[go: up one dir, main page]

WO1999016165A1 - Circuit et procede pour l'elimination de reactions perturbatrices d'un convertisseur - Google Patents

Circuit et procede pour l'elimination de reactions perturbatrices d'un convertisseur Download PDF

Info

Publication number
WO1999016165A1
WO1999016165A1 PCT/DE1998/002555 DE9802555W WO9916165A1 WO 1999016165 A1 WO1999016165 A1 WO 1999016165A1 DE 9802555 W DE9802555 W DE 9802555W WO 9916165 A1 WO9916165 A1 WO 9916165A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
converter
circuit
voltage
circuit arrangement
Prior art date
Application number
PCT/DE1998/002555
Other languages
German (de)
English (en)
Inventor
Robert Geiger
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1999016165A1 publication Critical patent/WO1999016165A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from DC input or output
    • H02M1/15Arrangements for reducing ripples from DC input or output using active elements

Definitions

  • Regulated power supply units tend to vibrate. This is due to the fact that a characteristic curve of the circuit part, in which the regulation takes place, which reflects the relationship between the input voltage and the input current has a negative slope in some areas.
  • a characteristic curve of the circuit part, in which the regulation takes place which reflects the relationship between the input voltage and the input current has a negative slope in some areas.
  • the current-voltage characteristic curve has a hyperbolic profile, so that the negative differential input resistance corresponding to the slope of this characteristic curve is the smallest when the input voltage is the smallest value has, in which a perfect control of the power supply device is still possible.
  • Regulated power supply units of the type in question have a filter circuit as an input circuit to suppress disturbing effects on the supply network.
  • This input circuit consists of at least one longitudinal inductor and at least one transverse capacitance. These two circuit elements, the sizes of which are determined by a requirement for a sufficient sieving effect, set Vibration-capable structure that can be excited to independent vibrations in connection with the negative input resistance of the regulated circuit part mentioned.
  • An examination of the stability conditions shows that vibrations can occur if the quotient of the value of the inductance and the product of capacitance and the sum of the ohmic resistances involved as well as an internal resistance of a voltage source and the series equivalent resistance of the capacitance is greater than the amount of the negative input resistance of the regulated circuit part.
  • the increase in the effective capacitance can preferably be achieved by connecting an electrolytic capacitor of high capacitance in parallel with the existing high-quality pulse storage capacitor of the filter circuit.
  • the measures described for eliminating the vibration are unsuitable for modern power supply devices with converters of very high power, since additional capacity cannot be arranged on a power supply board due to a lack of free space.
  • the increase of a resistance effective in series with the shear capacitance can in principle be used in high-performance converters, but leads to an unacceptably high power loss in this resistance.
  • a high power loss brings with it the problem of eliminating the heat loss that arises in a relatively small volume, on the other hand it has a not inconsiderable deterioration in the efficiency, which nullifies an important advantage of modern converter circuit technology.
  • the invention is based on the object of specifying a circuit arrangement and a method with which vibrations from a regulated converter or from the input circuit are avoided.
  • the invention has the advantage that an ohmic resistance in series with the filter inductance of the filter circuit is avoided.
  • the invention has the further advantage that only a small amount of space is required to accommodate additional circuit components.
  • FIG. 1 shows a block diagram of a circuit arrangement for active compensation of a negative differential input resistance in DC voltage / DC voltage converters
  • Figure 2 is a circuit diagram of a circuit configuration of this block diagram.
  • the block diagram shown in FIG. 1 essentially consists of an input filter E, a converter U and a circuit unit QS arranged between the components mentioned for active compensation of a negative differential input resistance of the converter U.
  • the active compensation takes place in the circuit arrangement in FIG Instead of monitoring a current flowing into the converter U and deriving an excessive current component via a sink, which is formed by a ground potential M, and an excessively low current into the converter U from a source which is subsequently used as an auxiliary voltage source of supply UH, is added.
  • the circuit arrangement QS is arranged between a decoupling unit AK and a coupling unit EK.
  • the inputs of the input filter E are connected to a voltage source UE.
  • An output voltage UA is present at the output of the inverter U.
  • FIG. 2 shows a circuit diagram of the block diagram shown in FIG. 1.
  • the input filter E is formed from a longitudinal inductance LF and a transverse capacitance CF arranged between the outputs AI, A2 of the input filter E.
  • the outputs AI, A2 of the input filter E are connected to the inputs El, E2 as a clocked DC voltage
