting resin is used, at a pressure of S O L O O O K g Z cm at a temperature of about 100 to 300.
- compression molding, transfer molding, and the like can be used for pressure molding, and insert molding can also be applied to these molding methods.
- a conductive member is disposed on at least one of the mold side and the core side (usually, the cavity side), and the mold is made of a synthetic resin or the composite material. And insert the conductive insert (insert pin, insert plate, etc.) into one of the mold side (usually the core side) and the other side (usually the cavity side).
- the conductive insert may be buried in the thickness direction of the separator.
- FIG. 1 is a schematic sectional view showing an example of a fuel cell separator according to the present invention.
- the fuel cell separator is provided with a conductive metal foil 3 having an uneven cross section and a conductive insert bin 2 standing up at predetermined intervals in a plurality of recesses of the conductive metal foil.
- the conductive metal foil 3 and the conductive insert bin 2 are integrated with the resin molded body 1.
- One end face of the conductive insert pin 2 is electrically connected to the conductive metal foil 3, and the other end face is exposed on the flat surface of the resin molding 1.
- conductive metal foil (aluminum foil, platinum foil, etc.) 3 is temporarily fixed along the concave / convex grooves on the core side of the mold in a concave / convex section, and a plurality of conductive inserts are used.
- a pin (such as an aluminum insert bin) 2 can be obtained by inserting the resin 1 into a plurality of projections on the core side of the mold at predetermined intervals, standing up, and then putting the resin 1 into the mold and molding.
- the resin 1 may be a thermosetting resin or a thermoplastic resin, and is typically a phenol resin.
- the molding is performed by filling the resin 1 with the conductive metal foil (aluminum foil, platinum foil, etc.) 3 present on either the cavity side or the core side of the mold, and then performing pressure molding. be able to.
- the conductive insert pin (aluminum insert pin) 2 can be inserted in the thickness direction of the separator by contacting the conductive metal foil 3 to impart conductivity in the thickness direction.
- FIG. 2 is a schematic sectional view showing another example of the fuel cell separator of the present invention.
- This fuel cell separator is the same as the separator shown in FIG. 1 except that the sheet-shaped conductive metal foil 3 is located on the surface opposite to the conductive metal foil 3 having the uneven cross section. Both end surfaces of the pin 2 are in contact with the conductive gold foil 3 on both sides, and the conductive gold foil 3 on both sides and the conductive insert pin 2 are integrated with the resin molding 1.
- Such fuel cell separators are located on the core and cavity sides of the mold.
- a conductive metal foil with an uneven cross section and a sheet-shaped conductive metal foil (aluminum foil, platinum foil, etc.) 3 are fixed, and an aluminum insert bin 2 is inserted into the convex part of the core, and the resin It can be obtained by molding by adding 1.
- the conductive metal foil 3 can be integrated on both sides of the separator as it is formed.
- FIG. 3 is a schematic sectional view showing still another example of the fuel cell separator of the present invention.
- This fuel cell separator has a plate-shaped resin molded product 1 having an uneven groove formed on one surface, a conductive paint 4 formed on the uneven surface of the resin molded product, It is composed of a conductive insert pin 2 that extends in the thickness direction upon contact, and a resin molded body 1, a conductive paint 4, and a conductive insert bin 2 are integrated. Further, the conductive insert bins 2 are respectively arranged in adjacent grooves of the resin molded body 1.
- One end face of the conductive insert pin 2 is arranged on the bottom of the adjacent concave groove of the resin molded body 1 in contact with the conductive paint 4, and the end face of the insert bin 2 is formed of the resin molded body. It is exposed on 1 flat surface.
- a separator for fuel cells is prepared by applying a conductive paint (Dohite, manufactured by Fujikura Kasei Co., Ltd., etc.) 4 to the core of the mold by brushing or the like in a releasable manner. It can be obtained by inserting a conductive insert pin (aluminum insert pin) 2 in the thickness direction and adding resin 1 and molding. The molding was performed in the same manner as the fuel cell separator shown in Fig.
- the conductive insert pins 2 are erected in the mold to form the resin molded body 1 having the concave and convex grooves on one surface, and the conductive paint 4 is coated on the concave and convex surface of the obtained resin molded body 1. By coating, a separator for a fuel cell having the above structure can be obtained.
- FIG. 4 is a schematic sectional view showing another example of the fuel cell separator of the present invention.
- This fuel cell separator is the same as the fuel cell separator shown in FIG. 3 except that a resin molded body 1 having an uneven groove on one surface is provided.
- Such a fuel cell separator having conductivity on both sides is coated with a conductive paint (such as a metal sheet) 4 on the mold side and the core side in a releasable manner.
- Insert the resin by inserting the conductive insert pin into the mold, and insert the resin 1 into the mold, and then raise the conductive insert bin 2 in the mold to form a resin with an uneven groove on one surface. It can be obtained by molding the body 1 and applying the conductive paint 4 to both sides of the obtained resin molded body 1.
- FIG. 5 is a schematic sectional view showing still another example of the fuel cell separator of the present invention.
- This fuel cell separator is composed of a conductive resin molded body 5 having an uneven groove formed on one surface, and a conductive plate material (eg, an aluminum plate) 6 integrated with a flat surface of the molded body.
- a conductive plate material eg, an aluminum plate
- Separators having such a structure can be obtained by temporarily fixing a conductive plate material (such as an aluminum plate) 6 to the mold cavity side, placing conductive resin 5 in the mold, and molding.
- the resin constituting the conductive resin 5 either a thermosetting resin or a thermoplastic resin can be used, and a phenol resin is a typical example.
- the molding can be performed by arranging the conductive plate material 6 in a mold, filling the mold with the conductive resin 5, and performing pressure molding.
- FIG. 6 is a schematic sectional view showing another example of the fuel cell separator of the present invention.
- This separator has the same structure as that of the conductive resin molding 5 except that the conductive insert bin 2 extends in the thickness direction on the other uneven surface in order to increase the conductivity in the thickness direction. It has the same structure as the separator shown in Figure 5.
- the separator with such a structure has a conductive plate (aluminum plate, etc.) 6 temporarily fixed on the mold cavity side, and a plurality of conductive insert pins (aluminum insert pins) on the core side protrusion. Etc.) 2 can be obtained by inserting the conductive resin 5 into the mold and press-molding.
- a high-performance separator can be produced by molding without going through a carbonizing or graphitizing step and a cutting step. Therefore, a grooved separator can be obtained with high precision by using a mold having a convex portion (protrusion) or a groove formed on at least one of the cavity side and the core side (particularly, the core side). be able to.
- the separator of the present invention is excellent in various properties such as gas impermeability, electric conductivity, heat conductivity, mechanical strength, and acid resistance without undergoing a carbonization step or a cutting step, and is excellent in a fuel cell, particularly a solid state. It is useful as a separator for polymer electrolyte fuel cells using a polymer membrane as the electrolyte membrane. In particular, when a phenolic resin is used, it is excellent in heat resistance, acid resistance, strength, hot water resistance, and cost. According to the method of the present invention, a groove (gas flow path) having high dimensional accuracy can be formed by molding without going through the carbonizing step and the cutting step, in addition to the properties such as high conductivity and thermal conductivity. Therefore, the present invention can be effectively applied to a fuel cell separator (particularly, a polymer electrolyte fuel cell separator using a solid polymer membrane as an electrolyte membrane).
- Example 1 Example 1
- Phenol resin manufactured by Kanebo Co., Ltd .: Bellpearl S890
- graphitized MCMB manufactured by Osaka Gas Co., Ltd., average particle size: 10 jm and 25 ⁇ m
- artificial graphite powder Choetsu Graphite Co., Ltd.
- RA 15 aspect ratio 1.3 average particle size 5 m
- Table 1 33. 3: 6.6.7 or 25.0: 75.0
- This powder mixture was charged into a mold and molded under the conditions of a molding pressure of 5 O kg / cm 2 and 160 ⁇ 20 minutes.
- 2 parts by weight of carbon fiber was used per 100 parts by weight. The results are shown in Table 1.
- Polyphenylene ether resin manufactured by Mitsubishi Engineering-Plastics Co., Ltd .: Upies NX-700N
- graphitized MCM B Osaka Gas Co., Ltd., average particle size 1 0 m and 25 m
- artificial graphite powder manufactured by Chuetsu Graphite Co., Ltd., RA 15, aspect ratio 1.3, average particle size 5 / zm
- Table 2 25 parts by weight ratio
- the powder mixture was supplied to an extruder to prepare a pellet.
- Flat plates were formed by injection molding using the prepared pellets. The results are shown in Table 2.
- An aluminum foil (thickness: 30 m) or a platinum foil (thickness: 30 m) is set on the cavity side or both sides of the flat mold with a small amount of adhesive, and on the core side to impart conductivity in the thickness direction.
- a plurality of aluminum insert bins (2 ⁇ ⁇ 1.5 mm x 4) in the thickness direction the phenolic resin used in Examples 1-4 (manufactured by Kanebo Co., Ltd.) was inserted into the mold. : Only Bellpearl S890) was added and molded under the same molding conditions as in Examples 1 to 5. The results are shown in Table 3.
- Conductive paint (Fujikura Kasei Co., Ltd., Doyu It) is brush-coated on the core side.
- an aluminum insert plate (thickness: 1.0 mm) having a plurality of protrusions (pins) is inserted on the cavity side, fixed, and then inserted into the mold.
- Only the phenolic resin (manufactured by Kanebo Co., Ltd .: Bellpearl S890) used in Examples 1 to 4 was put into the mold, and molded under the same molding conditions as in Examples 1 to 5. The results are shown in Table 3.
- Phenolic resin manufactured by Kanebo Co., Ltd .: Bell Pearl S890
- graphitized MCMB manufactured by Osaka Gas Co., Ltd., average particle size: 10 m
- artificial A molded product was obtained in the same manner as in Example 1 except that graphite powder (manufactured by Chuetsu Graphite Co., Ltd., RA 15, aspect ratio 1.3, average particle diameter 5 ⁇ ) 16.7 parts by weight was used. .
- This compact has a thickness of 1.20 mm, a bulk density of 1.82 g / cm 3 , a volume resistivity in the thickness direction of 0.07 ⁇ cm, a bending strength of 9.2 kg / mm 2 , and an apparent
- the thermal conductivity in the thickness direction was 6.0 W / mk, and the surface condition was good.
- the thickness of this molded body is 1.22 mm, the bulk density is 1.85 gcm 3 , the volume resistivity in the thickness direction is 0.04 Qcm, and the bending strength is 8.6 kg / mm
- the apparent thermal conductivity in the thickness direction was 7.0 W Zmk, and the surface condition was good.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
Abstract
A separator containing a noncarbon resin and having a volume resistance in the direction of the thickness is 0.15 Φcm or less and a bending strength of 3 to 20 kgf/mm2, and such a separator further having a thermal conductivity in the direction of the thickness is 2 to 60 W/mK. Such a separator can be produced by a method (a) in which a mixture of a resin and an electroconductive agent consisting of a spherical graphite powder or of a graphite powder having an aspect ratio of 2.0 or less is injection-molded or compression-molded or by a method (b) in which a synthetic resin molded piece and an electroconductive member are molded integrally. Therefore, without passing through a carbonizing step and a cutting step, a separator having excellent electrical conductivity, thermal conductivity, mechanical strength, and dimensional precision of groove can be produced by molding.
Description
明細書 燃料電池用セパレー夕およびその製造方法 技術分野 Description: Separation element for fuel cell and method for producing the same
本発明は、 燃料電池 (特に固体高分子型燃料電池) におけるセパ レ一夕およびその製造方法に関する。 背景技術 The present invention relates to separation in a fuel cell (particularly, a polymer electrolyte fuel cell) and a method for producing the same. Background art
燃料電池、 例えば、 固体高分子型燃料電池は、 固体高分子膜 (デ ュポン社のナフィオン膜やダウケミカル社のダウ膜など) を電解質 膜として用い、 この電解質膜の両側に, 厚み 0 . 1〜 0 . 3 m m程 度のポ一ラスな黒鉛質ペーパーを設け、 このペーパーの表面に電極 触媒として白金合金触媒を担持させている。 また、 前記黒鉛質べ一 パーの外側には、 ガス流路である溝が形成された厚み 1〜 3 mm程 度の多孔質黒鉛板と、 厚み 0 . 5 m m程度の緻密質炭素板である平 板セパレー夕とを順次配設してセルを構成したり、 ガス流路である 溝が形成された厚み 1 ~ 3 mm程度の緻密質炭素板であるセパレ一 夕を配設してセルを構成している。 A fuel cell, for example, a solid polymer fuel cell uses a solid polymer membrane (such as a Nafion membrane of DuPont or a Dow chemical of Dow Chemical) as an electrolyte membrane, and has a thickness of 0.1 on both sides of the electrolyte membrane. A porous graphite paper of about 0.3 mm is provided, and a platinum alloy catalyst is supported as an electrode catalyst on the surface of the paper. Outside the graphite vapor, a porous graphite plate having a thickness of about 1 to 3 mm and a dense carbon plate having a thickness of about 0.5 mm are provided with grooves serving as gas flow paths. A cell is constructed by sequentially arranging flat plate separators, or a separate carbon plate, which is a dense carbon plate with a thickness of about 1 to 3 mm with grooves formed as gas passages, Make up.
