[go: up one dir, main page]

WO1998042039A1 - Sodium-sulfur cell - Google Patents

Sodium-sulfur cell Download PDF

Info

Publication number
WO1998042039A1
WO1998042039A1 PCT/JP1997/000839 JP9700839W WO9842039A1 WO 1998042039 A1 WO1998042039 A1 WO 1998042039A1 JP 9700839 W JP9700839 W JP 9700839W WO 9842039 A1 WO9842039 A1 WO 9842039A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
damage
sulfur battery
monitoring
battery
Prior art date
Application number
PCT/JP1997/000839
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshimi Sato
Saburo Usami
Tadahiko Miyoshi
Hisamitsu Hato
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1997/000839 priority Critical patent/WO1998042039A1/en
Publication of WO1998042039A1 publication Critical patent/WO1998042039A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for monitoring damage to a power storage system for a natural sulfur battery.
  • the present invention relates to a natural sulfur suitable for monitoring operation of a joint between an anode cover and an insulating ring due to a sodium of an anode active material and controlling operation thereof.
  • the structure of a conventional sodium-sulfur battery is disclosed in, for example, JP-A-63-26947, JP-A-2-121272 and JP-A-2-126572.
  • the structure uses ⁇ -alumina as an insulating ring, and when this insulating ring is hot-pressed to the steel positive and negative electrode container flanges, an oxygen-free copper layer is provided on the ⁇ -alumina surface, and nickel After the brazing is applied, heat-welding is performed.
  • the use of corrosion-resistant nickel material improves the corrosion resistance of the heat-welded part, and is used to combine the insulating material with the solid electrolyte tube and the positive electrode with the negative electrode.
  • the positive electrode active material is improved by improving the thermal cycle and corrosion resistance in view of the generation of thermal stress in consideration of the coefficient of thermal expansion, and by forming the concave groove by bending the positive electrode container inward at the entire lower part of the heat-pressed part. It has been devised to prevent the movement of rust and improve the corrosion resistance.
  • FIG. 1 shows a cross section of a sodium sulfur battery according to the present invention.
  • FIG. 2 shows an outline of a damage crack initiation part by sodium monitored by the present invention and a monitoring method.
  • FIG. 3 shows a damage monitoring battery block operated at a high temperature.
  • Figure 4 shows a damage monitoring battery block operating at high speed.
  • Fig. 5 and Fig. 6 show the location of damage monitoring cells that are hot in one block.
  • FIG. 7 shows a battery system capable of operating at low temperature or at low speed.
  • Fig. 8 shows a battery system that can shut off and switch modules.
  • Fig. 9 shows a battery system with a spare module.
  • FIG. 10 shows a battery system with interchangeable modules.
  • Figure 11 shows the case where a strain gauge is used as a damage detection sensor.
  • Figure 12 shows the relationship between the measured strain range and the length of the damaged crack.
  • Fig. 13 shows a case where a displacement meter is used as a damage detection sensor.
  • Fig. 14 shows a deformation application example where a displacement meter is used as a damage detection sensor.
  • Fig. 15 shows the relationship between the compliance obtained from the deformation behavior and the length of the damaged crack.
  • Figures 16, 17, and 18 show the case where the potential difference method is applied as a damage detection sensor.
  • Fig. 19 and Fig. 20 show the case where AE is applied as a damage detection sensor.
  • Figure 21 shows the relationship between the AE wave and the crack length.
  • Fig. 22 shows an eddy ammeter as a damage detection sensor, and
  • Fig. 23 shows a case of extracting an ultrasonic sensor.
  • Fig. 24 is a diagram showing the installation of a short-circuit detection circuit for a satellite installed on ⁇ -alumina. BEST MODE FOR CARRYING OUT THE INVENTION
  • the first invention of the present application is a nutrient sulfur battery characterized by comprising means for monitoring damage of the negative electrode cover and the ⁇ -alumina junction by sodium.
  • the second invention also provides a storage system for a sulfur battery with a plurality of modules, which operates at least one block of the smallest block constituting the module at a higher temperature than the others to prevent damage.
  • a sodium-sulfur battery which is larger than a block battery and has a means for evaluating remaining life by monitoring damage to the battery operated at the high temperature.
  • the charge or discharge operation of one or more of the minimum blocks constituting the module is performed at a higher speed than another at a different system, so that the damage is greater than that of the other block batteries,
  • a sodium-sulfur battery characterized by comprising means for evaluating remaining life by monitoring damage to the battery.
  • the fourth invention provides that, in one or more of the minimum blocks constituting a module, a battery exposed to a higher temperature than other batteries in the block And a means for monitoring damage.
  • the fifth invention has a means for monitoring the batteries exposed to a higher temperature than the other batteries in the blocks of the blocks of the second and third inventions operated at a high temperature and at a high speed.
  • This is a natural sulfur battery with the following characteristics.
  • a sixth aspect of the present invention is a sodium-sulfur battery characterized by being able to perform a control operation for suppressing an increase in damage by operating a module having a large damage at a lower temperature than other modules.
  • a seventh aspect of the present invention is a storage battery system for a sulfur battery, comprising a circuit and a device capable of manually and / or automatically shutting down a circuit for a module having a large damage and performing a switching operation.
  • the seventh aspect of the present invention installs a switching module battery in advance from the beginning, thereby eliminating time loss required for replacement and enabling efficient operation.
  • This is a power storage system for a sodium-sulfur battery.
  • the ninth invention is also directed to a means for removing a module having a large damage, introducing a new module and storing a removed battery when manually and / or automatically switching and switching the module according to the seventh invention for a module having a large damage.
  • This is a storage battery for a storage battery that has a space and a spare battery and has the space.
  • a tenth aspect of the present invention is the sodium sulfur battery according to any one of the first to ninth aspects, wherein a strain gauge installed on the negative electrode lid is used as a sensor for detecting damage.
  • the eleventh invention is characterized in that, in any of the first to ninth inventions, This is a sodium-sulfur battery that is installed on the negative electrode lid and uses a displacement meter as a sensor for detection.