  • A2 of the input filter ters E is a decoupling unit AK formed from a series circuit, consisting of an outcoupling capacitor CK1 and a first resistor Rl.
  • the circuit unit designated QS is subdivided into a decision unit QSE, an amplifier unit VQS and a frequency response correction unit FK.
  • a source is formed at the output of the operational amplifier VI depending on the level of the voltage potential present at the first input of the operational amplifier VI by an auxiliary voltage source UH or a sink, formed by the voltage potential corresponding to the ground potential M, applied to the output.
  • the first output AI of the input filter E is connected to the first input of the converter U
  • the second output A2 of the input filter E is connected to a second input E2 of the converter U.
  • the first input of the operational amplifier VI is connected via the frequency response correction unit FK, formed from a parallel connection with a capacitor C2 and a second resistor R2, to a tap point AP between the third resistor R3 and the damping resistor RD.
  • FK frequency response correction unit
  • the output of operational amplifier VI is connected to a control input B1 of a first switching element T1 and to a control input B2 of a second switching element T2.
  • the input EMI of the controlled system EMI, Cl of the first switching element T1 and the input EM2 of the controlled system EM2, C2 of the second switching element T2 is connected to the tap point AP between the third resistor R3 and the damping resistor RD.
  • the output Cl of the controlled system EMI, Cl of the first switching element T1 is connected to the auxiliary voltage source UH.
  • the output of the controlled system EM2, C2 of the second switching element T2 is connected to the ground potential M, which is present on the connecting line between the second output A2 of the input filter E and the second input E2 of the converter.
  • a vibration in the input filter E or in the converter U is counteracted. If the voltage at the transverse capacitance CF rises as a result of an excess current component IE impressed in the longitudinal inductance LF, a voltage rise at the transverse capacitance CF caused thereby is passed on via the decoupling capacitor CK1 at the first input of the operational amplifier VI.
  • the ground potential M is applied to the output of the operational amplifier VI by means of a voltage comparison with the reference voltage UREF present at the second input of the operational amplifier VI. By applying the ground potential M at the output of the operational amplifier VI, a part of the current, which is designated IK, is via the
  • Coupling capacitor CK2 the damping resistor RD and the third resistor R3, to which the ground potential M is applied in this circuit phase. If the derived current component IK exceeds a predetermined value, then the control input B2 of the second switching element T2 is controlled in such a way that the control path EM2, C2 of the second switching element is triggered by the current flow through the third resistor R3. element T2 is connected directly to the ground potential M and the total resistance R3, RD is reduced by the resistance value of the resistance of R3. As a result of the connection of the second switching element T2, the excess current component IK can now be via the coupling capacitor CK2 and the
  • Damping resistance RD can be derived directly to the ground potential M.
  • the derivation of the excess current component IK prevents the voltage across the transverse capacitor CF in the input filter E from rising.
  • An increase in the voltage across the transverse capacitor CF in the input filter E would have the consequence that a lower current IU is necessary with a constant output power from the converter U. If the output power of the converter U were constant, this would in turn mean that an increased share of the current would be necessary.
  • the first switching element T1 is turned on, owing to the voltage potential present at the third resistor R3. Due to the control of the controlled system EMI, Cl of the first switching element Tl, the voltage potential of the auxiliary voltage source UH is directly at the damping resistor RD and due to the now bridged third resistor R3, a higher additional current IZ flows into the inverter U.
  • This circuit variant prevents the voltage across the transverse capacitor CF in the input filter E from dropping. If the voltage at the transverse capacitor CF were to drop, an increased current IE would again be required due to the constant output power to be supplied by the converter U.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Selon l'invention, afin d'éliminer des réactions perturbatrices d'un convertisseur sur une source de tension reliée aux entrées du circuit d'entrée, un courant s'écoulant dans un convertisseur est surveillé et une composante de courant trop élevée est dérivée par l'intermédiaire d'un absorbeur de courant ou bien un courant trop faible s'écoulant dans le convertisseur est complété à partir d'une source de courant, cela pour compenser activement une résistance d'entrée différentielle négative du convertisseur.
PCT/DE1998/002555 1997-09-19 1998-08-31 Circuit et procede pour l'elimination de reactions perturbatrices d'un convertisseur WO1999016165A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1997141430 DE19741430A1 (de) 1997-09-19 1997-09-19 Schaltungsanordnung und Verfahren zur Unterdrückung störender Rückwirkungen eines Umrichters
DE19741430.3 1997-09-19

