[go: up one dir, main page]

WO1999008364A1 - Capacitor motor - Google Patents

Capacitor motor Download PDF

Info

Publication number
WO1999008364A1
WO1999008364A1 PCT/JP1997/004262 JP9704262W WO9908364A1 WO 1999008364 A1 WO1999008364 A1 WO 1999008364A1 JP 9704262 W JP9704262 W JP 9704262W WO 9908364 A1 WO9908364 A1 WO 9908364A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
capacitor motor
winding
slot
corners
Prior art date
Application number
PCT/JP1997/004262
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Nishiyama
Haruo Nakatsuka
Etsuo Nakazawa
Original Assignee
Shibaura Engineering Works Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Engineering Works Co., Ltd. filed Critical Shibaura Engineering Works Co., Ltd.
Priority to KR10-1998-0702443A priority Critical patent/KR100485251B1/en
Publication of WO1999008364A1 publication Critical patent/WO1999008364A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/04Asynchronous induction motors for single phase current
    • H02K17/08Motors with auxiliary phase obtained by externally fed auxiliary windings, e.g. capacitor motors

Definitions

  • a capacitor motor is a single-phase induction motor having a main winding and an auxiliary winding, and using a capacitor connected in series to the auxiliary winding.
  • the stator core 110 has a square shape, and the slots 116 are equally arranged as shown in FIG.
  • the main winding 120 is indicated by a solid line
  • the auxiliary winding 122 is indicated by a dotted line.
  • the numbers in parentheses in (1) to (8) mean the slot numbers indicating the positions of the slots.
  • the present invention has been made in view of the above problems, and provides a capacitor motor having a cost-effective core that can optimize the magnetic path design.
  • the capacitor motor according to claim 1 of the present invention has a main winding and an auxiliary winding having a turn ratio of approximately 1 to 1, and has a stator core having a rounded outer peripheral shape.
  • a four-pole condenser summer where the number of slots of the stator core is 24, the slots located at the four corners of the core are replaced with other parts.
  • the width of the core back of the above-mentioned core is made substantially uniform over the entire circumference by being formed larger than the slot located at o.
  • the capacitor motor according to claim 2 is the capacitor motor according to claim 1, wherein a bottom of the slot located at a position other than the four corners of the stay core is substantially parallel to an outer peripheral surface of the stay core. It was formed.
  • the capacitor motor according to claim 3 is the capacitor motor according to claim 1, wherein two windings of different phases are stored in slots located at four corners of the stay core, respectively. Cores located outside the four corners of the core A single winding is stored in a lot.
  • the capacitor motor according to claim 4 is the motor according to claim 1, wherein a spatial phase angle of the main winding and the auxiliary winding is 120. It is configured as follows.
  • the capacitor motor of claim 1 by making the width of the core knock of the stator core substantially uniform over the entire circumference, the magnetic resistance is made uniform, and the magnetic resistance and the core material are made uniform. Can be reduced. Also, by increasing the size of the slot (hereinafter referred to as the large slot) located at the corner of the stay core, it is possible to increase the winding resistance without increasing the magnetic resistance.
  • the delivery space can be expanded.
  • the bottom of a slot located outside the corner of the stay core is connected to the outer peripheral surface of the stay core.
  • coil winding is stored by storing two windings of different phases only in the large slot and storing only one winding in the small slot. This facilitates the spatial storage arrangement of the coils and, as a result, the size of the stay core can be reduced. Therefore, it is possible to reduce the winding resistance and the winding material.
  • the spatial phase angle between the main winding and the auxiliary winding is set to 120 ° can be formed. As a result, the starting torque is improved.
  • the spatial phase angle between the main winding and the auxiliary winding is 120. With this configuration, the startup torque can be improved.
  • FIG. 1 is a plan view of a stay core in a capacitor motor showing one embodiment of the present invention.
  • FIG. 2 is a graph showing the characteristics of the capacitor motor of this embodiment.
  • FIG. 3 is a plan view of the teeth of the steel core of the second embodiment
  • FIG. 4 is a plan view of the core back as well.
  • FIG. 5 is a plan view of a stator core of a conventional capacitor motor.
  • FIG. 1 is a plan view of a stay core 10 used in this capacitor motor. Although the rotor (rotor) used in this capacitor motor is not shown, a cage rotor is used as in the conventional case.
  • the structure of the stator core 10 in FIG. 1 will be described.
  • the core 10 has a round and square shape and a substantially rectangular core back 1.
  • Teeth 14 stands for
  • the core back 12 has a rounded square shape as described above, that is, the plane shape is a square, and the four outer corners are notched obliquely. It has an octagonal shape. The four corners are provided with bolt holes 18 for fixing the laminated plates of the stator core 10 to be laminated.
  • the width M of the core 12 is substantially uniform over the entire circumference of the core 10 as shown in FIG. This uniformity is due to the following two reasons.
  • the first reason is that the size of the large slots 16 located at the four corners of the core 10 is greater than the size of the small slots 16 located elsewhere. This is because it is formed large.