前記平板セパレ一夕には、 酸素、 水素に対するガス不透過性、 電 気導電性、 熱伝導性、 機械強度、 耐酸性などが要求される。 また、 溝付きセパレ一夕には、平板セパレー夕に対する要求性能に加えて、 ガス流路の寸法精度が高いことが要求される。 The plate separator is required to have gas impermeability to oxygen and hydrogen, electric conductivity, heat conductivity, mechanical strength, acid resistance and the like. In addition, in the case of a grooved separator, in addition to the performance required for a flat plate separator, it is required that the dimensional accuracy of the gas flow path be high.
このようなセパレー夕は、 フエノール樹脂及び黒鉛粉末の成形板 を炭化又は黒鉛化処理して平板を形成したり、 切削加工により、 平 板の表面に溝を形成することにより製造されている。 また、 フエノ ール榭脂に代えて、 石油又は石炭系ピッチを用いて同様に製造され ている。 Such separators are manufactured by forming a flat plate by carbonizing or graphitizing a molded plate of phenolic resin and graphite powder, or by forming grooves on the surface of the flat plate by cutting. It is also manufactured using petroleum or coal pitch instead of phenol resin.
しかし、 セパレー夕には厚み方向の高い導電性 (例えば、 1 0— 1
〜 1 0— 3 Ω c m程度の導電性) が要求される。 そのため、 前述のよ うに、 フエノール榭脂ゃピッチと黒鉛粉末の成形板を炭化すること により、 フエノール樹脂やピッチの導電性の低さを解消する必要が ある。 すなわち、 セパレ一夕の製造には炭化工程が必要であり、 未 焼成 (すなわち非炭素質) の樹脂を含む成形体では、 とうてい燃料 電池セパレー夕に供することのできる導電性には達し得ない。 しか し、 この工程は、 炭化後の板の割れなどにより歩留まりが低下する こと、 炭化後の板の収縮などにより、 平板セパレー夕および溝付き セパレー夕のいずれも切削加工が必要なことなどの理由から、 非常 にコスト高となる。 さらに、 炭化工程により、 ガスに対する不透過 性が損なわれることが多い。 However, high conductivity of the thickness direction in the evening separator (e.g., 1 0 1 ~ 1 0- 3 Ω cm approximately conductivity) is required. Therefore, as described above, it is necessary to eliminate the low conductivity of the phenol resin and the pitch by carbonizing the formed plate of the phenol resin pitch and the graphite powder. That is, the carbonization process is required for the production of the separator, and a molded article containing an unfired (ie, non-carbonaceous) resin cannot attain the electrical conductivity that can be used for a fuel cell separator. However, the reason for this process is that the yield decreases due to cracking of the plate after carbonization, etc., and both flat plate separation and grooved separation separation require cutting due to shrinkage of the plate after carbonization. Therefore, the cost is very high. In addition, the carbonization process often impairs gas impermeability.
従って、 本発明の目的は、 炭化工程を経ることなく、 ガス不透過 性、 電気導電性、 熱伝導性、 機械強度、 耐酸性などの諸特性に優れ る燃料電池用セパレー夕 (特に固体高分子型燃料電池用セパレー 夕) およびその製造方法を提供することにある。 Therefore, an object of the present invention is to provide a fuel cell separator (particularly a solid polymer) having excellent properties such as gas impermeability, electrical conductivity, thermal conductivity, mechanical strength, and acid resistance without undergoing a carbonization step. And a method for manufacturing the same.
本発明の他の目的は、 炭化工程および切削工程を経ることなく、 成形により、 高い導電性, 熱伝導性などの特性に加えて、 寸法精度 の高い溝 (ガス流路) を形成できる燃料電池用セパレー夕 (特に固 体高分子型燃料電池用セパレ一夕) の製造方法を提供することにあ る。 発明の開示 Another object of the present invention is to provide a fuel cell capable of forming grooves (gas flow paths) with high dimensional accuracy in addition to characteristics such as high electrical conductivity and thermal conductivity by molding without going through a carbonizing step and a cutting step. It is an object of the present invention to provide a method for producing a separator for a fuel cell (particularly a separator for a polymer electrolyte fuel cell). Disclosure of the invention
本発明者らは、 前記目的を達成するため鋭意検討の結果、 非炭素 質の樹脂 (特に樹脂と特定の導電剤との組合わせ) で構成したり、 榭脂成形体と導電部材とを組合わせて成形すると、 炭化工程および 切削工程を経ることなく、 性能の高いセパレー夕が得られることを 見いだし、 本発明を完成した。 The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, have formed a non-carbonaceous resin (particularly, a combination of a resin and a specific conductive agent) or a resin molded body and a conductive member. When they were formed together, they found that a high-performance separator could be obtained without going through the carbonization and cutting steps, and completed the present invention.
すなわち、 本発明の燃料電池用セパレータ (特に固体高分子型燃 料電池用合成樹脂複合セパレー夕) は、 非炭素質の樹脂を含み、 厚
み方向の体積抵抗が 0 . 1 5 Ω c m以下、 曲げ強度が 3〜 2 0 k g f Z m m 2である。 セパレ一夕の厚み方向の熱伝導率は 2〜 6 0 W m K程度であってもよい。 このようなセパレー夕には、 (a) 非炭 素質樹脂と、 球状の黒鉛、 アスペク ト比 2 . 0以下の黒鉛粉末およ び導電性カーボンブラックから選択された少なくとも一種の導電剤 とで構成された、 合成樹脂複合材料を成形したセパレ一夕が含まれ る。 さらに、 セパレ一夕には (b) 合成樹脂成形体と、 この成形体 と一体化した導電部材とで構成されたセパレ一夕が含まれる。 セパ レー夕 (b) は、 前記セパレ一夕 ) のような特性を有していても よい。 前記セパレー夕 (a) は、 射出成形又は圧縮成形により製造 でき、 前記セパレ一夕 (b) は、 成形により合成樹脂成形体と導電 部材とを一体化することにより製造できる。 That is, the separator for a fuel cell of the present invention (particularly, a synthetic resin composite separator for a polymer electrolyte fuel cell) contains a non-carbonaceous resin and has a large thickness. The volume resistivity of the viewing direction 0. 1 5 Ω cm or less, the bending strength is 3~ 2 0 kgf Z mm 2. The thermal conductivity in the thickness direction of the separator may be about 2 to 60 WmK. Such separations consist of (a) non-carbon resin, at least one conductive agent selected from spherical graphite, graphite powder with an aspect ratio of 2.0 or less, and conductive carbon black. Included is the separation of molded synthetic resin composites. Further, the separation includes a separation consisting of (b) a synthetic resin molded body and a conductive member integrated with the molded body. Separation (b) may have the same characteristics as described above. The separator (a) can be manufactured by injection molding or compression molding, and the separator (b) can be manufactured by integrating a synthetic resin molded body and a conductive member by molding.
「非炭素質の樹脂」 とは、 熱硬化性榭脂ゃ熱可塑性榭脂から選択 された樹脂を意味し、 例えば、 7 0 0 °C以下 (特に 5 0 0 * 以下) の温度で熱処理された非炭素質榭脂が含まれ、 7 0 0 以上 (特に 5 0 0で以上)の温度で焼成した炭化又は黒鉛化榭脂は含まれない。 合成樹脂成形体とは非炭素質樹脂の成形体、 あるいは非炭素質榭 脂と導電剤、 および必要により炭素繊維などで構成した成形体のこ とである。 図面の簡単な説明 “Non-carbonaceous resin” means a resin selected from thermosetting resin and thermoplastic resin, and is, for example, heat-treated at a temperature of 700 ° C. or less (particularly 500 ° * or less). Carbonized or graphitized resin fired at a temperature of 700 or more (especially 500 or more). The synthetic resin molded product is a molded product of a non-carbonaceous resin, or a molded product composed of a non-carbonous resin and a conductive agent, and if necessary, carbon fibers. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の燃料電池用セパレー夕の一例を示す概略断面図 である。 図 2は、 本発明の燃料電池用セパレ一夕の他の例を示す概 略断面図である。 図 3は、 本発明の燃料電池用セパレー夕のさらに 他の例を示す概略断面図である。 図 4は、 本発明の燃料電池用セパ レー夕の別の例を示す概略断面図である。 図 5は、 本発明の燃料電 池用セパレー夕のさらに別の例を示す概略断面図である。 図 6は、 本発明の燃料電池用セパレ一夕の他の例を示す概略断面図である。
発明を実施するための最良の形態 本発明の燃料電池用セパレー夕は、 炭化又は黒鉛化工程を経るこ となく、 厚み方向の体積抵抗が小さく、 曲げ強度が高いという特色 がある。 セパレー夕の厚さ方向の体積抵抗は、 0. 1 5 Q c m以下 (例えば、 0. 0 0 0 0 1〜 0. 1 5 Q c m)、 好ましくは 0. 0 0 0 1〜 0. l Q c m、 さらに好ましくは 0. 0 0 1〜 0. 0 8 Ω c m程度である。 曲げ強度は、 3〜 2 0 k g f /mm 2、 好ましく は 5〜 2 0 k g f /mm2 , さらに好ましくは 1 0〜 2 0 k g i Z mm ^程度である。 FIG. 1 is a schematic sectional view showing an example of a fuel cell separator according to the present invention. FIG. 2 is a schematic sectional view showing another example of the fuel cell separator of the present invention. FIG. 3 is a schematic sectional view showing still another example of the fuel cell separator of the present invention. FIG. 4 is a schematic sectional view showing another example of the fuel cell separator of the present invention. FIG. 5 is a schematic sectional view showing still another example of the fuel cell separator according to the present invention. FIG. 6 is a schematic sectional view showing another example of the fuel cell separator of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION The separator for a fuel cell of the present invention is characterized by having a small volume resistance in the thickness direction and a high bending strength without going through a carbonization or graphitization step. The volume resistance in the thickness direction of the separator is 0.15 Qcm or less (e.g., 0.000 0 1 to 0.15 Qcm), preferably 0.00 0 1 to 0.1 Q. cm, more preferably about 0.001 to 0.08 Ωcm. Flexural strength, 3~ 2 0 kgf / mm 2 , preferably 5~ 2 0 kgf / mm 2, more preferably 1 0~ 2 0 kgi Z mm ^ extent.
さらに、 セパレ一夕の厚み方向の熱伝導率は、 2〜 6 0W mK、 好ましくは 3〜 6 0 WZmK, さらに好ましくは 5〜 6 0 W/mK 程度である。 Further, the thermal conductivity in the thickness direction of the separator is 2 to 60 WmK, preferably 3 to 60 WZmK, and more preferably about 5 to 60 W / mK.
また、 セパレー夕の厚みは、 例えば、 0. 5〜 3 mm、 好ましく は 0. 8〜 2. 5mm程度であり、 嵩密度は、 ガス遮断性を損なわ ない範囲、 例えば、 1. 1〜 2. 2 gZc m3程度である。 The thickness of the separator is, for example, 0.5 to 3 mm, preferably about 0.8 to 2.5 mm, and the bulk density is a range that does not impair the gas barrier properties, for example, 1.1 to 2. It is about 2 gZcm 3 .