  • a twenty-second invention is the sodium-sulfur according to any one of the first to ninth inventions, wherein an electric potential sensor installed between the negative electrode lid or the intermediate material is used for detecting damage. Battery.
  • the damage is detected by using a negative electrode lid or an A-sensor mounted on an ⁇ -alumina insulating ring. It is a re-sulfur battery.
  • a fourteenth invention is the sodium-sulfur battery according to any one of the first to ninth inventions, wherein a vortex battery sensor installed on a negative electrode lid is used to detect damage.
  • a fifteenth aspect of the present invention is the sodium ion sensor according to any one of the first to ninth aspects, wherein an ultrasonic sensor installed on the negative electrode lid is installed to monitor the damage during operation in order to detect damage. It is a sulfur battery.
  • a sixteenth aspect of the present invention is the NAT according to the first to ninth aspects, wherein a damage short-circuit detecting circuit is provided inside the insulating ring to detect damage during operation, and the damage during operation is monitored. It is a re-sulfur battery. Also, a seventeenth invention is the sodium-sulfur battery according to the fourth and fifth inventions, wherein a thermocouple is provided on a negative electrode cover for measuring a temperature of a junction.
  • FIG. 11 shows a strain gauge 12 installed on the negative electrode lid 3 in order to detect a damage crack 11 caused by sodium 5 in claim 10.
  • Figure 12 shows the relationship between the change in the strain range ⁇ ⁇ and the crack length a. Behavior.
  • FIG. 15 shows a construction in which a displacement gauge 13 is provided on the negative electrode lid 3 in order to detect a damage crack 11 caused by sodium 5 in claim 11.
  • a displacement gauge 13 is provided on the negative electrode lid 3 in order to detect a damage crack 11 caused by sodium 5 in claim 11.
  • FIG. 1 and FIG. One embodiment of the present invention is shown in FIG. 1 and FIG.
  • the sodium-sulfur battery targeted by the present invention is connected to a solid electrolyte bag tube 1 as shown in FIG.
  • an insulating ring 2 made of ⁇ -alumina is installed at the upper opening of the solid electrolyte bag tube 1 to separate the negative electrode and the positive electrode.
  • the structure is such that a negative electrode lid 3 is joined to the insulating ring 2.
  • a damage crack 11 may be generated in the bonding portion due to the sodium of the negative electrode active material 5. Detecting the damaged crack 11 and constantly monitoring it during operation is an effective means for improving the strength reliability.
  • An object of the present invention is to monitor the damaged crack 11.
  • a damage crack detection sensor 27 is provided on the negative electrode lid 3, and changes depending on the crack length when the temperature of the battery rises or falls, or when discharging or charging.
  • This is a sodium sulfur battery that uses the crack detector 25 to determine the length a of the damaged crack 11 based on the output parameters of the sensor 27 and displays the damaged crack 11 on a monitoring device 26 to constantly monitor it.
  • Fig. 3 shows an example of applying and applying the damage monitoring means of the present invention to a sodium-sulfur battery power storage system composed of a plurality of modules.
  • One or more blocks among the smallest blocks 30 constituting the module 40 are operated at a higher temperature than the others, and the batteries in the blocks 31 operated at the higher temperature are subjected to the damage cracks 1 1
  • It is equipped with a means for monitoring damage and constantly monitors for damage cracks.
  • the advantage in this case is that the damage 11 of the battery operated at high temperature is greater than the damage 11 of the other blocks 30. There are benefits that can be secured.
  • Fig. 4 shows an application or modification of Fig. 3.
  • One or more blocks of the minimum block 30 constituting the module 40 are operated by high-speed discharge or high-speed charge by another system and another system by another system, and the battery in the high-speed block 32 is operated.
  • the advantage in this case is the damage of the battery operated at high speed 1 1 Force Damage of other blocks 30 1 Larger than that of 1 1 t Figure 5 there is a main ripple Bok as possible is an embodiment for monitoring efficiently detect damage crack.
  • one or more of the minimum blocks 30 constituting the module 40 include one or more other batteries 2 in the block 30 shown in FIG.
  • FIG. 6 shows the case where means 25 and 26 for monitoring damage 1 caused by 5 are installed.
  • FIG. 5 is a schematic diagram of a storage battery power storage system composed of a plurality of modules 40, in which a module 45 having a large damage by the damage monitoring means has a lower temperature than other modules 40.
  • This is a natural sulfur battery with a structure that enables low-speed operation in a separate system from operation or other modules 40, and suppresses the progress of battery damage in the module 45 with large damage 11
  • the advantage is that it can be adjusted to the same level as the damage 11 of other modules 40. There is an advantage that can ensure battery reliability.
  • FIG. 8 shows an example of a storage battery system for a sulfur battery having a circuit and a device capable of manually or manually disconnecting the highly damaged module 44 from the system circuit and switching and operating the circuit.
  • Fig. 9 is an application and a modification of Fig. 8.
  • the circuit of a module with large damage is cut off and the circuit is switched, it is installed as a spare module 43 in advance.
  • a sodium-sulfur battery that can be performed on the module 43.
  • Fig. 10 shows the means for removing the damaged module 41 and introducing a new module 42, the storage space for the removal module 41, and the space for storing the spare module 42.
  • 1 shows an embodiment of a thorium-sulfur battery power storage system.
  • Fig. 11 shows a method for monitoring damage 11 caused by sodium 5 in the joint by installing a strain gauge on the crack detection sensor and calculating the change in strain during operation and during temperature rise and fall ⁇ ⁇ .
  • Shown below is a sodium-sulfur battery that detects and monitors 26 damage caused by sodium 5 in the cell.
  • the strain range ⁇ ⁇ shows a behavior in which the rigidity of the negative electrode lid 3 decreases with an increase in the crack length a, so that the deformation becomes large and the strain range becomes large.
  • Pre strain range delta epsilon,, ⁇ a relationship epsilon 2 when crack length a previously created calibration curve obtained in experiments or the like, can be from the calibration curve to determine the crack from the value output by the strain gauge .
  • FIGS. 13 and 14 show an embodiment in which a displacement meter is used as the damage detection sensor 13.