Publications (1)

Publication Number Publication Date
WO1999016165A1 true WO1999016165A1 (fr) 1999-04-01

Family

ID=7842976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/002555 WO1999016165A1 (fr) 1997-09-19 1998-08-31 Circuit et procede pour l'elimination de reactions perturbatrices d'un convertisseur

Country Status (2)

Country Link
DE (1) DE19741430A1 (fr)
WO (1) WO1999016165A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10048094B4 (de) * 2000-09-28 2009-07-09 Abb Ag Schaltnetzteil mit einer Einrichtung zur Funkstörspannungskompensation
US6556034B1 (en) * 2000-11-22 2003-04-29 Teradyne, Inc. High speed and high accuracy DUT power supply with active boost circuitry
DE10124114A1 (de) 2001-05-17 2002-12-05 Infineon Technologies Ag Schaltungsanordnung zur Spannungsstabilisierung
JP2007526729A (ja) * 2003-06-04 2007-09-13 インターナショナル・レクティファイヤ・コーポレーション 誘導電流検出装置を有さない能動emiフィルタ
EP1962413A1 (fr) * 2007-02-22 2008-08-27 Stmicroelectronics SA Compensateur à ondulation et convertisseur de commutation comprenant un tel compensateur à ondulation
DE102012222068A1 (de) * 2012-12-03 2014-06-05 Robert Bosch Gmbh Elektronische Schaltung zur dynamischen Vergrößerung eines Zwischenkreiskondensators mit Klasse-D-Verstärker
DE102012222067A1 (de) * 2012-12-03 2014-06-05 Robert Bosch Gmbh Elektronische Schaltung zur dynamischen Vergrößerung eines Zwischenkreiskondensators
DE102013209190A1 (de) * 2013-05-17 2014-11-20 Robert Bosch Gmbh Schaltwandler, Schaltung und Verfahren zur Spannungsstabilisierung in einem Zwischenkreis
DE102019133237A1 (de) * 2019-12-05 2021-06-10 Avl Software And Functions Gmbh Störungsunterdrückung in einem Stromversorgungsnetz eines Fahrzeugs mittels steuerbarem Widerstand

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1585909A (fr) * 1968-05-15 1970-02-06
US3710148A (en) * 1970-08-31 1973-01-09 Hitachi Ltd Ripple eliminating circuit
US4667279A (en) * 1986-04-01 1987-05-19 Hewlett-Packard Company Transformer coupled pard bucker for DC power supplies
US4710861A (en) * 1986-06-03 1987-12-01 Martin Kanner Anti-ripple circuit
US4736152A (en) * 1986-04-12 1988-04-05 U.S. Philips Corporation Load current interference reducing apparatus
US5014177A (en) * 1989-12-19 1991-05-07 Sundstrand Corporation DC-link ripple reduction circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3612380A1 (de) * 1986-04-12 1987-10-15 Philips Patentverwaltung Schaltungsanordnung zur verringerung eines in einer last hervorgerufenen stoerstromes
US5132894A (en) * 1990-09-10 1992-07-21 Sundstrand Corporation Electric power generating system with active damping

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1585909A (fr) * 1968-05-15 1970-02-06
US3710148A (en) * 1970-08-31 1973-01-09 Hitachi Ltd Ripple eliminating circuit
US4667279A (en) * 1986-04-01 1987-05-19 Hewlett-Packard Company Transformer coupled pard bucker for DC power supplies
US4736152A (en) * 1986-04-12 1988-04-05 U.S. Philips Corporation Load current interference reducing apparatus
US4710861A (en) * 1986-06-03 1987-12-01 Martin Kanner Anti-ripple circuit
US5014177A (en) * 1989-12-19 1991-05-07 Sundstrand Corporation DC-link ripple reduction circuit

Also Published As

Publication number Publication date
DE19741430A1 (de) 1999-04-01

Similar Documents

Publication Publication Date Title
DE10214190B4 (de) Stromversorgung mit mehreren parallel geschalteten Schaltnetzteilen
DE4304517C2 (de) Stromversorgung für vorwiegend induktive Lasten
DE102010037246B4 (de) System und Verfahren zum Ausgleichen der Kleinsignalantwort von Spannungsreglern mit variablen Phasen
DE3123735C2 (de) Schaltung zur Zuführung eines Stromes an eine Last
DE3015610A1 (de) Schaltung zur regelung eines gleichstroms
DE3537175A1 (de) Gleichspannungswandler
DE2933029A1 (de) Netzteil
DE2050783A1 (de) Schaltung für ein Netzteil
DE102015218656B4 (de) Linearregler mit verbessertem Versorgungsspannungsdurchgriff
WO1999016165A1 (fr) Circuit et procede pour l'elimination de reactions perturbatrices d'un convertisseur
DE3816944C2 (fr)
DE69824751T2 (de) Regler
DE19725842A1 (de) Schaltungsanordnung zur Erzeugung einer lastunabhängigen Gleichspannung
DE3144696A1 (de) Geregeltes netzteil
DE69611141T2 (de) Schaltung zur Verbesserung der Laständerungsantwort bei der Stromversorgung
EP0891039A2 (fr) Alimentation capacitive de puissance
DE4037722C1 (en) Current supply circuitry with no mains transformer - has controlled transistor acting as limiting stage across output of rectifier stage
DE2120680C3 (de) Abstimmbarer Oszillator
WO2002095916A2 (fr) Convertisseur continu-continu dote d'un regulateur de commutation
EP0572491B1 (fr) Procede de commande de transformateurs de tension presentant une gamme etendue de tensions d'entree et utilisation dudit procede
EP0513910B1 (fr) Circuit redresseur
DE2625307A1 (de) Schaltungsanordnung zur begrenzung der an einem verbraucher abfallenden spannung
DE2007694C3 (de) Spannungsregelgerät mit schaltendem Stellglied
DE1930926B2 (de) Geregelter verstaerker
DE10062980A1 (de) Schaltungsanordnung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN ID US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)