燃料電池用セパレ一夕のうちセパレ一夕 ) および (b) は、 未 焼成 (未炭化および未黒鉛化) であり、 熱硬化性榭脂および熱可塑 性樹脂から選択された少なく とも一種の樹脂 (バインダー) である 非炭素質樹脂で構成される。 熱硬化性樹脂としては、 例えば、 フエ ノール樹脂、 コプナ樹脂 (芳香族アルデヒ ドと芳香族化合物との反 応により得られる樹脂)、 フラン榭脂、 エポキシ樹脂、 ポリイミ ド , 樹脂、 ァミ ノ樹脂 (メラミン樹脂, 尿素樹脂など)、 不飽和ポリエ ステル樹脂などが例示できる。 これらの熱硬化性樹脂は単独で又は 二種以上組み合わせて使用できる。 Among the separations for fuel cells, separations) and (b) are unfired (uncarbonized and non-graphitized) and are at least one type of resin selected from thermosetting resins and thermoplastic resins. (Binder) is composed of non-carbonaceous resin. Examples of the thermosetting resin include a phenol resin, a copna resin (a resin obtained by reacting an aromatic aldehyde and an aromatic compound), a furan resin, an epoxy resin, a polyimide, a resin, and an amino resin. (Melamine resin, urea resin, etc.) and unsaturated polyester resin. These thermosetting resins can be used alone or in combination of two or more.
これらの熱硬化性樹脂のうち、 フエノール樹脂は、 耐熱性、 耐酸 性、 強度、 耐熱水性、 コストの点で優れている。 フエノール樹脂に は、 通常のレゾール榭脂、 ノボラック樹脂、 フエノール類とアルデ ヒ ド類との特定の反応により生成するフエノール樹脂、 及びフエノ ール類とアルデヒド類と含窒素化合物との反応により生成するフエ
ノール榭脂 (共重合フエノール樹脂) も含まれる。 Among these thermosetting resins, phenolic resins are excellent in heat resistance, acid resistance, strength, hot water resistance, and cost. The phenolic resins include ordinary resole resins, novolak resins, phenolic resins formed by a specific reaction of phenols with aldehydes, and phenolic resins formed by the reaction of phenols with aldehydes and nitrogen-containing compounds. Hue Also includes phenolic resins (copolymerized phenolic resins).
上記のフエノール類とアルデヒ ド類との特定の反応により得られ るフエノール樹脂およびその製造方法は、 特公昭 6 2— 3 0 2 1 1 号公報に開示されており、 (1)塩酸 (HC 1 ) 濃度 5〜 2 8重量%、 ホルムアルデヒ ド (HCHO) 濃度 3〜 2 5重量%であり、 かつ塩 酸とホルムアルデヒ ドとの合計濃度 1 5〜4 0重量%である塩酸一 ホルムアルデヒ ド浴に、 (2) フエノール類を特定の割合に維持して 接触させ、 (3) この接触によりフエノール類の白濁を生成させ, そ の後、粒状ないし粉末状の固形物を形成するように前記接触を行い、 この接触の間、 反応系内の温度を 4 5で以下に維持することにより 粒状ないし粉末状樹脂を得ることができる。 樹脂の固形物は反応混 合液から分離し、 水洗し、 アルカリ水溶液 (アルカリ金属水酸化物, アンモニアなどの塩基を含有する水溶液) で中和してもよい。 The phenolic resin obtained by the specific reaction between the above phenols and aldehydes and a method for producing the same are disclosed in Japanese Patent Publication No. Sho 62-32111. ) A concentration of 5 to 28% by weight, a formaldehyde (HCHO) concentration of 3 to 25% by weight, and a total concentration of hydrochloric acid and formaldehyde of 15 to 40% by weight in a formaldehyde hydrochloride bath. (2) The phenols are brought into contact with each other while maintaining the phenols in a specific ratio. (3) The contact causes turbidity of the phenols, and then the contact is carried out so as to form a granular or powdery solid. By maintaining the temperature in the reaction system at 45 or less during this contact, a granular or powdery resin can be obtained. The resin solid may be separated from the reaction mixture, washed with water, and neutralized with an aqueous alkali solution (aqueous solution containing a base such as alkali metal hydroxide and ammonia).
前記フエノール類には、 フエノール、 メタクレゾ一ル、 他のフエ ノール類 ( o—クレゾール、 m—クレゾール、 p—クレゾール、 ビ スフエノ一ル八、 o—、 m—又は p— C2_4 アルキルフエノール、 P—フエニルフエノール、 キシレノール、 ハイ ドロキノン, レゾル シンなど) などが含まれる。 The above phenols, phenol, Metakurezo Ichiru, other Hue Nord compound (o-cresol, m- cresol, p- cresol, bi Sufueno Ichiru eight, o-, m- or p-C 2 _ 4 alkyl phenols , P-phenylphenol, xylenol, hydroquinone, resorcinol, etc.).
得られたフエノール樹脂は、 (1) 実質的に炭素、 水素及び酸素原 子で構成されており、 (2) メチレン基, メチロール基, 並びに 3官 能性のフエノール類残基を主たる結合単位として含有しており、 3 官能性のフエノール類残基は、 2 , 4および 6—位の一箇所でメチ レン基と結合し、 少なく とも他の 1箇所でメチレン基及び Z又はメ チロール基と結合している。 また、 (3) KB r錠剤法による赤外線 吸収スペク トルにおいて、 1 6 0 0 c m_1 (ベンゼンに帰属する吸 収ピーク) での吸収強度を D 1600とし、 9 9 0〜 ; L 0 1 5 c m_1 (メ チロール基に帰属する吸収ピーク) での最大吸収強度を D9g0_1015、 8 9 0 c m— 1 (ベンゼン核の孤立水素原子の吸収ピーク) での吸収 強度を D8go としたとき、 D 990— 1015/D 1600= 0. 2〜 9. 0 (好
ましくは 0. 2〜 5、 さらに好ましくは 0. 3〜 4 ) 程度、 D89() ZD 1600 = O . 0 9〜 1 · 0 (好ましくは 0. :!〜 0. 9, さらに 好ましくは 0. 1 2〜 0. 8 ) である。 The obtained phenolic resin is (1) substantially composed of carbon, hydrogen, and oxygen atoms, and (2) a methylene group, a methylol group, and a phenol group residue having three functions as main binding units. Contained, the trifunctional phenolic residue binds to the methylene group at one of the 2, 4 and 6-positions, and at least one other to the methylene group and Z or the methylol group. are doing. (3) In the infrared absorption spectrum by the KBr tablet method, the absorption intensity at 160 cm _1 (absorption peak attributed to benzene) is set to D 1600, and the absorption intensity at 900 cm; the absorption intensity at _1 D 9 g 0 _ 1015 the maximum absorption intensity at (absorption peak attributable to the main Chiroru group), 8 9 0 cm- 1 (absorption peak of the isolated hydrogen atoms of the benzene nuclei) was D 8Go When D 990 — 1015 / D 1600 = 0.2 to 9.0 (good Preferably about 0.2 to 5, more preferably about 0.3 to 4), D 89 () ZD 1600 = O.09 to 1 · 0 (preferably 0:! To 0.9, more preferably 0.12 to 0.8).
さらに、 前記粉粒状のフヱノール樹脂は、 (Α) 平均粒径 0. 1〜 1 5 0 の球状一次粒子および二次凝棄物を含有し、 (B) 少なく とも全体の 5 0重量%が 1 0 0タイラーメッシュ篩を通過可能な大 きさであり、 (C) 液体クロマトグラフィーによる遊離フエノール含 有量は 5 0〜 5 0 0 p pm (好ましくは 4 0 0 p p m以下、 さらに 好ましく 3 0 0 p p m以下) である。 Further, the powdery phenol resin contains (Α) spherical primary particles having an average particle diameter of 0.1 to 150 and secondary clots, and (B) at least 50% by weight of (C) The free phenol content by liquid chromatography is 50 to 500 ppm (preferably 400 ppm or less, more preferably 300 ppm or less). ppm or less).
前記榭脂のメタノールに対する溶解度は 2 0重量%以上 (好まし くは 3 0重量%以上、 さらに好ましくは 40重量%以上〉 である。 熱可塑性樹脂としては、 例えば、 ポリオレフイ ン系樹脂 (ポリプ ロピレン樹脂, エチレン—プロピレン共重合体など)、 ポリエステ ル系榭脂 (ポリアルキレンテレフ夕レート. ポリアルキレンナフ夕 レー ト又はこれらのコポリエステル, ポリアリ レー卜など)、 ポリ カーボネート樹脂 (ビスフエノール A型ポリカーボネー ト樹脂な ど)、 ポリスチレン系樹脂 (スチレンなどのスチレン系単量体の単 独又は共重合体など)、 アクリル系榭脂 (メタク リル酸メチルなど のァクリル系単量体の単独又は共重合体など)、 ポリアミ ド榭脂(ポ リアミ ド 6, ポリアミ ド 6 6 , ポリアミ ド 6 1 0など)、 ポリフエ 二レンエーテル樹脂、 ポリフエ二レンスルフイ ド榭脂、 ポリェ一テ ルェ一テルケトン榭脂、 ポリスルホン系樹脂 (ポリスルホン樹脂、 ポリエーテルスルホン樹脂など) などが例示できる。 これらの熱可 塑性樹脂も単独で又は二種以上組合わせて使用できる。 The solubility of the resin in methanol is 20% by weight or more (preferably 30% by weight or more, more preferably 40% by weight or more). As the thermoplastic resin, for example, a polyolefin-based resin (polypropylene) Resin, ethylene-propylene copolymer, etc.), polyester-based resin (polyalkylene terephthalate, polyalkylene naphthate or their copolyester, polyarylate, etc.), polycarbonate resin (bisphenol A-type polycarbonate) Styrene-based resin (such as styrene alone or copolymer), and acrylic resin (alone or copolymerized with acryl-based monomer such as methyl methacrylate). ), Polyamide resin (Polyamide 6, Polyamide 66, Polyamide 610, etc.) Examples include phenylene ether resin, polyphenylene sulfide resin, polyester terketone resin, polysulfone resin (polysulfone resin, polyethersulfone resin, etc.) These thermoplastic resins may be used alone or Two or more can be used in combination.
導電剤としては、 球状の黒鉛、 アスペク ト比 2. 0以下の黒鉛粉 末および導電性カーボンブラック (ファーネスブラックなど) から 選択された少なく とも一種が使用できる。 As the conductive agent, at least one selected from spherical graphite, graphite powder having an aspect ratio of 2.0 or less, and conductive carbon black (such as furnace black) can be used.
球状の黒鉛としては、 メソカーボンマイクロビーズの黒鉛化品、 球状化された天然及び人造黒鉛、 フリュートコ一クス、 ギルソナイ
トコークスなどがあげられる。 Examples of spheroidal graphite include graphitized mesocarbon microbeads, spheroidized natural and artificial graphite, Flutcox, and Gilsonie. And tocokes.
例えば、 メソカーボンマイクロビーズ (以下、 MCMBと称する) は、 高度に結晶が配向し、 黒鉛類似の構造を有する球状体 (メソフ エーズ小球体) である。 球形の MCMBの平均粒径は、 通常、 5〜 5 0 m (例えば、 5〜 2 5 m)、 好ましくは 1 0〜 4 0 m (例 えば、 1 0〜 2 5 tim)、 特に 1 0〜 3 0 Ai m程度である。 MCM Bは、 コールタール, コール夕一ルビッチ, 重質油などの歴青物を 3 0 0〜 5 0 0で程度で加熱することにより生成する。 このような MCMBの製造方法は、 例えば、 特公平 1一 2 7 9 6 8号公報、 特 開平 1 — 2 4 2 6 9 1号公報などに記載されている。 MCMBの黒 鉛化品とは、 通常の方法で MCMBを黒鉛化したものである。 For example, mesocarbon microbeads (hereinafter referred to as MCMB) are spheres (mesophase small spheres) with highly oriented crystals and a structure similar to graphite. The average particle size of the spherical MCMB is usually 5 to 50 m (e.g., 5 to 25 m), preferably 10 to 40 m (e.g., 10 to 25 tim), particularly 10 to 50 m. It is about 30 Aim. MCM B is formed by heating bituminous substances such as coal tar, coal rubbit, and heavy oil at a temperature of about 300-500. Such a method for producing MCMB is described in, for example, Japanese Patent Publication No. 11-27968 and Japanese Patent Publication No. Hei 1-264691. Graphitized MCMB is a graphitized version of MCMB in the usual way.