  • the displacement ⁇ and temperature ⁇ during temperature rise and fall or during charging and discharging are detected by a thermocouple 37, and as shown in Fig. 15 (a), the rigidity is determined by the relationship between temperature T and displacement ⁇ . ⁇ is calculated, and the length a of the damaged crack 11 is determined from the calibration curve of the crack length and the reciprocal 1 of the rigidity as shown in Fig. 15 (b).
  • the calibration curve is created in advance by a curve obtained by experiments.
  • Figures 16 to 18 show examples of applying the potential difference method to damage detection sensors Is shown.
  • Fig. 16 shows the case where the potential of the battery is measured
  • Fig. 17 shows the embodiment where the potential difference is measured by an external DC power supply
  • Fig. 18 shows the embodiment where the potential difference is detected using an AC power supply. Show.
  • FIG. 19 and FIG. 20 show an embodiment in which AE is used for the damage detection sensor.
  • Crack detection is determined from the characteristics of the AE wave generated during battery temperature rise or fall and charge / discharge as shown in Fig. 21.
  • Fig. 21 (a) the characteristics of the sound wave are different between 100 ° C or lower where sulfur or sodium solidifies and 100 ° C or higher of liquid.
  • characteristics at a high temperature of 100 ° C. or more are used.
  • Figure 21 (b) shows the relationship between the crack length a and the number of peak waves
  • Figure 21 (c) shows the relationship between the peak wave level and the crack length a.
  • a method was adopted in which both crack lengths a were calculated and displayed on the monitoring device 26.
  • the second 3 figure shows an example of using the ultrasonic sensor 1 9 for the detection of damage Crack
  • the second 4 The figure shows a method of monitoring damage 1 caused by sodium 5 at the joint 1 1 by installing an electrical short circuit when sodium 5 intrudes into the ⁇ -alumina of the insulating ring 2 and the crack length a during operation. Is a sodium-sulfur battery that can detect more than one point.
  • the damage due to the sodium can be quantitatively monitored, and thus there is an effect that the reliability of the joint can be secured.
  • ADVANTAGE OF THE INVENTION According to the present invention, it is possible to quantitatively constantly monitor the damage at the joint between the negative electrode cover and the ⁇ -alumina of the insulating ring due to the sodium of the negative electrode active material, thereby ensuring the reliability of the joint.
  • battery operation methods to control damage, battery replacement, and circuit switching timing can be performed more efficiently. Can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

The reliability of a sodium-sulfur cell system is improved by always monitoring the damage of the junction between the cathode cap of a sodium-sulfur cell and the α-alumina of the insulating ring of the cell by sodium and evaluating the remaining life of the cell.

Description

明 細 書  Specification
ナ卜リゥムー硫黄電池 技術分野  Technical field of sulfur batteries
本発明はナ卜リゥムー硫黄電池電力貯蔵システムの損傷監視法に係り . 特に負極活物質のナ 卜リゥムによる負極蓋と絶縁リングの接合部の損傷 を監視し運転制御するに好適なナ卜リゥムー硫黄電池システムに関する, 背景技術  The present invention relates to a method for monitoring damage to a power storage system for a natural sulfur battery. In particular, the present invention relates to a natural sulfur suitable for monitoring operation of a joint between an anode cover and an insulating ring due to a sodium of an anode active material and controlling operation thereof. Background art on battery systems
従来のナトリウム一硫黄電池の構造は、 例えば特開昭 63— 26947 号公 報, 特開平 2— 1 2 1 272 号公報及び特開平 2— 1 26572 号公報に開示されて いる。 その構造は絶縁リングとして α —アルミナを使用し、 この絶縁リ ングと鋼製の正極及び負極容器フランジを熱圧接する際に、 α —アルミ ナ面に無酸素銅層を設け、 その上にニッケルろうを塗布処理後に熱圧接 を実施しており、 耐食性のニッケル材を使用することで熱圧接部の耐食 性を向上することや、 絶縁材と固体電解質管及び正極と負極の接合組合 せに際し、 熱膨張係数を考慮して熱応力の発生の面から熱サイクル及び 耐食性を向上することや、 正極容器を熱圧接部の下部で全周にわたって 内側に湾曲させ凹状溝を形成することにより正極活物質の移動を防止し て、 耐食性を向上する工夫がなされている。  The structure of a conventional sodium-sulfur battery is disclosed in, for example, JP-A-63-26947, JP-A-2-121272 and JP-A-2-126572. The structure uses α-alumina as an insulating ring, and when this insulating ring is hot-pressed to the steel positive and negative electrode container flanges, an oxygen-free copper layer is provided on the α-alumina surface, and nickel After the brazing is applied, heat-welding is performed.The use of corrosion-resistant nickel material improves the corrosion resistance of the heat-welded part, and is used to combine the insulating material with the solid electrolyte tube and the positive electrode with the negative electrode. The positive electrode active material is improved by improving the thermal cycle and corrosion resistance in view of the generation of thermal stress in consideration of the coefficient of thermal expansion, and by forming the concave groove by bending the positive electrode container inward at the entire lower part of the heat-pressed part. It has been devised to prevent the movement of rust and improve the corrosion resistance.
