WO1999016165A1 - Circuit et procede pour l'elimination de reactions perturbatrices d'un convertisseur - Google Patents
Circuit et procede pour l'elimination de reactions perturbatrices d'un convertisseur Download PDFInfo
- Publication number
- WO1999016165A1 WO1999016165A1 PCT/DE1998/002555 DE9802555W WO9916165A1 WO 1999016165 A1 WO1999016165 A1 WO 1999016165A1 DE 9802555 W DE9802555 W DE 9802555W WO 9916165 A1 WO9916165 A1 WO 9916165A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- input
- converter
- circuit
- voltage
- circuit arrangement
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/14—Arrangements for reducing ripples from DC input or output
- H02M1/15—Arrangements for reducing ripples from DC input or output using active elements
Definitions
- Regulated power supply units tend to vibrate. This is due to the fact that a characteristic curve of the circuit part, in which the regulation takes place, which reflects the relationship between the input voltage and the input current has a negative slope in some areas.
- a characteristic curve of the circuit part, in which the regulation takes place which reflects the relationship between the input voltage and the input current has a negative slope in some areas.
- the current-voltage characteristic curve has a hyperbolic profile, so that the negative differential input resistance corresponding to the slope of this characteristic curve is the smallest when the input voltage is the smallest value has, in which a perfect control of the power supply device is still possible.
- Regulated power supply units of the type in question have a filter circuit as an input circuit to suppress disturbing effects on the supply network.
- This input circuit consists of at least one longitudinal inductor and at least one transverse capacitance. These two circuit elements, the sizes of which are determined by a requirement for a sufficient sieving effect, set Vibration-capable structure that can be excited to independent vibrations in connection with the negative input resistance of the regulated circuit part mentioned.
- An examination of the stability conditions shows that vibrations can occur if the quotient of the value of the inductance and the product of capacitance and the sum of the ohmic resistances involved as well as an internal resistance of a voltage source and the series equivalent resistance of the capacitance is greater than the amount of the negative input resistance of the regulated circuit part.
- the increase in the effective capacitance can preferably be achieved by connecting an electrolytic capacitor of high capacitance in parallel with the existing high-quality pulse storage capacitor of the filter circuit.
- the measures described for eliminating the vibration are unsuitable for modern power supply devices with converters of very high power, since additional capacity cannot be arranged on a power supply board due to a lack of free space.
- the increase of a resistance effective in series with the shear capacitance can in principle be used in high-performance converters, but leads to an unacceptably high power loss in this resistance.
- a high power loss brings with it the problem of eliminating the heat loss that arises in a relatively small volume, on the other hand it has a not inconsiderable deterioration in the efficiency, which nullifies an important advantage of modern converter circuit technology.
- the invention is based on the object of specifying a circuit arrangement and a method with which vibrations from a regulated converter or from the input circuit are avoided.
- the invention has the advantage that an ohmic resistance in series with the filter inductance of the filter circuit is avoided.
- the invention has the further advantage that only a small amount of space is required to accommodate additional circuit components.
- FIG. 1 shows a block diagram of a circuit arrangement for active compensation of a negative differential input resistance in DC voltage / DC voltage converters
- Figure 2 is a circuit diagram of a circuit configuration of this block diagram.
- the block diagram shown in FIG. 1 essentially consists of an input filter E, a converter U and a circuit unit QS arranged between the components mentioned for active compensation of a negative differential input resistance of the converter U.
- the active compensation takes place in the circuit arrangement in FIG Instead of monitoring a current flowing into the converter U and deriving an excessive current component via a sink, which is formed by a ground potential M, and an excessively low current into the converter U from a source which is subsequently used as an auxiliary voltage source of supply UH, is added.
- the circuit arrangement QS is arranged between a decoupling unit AK and a coupling unit EK.
- the inputs of the input filter E are connected to a voltage source UE.
- An output voltage UA is present at the output of the inverter U.
- FIG. 2 shows a circuit diagram of the block diagram shown in FIG. 1.
- the input filter E is formed from a longitudinal inductance LF and a transverse capacitance CF arranged between the outputs AI, A2 of the input filter E.
- the outputs AI, A2 of the input filter E are connected to the inputs El, E2 as a clocked DC voltage
- A2 of the input filter ters E is a decoupling unit AK formed from a series circuit, consisting of an outcoupling capacitor CK1 and a first resistor Rl.
- the circuit unit designated QS is subdivided into a decision unit QSE, an amplifier unit VQS and a frequency response correction unit FK.
- a source is formed at the output of the operational amplifier VI depending on the level of the voltage potential present at the first input of the operational amplifier VI by an auxiliary voltage source UH or a sink, formed by the voltage potential corresponding to the ground potential M, applied to the output.
- the first output AI of the input filter E is connected to the first input of the converter U
- the second output A2 of the input filter E is connected to a second input E2 of the converter U.
- the first input of the operational amplifier VI is connected via the frequency response correction unit FK, formed from a parallel connection with a capacitor C2 and a second resistor R2, to a tap point AP between the third resistor R3 and the damping resistor RD.