黒鉛粉末としては、 アスペク ト比 2. 0以下 ( 1〜 2. 0 ) の天 然及び人造黒鉛粉末などが含まれ、 黒鉛粉末の平均粒径は、 例えば、 2〜 3 5 /zm, 好ましくは 5〜 3 0 m程度である。 人造黒鉛粉は、 石油コークスなどを原料とし、 成形、 焼成し、 さらに 2 0 0 0 以 上の高温で黒鉛化することにより得られる。 Examples of the graphite powder include natural and artificial graphite powder having an aspect ratio of 2.0 or less (1 to 2.0). The average particle size of the graphite powder is, for example, 2 to 35 / zm, preferably It is about 5 to 30 m. Artificial graphite powder is obtained by using petroleum coke or the like as a raw material, molding, firing, and further graphitizing at a high temperature of 2000 or more.
このような MCMBの黒鉛化品及び 又は黒鉛粉末を用いると、 セパレ一夕に導電性を有効に付与できる。 また、 導電剤の形状が球 形又はアスペク ト比 2. 0以下であるため、 樹脂に対する導電性成 分の構成比率を高くできるだけでなく、 成形時の内部応力が緩和さ れ、 応力ひずみが残存しにくくなり、 セパレー夕に反りや変形が生 じにくい。 By using such a graphitized product of MCMB and / or graphite powder, conductivity can be effectively imparted over the course of separation. In addition, since the shape of the conductive agent is spherical or the aspect ratio is 2.0 or less, not only can the composition ratio of the conductive component to the resin be increased, but also the internal stress during molding is reduced, and stress strain remains. It is hard to be warped or deformed during separation.
榭脂と導電剤との割合は、 導電性, 機械的強度や熱伝導性などを 損なわない範囲、例えば、前者/後者 = 2 0ノ 8 0〜 5 0 Z 5 0 (重 量比)、 好ましくは 2 0 Z 8 0〜 4 0 Z 6 0 (重量比)、 さらに好ま しくは 2 0 Z 8 0〜 3 5 Z 6 5 (重量比)、 特に 2 0 8 0〜 3 0 Z 7 0 (重量比) 程度の範囲から選択できる。 導電剤の含有量が 5 0重量%未満であると、 導電性及び熱伝導性が低下し、 8 0重量% を越えると曲げ強度が低下し、 ガス透過率も大きくなる。
前記樹脂および導電剤で構成された複合材は、 さらに炭素繊維を 含んでいてもよい。 炭素繊維の種類は制限されず、 石油系又は石炭 系のピッチ系炭素繊維、 PAN (ポリアクリ ロニトリル) 系炭素繊 維、 レーヨン系炭素繊維、 フエノール樹脂系炭素繊維などが使用で きる。 炭素繊維の平均繊維径は、 例えば、 0. 5〜 5 0 zm、 好ま しくは 1〜 3 0 um. さらに好ましくは 5〜 2 0 mの範囲から選 択できる。 炭素繊維の平均繊維長は、 適当に選択でき、 例えば、 1 0 m〜 5 mm、 好ましくは 2 0 m〜 3 mm程度である。 炭素繊 維の使用量は、 セパレ一夕を構成する複合材全体の 1〜 1 0重量% 程度の範囲から選択できる。 炭素繊維の含有量が 1 0重量%を超え ると気密性が低下し、 ガス透過率が大きくなる。 The ratio of the resin to the conductive agent is in a range that does not impair the conductivity, mechanical strength, thermal conductivity, etc., for example, the former / the latter = 20 to 80 to 50 Z50 (weight ratio), preferably Is 20 Z 80 to 40 Z 60 (weight ratio), more preferably 20 Z 80 to 35 Z 65 (weight ratio), especially 280 to 30 Z 70 (weight ratio) Ratio) range. If the content of the conductive agent is less than 50% by weight, the electrical conductivity and the thermal conductivity decrease, and if it exceeds 80% by weight, the bending strength decreases and the gas permeability also increases. The composite material composed of the resin and the conductive agent may further contain carbon fibers. The type of carbon fiber is not limited, and petroleum-based or coal-based pitch-based carbon fiber, PAN (polyacrylonitrile) -based carbon fiber, rayon-based carbon fiber, phenol resin-based carbon fiber, and the like can be used. The average fiber diameter of the carbon fibers can be selected from the range of, for example, 0.5 to 50 zm, preferably 1 to 30 um., And more preferably 5 to 20 m. The average fiber length of the carbon fibers can be appropriately selected and is, for example, about 10 m to 5 mm, and preferably about 20 m to 3 mm. The amount of carbon fiber used can be selected from the range of about 1 to 10% by weight of the whole composite material constituting Separé. If the carbon fiber content exceeds 10% by weight, the airtightness is reduced and the gas permeability is increased.
このように、 樹脂、 導電剤及び必要により炭素繊維などで構成さ れた合成樹脂複合材料には、 必要に応じて、 カップリング剤、 離型 剤、 滑剤、 可塑剤、 硬化剤、 硬化助剤、 安定剤などを適宜配合して もよい。 As described above, a synthetic resin composite material composed of a resin, a conductive agent, and, if necessary, carbon fiber, etc., may be provided with a coupling agent, a release agent, a lubricant, a plasticizer, a curing agent, a curing aid, if necessary. A stabilizer and the like may be appropriately blended.
このようなセパレー夕 (a) は、 複合材に対する慣用の成形法、 例えば、 射出成形又は圧縮成形により製造できる。 射出成形では、 前記樹脂, 導電剤、 および必要により炭素繊維で構成された複合材 成分を溶融混練し (必要によりペレツ トを調製して溶融混練し)、 所定の金型に射出成形することにより平板状セパレ一夕を製造でき る。 例えば、 熱硬化性榭脂を用いる場合、 圧縮成形では、 例えば、 圧力 2 0〜; L 0 0 0 k gノ c m2、 温度 1 0 0〜 3 0 0 程度で、 前記複合材成分を金型内で加熱して加圧成形することにより平板状 セパレー夕を製造できる。 Such a separator (a) can be produced by a conventional molding method for a composite material, for example, injection molding or compression molding. In injection molding, the resin, the conductive agent, and if necessary, a composite material component composed of carbon fiber are melt-kneaded (prepared as necessary and melt-kneaded), and injection-molded into a predetermined mold. A flat plate separator can be manufactured. For example, when a thermosetting resin is used, in the compression molding, for example, at a pressure of about 20 to 100 kg / cm 2 and a temperature of about 100 to 300, the composite material component is placed in a mold. By heating and pressing under pressure, a flat separator can be manufactured.
燃料電池用セパレ一夕のうちセパレ一夕 (b) は、 合成樹脂成形 体と、 この成形体と一体化した導電部材とで構成されている。 前記 合成樹脂成形体は、 前記樹脂単独で形成してもよく、 前記セパレー 夕 (a) と同様に, 樹脂, 導電剤、 および必要により炭素繊維など で構成された合成樹脂複合材料 (導電性複合材) で形成してもよい。
前記セパレー夕 (b ) において、 導電部材の種類や形態は特に制 限されず、 被膜 (導電性塗膜など)、 繊維状導電部材 (金属繊維, 炭素繊維などの導電性繊維やこれらのストランドなど)、 薄膜状導 電部材 (導電性フィルムやシート, 金属箔など)、 平板状導電部材 (金属板など)、 棒状導電性部材 (金属ロッ ドやピンなど) などで あってもよい。 導電部材の体積抵抗は、 例えば、 1 0 _ 5 ~ 1 0 "2 Ω c m程度であってもよい。 導電部材としては、 金属、 例えば、 アル ミニゥム、 銅、 金、 銀、 白金などが挙げられる。 The separation (b) of the separation for the fuel cell is composed of a synthetic resin molded body and a conductive member integrated with the molded body. The synthetic resin molded body may be formed of the resin alone, and as in the case of the separator (a), a synthetic resin composite material (conductive composite) composed of a resin, a conductive agent, and, if necessary, carbon fiber. Material). In the separation (b), the type and form of the conductive member are not particularly limited, and a coating (such as a conductive coating film), a fibrous conductive member (a conductive fiber such as a metal fiber or a carbon fiber, or a strand thereof) may be used. ), Thin-film conductive members (conductive films and sheets, metal foil, etc.), flat conductive members (metal plates, etc.), rod-shaped conductive members (metal rods, pins, etc.). The volume resistivity of the conductive member, for example, as a 1 0 _ 5 to 1 0 "may be about 2 Omega cm. The conductive member, a metal, e.g., Al Miniumu, copper, gold, silver, and platinum .
前記セパレ一夕 (b) には、 種々の態様、 例えば、 (b- 1 ) 合成樹 脂成形体の少なくとも片面が、 導電部材で被覆されている燃料電池 用セパレ一夕、 (b- 2 )合成樹脂成形体の少なく とも片面又は内部に、 密着又は埋設した導電部材を有する燃料電池用セパレー夕などが含 まれる。 前者のセパレ一夕 (b- 1 ) では、 導電部材は導電性被膜や 薄膜状導電部材である場合が多く、 後者のセパレー夕 (b-2 ) では、 導電部材は平板状導電部材ゃ棒状導電部材である場合が多く、 導電 部材は少なくとも部分的に合成樹脂成形体に埋設してもよい。 The separation (b) includes various aspects, for example, (b-1) a separation for a fuel cell in which at least one surface of a synthetic resin molded body is covered with a conductive member; (b-2) At least one side or inside of the synthetic resin molded body includes a separator for a fuel cell having a closely adhered or embedded conductive member. In the former separation (b-1), the conductive member is often a conductive film or a thin-film conductive member. In the latter separation (b-2), the conductive member is a flat conductive member ゃ rod-shaped conductive member. It is often a member, and the conductive member may be at least partially embedded in the synthetic resin molded body.
本発明の方法において、 前記燃料電池用セパレ一夕 (b ) は、 成 形により合成樹脂成形体と導電部材とを一体化することにより製造 できる。 より具体的には、 キヤビティを有する平板状金型 (雌型) と、 前記キヤビティに対応し、 かつ凹凸部を有する金型 (雄型又は コア) とを備えた圧縮成形機を用いて成形する際、 金型のうち成形 体の少なくとも片面(片面又は両面)に対応する部位に導電部材(導 電性シートなど) を配設する工程と、 合成樹脂又は前記複合剤を金 型に入れて加圧する工程とを経ることにより、 少なくとも片面が導 電部材で被覆されたセパレー夕又は少なくとも片面に導電部材が密 着して一体化したセパレー夕を製造できる。 導電部材は金型に対し て剥離可能に配設すればよく、 必要により接着剤を用いて配設 (又 は密着) してもよい。 また、 導電部材は、 金型のキヤビティ側及び Z又はコア側に配設できる。 .
また、 導電部材の配設に代えて、 金型のうち成形体の少なく とも 片面 (片面又は両面) に対応する部位に導電部材 (導電性榭脂組成 物など) を塗布する工程を採用し、 キヤビティに合成樹脂又は前記 複合材を入れて加圧する工程を経ることにより燃料電池用セパレ一 夕を製造することもできる。 導電性樹脂組成物は導電性塗料などの 形態であってもよく、 金型のキヤビティ側及び 又はコア側に剥離 可能に塗布してもよい。 In the method of the present invention, the fuel cell separator (b) can be manufactured by integrating a synthetic resin molded body and a conductive member by molding. More specifically, molding is performed using a compression molding machine including a flat mold (female mold) having a cavity and a mold (male or core) corresponding to the cavity and having an uneven portion. At this time, a step of disposing a conductive member (such as a conductive sheet) on a portion of the mold corresponding to at least one side (one side or both sides) of the molded body; By performing the pressing step, a separator having at least one surface covered with a conductive member or a separator having at least one surface closely adhered to a conductive member can be manufactured. The conductive member may be provided so as to be peelable from the mold, and may be provided (or adhered) using an adhesive if necessary. Further, the conductive member can be disposed on the cavity side and the Z or core side of the mold. . Further, instead of disposing the conductive member, a step of applying a conductive member (such as a conductive resin composition) to at least a portion of the mold corresponding to one side (one side or both sides) of the molded body is adopted, It is also possible to manufacture a fuel cell separator by passing a synthetic resin or the above composite material into the cavity and pressurizing the same. The conductive resin composition may be in the form of a conductive paint or the like, and may be releasably applied to the cavity side and / or the core side of the mold.