絶縁リングと負及び正極容器フランジ接合部界面の負極及び正極活物 質による耐食性を向上する手法として、 材料そのものを耐食性材にする 方法と、 特開平 8— 45543号公報に開示されているように構造的に負極及 び正極活物質の液及びミス 卜結露液が接合部に付着するのを防止するこ とで耐食性を向上する方法、 および特願平 8— 5023 号公報に開示されて いるように、 接合部の残留応力を圧縮応力に改善することで耐食性を向 上する工夫がなされれている。 しかし、 ナトリウムによる損傷を監視し、 余寿命を評価することでナ卜 リゥムー硫黄電池システムの信頼性向上を 図るための配慮がなされていなかった。 発明の開示 As a method of improving the corrosion resistance by the negative electrode and the positive electrode active material at the interface between the insulating ring and the negative and positive electrode container flange joints, a method of using the material itself as a corrosion-resistant material and a method disclosed in Japanese Patent Application Laid-Open No. 8-45543 are disclosed. A method for improving the corrosion resistance by structurally preventing the liquids of the negative and positive electrode active materials and the mist condensate from adhering to the joint, and a method disclosed in Japanese Patent Application No. 8-5023. As mentioned above, some measures have been taken to improve the corrosion resistance by improving the residual stress at the joint to compressive stress. However, no consideration was given to improving the reliability of the sulfur battery system by monitoring the damage caused by sodium and evaluating the remaining life. Disclosure of the invention
ナ 卜 リゥムー硫黄電池の強度信頼性を向上するためには、 負極蓋と絶 縁リ ングの α —アルミナとの接合部におけるナ卜 リゥムによる損傷を常 時監視し、 余寿命を評価することが効果的である。 本発明は前記ナ ト リ ゥムによる損傷を監視し強度信頼性を向上したナト リゥムー硫黄電池シ ステムを提供することにある。 図面の簡単な説明  In order to improve the strength reliability of a natural sulfur battery, it is necessary to constantly monitor the joint between the negative electrode cover and α-alumina of the insulating ring due to sodium and evaluate the remaining life. It is effective. It is an object of the present invention to provide a sulfur sulfur battery system in which damage due to the sodium is monitored to improve the strength reliability. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明対象のナトリゥムー硫黄電池の断面を示す。 第 2図は 本発明で監視するナトリゥムによる損傷き裂発生部及び監視法の概略を 示す。 第 3図は高温で運転する損傷監視用電池ブロックを示す。 第 4図 は高速で運転する損傷監視用電池プロックを示す。 第 5図及び第 6図は 1 ブロック内で高温となる損傷監視用単電池の位置を示す。 第 7図は低 温又は及び低速運転可能な電池システムを示す。,第 8図はモジュールを 遮断及び切換え可能な電池システムを示す。 第 9図は予備モジュールを 具備した電池システムを示す。 第 1 0図はモジュールの入れ換え可能な 電池システムを示す。 第 1 1 図は損傷検出センサとしてひずみゲージを 使用した場合を示す。 第 1 2図は計測ひずみ範囲と損傷き裂長さの関係 を示す。 第 1 3図は損傷検出センサとして変位計を使用した場合を示す, 第 1 4図は損傷検出センサに変位計を使用した場合の変形応用例を示す, 第 1 5図は変形挙動から得られるコンプライアンスと損傷き裂長さの関 係を示す。 第 1 6図, 第 1 7図, 第 1 8図は損傷検出センサとして電位 差法を適用する場合を示す。 第 1 9図, 第 2 0図は損傷検出センサとし て A Eを適用した場合を示す図である。 第 2 1 図は A E波とき裂長さの 関係を示す。 第 2 2図は損傷検出センサとしてうず電流計を、 第 2 3図 は超音波センサを摘出する場合を示す。 第 2 4図は α —アルミナに設置 したナ卜リゥム短絡感知回路を設置した図である。 発明を実施するための最良の形態 FIG. 1 shows a cross section of a sodium sulfur battery according to the present invention. FIG. 2 shows an outline of a damage crack initiation part by sodium monitored by the present invention and a monitoring method. FIG. 3 shows a damage monitoring battery block operated at a high temperature. Figure 4 shows a damage monitoring battery block operating at high speed. Fig. 5 and Fig. 6 show the location of damage monitoring cells that are hot in one block. FIG. 7 shows a battery system capable of operating at low temperature or at low speed. Fig. 8 shows a battery system that can shut off and switch modules. Fig. 9 shows a battery system with a spare module. FIG. 10 shows a battery system with interchangeable modules. Figure 11 shows the case where a strain gauge is used as a damage detection sensor. Figure 12 shows the relationship between the measured strain range and the length of the damaged crack. Fig. 13 shows a case where a displacement meter is used as a damage detection sensor. Fig. 14 shows a deformation application example where a displacement meter is used as a damage detection sensor. Fig. 15 shows the relationship between the compliance obtained from the deformation behavior and the length of the damaged crack. Figures 16, 17, and 18 show the case where the potential difference method is applied as a damage detection sensor. Fig. 19 and Fig. 20 show the case where AE is applied as a damage detection sensor. Figure 21 shows the relationship between the AE wave and the crack length. Fig. 22 shows an eddy ammeter as a damage detection sensor, and Fig. 23 shows a case of extracting an ultrasonic sensor. Fig. 24 is a diagram showing the installation of a short-circuit detection circuit for a satellite installed on α-alumina. BEST MODE FOR CARRYING OUT THE INVENTION
本発明を達成するため、 本願第 1発明は、 負極蓋と α —アルミナ接合 部のナトリゥムによる損傷を監視する手段を具備したことを特徴とする ナ卜リゥムー硫黄電池である。  In order to achieve the present invention, the first invention of the present application is a nutrient sulfur battery characterized by comprising means for monitoring damage of the negative electrode cover and the α-alumina junction by sodium.
また第 2発明は、 複数のモジュールで構成されるナ卜リゥムー硫黄電 池貯蔵システムにおいて、 モジュールを構成する最小ブロックの 1 ブ口 ック以上を他より高温で運転することにより、 損傷を他のプロックの電 池より大とし、 前記高温で運転した電池に対して損傷監視することによ り余寿命を評価する手段を具備したことを特徴とするナトリウム一硫黄 電池である。  The second invention also provides a storage system for a sulfur battery with a plurality of modules, which operates at least one block of the smallest block constituting the module at a higher temperature than the others to prevent damage. A sodium-sulfur battery which is larger than a block battery and has a means for evaluating remaining life by monitoring damage to the battery operated at the high temperature.
また第 3発明は、 モジュールを構成する最小ブロックの 1 ブロック以 上を別系統で他より高速で充電又は及び放電運転することで、 損傷を他 のプロックの電池より大とし、 前記高速運転した電池に対して損傷監視 することにより余寿命を評価する手段を具備したことを特徴とするナ卜 リゥム—硫黄電池である。  Further, in the third invention, the charge or discharge operation of one or more of the minimum blocks constituting the module is performed at a higher speed than another at a different system, so that the damage is greater than that of the other block batteries, A sodium-sulfur battery characterized by comprising means for evaluating remaining life by monitoring damage to the battery.