  • the large slots 16 (1), (2), (7), and (8) in Fig. 1 are the small slots 16 (3), (4), (5), (6) It is formed larger than that. (1)-(8)
  • the number in parentheses indicates the slot number indicating the position of the slot.
  • the second reason is that the bottom of the small slot 16 is formed substantially parallel to the outer periphery of the core knock 12.
  • stator core 10 Next, a case where main winding 20 and auxiliary winding 22 are attached to stator core 10 will be described.
  • the main winding 20 is indicated by a solid line
  • the auxiliary winding 22 is indicated by a dotted line.
  • the main winding 20 is housed in the large slot 16 (1) and the small slot 16 (6), and the large slot 16 (2) and the small slot
  • the main winding 20 is stored in 16 (5).
  • the auxiliary winding 22 is accommodated in the small slot 16 (3) and the large slot 16 (8), and the small slot 16 (4) and the large slot
  • Auxiliary winding 22 is housed between 16 and (7).
  • Other slots without the slot numbers (1) to (8) also house the main winding 20 and the auxiliary winding 22 in the same manner.
  • the turns ratio between the main winding 20 and the auxiliary winding 22 is set to approximately 1: 1.
  • the capacitor motor formed by the stationary core 10 configured as described above has four poles, and has the following effects.
  • the yield of core 10 material removal can be improved. Since the width M of the core back 12 is formed to be substantially equal over the entire circumference, the magnetic resistance can be made uniform, and the magnetic resistance and the stay core material can be reduced.
  • the magnetic resistance does not increase.
  • the storage space for the main winding 20 and the auxiliary winding 22 can be expanded.
  • the spatial arrangement of the main winding 20 and the auxiliary winding 22 with respect to the stator core 10 is equalized, that is, by symmetrically arranging, the characteristics during both forward and reverse rotations can be equalized. it can.
  • the winding ratio between the main winding 20 and the auxiliary winding 22 is approximately 1: 1, the same characteristics can be obtained for both forward and reverse rotations.
  • the spatial phase angle between the main winding 20 and the auxiliary winding can be made 120 °, and the starting torque can be improved. Can be done.
  • the outer shape of the stator core 10 is L5 as shown in FIG. 5 in the conventional stay core, but is L1 in the present embodiment. And 1 / S5 is about 85%. Also, stay overnight The amount of core material can be reduced by 73% compared to the conventional one, and the amount of winding can be reduced to 80%.
  • Fig. 2 is a graph comparing the characteristics of a capacitor motor using a stationary core 10 with the above configuration and a conventional capacitor motor.
  • the horizontal axis indicates the rotation speed (rpm)
  • the left vertical axis indicates the torque (Nm)
  • the right vertical axis indicates the loss (W) relative to the condenser heat. I have.
  • Each line in the graph has the following meaning.
  • Thick two-dot chain line 50 Hz torque of the capacitor motor of the present application
  • Thick dotted line 60 Hz torque of the capacitor motor of the present application
  • Thick solid line 50 Hz of the capacitor motor of the present application
  • Thick dashed line 60 Hz loss of the capacitor motor of the present application
  • Thin two-dot chain line 50 Hz torque of the conventional capacitor motor
  • Thin dotted line 60 Hz of the conventional capacitor motor
  • Torque thin solid line 50 Hz loss of conventional capacitor motor
  • Thin dashed line 60 Hz loss of conventional capacitor motor
  • the capacitor motor of this embodiment has a capacity of 1.57 N * m, and the conventional capacitor motor has a capacity of 1.3 N * m. It is. This means that in the case of the condenser of the present embodiment, a larger torque can be obtained from startup than in the conventional condenser motor.
  • the capacitor motor of the present embodiment has a loss of about 700 W
  • the conventional capacitor motor has a loss of about 840 W. That is, when the torque is considered, the loss of the capacitor motor of the present embodiment is smaller than that of the conventional capacitor motor.
  • a motor of a home washing machine is preferable.
  • a washing machine requires a large torque at the time of start-up, and the start-stop of the forward / reverse rotation is troublesomely repeated, and the same torque is required at the forward and reverse rotations.
  • Energy saving can be achieved by using an asymmetric winding like a capacitor motor.
  • FIGS. 3 and 4 are plan views of the step core 10 of the second embodiment.
  • stator core 10 of the present embodiment The difference between the stator core 10 of the present embodiment and the stator core 10 of the first embodiment is that the core 10 is divided into a core back 12 and a connected tooth 14. By integrating them, the status core 10 is completed.
  • the main winding 20 and the auxiliary winding 22 are Before attaching the tooth 14 to the core 12 and the lock 12, the slot 16 formed between the teeth 14 needs to be stored from the outside with a force ⁇ , according to the first embodiment. It is different.
  • the completed stay core has the same shape as the stay core 10 of the first embodiment, the same effects as those of the first embodiment can be obtained.
  • INDUSTRIAL APPLICABILITY According to the capacitor motor of the present invention, by forming a large slot and a small slot for an asymmetric winding in the stator core of the capacitor motor, By making the resistance uniform, the magnetic resistance, the material of the stator core and the steel wire material can be reduced, and the space for storing the windings can be expanded without increasing the magnetic resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Induction Machinery (AREA)