さらに、 金型のうち成形体の少なく とも片面又は内部に対応する 部位に導電部材 (導電性金属板など) を予めセッ トする工程と、 キ ャビティ に合成樹脂又は前記複合材を充填し、 導電部材 (金属板な ど) と一体化する工程とを経ることにより、 導電部材が成形体の片 面又は内部で一体化した燃料電池用セパレー夕を製造できる。 Further, a step of previously setting a conductive member (such as a conductive metal plate) on at least a portion corresponding to at least one side or the inside of the molded body in the mold, and filling the cavity with a synthetic resin or the composite material, Through a step of integrating with a member (such as a metal plate), a fuel cell separator in which a conductive member is integrated on one side or inside of a molded body can be manufactured.
これらの方法では、 セパレ一夕自体に導電性がない又は不足して いる場合でも、 触媒を担持したポーラスな黒鉛質ペーパーに接触す るセパレ一タ面側又はその反対面を含めた両面のみを高導電化する ことにより、 触媒相での電子の授受をポーラスな黒鉛質ペーパーを 通じてセパレー夕面でスムーズに行なうことができる。 さらに、 合 成榭脂に代えて、 導電性を付与した榭脂組成物 (前記導電性複合材) を用いると、 セパレ一夕の電気的抵抗をさらに低減できる。 In these methods, even if the separation itself is not conductive or lacks conductivity, only both sides including the separation side or the opposite side that comes into contact with the porous graphite paper carrying the catalyst are used. By increasing the conductivity, the transfer of electrons in the catalyst phase can be performed smoothly on the evening surface of the separator through porous graphite paper. Further, by using a resin composition imparted with conductivity (the conductive composite material) instead of the synthetic resin, the electrical resistance of the separator can be further reduced.
加圧成形は、 樹脂の種類などに応じて、 慣用の方法、 例えば, 熱 硬化性樹脂を用いる場合、 圧力 S O l O O O k g Z c m 温度 1 0 0 ~ 3 0 0 程度で行うことができる。 また、 加圧成形には、 圧縮成形法、 トランスファ成形法などが利用でき、 これらの成形法 にインサート成形法も適用できる。 The pressure molding can be performed according to a conventional method according to the type of the resin, for example, when a thermosetting resin is used, at a pressure of S O L O O O K g Z cm at a temperature of about 100 to 300. In addition, compression molding, transfer molding, and the like can be used for pressure molding, and insert molding can also be applied to these molding methods.
さらに、 セパレ一夕の厚み方向の導電性を高めるため、 金型のキ ャビティ側及びコア側の少なく とも一方 (通常、 キヤビティ側) に 導電部材を配して金型に合成樹脂又は前記複合材を入れ、 金型のキ ャビティ側及びコア側の一方 (通常、 コア側) に, 導電性インサ一 ト (インサートピン, インサート板など) を他方 (通常、 キヤビテ
ィ側) に向けて配して加圧成形し、 導電性インサートをセパレ一夕 の厚み方向に埋設してもよい。 Furthermore, in order to increase the conductivity in the thickness direction of the separator, a conductive member is disposed on at least one of the mold side and the core side (usually, the cavity side), and the mold is made of a synthetic resin or the composite material. And insert the conductive insert (insert pin, insert plate, etc.) into one of the mold side (usually the core side) and the other side (usually the cavity side). The conductive insert may be buried in the thickness direction of the separator.
図 1は、 本発明の燃料電池用セパレー夕の一例を示す概略断面図 である。 この例では、 燃料電池用セパレ一夕は、 断面凹凸状の導電 性金属箔 3と、 この導電性金属箔の複数の凹部に所定間隔をおいて 起立した導電性ィンサートビン 2とを備えており、 導電性金属箔 3 及び導電性ィンサートビン 2は、 榭脂成形体 1 と一体化している。 導電性ィンサートピン 2の一方の端面は導電性金属箔 3と導通して いるとともに、他方の端面は榭脂成形体 1の平坦面で露呈している。 このような燃料電池用セパレ一夕は, 金型のコア側の凹凸溝に沿わ せて導電性金属箔 (アルミニウム箔、 白金箔など) 3を断面凹凸状 に仮止めし, 複数の導電性インサートピン (アルミニウム製インサ 一トビンなど) 2を金型のコア側の複数の凸部に所定間隔をおいて 起立させて挿入し、 樹脂 1を金型に入れて成形することにより得る ことができる。 前記樹脂 1は、 熱硬化性樹脂でも熱可塑性樹脂でも よく、 代表的にはフエノール樹脂が挙げられる。 成形は、 金型のキ ャビティ側又はコア側のいずれか一方に導電性金属箔 (アルミニゥ ム箔, 白金箔など) 3が存在する状態で樹脂 1を充填した後、 加圧 成形することにより行うことができる。 導電性インサートピン (ァ ルミ二ゥム製インサートピン) 2は、 厚み方向の導電性を付与する ため、 導電性金属箔 3に接触してセパレー夕の厚み方向に挿入する ことができる。 FIG. 1 is a schematic sectional view showing an example of a fuel cell separator according to the present invention. In this example, the fuel cell separator is provided with a conductive metal foil 3 having an uneven cross section and a conductive insert bin 2 standing up at predetermined intervals in a plurality of recesses of the conductive metal foil. The conductive metal foil 3 and the conductive insert bin 2 are integrated with the resin molded body 1. One end face of the conductive insert pin 2 is electrically connected to the conductive metal foil 3, and the other end face is exposed on the flat surface of the resin molding 1. In such a separator for fuel cells, conductive metal foil (aluminum foil, platinum foil, etc.) 3 is temporarily fixed along the concave / convex grooves on the core side of the mold in a concave / convex section, and a plurality of conductive inserts are used. A pin (such as an aluminum insert bin) 2 can be obtained by inserting the resin 1 into a plurality of projections on the core side of the mold at predetermined intervals, standing up, and then putting the resin 1 into the mold and molding. The resin 1 may be a thermosetting resin or a thermoplastic resin, and is typically a phenol resin. The molding is performed by filling the resin 1 with the conductive metal foil (aluminum foil, platinum foil, etc.) 3 present on either the cavity side or the core side of the mold, and then performing pressure molding. be able to. The conductive insert pin (aluminum insert pin) 2 can be inserted in the thickness direction of the separator by contacting the conductive metal foil 3 to impart conductivity in the thickness direction.
図 2は、 本発明の燃料電池用セパレ一夕の他の例を示す概略断面 図である。 この燃料電池用セパレー夕は、 前記図 1に示すセパレー 夕において、 断面凹凸状の導電性金属箔 3と反対側の面に、 シート 状の導電性金属箔 3が位置し、導電性ィンサ一卜ピン 2の両端面は、 両面の導電性金厲箔 3と接触しており、 両面の導電性金厲箔 3及び 導電性インサートピン 2は、 樹脂成形体 1 と一体化している。 この ような燃料電池用セパレー夕は、 金型のコア側およびキヤビティ側
に、 それぞれ、 断面凹凸状の導電性金属箔とシート状の導電性金属 箔 (アルミニウム箔、 白金箔など) 3を固定し、 アルミニウム製ィ ンサ一トビン 2をコアの凸部に挿入し, 樹脂 1を入れて成形するこ とにより得ることができる。 導電性金属箔 3は成形に伴ってセパレ —夕の両面に一体化できる。 FIG. 2 is a schematic sectional view showing another example of the fuel cell separator of the present invention. This fuel cell separator is the same as the separator shown in FIG. 1 except that the sheet-shaped conductive metal foil 3 is located on the surface opposite to the conductive metal foil 3 having the uneven cross section. Both end surfaces of the pin 2 are in contact with the conductive gold foil 3 on both sides, and the conductive gold foil 3 on both sides and the conductive insert pin 2 are integrated with the resin molding 1. Such fuel cell separators are located on the core and cavity sides of the mold. Then, a conductive metal foil with an uneven cross section and a sheet-shaped conductive metal foil (aluminum foil, platinum foil, etc.) 3 are fixed, and an aluminum insert bin 2 is inserted into the convex part of the core, and the resin It can be obtained by molding by adding 1. The conductive metal foil 3 can be integrated on both sides of the separator as it is formed.
図 3は、 本発明の燃料電池用セパレータのさらに他の例を示す概 略断面図である。 この燃料電池用セパレー夕は、 一方の面に凹凸溝 が形成された板状の樹脂成形体 1と、 この樹脂成形体の凹凸面に形 成された導電性塗料 4と、 この導電性塗料と接触して厚み方向に延 びる導電性インサートピン 2とで構成されており、 樹脂成形体 1 と 導電性塗料 4と導電性ィンサートビン 2は一体化している。 また、 導電性ィンサートビン 2は樹脂成形体 1の隣接する凹溝にそれぞれ 配されている。 導電性インサートピン 2の一方の端面は、 導電性塗 料 4と接触して榭脂成形体 1の隣接する凹溝の底部に配され、 ィン サ一トビンの 2の端面は、 樹脂成形体 1の平坦面で露呈している。 このような燃料電池用セパレ一夕は、 金型のコア側に、 刷毛塗りな どの方法で導電性塗料 (藤倉化成 (株) 製、 商品名ドータイ トなど) 4を剥離可能に塗布し、 複数の導電性インサートピン (アルミニゥ ム製インサートピン) 2を厚み方向に挿入し、 榭脂 1を入れて成形 することにより得ることができる。 なお、 成形は、 コアの凹凸溝に 沿わせて導電性金属箔を固定することに代えて、 コアの凹凸溝に導 電性塗料を塗布する以外、 図 1の燃料電池用セパレ一夕と同様にし て得ることができる。 また、 金型内に導電性インサートピン 2を起 立させて、 一方の面に凹凸溝を有する樹脂成形体 1を成形し、 得ら れた樹脂成形体 1の凹凸面に導電性塗料 4を塗布することにより、 前記構造の燃料電池用セパレ一タを得ることもできる。 FIG. 3 is a schematic sectional view showing still another example of the fuel cell separator of the present invention. This fuel cell separator has a plate-shaped resin molded product 1 having an uneven groove formed on one surface, a conductive paint 4 formed on the uneven surface of the resin molded product, It is composed of a conductive insert pin 2 that extends in the thickness direction upon contact, and a resin molded body 1, a conductive paint 4, and a conductive insert bin 2 are integrated. Further, the conductive insert bins 2 are respectively arranged in adjacent grooves of the resin molded body 1. One end face of the conductive insert pin 2 is arranged on the bottom of the adjacent concave groove of the resin molded body 1 in contact with the conductive paint 4, and the end face of the insert bin 2 is formed of the resin molded body. It is exposed on 1 flat surface. Such a separator for fuel cells is prepared by applying a conductive paint (Dohite, manufactured by Fujikura Kasei Co., Ltd., etc.) 4 to the core of the mold by brushing or the like in a releasable manner. It can be obtained by inserting a conductive insert pin (aluminum insert pin) 2 in the thickness direction and adding resin 1 and molding. The molding was performed in the same manner as the fuel cell separator shown in Fig. 1, except that a conductive paint was applied to the core grooves instead of fixing the conductive metal foil along the core grooves. You can get it. Also, the conductive insert pins 2 are erected in the mold to form the resin molded body 1 having the concave and convex grooves on one surface, and the conductive paint 4 is coated on the concave and convex surface of the obtained resin molded body 1. By coating, a separator for a fuel cell having the above structure can be obtained.
図 4は、 本発明の燃料電池用セパレ一夕の別の例を示す概略断面 図である。 この燃料電池用セパレー夕は、 図 3に示す燃料電池用セ パレ一夕において、 一方の面に凹凸溝を有する樹脂成形体 1 と、 こ
の樹脂成形体の両面に形成された導電性塗料 4と、 両面の導電性塗 料と接触し、 かつ軸が厚み方向に延びる導電性ィンサートビン 2と を備えている。 このような両面に導電性が付与された燃料電池用セ パレ一夕は、 金型のキヤビティ側及びコア側に、 導電性塗料 (ド一 夕イ トなど) 4を剥離可能に塗布し、 複数の導電性インサートピン を金型内で起立させて挿入し、 樹脂 1を入れて成形する方法、 金型 内に導電性ィンサートビン 2を起立させて、 一方の面に凹凸溝を有 する榭脂成形体 1を成形し、 得られた樹脂成形体 1の両面に導電性 塗料 4を塗布する方法により得ることができる。 FIG. 4 is a schematic sectional view showing another example of the fuel cell separator of the present invention. This fuel cell separator is the same as the fuel cell separator shown in FIG. 3 except that a resin molded body 1 having an uneven groove on one surface is provided. A conductive paint 4 formed on both surfaces of the resin molded article, and a conductive insert bin 2 that is in contact with the conductive paint on both surfaces and whose axis extends in the thickness direction. Such a fuel cell separator having conductivity on both sides is coated with a conductive paint (such as a metal sheet) 4 on the mold side and the core side in a releasable manner. Insert the resin by inserting the conductive insert pin into the mold, and insert the resin 1 into the mold, and then raise the conductive insert bin 2 in the mold to form a resin with an uneven groove on one surface. It can be obtained by molding the body 1 and applying the conductive paint 4 to both sides of the obtained resin molded body 1.