また第 4発明は、 モジュールを構成する最小プロックのうち 1 プロッ ク以上において、 ブロック内で他の電池より高温に曝される電池に対し て損傷を監視する手段を具備したことを特徴とするナ卜リゥムー硫黄電 池である。 In addition, the fourth invention provides that, in one or more of the minimum blocks constituting a module, a battery exposed to a higher temperature than other batteries in the block And a means for monitoring damage.
また第 5発明は第 2及び第 3発明の高温運転及び高速運転したプロッ クに対して、 そのプロック内で他の電池より高温に曝される電池に対し て損傷を監視する手段を具備したことを特徴とするナ卜リゥムー硫黄電 池である。  Further, the fifth invention has a means for monitoring the batteries exposed to a higher temperature than the other batteries in the blocks of the blocks of the second and third inventions operated at a high temperature and at a high speed. This is a natural sulfur battery with the following characteristics.
また第 6発明は、 損傷の大きいモジュールに対して他のモジュールよ りも低温で運転することにより、 損傷の増加を抑制する制御運転ができ ることを特徴としたナトリゥム一硫黄電池である。  A sixth aspect of the present invention is a sodium-sulfur battery characterized by being able to perform a control operation for suppressing an increase in damage by operating a module having a large damage at a lower temperature than other modules.
また第 7発明は、 損傷の大きいモジュールに対して回路を手動及び又 は自動的に遮断し切換え運転できる回路及び装置を具備したことを特徴 とするナ 卜リゥムー硫黄電池電力貯蔵システムである。  A seventh aspect of the present invention is a storage battery system for a sulfur battery, comprising a circuit and a device capable of manually and / or automatically shutting down a circuit for a module having a large damage and performing a switching operation.
また第 8発明は、 損傷大きいモジュールに対して、 前記第 7発明は切 換え用のモジュール電池を当初から予め設置しておくことで、 交換に要 する時間的ロスをなく し効率的運転ができることを特徴としたナ卜リゥ ム一硫黄電池電力貯蔵システムである。  According to an eighth aspect of the present invention, in the case of a module having a large damage, the seventh aspect of the present invention installs a switching module battery in advance from the beginning, thereby eliminating time loss required for replacement and enabling efficient operation. This is a power storage system for a sodium-sulfur battery.
また第 9発明は、 損傷の大きいモジュールに対して、 前記第 7発明の 手動及び又は自動的に遮断し切換えする際、 損傷の大きいモジュールを 取り除く と共に新たなモジュールを導入する手段と除去電池の保管スぺ ース及び予備電池の保管及びそのスペースを有することを特徴とするナ 卜リゥムー硫黄電池電力貯蔵システムである。  The ninth invention is also directed to a means for removing a module having a large damage, introducing a new module and storing a removed battery when manually and / or automatically switching and switching the module according to the seventh invention for a module having a large damage. This is a storage battery for a storage battery that has a space and a spare battery and has the space.
また第 1 0発明は、 第 1 発明から第 9発明のいずれにおいて、 損傷を 検出するに、 負極蓋に設置したひずみゲージをセンサとして使用するこ とを特徴としたナ卜リゥムー硫黄電池。  A tenth aspect of the present invention is the sodium sulfur battery according to any one of the first to ninth aspects, wherein a strain gauge installed on the negative electrode lid is used as a sensor for detecting damage.
また第 1 1発明は、 第 1 発明から第 9発明のいずれにおいて、 損傷を 検出するに、 負極蓋に設置して変位計をセンサとして使用することを特 徴としたナトリウム一硫黄電池である。 Further, the eleventh invention is characterized in that, in any of the first to ninth inventions, This is a sodium-sulfur battery that is installed on the negative electrode lid and uses a displacement meter as a sensor for detection.
また第 1 2発明は、 第 1 発明から第 9発明のいずれにおいて、 損傷を 検出するに、 負極蓋又は及び中間材間に設置した電気ポテンシャルセン サを使用することを特徴としたナト リウム—硫黄電池である。  A twenty-second invention is the sodium-sulfur according to any one of the first to ninth inventions, wherein an electric potential sensor installed between the negative electrode lid or the intermediate material is used for detecting damage. Battery.
また第 1 3発明は、 第 1発明から第 9発明のいずれにおいて、 損傷を 検出するに、 負極蓋又は及び α —アルミナ絶縁リングに設置した A Εセ ンサを使用することを特徴としたナ卜 リゥムー硫黄電池である。  According to a thirteenth aspect, in any one of the first to ninth aspects, the damage is detected by using a negative electrode lid or an A-sensor mounted on an α-alumina insulating ring. It is a re-sulfur battery.
また第 1 4発明は、 第 1発明から第 9発明のいずれにおいて、 損傷を 検出するに、 負極蓋に設置したうず電池センサを使用することを特徴と したナトリウム一硫黄電池である。  A fourteenth invention is the sodium-sulfur battery according to any one of the first to ninth inventions, wherein a vortex battery sensor installed on a negative electrode lid is used to detect damage.
また第 1 5発明は、 第 1発明から第 9発明のいずれにおいて、 損傷を 検出するに、 負極蓋に設置した超音波センサを設置し、 運転時の損傷を 監視することを特徴としたナトリウム—硫黄電池である。  A fifteenth aspect of the present invention is the sodium ion sensor according to any one of the first to ninth aspects, wherein an ultrasonic sensor installed on the negative electrode lid is installed to monitor the damage during operation in order to detect damage. It is a sulfur battery.