- FK frequency response correction unit
- the output of operational amplifier VI is connected to a control input B1 of a first switching element T1 and to a control input B2 of a second switching element T2.
- the input EMI of the controlled system EMI, Cl of the first switching element T1 and the input EM2 of the controlled system EM2, C2 of the second switching element T2 is connected to the tap point AP between the third resistor R3 and the damping resistor RD.
- the output Cl of the controlled system EMI, Cl of the first switching element T1 is connected to the auxiliary voltage source UH.
- the output of the controlled system EM2, C2 of the second switching element T2 is connected to the ground potential M, which is present on the connecting line between the second output A2 of the input filter E and the second input E2 of the converter.
- a vibration in the input filter E or in the converter U is counteracted. If the voltage at the transverse capacitance CF rises as a result of an excess current component IE impressed in the longitudinal inductance LF, a voltage rise at the transverse capacitance CF caused thereby is passed on via the decoupling capacitor CK1 at the first input of the operational amplifier VI.
- the ground potential M is applied to the output of the operational amplifier VI by means of a voltage comparison with the reference voltage UREF present at the second input of the operational amplifier VI. By applying the ground potential M at the output of the operational amplifier VI, a part of the current, which is designated IK, is via the
- Coupling capacitor CK2 the damping resistor RD and the third resistor R3, to which the ground potential M is applied in this circuit phase. If the derived current component IK exceeds a predetermined value, then the control input B2 of the second switching element T2 is controlled in such a way that the control path EM2, C2 of the second switching element is triggered by the current flow through the third resistor R3. element T2 is connected directly to the ground potential M and the total resistance R3, RD is reduced by the resistance value of the resistance of R3. As a result of the connection of the second switching element T2, the excess current component IK can now be via the coupling capacitor CK2 and the
- Damping resistance RD can be derived directly to the ground potential M.
- the derivation of the excess current component IK prevents the voltage across the transverse capacitor CF in the input filter E from rising.
- An increase in the voltage across the transverse capacitor CF in the input filter E would have the consequence that a lower current IU is necessary with a constant output power from the converter U. If the output power of the converter U were constant, this would in turn mean that an increased share of the current would be necessary.
- the first switching element T1 is turned on, owing to the voltage potential present at the third resistor R3. Due to the control of the controlled system EMI, Cl of the first switching element Tl, the voltage potential of the auxiliary voltage source UH is directly at the damping resistor RD and due to the now bridged third resistor R3, a higher additional current IZ flows into the inverter U.
- This circuit variant prevents the voltage across the transverse capacitor CF in the input filter E from dropping. If the voltage at the transverse capacitor CF were to drop, an increased current IE would again be required due to the constant output power to be supplied by the converter U.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
Selon l'invention, afin d'éliminer des réactions perturbatrices d'un convertisseur sur une source de tension reliée aux entrées du circuit d'entrée, un courant s'écoulant dans un convertisseur est surveillé et une composante de courant trop élevée est dérivée par l'intermédiaire d'un absorbeur de courant ou bien un courant trop faible s'écoulant dans le convertisseur est complété à partir d'une source de courant, cela pour compenser activement une résistance d'entrée différentielle négative du convertisseur.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1997141430 DE19741430A1 (de) | 1997-09-19 | 1997-09-19 | Schaltungsanordnung und Verfahren zur Unterdrückung störender Rückwirkungen eines Umrichters |
DE19741430.3 | 1997-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999016165A1 true WO1999016165A1 (fr) | 1999-04-01 |
Family
ID=7842976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1998/002555 WO1999016165A1 (fr) | 1997-09-19 | 1998-08-31 | Circuit et procede pour l'elimination de reactions perturbatrices d'un convertisseur |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE19741430A1 (fr) |
WO (1) | WO1999016165A1 (fr) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10048094B4 (de) * | 2000-09-28 | 2009-07-09 | Abb Ag | Schaltnetzteil mit einer Einrichtung zur Funkstörspannungskompensation |
US6556034B1 (en) * | 2000-11-22 | 2003-04-29 | Teradyne, Inc. | High speed and high accuracy DUT power supply with active boost circuitry |