図 5は、 本発明の燃料電池用セパレ一夕のさらに別の例を示す概 略断面図である。 この燃料電池用セパレー夕は、 一方の面に凹凸溝 が形成された導電性樹脂成形体 5と、 この成形体の平坦面に一体化 した導電性板材 (アルミニウム板など) 6とで構成されている。 こ のような構造のセパレー夕は、金型のキヤビティ側に導電性板材(ァ ルミニゥム板など) 6を仮止めし、 金型内に導電性榭脂 5を入れて、 成形することにより得ることができる。 導電性榭脂 5を構成する樹 脂としては、 熱硬化性樹脂、 熱可塑性樹脂のいずれも使用でき、 代 表的には、 フエノール樹脂が挙げられる。 成形は、 金型に導電性板 材 6を配して、 導電性樹脂 5を金型内に充填し、 加圧成形すること により行うことができる。 FIG. 5 is a schematic sectional view showing still another example of the fuel cell separator of the present invention. This fuel cell separator is composed of a conductive resin molded body 5 having an uneven groove formed on one surface, and a conductive plate material (eg, an aluminum plate) 6 integrated with a flat surface of the molded body. I have. Separators having such a structure can be obtained by temporarily fixing a conductive plate material (such as an aluminum plate) 6 to the mold cavity side, placing conductive resin 5 in the mold, and molding. Can be. As the resin constituting the conductive resin 5, either a thermosetting resin or a thermoplastic resin can be used, and a phenol resin is a typical example. The molding can be performed by arranging the conductive plate material 6 in a mold, filling the mold with the conductive resin 5, and performing pressure molding.
図 6は、 本発明の燃料電池用セパレー夕の他の例を示す概略断面 図である。 このセパレー夕は、 厚み方向の導電性を高めるため、 導 電性樹脂成形体 5の導電性板材 6と接触して導電性ィンサートビン 2が他方の凹凸面に厚み方向に延びている点を除いて、 図 5に示す セパレー夕と同様の構造を有している。 このような構造のセパレ一 タは、 金型のキヤビティ側に導電性板材 (アルミニウム板など) 6 を仮止めし、 コア側の凸部に複数の導電性インサートピン (アルミ 二ゥム製インサートピンなど) 2を挿入し、 金型内に導電性樹脂 5 を入れて、 加圧成形することにより得ることができる。
産業上の利用可能性 FIG. 6 is a schematic sectional view showing another example of the fuel cell separator of the present invention. This separator has the same structure as that of the conductive resin molding 5 except that the conductive insert bin 2 extends in the thickness direction on the other uneven surface in order to increase the conductivity in the thickness direction. It has the same structure as the separator shown in Figure 5. The separator with such a structure has a conductive plate (aluminum plate, etc.) 6 temporarily fixed on the mold cavity side, and a plurality of conductive insert pins (aluminum insert pins) on the core side protrusion. Etc.) 2 can be obtained by inserting the conductive resin 5 into the mold and press-molding. Industrial applicability
本発明の方法では、 炭化又は黒鉛化工程及び切削工程を経ること なく、 成形により高い性能のセパレ一夕を製造できる。 そのため、 金型としてキヤビティ側及びコア側のうち少なくとも一方 (特にコ ァ側) に連続した凸部 (突条) 又は溝を形成した金型を用いること により、 溝付きセパレー夕を高い精度で得ることができる。 According to the method of the present invention, a high-performance separator can be produced by molding without going through a carbonizing or graphitizing step and a cutting step. Therefore, a grooved separator can be obtained with high precision by using a mold having a convex portion (protrusion) or a groove formed on at least one of the cavity side and the core side (particularly, the core side). be able to.
さらに、 本発明のセパレー夕は、 炭化工程あるいは切削工程を経 ることなく、 ガス不透過性、 電気導電性、 熱伝導性、 機械強度、 耐 酸性などの諸特性に優れ、 燃料電池、 特に固体高分子膜を電解質膜 とする固体高分子型燃料電池用セパレー夕として有用である。 特に フエノール樹脂を用いた場合には、 耐熱性、 耐酸性、 強度、 耐熱水 性、 コストの点で優れている。 本発明の方法では、 炭化工程および 切削工程を経ることなく、 成形により、 高い導電性, 熱伝導性など の特性に加えて、 寸法精度の高い溝 (ガス流路) を形成できる。 そ のため、 本発明は、 燃料電池用セパレー夕 (特に固体高分子膜を電 解質膜とする固体高分子型燃料電池用セパレー夕) に有効に適用で さる。 実施例 Furthermore, the separator of the present invention is excellent in various properties such as gas impermeability, electric conductivity, heat conductivity, mechanical strength, and acid resistance without undergoing a carbonization step or a cutting step, and is excellent in a fuel cell, particularly a solid state. It is useful as a separator for polymer electrolyte fuel cells using a polymer membrane as the electrolyte membrane. In particular, when a phenolic resin is used, it is excellent in heat resistance, acid resistance, strength, hot water resistance, and cost. According to the method of the present invention, a groove (gas flow path) having high dimensional accuracy can be formed by molding without going through the carbonizing step and the cutting step, in addition to the properties such as high conductivity and thermal conductivity. Therefore, the present invention can be effectively applied to a fuel cell separator (particularly, a polymer electrolyte fuel cell separator using a solid polymer membrane as an electrolyte membrane). Example
以下に、 実施例に基づいて本発明をより詳細に説明するが、 本発 明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
実施例及び比較例において、 種々物性の測定は常法に基いて行つ た。 表面状態は、 熟練者が目視により判定した。 In the examples and comparative examples, the measurement of various physical properties was performed according to a conventional method. The surface condition was visually judged by a skilled person.
実施例 1 ~ 5 Examples 1 to 5
フエノール樹脂 (鐘紡 (株) 製 : ベルパール S 8 9 0 ) と M C M Bの黒鉛化品 (大阪瓦斯 (株) 製, 平均粒径 1 0 j mおよび 2 5 μ m ) 又は人造黒鉛粉 (中越黒鉛 (株) 製, R A 1 5 , アスペク ト比 1 . 3 , 平均粒径 5 m ) とを表 1に示す配合 (重量部比で 3 3 .
3 : 6 6. 7又は 2 5. 0 : 7 5. 0 ) でミキサーを用い 1 0分間 乾式混合した。 この粉末混合物を金型に投入し、 成形圧力 5 O k g ノ c m2、 1 6 0 X 2 0分間の条件で成形した。 なお、 実施例 5 では炭素繊維 ((株) ドナック製, ドナカーボ S , 平均繊維長 3 m m) を全体 1 0 0重量部当たり 2重量部併用した。 その結果を表 1 に示す。 Phenol resin (manufactured by Kanebo Co., Ltd .: Bellpearl S890) and graphitized MCMB (manufactured by Osaka Gas Co., Ltd., average particle size: 10 jm and 25 μm) or artificial graphite powder (Chuetsu Graphite Co., Ltd.) ), RA 15, aspect ratio 1.3, average particle size 5 m) and the composition shown in Table 1 (33. 3: 6.6.7 or 25.0: 75.0) using a mixer for 10 minutes. This powder mixture was charged into a mold and molded under the conditions of a molding pressure of 5 O kg / cm 2 and 160 × 20 minutes. In Example 5 , 2 parts by weight of carbon fiber (Donacarb S, average fiber length 3 mm, manufactured by Donac Co., Ltd.) was used per 100 parts by weight. The results are shown in Table 1.
比較例 1 Comparative Example 1
MC MBの黒鉛化品に代えて、 ァスぺク ト比 2を越える土壤黒鉛 粉 (日本黒鉛工業 (株) 製 : C P, アスペク ト比 2. 5 , 平均粒径 5 ^m) を用い、 実施例 1 と同様にして成形した。 In place of the graphitized MC MB, soil graphite powder with an aspect ratio of more than 2 (manufactured by Nippon Graphite Industries, Ltd .: CP, aspect ratio 2.5, average particle size 5 ^ m) was used. The molding was performed in the same manner as in Example 1.
ポリフエ二レンエーテル樹脂 (P P E樹脂, 三菱エンジニアリ ン グプラスチック (株) 製 : ュピエ一ス NX— 7 0 0 0 N) と MCM Bの黒鉛化品 (大阪瓦斯 (株) 製, 平均粒径 1 0 mおよび 2 5 m) 又は人造黒鉛粉 (中越黒鉛 (株) 製, RA 1 5 , アスペク ト比 1. 3 , 平均粒径 5 /zm) を表 2に示す配合 (重量部比で 2 5 : 7
5又は 2 2. 2 : 7 7. 8 ) でミキサーを用い 1 0分間乾式混合し た。この粉末混合物を押出し成型機に供給してペレツ トを調製した。 調製したペレッ トを用い、 射出成形により、 平板を成形した。 その 結果を表 2に示す。 Polyphenylene ether resin (PPE resin, manufactured by Mitsubishi Engineering-Plastics Co., Ltd .: Upies NX-700N) and graphitized MCM B (Osaka Gas Co., Ltd., average particle size 1 0 m and 25 m) or artificial graphite powder (manufactured by Chuetsu Graphite Co., Ltd., RA 15, aspect ratio 1.3, average particle size 5 / zm) shown in Table 2 (25 parts by weight ratio). : 7 5 or 22.2: 7.7.8) and dry-mixed for 10 minutes using a mixer. The powder mixture was supplied to an extruder to prepare a pellet. Flat plates were formed by injection molding using the prepared pellets. The results are shown in Table 2.
比較例 2 Comparative Example 2
M C M Bの黒鉛化品に代えて、 ァスぺク ト比 2を越える土壌黒鉛 粉 (日本黒鉛工業 (株) 製 : C P , アスペク ト比 2. 5 , 平均粒径 5 m) を用い、 実施例 6 と同様にして成形した。 微密な成形体は 得られなかった。 表 2 In place of the graphitized MCMB, an example using soil graphite powder with an aspect ratio of 2 (manufactured by Nippon Graphite Industries, Ltd .: CP, aspect ratio 2.5, average particle size 5 m) was used. Molding was performed in the same manner as in 6. A fine compact was not obtained. Table 2
実施例 1 0〜 : I 1 Example 10-: I 1
アルミニウム箔 (厚み 3 0 m) あるいは白金箔 (厚み 3 0 m) を平板金型のキヤビティ側又は両側に少量の接着剤でセッ トし、 厚 み方向の導電性を付与するため、 コア側に複数のアルミニウム製ィ ンサ一トビン ( 2 ηΐΓΏ φ Χ 1 . 5 mm X 4本) を厚み方向に挿入し た後、 金型内に実施例 1〜4で用いたフエノール樹脂 (鐘紡 (株) 製 : ベルパール S 8 9 0 ) のみを入れ、 実施例 1〜 5 と同様の成形 条件で成形した。 その結果を表 3に示す。 An aluminum foil (thickness: 30 m) or a platinum foil (thickness: 30 m) is set on the cavity side or both sides of the flat mold with a small amount of adhesive, and on the core side to impart conductivity in the thickness direction. After inserting a plurality of aluminum insert bins (2 ηΐΓΏ φΧ 1.5 mm x 4) in the thickness direction, the phenolic resin used in Examples 1-4 (manufactured by Kanebo Co., Ltd.) was inserted into the mold. : Only Bellpearl S890) was added and molded under the same molding conditions as in Examples 1 to 5. The results are shown in Table 3.