また第 1 6発明は、 第 1発明から第 9発明において、 損傷を検出する に、 絶縁リングの内部にナトリウムによる短絡感知回路を設置し、 運転 時の損傷を監視することを特徴としたナ卜 リゥムー硫黄電池である。 また第 1 7発明は、 第 4発明及び第 5発明において、 接合部の温度を 計測するため負極蓋に熱電対を設置したことを特徴としたナ卜リゥム一 硫黄電池である。  A sixteenth aspect of the present invention is the NAT according to the first to ninth aspects, wherein a damage short-circuit detecting circuit is provided inside the insulating ring to detect damage during operation, and the damage during operation is monitored. It is a re-sulfur battery. Also, a seventeenth invention is the sodium-sulfur battery according to the fourth and fifth inventions, wherein a thermocouple is provided on a negative electrode cover for measuring a temperature of a junction.
第 1 1 図は請求項 1 0においてナト リウム 5による損傷き裂 1 1 を検 出するために、 負極蓋 3にひずみゲージ 1 2 を設置したものである。 き 裂 1 1の長さ aが成長した場合、 昇降温又は充放電時にき裂長さ aが大 きい程負極蓋の剛性が小さくなるため発生ひずみ範囲が変化して出力さ れる。 そのひずみ範囲△ εの変化とき裂長さ aの関係は第 1 2図に示す よう挙動を示す。 運転中に常時ひずみ範囲△ ε を計測することにより、 ナト リウム 5による損傷き裂寸法 a を把握できるため、 その余寿命が評 価でき、 電池の信頼性を向上できる。 FIG. 11 shows a strain gauge 12 installed on the negative electrode lid 3 in order to detect a damage crack 11 caused by sodium 5 in claim 10. When the length a of the crack 11 grows, the larger the crack length a becomes at the time of raising or lowering the temperature or charging / discharging, the smaller the rigidity of the negative electrode lid becomes, so that the generated strain range is changed and output. Figure 12 shows the relationship between the change in the strain range △ ε and the crack length a. Behavior. By constantly measuring the strain range εε during operation, it is possible to determine the size a of the crack a damaged by sodium 5, so that the remaining life can be evaluated and the reliability of the battery can be improved.
第 1 5図は請求項 1 1 において、 ナトリウム 5による損傷き裂 1 1 を 検出するに、 負極蓋 3に変位計 1 3 を設置したものである。 上記のひず みゲージ 1 2 を使用する場合と同様き裂 1 1 の長さ aが成長した場合、 昇降温又は ¾放電時にき裂長さ aが大きくなる程負極蓋の剛性が小さく なるため発生変位 δ と温度 Tの関係は第 1 5図 ( a ) に示すようになる t き裂長さ aが増大する程除荷過程における剛性 Eが小さいため、 その逆 数 1 Z Eのコンプライアンスとき裂長さ aの関係は第 1 5図 ( b ) に示 すような挙動を示す。 運転中に常時上記の変位挙動を計測することで、 ナトリウム 5による損傷き裂寸法 aを把握できるため、 その余寿命が評 価でき、 電池の信頼性が向上する。 FIG. 15 shows a construction in which a displacement gauge 13 is provided on the negative electrode lid 3 in order to detect a damage crack 11 caused by sodium 5 in claim 11. When the length a of the crack 11 grows in the same way as when using the strain gauge 12 above, it occurs because the rigidity of the negative electrode lid decreases as the crack length a increases during heating and cooling or discharge. displacement δ and for relationship between the temperature T is smaller rigidity E of unloading process enough to t crack length a which is shown in the first 5 diagram (a) is increased, the crack length a moment opposite the number 1 ZE compliance The relationship shown in Fig. 15 (b) shows the behavior. By constantly measuring the above displacement behavior during operation, it is possible to determine the size of the damage crack a due to sodium 5, so that the remaining life can be evaluated and the reliability of the battery improves.
上記と同様に請求項 1 2ではき裂検出するパラメータに電気差法を利 用し、 請求項 1 3では A E法を利用、 請求項 1 4ではうず電流法を利用 したもので予めナト リウム 5による損傷き裂 1 1 の長さ a との関係を実 験等により明らかにし、 校正力一ブを作成しておき、 運転中に常時計測 したパラメータの変化より、 ナトリウム 5による損傷き裂 1 1 の長さ a を把握できるため、 その余寿命が評価でき、 電池の信頼性を向上できる, 請求項 2から 4では上記の損傷き裂監視を他よりも高温又は高速で運 転した電池、 つま り損傷の大きい電池に対して実施することはより余寿 命を少ない電池数で保守的に評価することにより強度信頼性を向上せし めるものである。  Similar to the above, in claim 12 the electric differential method is used for the parameters for crack detection, in claim 13 the AE method is used, and in claim 14 the eddy current method is used and the sodium The relationship between the length a of the damaged crack 11 and the length a was clarified by experiments, etc., and a calibration force curve was created. Since the length a can be ascertained, the remaining life of the battery can be evaluated, and the reliability of the battery can be improved. Implementing this for batteries with large damage will improve the strength reliability by conservatively evaluating the remaining life with a smaller number of batteries.
本発明の一実施例を第 1 図及び第 2図に示す。 本発明で対象としてい るナトリゥム—硫黄電池は、 第 1 図に示すように固体電解質袋管 1 を介 して、 負極活物質 5にナトリウムを、 正極活物質 6に硫黄を用い、 固体 電解質袋管 1 の上部開口部に負極と正極を分離する α —アルミナ製の絶 縁リ ング 2が設置され、 該絶縁リング 2に負極蓋 3が接合された構造と なっている。 前記接合部は負極活物質 5のナト リゥムにより損傷き裂 1 1 が発生する可能性がある。 その損傷き裂 1 1 を検出して、 運転中に 常時監視することは強度信頼性を向上するに有効な手段であり、 本発明 の目的は前記損傷き裂 1 1 を監視することにある。 本発明の損傷き裂 1 1 を検出する手段どして、 負極蓋 3に損傷き裂検出用センサ 2 7 を設 置し、 電池の昇降温時又は放電又は及び充電時にき裂長さによって変化 するセンサ 2 7の出力パラメータより、 き裂検出器 2 5により損傷き裂 1 1 の長さ a を判定し、 損傷き裂 1 1 を監視装置 2 6で表示し常時監視 するナトリゥムー硫黄電池である。 One embodiment of the present invention is shown in FIG. 1 and FIG. The sodium-sulfur battery targeted by the present invention is connected to a solid electrolyte bag tube 1 as shown in FIG. Then, using sodium for the negative electrode active material 5 and sulfur for the positive electrode active material 6, an insulating ring 2 made of α-alumina is installed at the upper opening of the solid electrolyte bag tube 1 to separate the negative electrode and the positive electrode. The structure is such that a negative electrode lid 3 is joined to the insulating ring 2. There is a possibility that a damage crack 11 may be generated in the bonding portion due to the sodium of the negative electrode active material 5. Detecting the damaged crack 11 and constantly monitoring it during operation is an effective means for improving the strength reliability. An object of the present invention is to monitor the damaged crack 11. As a means for detecting the damage crack 11 of the present invention, a damage crack detection sensor 27 is provided on the negative electrode lid 3, and changes depending on the crack length when the temperature of the battery rises or falls, or when discharging or charging. This is a sodium sulfur battery that uses the crack detector 25 to determine the length a of the damaged crack 11 based on the output parameters of the sensor 27 and displays the damaged crack 11 on a monitoring device 26 to constantly monitor it.