DE10124114A1 (de) | 2001-05-17 | 2002-12-05 | Infineon Technologies Ag | Schaltungsanordnung zur Spannungsstabilisierung |
JP2007526729A (ja) * | 2003-06-04 | 2007-09-13 | インターナショナル・レクティファイヤ・コーポレーション | 誘導電流検出装置を有さない能動emiフィルタ |
EP1962413A1 (fr) * | 2007-02-22 | 2008-08-27 | Stmicroelectronics SA | Compensateur à ondulation et convertisseur de commutation comprenant un tel compensateur à ondulation |
DE102012222068A1 (de) * | 2012-12-03 | 2014-06-05 | Robert Bosch Gmbh | Elektronische Schaltung zur dynamischen Vergrößerung eines Zwischenkreiskondensators mit Klasse-D-Verstärker |
DE102012222067A1 (de) * | 2012-12-03 | 2014-06-05 | Robert Bosch Gmbh | Elektronische Schaltung zur dynamischen Vergrößerung eines Zwischenkreiskondensators |
DE102013209190A1 (de) * | 2013-05-17 | 2014-11-20 | Robert Bosch Gmbh | Schaltwandler, Schaltung und Verfahren zur Spannungsstabilisierung in einem Zwischenkreis |
DE102019133237A1 (de) * | 2019-12-05 | 2021-06-10 | Avl Software And Functions Gmbh | Störungsunterdrückung in einem Stromversorgungsnetz eines Fahrzeugs mittels steuerbarem Widerstand |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1585909A (fr) * | 1968-05-15 | 1970-02-06 | ||
US3710148A (en) * | 1970-08-31 | 1973-01-09 | Hitachi Ltd | Ripple eliminating circuit |
US4667279A (en) * | 1986-04-01 | 1987-05-19 | Hewlett-Packard Company | Transformer coupled pard bucker for DC power supplies |
US4710861A (en) * | 1986-06-03 | 1987-12-01 | Martin Kanner | Anti-ripple circuit |
US4736152A (en) * | 1986-04-12 | 1988-04-05 | U.S. Philips Corporation | Load current interference reducing apparatus |
US5014177A (en) * | 1989-12-19 | 1991-05-07 | Sundstrand Corporation | DC-link ripple reduction circuit |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3612380A1 (de) * | 1986-04-12 | 1987-10-15 | Philips Patentverwaltung | Schaltungsanordnung zur verringerung eines in einer last hervorgerufenen stoerstromes |
US5132894A (en) * | 1990-09-10 | 1992-07-21 | Sundstrand Corporation | Electric power generating system with active damping |
-
1997
- 1997-09-19 DE DE1997141430 patent/DE19741430A1/de not_active Withdrawn
-
1998
- 1998-08-31 WO PCT/DE1998/002555 patent/WO1999016165A1/fr active Search and Examination
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1585909A (fr) * | 1968-05-15 | 1970-02-06 | ||
US3710148A (en) * | 1970-08-31 | 1973-01-09 | Hitachi Ltd | Ripple eliminating circuit |
US4667279A (en) * | 1986-04-01 | 1987-05-19 | Hewlett-Packard Company | Transformer coupled pard bucker for DC power supplies |
US4736152A (en) * | 1986-04-12 | 1988-04-05 | U.S. Philips Corporation | Load current interference reducing apparatus |
US4710861A (en) * | 1986-06-03 | 1987-12-01 | Martin Kanner | Anti-ripple circuit |
US5014177A (en) * | 1989-12-19 | 1991-05-07 | Sundstrand Corporation | DC-link ripple reduction circuit |
Also Published As
Publication number | Publication date |
---|---|
DE19741430A1 (de) | 1999-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10214190B4 (de) | Stromversorgung mit mehreren parallel geschalteten Schaltnetzteilen | |
DE4304517C2 (de) | Stromversorgung für vorwiegend induktive Lasten | |
DE102010037246B4 (de) | System und Verfahren zum Ausgleichen der Kleinsignalantwort von Spannungsreglern mit variablen Phasen | |
DE3123735C2 (de) | Schaltung zur Zuführung eines Stromes an eine Last | |
DE3015610A1 (de) | Schaltung zur regelung eines gleichstroms | |
DE3537175A1 (de) | Gleichspannungswandler | |
DE2933029A1 (de) | Netzteil | |
DE2050783A1 (de) | Schaltung für ein Netzteil | |
DE102015218656B4 (de) | Linearregler mit verbessertem Versorgungsspannungsdurchgriff | |
WO1999016165A1 (fr) | Circuit et procede pour l'elimination de reactions perturbatrices d'un convertisseur | |
DE3816944C2 (fr) | ||
DE69824751T2 (de) | Regler | |
DE19725842A1 (de) | Schaltungsanordnung zur Erzeugung einer lastunabhängigen Gleichspannung | |
DE3144696A1 (de) | Geregeltes netzteil | |
DE69611141T2 (de) | Schaltung zur Verbesserung der Laständerungsantwort bei der Stromversorgung | |
EP0891039A2 (fr) | Alimentation capacitive de puissance | |
DE4037722C1 (en) | Current supply circuitry with no mains transformer - has controlled transistor acting as limiting stage across output of rectifier stage | |
DE2120680C3 (de) | Abstimmbarer Oszillator | |
WO2002095916A2 (fr) | Convertisseur continu-continu dote d'un regulateur de commutation | |
EP0572491B1 (fr) | Procede de commande de transformateurs de tension presentant une gamme etendue de tensions d'entree et utilisation dudit procede | |
EP0513910B1 (fr) | Circuit redresseur | |
DE2625307A1 (de) | Schaltungsanordnung zur begrenzung der an einem verbraucher abfallenden spannung | |
DE2007694C3 (de) | Spannungsregelgerät mit schaltendem Stellglied | |
DE1930926B2 (de) | Geregelter verstaerker | |
DE10062980A1 (de) | Schaltungsanordnung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): BR CN ID US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) |