実施例 1 2〜 : L 3 Example 12: L3
導電性塗料 (藤倉化成 (株) 製, ドー夕イ ト) をコア側に刷毛塗
りするとともに、 厚み方向の導電性を付与するため、 キヤビティ側 に複数の凸部 (ピン) を有するアルミニウム製インサ一 卜板 (厚み 1 . 0 m m ) を挿入し、 固定した後、 金型内に実施例 1 〜 4で用い たフエノール樹脂 (鐘紡 (株) 製 : ベルパール S 8 9 0 ) のみを入 れ、 実施例 1 〜 5 と同様の成形条件で成形した。 その結果を表 3に 示す。 Conductive paint (Fujikura Kasei Co., Ltd., Doyu It) is brush-coated on the core side. In order to provide conductivity in the thickness direction, an aluminum insert plate (thickness: 1.0 mm) having a plurality of protrusions (pins) is inserted on the cavity side, fixed, and then inserted into the mold. Only the phenolic resin (manufactured by Kanebo Co., Ltd .: Bellpearl S890) used in Examples 1 to 4 was put into the mold, and molded under the same molding conditions as in Examples 1 to 5. The results are shown in Table 3.
比較例 3 Comparative Example 3
アルミニウム製インサート (導電部材) を用いることなく、 フエ ノール樹脂 (鐘紡 (株) 製 : ベルパール S 8 9 0 ) のみを入れ、 実 施例 1 0〜 1 3 と同様の条件で成形した。 表 3 Without using an aluminum insert (conductive member), only phenolic resin (manufactured by Kanebo Co., Ltd .: Bellpearl S890) was inserted and molded under the same conditions as in Examples 10 to 13. Table 3
予め、 金型のキヤビティ側にアルミニウム板 (厚み 0 . 5 m m ) を挿入し、 固定した後、 実施例 1 〜 4の粉末混合物 (複合材) を同 様の方法で充填し、 複数の連続した凸部が平行に形成されたコアを 用いて成形し、 溝が形^されたセパレー夕を得た。 結果を表 4に示 す。
表 4 An aluminum plate (0.5 mm thick) was previously inserted into the mold cavity side and fixed, and then the powder mixture (composite material) of Examples 1 to 4 was filled in the same manner to form a plurality of continuous pieces. Molding was performed using a core with convex portions formed in parallel, and a separator with grooves was obtained. Table 4 shows the results. Table 4
実施例 1 8 Example 18
フェノール樹脂 (鐘紡 (株) 製 : ベルパール S 8 9 0 ) 3 3. 3 重量部と MCMBの黒鉛化品 (大阪瓦斯 (株) 製, 平均粒径 1 0 m) 5 0. 0重量部と人造黒鉛粉 (中越黒鉛 (株) 製, RA 1 5 , アスペク ト比 1. 3 , 平均粒径 5 μιη) 1 6. 7重量部とを用いる 以外、 実施例 1 と同様にして成形体を得た。 この成形体の厚みは 1. 2 0 mm、 嵩密度は 1. 8 2 g/c m3、 厚み方向体積抵抗率は 0. 0 7 Ω c m, 曲げ強度は 9. 2 k g /mm2, 見掛けの厚み方向熱 伝導率は 6. 0 W/mk, 表面状態は良好であった。 Phenolic resin (manufactured by Kanebo Co., Ltd .: Bell Pearl S890) 33.3 parts by weight and graphitized MCMB (manufactured by Osaka Gas Co., Ltd., average particle size: 10 m) 50.0 parts by weight and artificial A molded product was obtained in the same manner as in Example 1 except that graphite powder (manufactured by Chuetsu Graphite Co., Ltd., RA 15, aspect ratio 1.3, average particle diameter 5 μιη) 16.7 parts by weight was used. . This compact has a thickness of 1.20 mm, a bulk density of 1.82 g / cm 3 , a volume resistivity in the thickness direction of 0.07 Ωcm, a bending strength of 9.2 kg / mm 2 , and an apparent The thermal conductivity in the thickness direction was 6.0 W / mk, and the surface condition was good.
実施例 1 9 Example 19
フ エノール樹脂 (鐘紡 (株) 製 : ベルパール S 8 9 0 ) 2 5. 0 重量部と MCMBの黒鉛化品 (大阪瓦斯 (株) 製, 平均粒径 1 0 m) 7 0. 0重量部とフ ァーネスブラック (旭力一ボン (株) 製, 平均粒径 1 6 zm) 5. 0重量部とを用いる以外、 実施例 1 と同様 にして成形体を得た。 この成形体の厚みは 1. 2 2mm、 嵩密度は 1. 8 5 g c m3、 厚み方向体積抵抗率は 0. 0 4 Q c m、 曲げ 強度は 8. 6 k g /mm 見掛けの厚み方向熱伝導率は 7. 0 W Zmk、 表面状態は良好であった。
25.0 parts by weight of phenolic resin (manufactured by Kanebo Co., Ltd .: Bellpearl S890) and graphitized MCMB (manufactured by Osaka Gas Co., Ltd., average particle size: 10 m) 70.0 parts by weight A molded body was obtained in the same manner as in Example 1 except that 5.0 parts by weight of furnace black (manufactured by Asahi Rikibon Co., Ltd., average particle size: 16 zm) was used. The thickness of this molded body is 1.22 mm, the bulk density is 1.85 gcm 3 , the volume resistivity in the thickness direction is 0.04 Qcm, and the bending strength is 8.6 kg / mm The apparent thermal conductivity in the thickness direction Was 7.0 W Zmk, and the surface condition was good.
Claims
1. 非炭素質の榭脂を含み、 厚み方向の体積抵抗が 0.1. Contains non-carbon resin and has a volume resistance of 0 in the thickness direction.
1 5 Ω c m以下であり、 曲げ強度が 3〜 2 0 k g f _/mm2 である 燃料電池用セパレー夕。 1 5 Omega cm or less, separator evening for a fuel cell flexural strength is 3~ 2 0 kgf _ / mm 2 .
2. 厚み方向の熱伝導率が 2〜 6 0 WZmKである請求 項 1記載の燃料電池用セパレー夕。 2. The fuel cell separator according to claim 1, wherein the thermal conductivity in the thickness direction is 2 to 60 WZmK.
3. 熱硬化性榭脂および熱可塑性榭脂から選択された少 なく とも一種の非炭素質樹脂と、 球状の黒鉛、 アスペク ト比 2. 0 以下の黒鉛粉末および導電性カーボンブラックから選択された少な く とも一種の導電剤とから構成されている請求項 1又は 2記載の燃 料電池用セパレ一夕。 3. At least one non-carbon resin selected from thermosetting resin and thermoplastic resin, spherical graphite, graphite powder with aspect ratio of 2.0 or less, and conductive carbon black 3. The separator for a fuel cell according to claim 1, comprising at least one kind of conductive agent.
4. 熱硬化性樹脂がフエノール樹脂である請求項 1〜 3 のいずれかの項に記載の燃料電池用セパレー夕。 4. The fuel cell separator according to any one of claims 1 to 3, wherein the thermosetting resin is a phenol resin.
5 - フエノール樹脂が、 (i) メチレン基, メチロール基, 並びに 3官能性のフエノール類残基を主たる結合単位として含有し ており、 (ii)KB r錠剤法による赤外線吸収スぺク トルにおいて、 1 6 0 0 c m—1での吸収強度を D 1600 とし、 9 9 0〜 1 0 1 5 c m — 1 での最大吸収強度を D99o_1()15 とし、 8 9 0 c m_1 での吸収強度 を D89o としたとき、 D 990-1015/ D 1600= 0 - 2〜 9. 0、 D 890The 5-phenolic resin contains (i) a methylene group, a methylol group, and a trifunctional phenolic residue as a main binding unit. (Ii) In the infrared absorption spectrum by the KBr tablet method, The absorption intensity at 1600 cm— 1 is D 1600 , the maximum absorption intensity at 990 to 1150 cm— 1 is D 99 o_1 () 15, and the absorption at 890 cm _1 When the intensity is D 89 o, D 990-1015 / D 1600 = 0-2 to 9.0, D 890
D 1600= 0 - 0 9〜: L . 0であり、 (ΠΪ) 液体クロマトグラフィー による遊離フエノール含有量が 5 0〜 5 0 0 p pmである請求項 1 〜 4のいずれかの項に記載の燃料電池用セパレー夕。 D 1600 = 0-09 ~: L. 0, and (ΠΪ) the free phenol content by liquid chromatography is 50-500 ppm, according to any one of claims 1-4. Separation evening for fuel cells.
6. 球状の黒鉛が、 平均粒径 5〜 5 0 mのメソカーボ ンマイクロビーズである請求項 1〜 5のいずれかの項に記載の燃料 電池用セパレー夕。 6. The fuel cell separator according to any one of claims 1 to 5, wherein the spherical graphite is mesocarbon microbeads having an average particle size of 5 to 50 m.
7. 黒鉛粉末が、 アスペク ト比 1〜 2の天然又は人造黒 鉛粉末である請求項 1〜 6のいずれかの項に記載の燃料電池用セパ レー夕。
7. The fuel cell separator according to any one of claims 1 to 6, wherein the graphite powder is a natural or artificial graphite powder having an aspect ratio of 1 to 2.
8. 榭脂と導電剤との割合が、 前者 Z後者 = 2 0 8 0 〜 5 0 50 (重量比) である請求項 1〜 7のいずれかの項に記載 の燃料電池用セパレー夕。 8. The fuel cell separator according to any one of claims 1 to 7, wherein the ratio of the resin and the conductive agent is the former Z latter = 280 to 550 (weight ratio).
9. さらに炭素繊維を含む請求項 1〜 8のいずれかの項 に記載の燃料電池用セパレ一夕。 9. The fuel cell separator according to any one of claims 1 to 8, further comprising a carbon fiber.
1 0. 炭素繊維が、 平均繊維径 0. 5〜 5 0 wm及び平 均繊維長 1 0 m〜 5 mmを有する請求項 1〜 9のいずれかの項に 記載の燃料電池用セパレー夕。 10. The fuel cell separator according to any one of claims 1 to 9, wherein the carbon fibers have an average fiber diameter of 0.5 to 50 wm and an average fiber length of 10 m to 5 mm.
1 1. 炭素繊維の含有量が、 非炭素質の樹脂で構成され ている複合材全体に対して 1〜 1 0重量%である請求項 1〜 1 0の いずれかの項に記載のセパレータ。 11. The separator according to any one of claims 1 to 10, wherein the content of carbon fibers is 1 to 10% by weight based on the whole composite material made of non-carbonaceous resin.
1 2. 射出成形又は圧縮成形により請求項 1〜 1 1のい ずれかの項に記載の燃料電池用セパレ一夕を製造する方祛。 1 2. A method for producing the fuel cell separator according to any one of claims 1 to 11 by injection molding or compression molding.
1 3. 非炭素質の樹脂を含む合成樹脂成形体と、 この成 形体と一体化した導電部材とで構成されている請求項 1〜 1 1のい ずれかの項に記載の燃料電池用セパレー夕。 13. The fuel cell separator according to any one of claims 1 to 11, comprising: a synthetic resin molded body containing a non-carbonaceous resin; and a conductive member integrated with the molded body. evening.
1 4. 合成樹脂成形体と、 この成形体と一体化した導電 部材とで構成されている燃料電池用セパレ一夕。 1 4. A fuel cell separator composed of a synthetic resin molded body and a conductive member integrated with the molded body.
1 5. 導電部材の形態が、 被膜状、 薄膜状、 繊維状、 平 板状又は棒状である請求項 1 3又は 14記載の燃料電池用セパレ一 夕。 15. The fuel cell separator according to claim 13, wherein the conductive member is in the form of a film, a thin film, a fiber, a flat plate, or a rod.
1 6. 合成樹脂成形体の少なく とも片面が、 導電部材で 被覆されている請求項 1 3~ 1 5のいずれかの項に記載の燃料電池 用セパレ一夕。 16. The fuel cell separator according to any one of claims 13 to 15, wherein at least one surface of the synthetic resin molded body is covered with a conductive member.
1 7. 合成樹脂成形体の少なく とも片面又は内部に導電 部材を有する請求項 1 3〜 1 6のいずれかの項に記載の燃料電池用 セパレ一夕。 17. The fuel cell separator according to any one of claims 13 to 16, wherein the synthetic resin molded body has a conductive member on at least one side or inside.