第 3図は本発明の損傷監視手段を複数のモジュールで構成されるナト リウム硫黄電池電力貯蔵システムに応用, 適用する一例を示す。 モジュ —ル 4 0を構成する最小のブロック 3 0のうち 1 ブロック以上を他より も高温で運転し、 この高温で運転したブロック 3 1 内の電池に対して、 前記発明の損傷き裂 1 1 を監視する手段を具備し、 常時損傷き裂を監視 するものである。 この場合の利点は高温で運転した電池の損傷 1 1 は、 他のブロック 3 0の損傷 1 1 より大きいため、 少ない電池に対する損傷 監視によリ保守的に効率良く評価でき、 電池の信頼性を確保できるメ リ ッ 卜がある。  Fig. 3 shows an example of applying and applying the damage monitoring means of the present invention to a sodium-sulfur battery power storage system composed of a plurality of modules. One or more blocks among the smallest blocks 30 constituting the module 40 are operated at a higher temperature than the others, and the batteries in the blocks 31 operated at the higher temperature are subjected to the damage cracks 1 1 It is equipped with a means for monitoring damage and constantly monitors for damage cracks. The advantage in this case is that the damage 11 of the battery operated at high temperature is greater than the damage 11 of the other blocks 30. There are benefits that can be secured.
第 4図は第 3図の応用, 変形例である。 モジュール 4 0を構成する最 小ブロック 3 0のうち 1 プロック以上を別系統で他より別系統で高速放 電又は及び高速充電で運転し、 この高速運転したブロック 3 2内の電池 に対して、 前記の接合部のナト リウム 5による損傷 1 1 を監視するもの である。 この場合の利点は高速運転した電池の損傷 1 1 力 他のブロッ ク 3 0の損傷 1 1 より大きいため、 少ない電池に対する損傷監視により、 保学的に効率良く評価でき、 電池の信頼性を確保できるメ リッ 卜がある t 第 5図は損傷き裂を効率良く検出し監視するための一実施例である。 複数のモジュール 4 0で構成されるナトリウム一硫黄電池システムにお いて、 モジュール 4 0を構成する最小ブロック 3 0のうち 1 ブロック以 上において、 第 5図に示すブロック 3 0内で他の電池 2 0よりもヒータ 2 3に近く高温に曝される電池 2 1 に対して、 前記の接合部のナ卜リウ ム 5による損傷 1 1 を監視する手段 2 5 , 2 6 を設置した場合を示す。 電池の間に乾燥砂 3 5 を設置した場合には第 6図に示すように中央部の 電池 2 1が他の電池 2 0より高温となるため、 中央部の電池 2 1 に接合 部のナトリウム 5による損傷 1 1 を監視する手段 2 5, 2 6 を設置した 場合を示す。 Fig. 4 shows an application or modification of Fig. 3. One or more blocks of the minimum block 30 constituting the module 40 are operated by high-speed discharge or high-speed charge by another system and another system by another system, and the battery in the high-speed block 32 is operated. For monitoring sodium 5 damage 1 1 at said joint It is. The advantage in this case is the damage of the battery operated at high speed 1 1 Force Damage of other blocks 30 1 Larger than that of 1 1 t Figure 5 there is a main ripple Bok as possible is an embodiment for monitoring efficiently detect damage crack. In a sodium-sulfur battery system composed of a plurality of modules 40, one or more of the minimum blocks 30 constituting the module 40 include one or more other batteries 2 in the block 30 shown in FIG. A case is shown in which, for a battery 21 exposed to a high temperature closer to the heater 23 than 0, means 25 and 26 for monitoring the damage 11 caused by the sodium 5 at the junction are installed. When dry sand 35 is placed between the batteries, the battery 21 at the center becomes hotter than the other batteries 20 as shown in Fig. 6, so the sodium 21 at the junction is attached to the battery 21 at the center. Figure 5 shows the case where means 25 and 26 for monitoring damage 1 caused by 5 are installed.
第 Ί図は複数のモジュール 4 0で構成されるナ卜リゥムー硫黄電池電 力貯蔵システムにおいて、 前記損傷監視手段により損傷が大きいモジュ ール 4 5に対して、 他のモジュール 4 0よりも低温で運転又は他のモジ ユール 4 0と別系統で低速運転が可能とした構造のナ卜リゥムー硫黄電 池であり、 損傷 1 1 の大きいモジュール 4 5内の電池の損傷の進行を抑 制して、 他のモジュール 4 0の損傷 1 1 と同一レベルに調整できる利点 がある。 電池信頼性も確保できるメ リ ッ トがある。  FIG. 5 is a schematic diagram of a storage battery power storage system composed of a plurality of modules 40, in which a module 45 having a large damage by the damage monitoring means has a lower temperature than other modules 40. This is a natural sulfur battery with a structure that enables low-speed operation in a separate system from operation or other modules 40, and suppresses the progress of battery damage in the module 45 with large damage 11 The advantage is that it can be adjusted to the same level as the damage 11 of other modules 40. There is an advantage that can ensure battery reliability.