Abstract

Large slots (16) are provided at the four corner sections of a stator core (10) and small slots (16) are provided at the other positions, and then, the width of a core back (12) is made equal over the total periphery of the back (12). Therefore, the magnetic path design of the stator core can be rationalized and the stator core becomes economical.

Description

 Light
コ ンデンサモ一夕 技術田分野 本発明は、 誘導電動機、 特に、 コ ンデンサモータ に関する もので める。 背景技術 コ ンデンサモータ と は、 主巻線と補助巻線を有し、 補助巻線に直 列にコ ンデンサを接続して使用する単相誘導電動機である。 TECHNICAL FIELD The present invention relates to an induction motor, particularly to a capacitor motor. BACKGROUND ART A capacitor motor is a single-phase induction motor having a main winding and an auxiliary winding, and using a capacitor connected in series to the auxiliary winding.
このコ ンデンサモータ において、 ステ一 夕 コア 1 1 0が角型のも のでは、 スロ ッ ト 1 1 6 を図 5 に示すよ う な等配した ものが知られ ている。 なお、 図 5 において、 主巻線 1 2 0 は実線で示し、. 捕助巻 線 1 2 2 は点線で示す。 ま た、 (1) 〜(8) の括弧数字は、 スロ ッ ト の位置を示すスロ ッ ト番号を意味する。  In this capacitor motor, it is known that the stator core 110 has a square shape, and the slots 116 are equally arranged as shown in FIG. In FIG. 5, the main winding 120 is indicated by a solid line, and the auxiliary winding 122 is indicated by a dotted line. The numbers in parentheses in (1) to (8) mean the slot numbers indicating the positions of the slots.
しか しながら、 図 5 に示すよ う な等配スロ ッ ト 1 1 6の構成を有 する角型ステ一夕 コア 1 1 0 においては、 ステ一夕 コア 1 1 0の 4 つの隅角部の磁路が有効に使われな く 、 不経済である という問題が あっ た。 However, in the square stay core 110 having the configuration of the equally-distributed slots 116 shown in FIG. There was a problem that the magnetic path at the two corners was not used effectively and was uneconomical.
また、 この角型ステ一夕 コア 1 1 0である と、 外周部の辺の寸法 L 5が大き く なる という問題があった。  Further, when the square stay core 110 is used, there is a problem that the dimension L5 of the side of the outer peripheral portion becomes large.
そ こで、 本発明は上記問題点に鑑み、 磁路設計の適正化を図る こ とができ、 経済的なステ一夕 コアを有したコ ンデンサモータを提供 する ものである。  Accordingly, the present invention has been made in view of the above problems, and provides a capacitor motor having a cost-effective core that can optimize the magnetic path design.
発明の開示 本発明の請求項 1 のコ ンデンサモータ は、 巻数比が略 1対 1 の主 巻線と捕助巻線を有し、 丸角型の外周形状をなすステ一タ コ アを有 し、 前記ステ一タ コアのス ロ ッ ト数が 2 4個である 4極のコ ンデン サモ一夕において、 前記ステ一夕 コアの 4隅角部に位置するスロ ッ トを、 他の箇所に位置する スロ ッ 卜よ り大き く 形成して、 前記ステ —夕 コアのコアバ ッ ク の幅を全周にわた り 略均一化した ものであ る o DISCLOSURE OF THE INVENTION The capacitor motor according to claim 1 of the present invention has a main winding and an auxiliary winding having a turn ratio of approximately 1 to 1, and has a stator core having a rounded outer peripheral shape. In a four-pole condenser summer where the number of slots of the stator core is 24, the slots located at the four corners of the core are replaced with other parts. The width of the core back of the above-mentioned core is made substantially uniform over the entire circumference by being formed larger than the slot located at o.
請求項 2 のコ ンデンサモータは、 請求項 1 の ものにおいて、 前記 ステ一夕 コアの 4隅角部以外に位置するスロ ッ 卜の底部を、 前記ス テ一夕 コアの外周面と略平行に形成した ものである。  The capacitor motor according to claim 2 is the capacitor motor according to claim 1, wherein a bottom of the slot located at a position other than the four corners of the stay core is substantially parallel to an outer peripheral surface of the stay core. It was formed.
請求項 3 の コ ンデンサモータ は、 請求項 1 の ものにおいて、 前記 ステ一夕 コアの 4隅角部に位置するスロ ッ 卜へ、 それぞれ異相の 2 個の巻線を収納し、 前記ステ一夕 コアの 4隅角部以外に位置するス ロ ッ 卜 へ、 1個の卷線を収納したものである。 The capacitor motor according to claim 3 is the capacitor motor according to claim 1, wherein two windings of different phases are stored in slots located at four corners of the stay core, respectively. Cores located outside the four corners of the core A single winding is stored in a lot.
請求項 4 のコ ンデンサモータ は、 請求項 1 の ものにおいて、 前記 主巻線と前記補助巻線の空間位相角を 1 2 0。 に構成したものであ る。  The capacitor motor according to claim 4 is the motor according to claim 1, wherein a spatial phase angle of the main winding and the auxiliary winding is 120. It is configured as follows.
請求項 1 のコ ンデンサモータである と、 ステ一タ コアのコアノ 'ッ ク の幅を全周に渡り 略均一化する こ と によ り 、 磁気抵抗を均一化 し、 磁気抵抗と コア材料の縮減を行う こ とができ る。 ま た、 ステ一 夕 コアの隅角部に位置する スロ ッ ト (以下、 大スロ ッ ト という) を 大き く する こ と によ り、 磁気抵抗を増加させる こ とな く 、 巻線の収 納スペースを拡大する こ とができ る。  According to the capacitor motor of claim 1, by making the width of the core knock of the stator core substantially uniform over the entire circumference, the magnetic resistance is made uniform, and the magnetic resistance and the core material are made uniform. Can be reduced. Also, by increasing the size of the slot (hereinafter referred to as the large slot) located at the corner of the stay core, it is possible to increase the winding resistance without increasing the magnetic resistance. The delivery space can be expanded.