1 8. 合成樹脂成形体と導電部材とを一体化する請求項 1 3〜 1 7のいずれかの項に記載の燃料電池用セパレー夕の製造方
法。 1 8. The method for producing a fuel cell separator according to any one of claims 13 to 17, wherein the synthetic resin molded body and the conductive member are integrated. Law.
1 9 . 金型のうち成形体の少なく とも片面に対応する部 位に導電性シー卜を配設する工程と、 合成樹脂を入れて加圧するェ 程とで構成されている請求項 1 8記載の燃料電池用セパレー夕の製 造方法。 19. The method according to claim 18, comprising a step of arranging a conductive sheet at a position corresponding to at least one surface of the molded body in the mold, and a step of pressing a synthetic resin. Production method for fuel cell separators.
2 0 . 金型のうち成形体の少なく とも片面に対応する部 位に導電性樹脂組成物を塗布する工程と、 合成樹脂を入れて加圧す る工程とで構成されている請求項 1 8又は 1 9記載の燃料電池用セ パレー夕の製造方法。 20. The method according to claim 18, comprising a step of applying a conductive resin composition to at least a portion of the mold corresponding to one surface of the molded body, and a step of adding a synthetic resin and applying pressure. 19. The method for manufacturing the fuel cell separator described in 19 above.
2 1 . 金型のうち成形体の少なく とも片面又は内部に対 応する部位に導電部材を予めセッ 卜する工程と、合成樹脂を充填し、 前記導電部材と一体化する工程とで構成されている請求項 1 8〜 2 0のいずれかの項に記載の燃料電池用セパレー夕の製造方法。 21. It is composed of a step of setting a conductive member in advance at least on a portion corresponding to at least one surface or the inside of a molded body in a mold, and a step of filling with a synthetic resin and integrating with the conductive member. The method for producing a separator for a fuel cell according to any one of claims 18 to 20.
2 2 . 請求項 1 〜 1 1及び 1 3 〜 1 7のいずれかの項に 記載のセパレ一タを備えている燃料電池。
22. A fuel cell comprising the separator according to any one of claims 1 to 11 and 13 to 17.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7164398 | 1998-03-20 | ||
JP10/71643 | 1998-03-20 | ||
JP10/194691 | 1998-07-09 | ||
JP19469198 | 1998-07-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999049530A1 true WO1999049530A1 (en) | 1999-09-30 |
Family
ID=26412752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1999/001349 WO1999049530A1 (en) | 1998-03-20 | 1999-03-18 | Separator for fuel cell and method for producing the same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1999049530A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001325967A (en) * | 2000-05-15 | 2001-11-22 | Nisshinbo Ind Inc | Method for manufacturing fuel cell separator, fuel cell separator and polymer electrolyte fuel cell |
JP2001351645A (en) * | 2000-06-09 | 2001-12-21 | Kawasaki Steel Corp | Fuel cell separator and fuel cell |
JP2001351644A (en) * | 2000-06-07 | 2001-12-21 | Kawasaki Steel Corp | Fuel cell separator and fuel cell |
WO2002001660A1 (en) * | 2000-06-29 | 2002-01-03 | Osaka Gas Company Limited | Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator |
JP2002063913A (en) * | 2000-08-22 | 2002-02-28 | Tokai Carbon Co Ltd | Separator for polymer electrolyte fuel cell and method for producing the same |
JP2002134135A (en) * | 2000-10-20 | 2002-05-10 | Sony Corp | Fuel cell separator |
JP2002141084A (en) * | 2000-05-08 | 2002-05-17 | Honda Motor Co Ltd | Fuel cell |
JP2003068316A (en) * | 2001-03-06 | 2003-03-07 | Toray Ind Inc | Fuel cell separator and method for producing the same |
WO2005038969A1 (en) * | 2003-10-21 | 2005-04-28 | Compotec S.P.A. | Material for manufacturing bipolar plates for fuel cells, bipolar plate made of said material and fuel sell comprising said plate |
JP2005521194A (en) * | 2001-11-02 | 2005-07-14 | フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. | Micro fuel cell system |
JP2006092773A (en) * | 2004-09-21 | 2006-04-06 | Honda Motor Co Ltd | Manufacturing method of fuel cell separator |
JP2007324146A (en) * | 2007-09-07 | 2007-12-13 | Mitsubishi Plastics Ind Ltd | Fuel cell separator |
DE10216306B4 (en) * | 2002-04-14 | 2008-06-12 | Sgl Carbon Ag | Method for producing a contact plate for an electrochemical cell and its uses |
JP2008243513A (en) * | 2007-03-27 | 2008-10-09 | Equos Research Co Ltd | Current collector, manufacturing method thereof, and fuel cell |
FR2944915A1 (en) * | 2009-04-27 | 2010-10-29 | Air Liquide | Electrochemical assembly integrated monopolar or bipolar fuel cell plate for forming elementary fuel cell unit, has reactive portion formed of part made of plastic or composite material connected on metal part |
EP1521320A3 (en) * | 2003-09-30 | 2011-03-16 | Nichias Corporation | Separator for fuel cell |
JP2013093099A (en) * | 2011-10-24 | 2013-05-16 | Panasonic Corp | Fuel cell separator forming material, fuel cell separator and fuel cell |
WO2024121240A1 (en) * | 2022-12-08 | 2024-06-13 | Leonhardt e. K. | Method for producing flat fuel cell components, in particular bipolar plates, and fuel component produced according to the method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5048435A (en) * | 1973-07-02 | 1975-04-30 | ||
JPS59213610A (en) * | 1983-05-18 | 1984-12-03 | Showa Denko Kk | Carbonaceous molded body and its manufacture |
JPS60246568A (en) * | 1984-05-22 | 1985-12-06 | Fuji Electric Corp Res & Dev Ltd | Manufacture of ribbed and grooved separator for fuel cell |
JPS6230211B2 (en) * | 1981-12-25 | 1987-07-01 | Kanebo Ltd | |
JPS62260709A (en) * | 1986-05-07 | 1987-11-13 | Kawasaki Steel Corp | Formed carbon article and production thereof |
JPH1012246A (en) * | 1996-06-25 | 1998-01-16 | Du Pont Kk | Solid polymer electrolyte fuel cell |
JPH1079260A (en) * | 1996-09-03 | 1998-03-24 | Sanyo Electric Co Ltd | Fuel cell |
-
1999
- 1999-03-18 WO PCT/JP1999/001349 patent/WO1999049530A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5048435A (en) * | 1973-07-02 | 1975-04-30 | ||
JPS6230211B2 (en) * | 1981-12-25 | 1987-07-01 | Kanebo Ltd | |
JPS59213610A (en) * | 1983-05-18 | 1984-12-03 | Showa Denko Kk | Carbonaceous molded body and its manufacture |
JPS60246568A (en) * | 1984-05-22 | 1985-12-06 | Fuji Electric Corp Res & Dev Ltd | Manufacture of ribbed and grooved separator for fuel cell |
JPS62260709A (en) * | 1986-05-07 | 1987-11-13 | Kawasaki Steel Corp | Formed carbon article and production thereof |
JPH1012246A (en) * | 1996-06-25 | 1998-01-16 | Du Pont Kk | Solid polymer electrolyte fuel cell |
JPH1079260A (en) * | 1996-09-03 | 1998-03-24 | Sanyo Electric Co Ltd | Fuel cell |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002141084A (en) * | 2000-05-08 | 2002-05-17 | Honda Motor Co Ltd | Fuel cell |
JP2001325967A (en) * | 2000-05-15 | 2001-11-22 | Nisshinbo Ind Inc | Method for manufacturing fuel cell separator, fuel cell separator and polymer electrolyte fuel cell |
JP2001351644A (en) * | 2000-06-07 | 2001-12-21 | Kawasaki Steel Corp | Fuel cell separator and fuel cell |
JP2001351645A (en) * | 2000-06-09 | 2001-12-21 | Kawasaki Steel Corp | Fuel cell separator and fuel cell |
WO2002001660A1 (en) * | 2000-06-29 | 2002-01-03 | Osaka Gas Company Limited | Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator |
US7049021B2 (en) | 2000-06-29 | 2006-05-23 | Osaka Gas Company Limited | Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator |
JP2002063913A (en) * | 2000-08-22 | 2002-02-28 | Tokai Carbon Co Ltd | Separator for polymer electrolyte fuel cell and method for producing the same |
JP2002134135A (en) * | 2000-10-20 | 2002-05-10 | Sony Corp | Fuel cell separator |
JP2003068316A (en) * | 2001-03-06 | 2003-03-07 | Toray Ind Inc | Fuel cell separator and method for producing the same |
JP2005521194A (en) * | 2001-11-02 | 2005-07-14 | フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. | Micro fuel cell system |
DE10216306B4 (en) * | 2002-04-14 | 2008-06-12 | Sgl Carbon Ag | Method for producing a contact plate for an electrochemical cell and its uses |
EP1521320A3 (en) * | 2003-09-30 | 2011-03-16 | Nichias Corporation | Separator for fuel cell |
WO2005038969A1 (en) * | 2003-10-21 | 2005-04-28 | Compotec S.P.A. | Material for manufacturing bipolar plates for fuel cells, bipolar plate made of said material and fuel sell comprising said plate |
JP2006092773A (en) * | 2004-09-21 | 2006-04-06 | Honda Motor Co Ltd | Manufacturing method of fuel cell separator |
JP2008243513A (en) * | 2007-03-27 | 2008-10-09 | Equos Research Co Ltd | Current collector, manufacturing method thereof, and fuel cell |
JP2007324146A (en) * | 2007-09-07 | 2007-12-13 | Mitsubishi Plastics Ind Ltd | Fuel cell separator |
FR2944915A1 (en) * | 2009-04-27 | 2010-10-29 | Air Liquide | Electrochemical assembly integrated monopolar or bipolar fuel cell plate for forming elementary fuel cell unit, has reactive portion formed of part made of plastic or composite material connected on metal part |
JP2013093099A (en) * | 2011-10-24 | 2013-05-16 | Panasonic Corp | Fuel cell separator forming material, fuel cell separator and fuel cell |
WO2024121240A1 (en) * | 2022-12-08 | 2024-06-13 | Leonhardt e. K. | Method for producing flat fuel cell components, in particular bipolar plates, and fuel component produced according to the method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1999049530A1 (en) | Separator for fuel cell and method for producing the same | |
JP2001052721A (en) | Separator for fuel cell and its manufacture | |
US4301222A (en) | Separator plate for electrochemical cells | |
US4360485A (en) | Method for making improved separator plates for electrochemical cells | |
US7758783B2 (en) | Continious production of exfoliated graphite composite compositions and flow field plates | |
JP4743356B2 (en) | Manufacturing method of fuel cell separator, fuel cell separator, and polymer electrolyte fuel cell | |
WO2002001660A1 (en) | Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator | |
US20030190516A1 (en) | Fuel cell separator and method of manufacture | |
JP2001126744A (en) | Separator for fuel cell and fabricating method therefor | |
JP2001122677A (en) | Method for manufacturing separator for fuel battery | |
US7125624B2 (en) | Fuel cell separator and method of manufacture | |
JP2002198066A (en) | Separator for fuel cell and manufacturing method | |
WO2007044585A2 (en) | Compression moldable composite bipolar plates with high through-plane conductivity | |
JP4537809B2 (en) | Carbon / phenolic resin composite material, carbon / phenolic resin composite cured material, carbon / phenolic resin composite carbonized material, fuel cell separator, conductive resin composition, battery electrode, electric double layer capacitor | |
JP2002083609A (en) | Composition for fuel cell separator and method for producing the same | |
EP1298748A2 (en) | Bipolar plate for fuel cell, method for manufacturing the bipolar plate, and fuel cell using the bipolar plate | |
JP4067317B2 (en) | Conductive composition and molded body thereof | |
JP2003286085A (en) | Porous carbon plate and manufacturing method thereof | |
JP2002050365A (en) | Fuel cell separator and fuel cell using the same | |
JP2007042326A (en) | Fuel cell separator and method for producing the same | |
JP2002198064A (en) | Separator for fuel cell and its manufacturing method | |
JP2005339953A (en) | Prepreg for fuel cell, separator for fuel cell consisting of this prepreg and manufacturing method for it | |
JP2002075394A (en) | Fuel cell separator members | |
JP4678170B2 (en) | Fuel cell separator | |
JP4385670B2 (en) | Manufacturing method of fuel cell separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: KR |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 2000538399 Format of ref document f/p: F |