請求項 2のコ ンデンサモータである と、 ステ一夕 コアの隅角部以 外に位置するス ロ ッ ト (以下、 小スロ ッ 卜 と い う) の底部をステ一 夕 コアの外周面と略平行に形成する こ とによ り、 コアバッ クの幅を 全周にわたり略完全に均一化する こ とができ るため、 磁気抵抗を均 一化でき、 磁気抵抗と コア材料の縮減を図る こ とができ る。  According to the capacitor motor of claim 2, the bottom of a slot (hereinafter, referred to as a small slot) located outside the corner of the stay core is connected to the outer peripheral surface of the stay core. By forming them approximately parallel, the width of the core back can be made almost completely uniform over the entire circumference, so that the magnetic resistance can be made uniform and the magnetic resistance and the core material can be reduced. It can be.
請求項 3 のコ ンデンサモータである と、 大ス ロ ッ 卜 にのみ異相の 2個の巻線を収納 し、 小ス ロ ッ 卜 には 1 個の巻線のみを収納する こ とで、 コイルエ ン ドの空間的な収納配置を容易に し、 結果と してス テ一夕 コアを小さ く する こ とができる。 そのため、 巻線抵抗と巻線 材料の縮減を図る こ とができ る。 主巻線と補助巻線のステ一夕 コア に対する空間配置を対称位置に配置し均等化する こ とによって、 正 逆両方の回転時の特性を略均一化する こ とができ る。 このよ う な巻 線配置を行う こ とによ り、 主巻線と補助巻線の空間位相角を 1 2 0 ° に形成する こ とができる。 そ して、 結果的に起動 トルクの向上に つながる。 According to the capacitor motor of the third aspect, coil winding is stored by storing two windings of different phases only in the large slot and storing only one winding in the small slot. This facilitates the spatial storage arrangement of the coils and, as a result, the size of the stay core can be reduced. Therefore, it is possible to reduce the winding resistance and the winding material. By arranging and equalizing the spatial arrangement of the main winding and the auxiliary winding with respect to the stay core in a symmetrical position, the characteristics during both forward and reverse rotation can be made substantially uniform. By performing such a winding arrangement, the spatial phase angle between the main winding and the auxiliary winding is set to 120 ° can be formed. As a result, the starting torque is improved.
請求項 4のコ ンデンサモータであると、 主巻線と補助卷線の空間 位相角を 1 2 0。 に構成するこ とによ り起動 ト ルクの向上を図るこ とができる。 図面の簡単な説明  In the capacitor motor according to claim 4, the spatial phase angle between the main winding and the auxiliary winding is 120. With this configuration, the startup torque can be improved. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の一実施例を示すコ ンデンサモータにおけるステ —夕コアの平面図である。 FIG. 1 is a plan view of a stay core in a capacitor motor showing one embodiment of the present invention.
図 2 は、 本実施例のコ ンデンサモー タ の特性を示すグラ フであ る  FIG. 2 is a graph showing the characteristics of the capacitor motor of this embodiment.
図 3 は、 第 2の実施例のステ一夕 コアのティ 一スの平面図であ 図 4 は、 同じ く コアバッ クの平面図である。  FIG. 3 is a plan view of the teeth of the steel core of the second embodiment, and FIG. 4 is a plan view of the core back as well.
図 5 は、 従来のコ ンデンサモータのステ一 タ コ アの平面図であ る。  FIG. 5 is a plan view of a stator core of a conventional capacitor motor.
発明を実施するための最良の形態 以下、 本発明の第 1 の実施例を図 1 及び図 2 に基づいて説明す BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
本実施例は、 誘導電動機の一種であるコ ンデンサモータに関し、 図 1 は、 このコ ンデンサモータ に使用されるステ一夕 コア 1 0 の平 面図である。 なお、 このコ ンデンサモータに使用される ロータ (回 転子) については図示しないが、 従来と同様にかご型回転子を使用 する。 This embodiment relates to a capacitor motor which is a type of induction motor. FIG. 1 is a plan view of a stay core 10 used in this capacitor motor. Although the rotor (rotor) used in this capacitor motor is not shown, a cage rotor is used as in the conventional case.
この図 1 におけるステ一タ コア 1 0の構造について説明する。 このステ一夕 コア 1 0 は、 丸角型を成し、 略矩形のコアバッ ク 1 The structure of the stator core 10 in FIG. 1 will be described. The core 10 has a round and square shape and a substantially rectangular core back 1.
2 と コアノくッ ク 1 2 の内周面よ り 突出 した 2 4 個のティ ース 1 4 に よっ て、 2 4個のスロ ッ トが形成されている。 ティ ース 1 4 は、 略Twenty-four slots are formed by 24 teeth 14 projecting from the inner peripheral surface of 2 and the core knock 12. Teeth 14 stands for
T伏の形状を成している。 T-shaped.
次に、 コアバッ ク 1 2 とスロ ッ ト 1 6 の構造について詳し く 説明 する。  Next, the structures of the core back 12 and the slot 16 will be described in detail.
まず、 コアバッ ク 1 2 は、 前記したよ う に丸角型を成し、 すなわ ち、 平面形状が正方形を成すと と もに、 4つの外側の角部が、 斜め に切欠かれており、 八角形の形状を成している。 そ して、 この 4つ の角部には、 積層される ステ一タ コア 1 0 の積層板を固定するため のボル トの孔 1 8が開口 している。 そ して、 コ アバッ ク 1 2 の幅 M は、 図 1 に示すよ う にステ一夕 コ ア 1 0 の全周に渡っ て略均一とな つている。 この均一となる理由は次の 2 つによ る。  First, the core back 12 has a rounded square shape as described above, that is, the plane shape is a square, and the four outer corners are notched obliquely. It has an octagonal shape. The four corners are provided with bolt holes 18 for fixing the laminated plates of the stator core 10 to be laminated. The width M of the core 12 is substantially uniform over the entire circumference of the core 10 as shown in FIG. This uniformity is due to the following two reasons.
第 1 の理由は、 ステ一夕 コア 1 0 の 4 つの隅角部に位置する大ス ロ ッ ト 1 6 の大き さが、 他の箇所に位置する小スロ ッ ト 1 6 の大き さよ り も大き く 形成されているからである。 例えば、 図 1 における 大ス ロ ッ ト 1 6 ( 1) , ( 2) , ( 7) , (8) は、 小スロ ッ ト 1 6 (3) , (4) , (5) , (6) よ り も大き く 形成されている。 なお、 (1) 〜(8) の括弧数字は、 ス ロ ッ 卜の位置を示すス ロ ッ 卜番号を意味する。 第 2 の理由は、 小ス ロ ッ ト 1 6 の底部が、 コアノくッ ク 1 2 の外周 と略平行に形成されているからである。 The first reason is that the size of the large slots 16 located at the four corners of the core 10 is greater than the size of the small slots 16 located elsewhere. This is because it is formed large. For example, the large slots 16 (1), (2), (7), and (8) in Fig. 1 are the small slots 16 (3), (4), (5), (6) It is formed larger than that. (1)-(8) The number in parentheses indicates the slot number indicating the position of the slot. The second reason is that the bottom of the small slot 16 is formed substantially parallel to the outer periphery of the core knock 12.
次に、 このステータ コア 1 0 に、 主巻線 2 0 と補助巻線 2 2 を取 り付ける場合について説明する。  Next, a case where main winding 20 and auxiliary winding 22 are attached to stator core 10 will be described.
まず、 取り付けの概略を説明する。  First, the outline of the installation will be described.
大スロ ッ ト 1 6 にのみ、 異相の 2つの巻線を収納し、 小ス ロ ッ ト 1 6 には 1個の巻線のみを収納する。 図 1 において、 主巻線 2 0 は 実線で示し、 補助巻線 2 2 は点線で示す。  Only the large slot 16 accommodates two windings out of phase, and the small slot 16 accommodates only one winding. In FIG. 1, the main winding 20 is indicated by a solid line, and the auxiliary winding 22 is indicated by a dotted line.
具体的には、 大スロ ッ ト 1 6 ( 1 ) と小スロ ッ ト 1 6 (6) に主巻線 2 0 を収納し、 大ス ロ ッ ト 1 6 (2) と小ス ロ ッ ト 1 6 (5) に主卷線 2 0 を収納する。 また、 小ス ロ ッ ト 1 6 ( 3) と大ス ロ ッ ト 1 6 (8) とに補助巻線 2 2 を収納し、 小ス ロ ッ ト 1 6 (4) と大ス ロ ッ ト 1 6 ( 7) との間に補助巻線 2 2 を収納する。 (1) 〜(8) のス ロ ッ ト番号 が付されていない他のス ロ ッ ト も同様に主巻線 2 0 と補助巻線 2 2 を収納する。  Specifically, the main winding 20 is housed in the large slot 16 (1) and the small slot 16 (6), and the large slot 16 (2) and the small slot The main winding 20 is stored in 16 (5). The auxiliary winding 22 is accommodated in the small slot 16 (3) and the large slot 16 (8), and the small slot 16 (4) and the large slot Auxiliary winding 22 is housed between 16 and (7). Other slots without the slot numbers (1) to (8) also house the main winding 20 and the auxiliary winding 22 in the same manner.
こ の主巻線 2 0 と補助巻線 2 2 の巻数比は略 1 : 1 に設定してお  The turns ratio between the main winding 20 and the auxiliary winding 22 is set to approximately 1: 1.
上記のよ う に構成されたステ一夕 コア 1 0 によつて形成されてい る コ ンデンサモータ は、 極数が 4 と な り 、 下記のよ う な効果があ 。 The capacitor motor formed by the stationary core 10 configured as described above has four poles, and has the following effects.
ステ一夕 コア 1 0の外周形状を丸角型に形成しているため、 ステ Since the outer shape of core 10 is rounded,
—夕 コア 1 0 の材料取りの歩留を向上させる こ とができ る。 コアバッ ク 1 2 の幅 Mを全周にわた り 略等 し く 形成 している た め、 磁気抵抗を均一化し、 磁気抵抗とステ—夕 コア材料の縮減を図 るこ とができ る。 —Even The yield of core 10 material removal can be improved. Since the width M of the core back 12 is formed to be substantially equal over the entire circumference, the magnetic resistance can be made uniform, and the magnetic resistance and the stay core material can be reduced.
ステ一タ コア 1 0の 4つの隅角部に位置する大ス ロ ッ ト 1 6を他 の位置にある小スロ ッ 卜 よ り大き く 形成しているため、 磁気抵抗を 増加させる こ とな く 、 主巻線 2 0 や補助巻線 2 2の収納スペースを 拡大する こ とができ る。  Since the large slots 16 located at the four corners of the stator core 10 are formed larger than the small slots located at other positions, the magnetic resistance does not increase. In addition, the storage space for the main winding 20 and the auxiliary winding 22 can be expanded.
大ス ロ ッ ト 1 6 にのみ、 異相の 2つの巻線を収納し、 小ス ロ ッ 卜 1 6 には 1 つの巻線のみを収納する こ とで、 コイルェン ドの空間的 な収納配置を容易に し、 結果と して、 ステ一夕 コア全体の大き さを 小さ く する こ とができ る。 そのため、 巻線抵抗と巻線材料の縮減を 図る こ とができる。  By storing two windings of different phases only in the large slot 16 and only one winding in the small slot 16, the spatial arrangement of the coil end can be reduced. Easily, and as a result, the overall size of the core can be reduced. Therefore, it is possible to reduce the winding resistance and the winding material.
主巻線 2 0 と補助巻線 2 2のステ一タ コア 1 0 に対する空間配置 を均等化、 すなわち、 対称に配置する こ とで、 正逆両方の回転時の 特性を均一化する こ とができ る。 特に、 主巻線 2 0 と補助巻線 2 2 の巻線比を略 1 : 1 と しているため、 正逆両方の回転に対し、 同 じ 特性を得る こ とができ る。  The spatial arrangement of the main winding 20 and the auxiliary winding 22 with respect to the stator core 10 is equalized, that is, by symmetrically arranging, the characteristics during both forward and reverse rotations can be equalized. it can. In particular, since the winding ratio between the main winding 20 and the auxiliary winding 22 is approximately 1: 1, the same characteristics can be obtained for both forward and reverse rotations.
上記のよ う な巻線配置にする こ とによ り、 主巻線 2 0 と補助巻線 の空間位相角を 1 2 0 ° とする こ とができ、 起動 トルクの向上を図 る こ とができ る。  By adopting the winding arrangement as described above, the spatial phase angle between the main winding 20 and the auxiliary winding can be made 120 °, and the starting torque can be improved. Can be done.
ステ一タ コア 1 0の外形については、 従来のステ一夕 コアにおい ては図 5 に示すよ う に L 5 であるが、 本実施例の場合には L 1 とな る。 そ して、 1 /し 5 は略 8 5 %とな ってぃる。 また、 ステ一夕 コアの材料の量を従来のものよ り 7 3 %縮減でき、 巻線の量を 8 0 %に縮減する こ とができ る。 The outer shape of the stator core 10 is L5 as shown in FIG. 5 in the conventional stay core, but is L1 in the present embodiment. And 1 / S5 is about 85%. Also, stay overnight The amount of core material can be reduced by 73% compared to the conventional one, and the amount of winding can be reduced to 80%.
なお、 上記実施例では固定用ボル トのために孔 1 8 を 4つ設けた が、 これを設けない場合には、 大スロ ッ ト 1 6 の大き さをさ らに大 き く する こ とができ るため、 ステ一夕 コア 1 0 を小さ く でき、 コィ ルェン ドの主長さを短く する こ とができ る。  In the above embodiment, four holes 18 are provided for fixing bolts. However, if the holes 18 are not provided, the size of the large slot 16 must be further increased. As a result, the length of the core 10 can be reduced, and the main length of the coil can be shortened.
図 2 は上記構成のステ一夕 コア 1 0を使用 したコ ンデンサモータ と、 従来のコ ンデンサモータの特性を比較したグラ フである。  Fig. 2 is a graph comparing the characteristics of a capacitor motor using a stationary core 10 with the above configuration and a conventional capacitor motor.
このグラ フにおいて、 横軸が回転数 ( r p m ) を示し、 左側の縦 軸が ト ルク ( N · m ) を示し、 右側の縦軸がコ ンデンサモ一夕に対 する損失 (W ) を示している。 グラ フ中の各線は次の意味を示して いる。 太い二点鎖線 : 本願のコ ンデンサモータ の 5 0 H z の ト ルク 太 い 点 線 : 本願のコ ンデンサモータ の 6 0 H z の トルク 太 い 実 線 : 本願のコ ンデンサモータ の 5 0 H z の損失 太い一点鎖線 : 本願のコ ンデンサモータの 6 0 H z の損失 細い二点鎖線 : 従来の コ ンデンサモータ の 5 0 H z の トルク 細 い 点 線 : 従来のコ ンデンサモータの 6 0 H z の ト ルク 細 い 実 線 : 従来のコ ンデンサモータ の 5 0 H z の損失 細い一点鎖線 : 従来の コ ンデンサモータ の 6 0 H z の損失 このグラ フにおいて 5 0 H z の トノレク特性について説明する 起動時 (回転数 = 0 r p m) に注目する と、 本実施例のコ ンデン サモータの場合には、 1. 5 7 N * mであ り、 従来のコ ンデンサモ 一夕は 1. 3 N * mである。 これは、 本実施例のコ ンデンサモ一夕 である と、 起動時から従来のコ ンデンサモータ よ り も大きい トルク を得られる こ とを意味 している。 In this graph, the horizontal axis indicates the rotation speed (rpm), the left vertical axis indicates the torque (Nm), and the right vertical axis indicates the loss (W) relative to the condenser heat. I have. Each line in the graph has the following meaning. Thick two-dot chain line: 50 Hz torque of the capacitor motor of the present application Thick dotted line: 60 Hz torque of the capacitor motor of the present application Thick solid line: 50 Hz of the capacitor motor of the present application Thick dashed line: 60 Hz loss of the capacitor motor of the present application Thin two-dot chain line: 50 Hz torque of the conventional capacitor motor Thin dotted line: 60 Hz of the conventional capacitor motor Torque thin solid line: 50 Hz loss of conventional capacitor motor Thin dashed line: 60 Hz loss of conventional capacitor motor In this graph, the Tonorek characteristics of 50 Hz are explained. Focusing on the start-up (rotation speed = 0 rpm), the capacitor motor of this embodiment has a capacity of 1.57 N * m, and the conventional capacitor motor has a capacity of 1.3 N * m. It is. This means that in the case of the condenser of the present embodiment, a larger torque can be obtained from startup than in the conventional condenser motor.
一方、 5 0 H z の損失についてその特性を説明する。  On the other hand, the characteristics of the loss at 50 Hz will be described.
起動時においては、 本実施例の コ ンデンサモータでは約 7 0 0 W の損失がある とすれば、 従来のコ ンデンサモータでは約 8 4 0 Wの 損失がある。 すなわち、 トルク を考慮する と、 本実施例のコ ンデン サモータの場合では、 従来よ り損失が少な く なる。  At start-up, if the capacitor motor of the present embodiment has a loss of about 700 W, the conventional capacitor motor has a loss of about 840 W. That is, when the torque is considered, the loss of the capacitor motor of the present embodiment is smaller than that of the conventional capacitor motor.
本実施例のコ ンデンサモータの使用方法と しては、 家庭用洗濯機 のモータが好適である。 通常、 洗濯機は、 起動時には大きな トルク を必要とする と と もに、 正逆回転の起動停止を煩雑に繰返し、 その 正回転及び逆回転においても同じ トルクを必要とするため、 本実施 例のコ ンデンサモータのよ う に非対称巻線化にする こ とによ り、 省 エネルギーを図る こ とができ る。  As a method of using the capacitor motor of this embodiment, a motor of a home washing machine is preferable. Normally, a washing machine requires a large torque at the time of start-up, and the start-stop of the forward / reverse rotation is troublesomely repeated, and the same torque is required at the forward and reverse rotations. Energy saving can be achieved by using an asymmetric winding like a capacitor motor.
図 3及び図 4 は第 2 の実施例のステ一 夕 コ ア 1 0 の平面図であ る。  FIGS. 3 and 4 are plan views of the step core 10 of the second embodiment.
本実施例のステ一夕 コ ア 1 0 と第 1 の実施例のステ一タ コ ア 1 0 の異なる点は、 コアバッ ク 1 2 と連結されたティ 一ス 1 4 とに分割 して構成されており、 これを一体にする こ と によ り ステ一タ コ ア 1 0が完成される。  The difference between the stator core 10 of the present embodiment and the stator core 10 of the first embodiment is that the core 10 is divided into a core back 12 and a connected tooth 14. By integrating them, the status core 10 is completed.
そ して、 本実施例の場合には、 主巻線 2 0及び補助巻線 2 2 は、 コアノ 、ッ ク 1 2 にティ ース 1 4 を取り付ける前に、 ティ ース 1 4 の 間に形成されたスロ ッ ト 1 6 に、 外側から収納する こ と力 <、 第 1 の 実施例と異なる点でもある。 In the case of this embodiment, the main winding 20 and the auxiliary winding 22 are Before attaching the tooth 14 to the core 12 and the lock 12, the slot 16 formed between the teeth 14 needs to be stored from the outside with a force <, according to the first embodiment. It is different.
なお、 完成されたステ一夕 コアは、 第 1 の実施例のステ一夕 コア 1 0 と同一形状になるため、 第 1 の実施例と同様の効果を得る こ と ができ る。 産業上の利用可能性 本発明のコ ンデンサモータである と、 コ ンデンサモータのステー 夕 コアにおいて、 非対称巻線用と して大スロ ッ ト と小スロ ッ トを形 成する こ とにより 、 磁気抵抗を均一化して磁気抵抗、 ステータ コア の材料及び鋼線材料のの縮減が図れ、 磁気抵抗を増加させる こ とな く 、 巻線収納スペースの拡大を図る こ とができ る。  Since the completed stay core has the same shape as the stay core 10 of the first embodiment, the same effects as those of the first embodiment can be obtained. INDUSTRIAL APPLICABILITY According to the capacitor motor of the present invention, by forming a large slot and a small slot for an asymmetric winding in the stator core of the capacitor motor, By making the resistance uniform, the magnetic resistance, the material of the stator core and the steel wire material can be reduced, and the space for storing the windings can be expanded without increasing the magnetic resistance.

Claims

請求の範囲 The scope of the claims
. 巻数比が略 1対 1 の主巻線と補助巻線を有し、 It has a main winding and an auxiliary winding with a turn ratio of approximately 1 to 1,
丸角型の外周形状をなすステ一夕 コアを有し、 前記ステ一タ コアのスロ ッ ト数が 2 4個である 4極のコ ンデン サモータ において、  A four-pole capacitor motor having a stator core having a round and square outer peripheral shape, wherein the stator core has 24 slots.
前記ステ一夕 コアの 4隅角部に位置するスロ ッ トを、 他の箇所 に位置するスロ ッ 卜 よ り大き く 形成して、 前記ステ一夕 コアのコ アバッ クの幅を全周にわたり略均一化した  The slots located at the four corners of the stay core are formed larger than the slots located at other locations, and the width of the core back cover of the stay core is extended over the entire circumference. Almost uniform
こ とを特徵とする コ ンデンサモ一夕。 . 前記ステ一夕 コアの 4隅角部以外に位置するスロ ッ トの底部 を、 前記ステ—夕 コアの外周面と略平行に形成した  This is a feature of Condensamo overnight. The bottom of the slot located outside the four corners of the stay core was formed substantially parallel to the outer peripheral surface of the stay core.
こ とを特徴とする請求項 1記載のコ ンデンサモータ。 . 前記ステ一夕 コ アの 4隅角部に位置するス ロ ッ 卜へ、 それぞれ 異相の 2個の巻線を収納し、  2. The capacitor motor according to claim 1, wherein: The two windings of different phases were stored in the slots located at the four corners of the station.
前記ステ一夕 コアの 4隅角部以外に位置するス ロ ッ 卜へ、 1個 の巻線を収納した  One winding was housed in a slot other than the four corners of the core.
こ とを特徴とする請求項 1記載のコ ンデンサモ一夕。 . 前記主巻線と前記補助巻線の空間位相角を 1 2 0。 に構成した こ とを特徴とする請求項 1記載のコ ンデンサモータ。  3. The condensed mosquito as claimed in claim 1, characterized in that: The spatial phase angle between the main winding and the auxiliary winding is 120. The capacitor motor according to claim 1, wherein the capacitor motor is configured as follows.
PCT/JP1997/004262 1997-08-11 1997-11-21 Capacitor motor WO1999008364A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0702443A KR100485251B1 (en) 1997-08-11 1997-11-21 Condenser moter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/216348 1997-08-11
JP21634897 1997-08-11
JP25844497A JP4026731B2 (en) 1997-08-11 1997-09-24 Capacitor motor
JP9/258444 1997-09-24

Publications (1)

Publication Number Publication Date
WO1999008364A1 true WO1999008364A1 (en) 1999-02-18

Family

ID=26521387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004262 WO1999008364A1 (en) 1997-08-11 1997-11-21 Capacitor motor

Country Status (4)

Country Link
JP (1) JP4026731B2 (en)
KR (1) KR100485251B1 (en)
CN (1) CN1173447C (en)
WO (1) WO1999008364A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022144934A1 (en) * 2020-12-31 2022-07-07 Mavel edt S.p.A. Stator with closed slots with continuous winding for an electric machine and process for making such stator
WO2022144933A1 (en) * 2020-12-31 2022-07-07 Mavel edt S.p.A. Stator for an electric machine and process for making such stator

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020022278A (en) * 2000-09-19 2002-03-27 구자홍 Stator of pole change motor
KR20020030130A (en) * 2000-10-16 2002-04-24 이우선 Double slot structure of small pump motor's stator
KR100442285B1 (en) * 2002-02-08 2004-07-30 엘지전자 주식회사 outer rotor type induction motor and motor for washing machine
KR100500980B1 (en) * 2002-11-09 2005-07-14 삼성전자주식회사 Pole change type induction motor
KR100927926B1 (en) * 2006-03-30 2009-11-19 미쓰비시덴키 가부시키가이샤 Single Phase Motors and Hermetic Compressors
JP5556565B2 (en) * 2010-10-08 2014-07-23 株式会社デンソー Rotating electric machine
WO2013132538A1 (en) 2012-03-09 2013-09-12 パナソニック株式会社 Power conversion device, power conversion method, motor system, and two-phase induction motor
CN103986250B (en) * 2014-05-28 2016-07-06 安徽美芝制冷设备有限公司 Stator punching and the compressor electric motor with it
CN104852488A (en) * 2015-04-18 2015-08-19 芜湖通力电机有限责任公司 Stator plate structure of low power motor
CN104967269A (en) * 2015-06-01 2015-10-07 广东威灵电机制造有限公司 Washing machine and motor for the washing machine
WO2016192345A1 (en) * 2015-06-01 2016-12-08 广东威灵电机制造有限公司 Washing machine and motor for washing machine
CN104836400B (en) * 2015-06-01 2017-10-31 广东威灵电机制造有限公司 Use in washing machine single phase induction motor and washing machine
CN106059132A (en) * 2016-07-18 2016-10-26 广东美芝制冷设备有限公司 Compressor stator and compressor provided with same
CN107332412B (en) * 2017-06-20 2019-03-05 江苏大学 A kind of induction-type bearingless motor that stator is rectangular
CN107394912A (en) * 2017-08-09 2017-11-24 珠海格力节能环保制冷技术研究中心有限公司 Threephase stator punching and three phase electric machine
KR102629498B1 (en) * 2022-08-24 2024-01-25 엘지전자 주식회사 Single-phase induction motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS434028Y1 (en) * 1965-12-22 1968-02-21
JPS4986808A (en) * 1972-12-26 1974-08-20
JPS61443U (en) * 1984-06-06 1986-01-06 株式会社東芝 three phase induction motor
JPS63110927A (en) * 1986-10-28 1988-05-16 Fujitsu General Ltd Stator core of motor
JPH0775306A (en) * 1993-09-03 1995-03-17 Fujitsu General Ltd Capacitor induction motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61443A (en) * 1984-06-13 1986-01-06 Shimadzu Corp Cadmium reduction catalyst for nitric acid analysis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS434028Y1 (en) * 1965-12-22 1968-02-21
JPS4986808A (en) * 1972-12-26 1974-08-20
JPS61443U (en) * 1984-06-06 1986-01-06 株式会社東芝 three phase induction motor
JPS63110927A (en) * 1986-10-28 1988-05-16 Fujitsu General Ltd Stator core of motor
JPH0775306A (en) * 1993-09-03 1995-03-17 Fujitsu General Ltd Capacitor induction motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022144934A1 (en) * 2020-12-31 2022-07-07 Mavel edt S.p.A. Stator with closed slots with continuous winding for an electric machine and process for making such stator
WO2022144933A1 (en) * 2020-12-31 2022-07-07 Mavel edt S.p.A. Stator for an electric machine and process for making such stator
US12348080B2 (en) 2020-12-31 2025-07-01 Mavel edt S.p.A. Stator with closed slots with a fluid injection cooling system for an electric machine and electric machine comprising said stator

Also Published As

Publication number Publication date
JP4026731B2 (en) 2007-12-26
CN1173447C (en) 2004-10-27
CN1233357A (en) 1999-10-27
KR100485251B1 (en) 2005-08-04
JPH11122849A (en) 1999-04-30
KR20000064273A (en) 2000-11-06

Similar Documents

Publication Publication Date Title
WO1999008364A1 (en) Capacitor motor
KR101475521B1 (en) Armature laminate
JP3484006B2 (en) Rotating machine and molding method
JP2667073B2 (en) Slotless motor
US7825561B2 (en) Motor with simplified structure and related control device
JP2002044893A (en) Rotating electric machine or linear motor and its stator
JP2020014360A (en) Rotating electric machine
TWI641203B (en) Three-phase electromagnetic motor
JP7292418B2 (en) Rotating electric machine stator and rotating electric machine
US20110248582A1 (en) Switched reluctance machine
JPWO2021112040A5 (en)
JP3572209B2 (en) Coil winding method
US2802123A (en) Stator construction for a capacitor motor or the like
JP6969034B2 (en) Rotating machine and stator for rotating machine
JPH07298578A (en) Rotating electric machine
JP2003143822A (en) Induction motor
JP2010022149A (en) Rotary electric machine
JP2001169517A (en) Capacitor motor
JPH07143697A (en) Three-phase armature winding
US8253369B2 (en) Single phase induction motor
JP2765764B2 (en) Stator winding arrangement method for synchronous motor
JP2001061248A (en) Motor
JP7615932B2 (en) Motor
KR900000762B1 (en) Coil winding method of single phase induction motor
EP4164092A1 (en) Single-phase brushless direct current motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97198639.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1019980702443

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

WWP Wipo information: published in national office

Ref document number: 1019980702443

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980702443

Country of ref document: KR