第 8図は損傷の大きいモジュール 4 4 をシステム回路から手動又は及 び自動的に遮断すると共に回路を切り換え運転できる回路及び装置を有 する場合のナトリゥムー硫黄電池電力貯蔵システムの一例を示す。  FIG. 8 shows an example of a storage battery system for a sulfur battery having a circuit and a device capable of manually or manually disconnecting the highly damaged module 44 from the system circuit and switching and operating the circuit.
第 9図は第 8図の応用, 変形例で、 損傷の大きいモジュールの回路を 遮断し回路を切換える際、 予め予備モジュール 4 3 として組込んであつ たモジュール 4 3に対して行うことのできるナト リウム—硫黄電池の一 例を示す。 出力低下しないで切換えできるメ リッ 卜がある。 Fig. 9 is an application and a modification of Fig. 8. When the circuit of a module with large damage is cut off and the circuit is switched, it is installed as a spare module 43 in advance. Here is an example of a sodium-sulfur battery that can be performed on the module 43. There is a merit that can be switched without lowering the output.
第 1 0図は損傷の大きいモジュール 4 1 を取り除いて、 新しいモジュ ール 4 2 を導入する手段と、 除去モジュール 4 1 の保管スペースと、 予 備モジュール 4 2 を保管するスペースを有する場合のナ トリウム一硫黄 電池電力貯蔵システムの一実施例を示すものである。 新しいモジュール 4 2 を導人する際、 予め高温で準備し、 回路切換えと同時に高温運転で き、 運転効率が低下しないメ リ ッ トがある。  Fig. 10 shows the means for removing the damaged module 41 and introducing a new module 42, the storage space for the removal module 41, and the space for storing the spare module 42. 1 shows an embodiment of a thorium-sulfur battery power storage system. When leading a new module 42, there is an advantage that high temperature can be prepared in advance and high-temperature operation can be performed at the same time as circuit switching, so that operating efficiency does not decrease.
第 1 1 図は接合部のナト リ ウム 5による損傷 1 1 を監視する手段とし て、 き裂検出センサにひずみゲージを設置し、 運転中又は及び昇降温時 のひずみの変化△ ε より接合部のナトリウム 5による損傷 1 1 を検出し 監視 2 6するナトリウム一硫黄電池を示す。 ひずみ範囲△ εは第 1 2図 に示すようき裂長さ aの増加によって、 負極蓋 3の剛性小さくなるため, 変形が大となりひずみ範囲も大となる挙動を示す。 予めひずみ範囲 Δ ε , , △ ε 2とき裂長さ aの関係を実験等で求めて校正カーブを作成し ておき、 その校正カーブより、 ひずみゲージで出力された値からき裂を 決定することができる。 Fig. 11 shows a method for monitoring damage 11 caused by sodium 5 in the joint by installing a strain gauge on the crack detection sensor and calculating the change in strain during operation and during temperature rise and fall △ ε. Shown below is a sodium-sulfur battery that detects and monitors 26 damage caused by sodium 5 in the cell. As shown in Fig. 12, the strain range △ ε shows a behavior in which the rigidity of the negative electrode lid 3 decreases with an increase in the crack length a, so that the deformation becomes large and the strain range becomes large. Pre strain range delta epsilon,, △ a relationship epsilon 2 when crack length a previously created calibration curve obtained in experiments or the like, can be from the calibration curve to determine the crack from the value output by the strain gauge .
第 1 3図及び第 1 4図は損傷検出センサ 1 3 として変位計を使用した 場合の実施例を示す。 第 1 5図に示すように昇降温又は及び充放電時変 位 δ と温度 Τを熱電対 3 7で検出し、 第 1 5図 ( a ) に示すように温度 Tと変位 δの関係より剛性 Εを算出し、 第 1 5図 ( b ) のようなその剛 性の逆数 1 のコンプライアンスとき裂長さの校正カーブより損傷き 裂 1 1 の長さ aを判定するものである。 校正カーブは予め実験等で求め たカーブを作成しておくものである。  FIGS. 13 and 14 show an embodiment in which a displacement meter is used as the damage detection sensor 13. As shown in Fig. 15, the displacement δ and temperature Τ during temperature rise and fall or during charging and discharging are detected by a thermocouple 37, and as shown in Fig. 15 (a), the rigidity is determined by the relationship between temperature T and displacement δ. Ε is calculated, and the length a of the damaged crack 11 is determined from the calibration curve of the crack length and the reciprocal 1 of the rigidity as shown in Fig. 15 (b). The calibration curve is created in advance by a curve obtained by experiments.
第 1 6図から第 1 8図は損傷検出センサに電位差法を適用する実施例 を示す。 第 1 6図は電池の電位を測定する場合であり、 第 1 7図は外部 直流電源による電位差を計測する場合、 第 1 8図は交流電源を使用して 電位差を検出する場合の実施例を示す。 Figures 16 to 18 show examples of applying the potential difference method to damage detection sensors Is shown. Fig. 16 shows the case where the potential of the battery is measured, Fig. 17 shows the embodiment where the potential difference is measured by an external DC power supply, and Fig. 18 shows the embodiment where the potential difference is detected using an AC power supply. Show.
第 1 9図及び第 2 0図は損傷検出センサに A Eを使用する場合の実施 例を示す。 き裂検出は第 2 1 図に示すように電池昇降温又は及び充放電 時に発生する A E波の特性より判定する。 音波は第 2 1 図 ( a ) に示す ように、 硫黄又はナ卜リゥムが固化する 1 0 0 °C以下と液体の 1 0 0 °C 以上では特性が異なる。 本実施例では 1 0 0 °C以上の高温での特性を使 用している。 第 2 1 図 ( b ) にき裂長さ a とピーク波の数との関係を、 第 2 1 図( c )にピーク波レベルとき裂長さ aの関係を示す。 本発明では 双方のき裂長さ a を算出して監視装置 2 6に表示する方式を採用した。 第 2 2図は損傷き裂の検出にうず電流検出センサ 1 8 を使用した場合、 第 2 3図は損傷き裂の検出に超音波センサ 1 9 を使用した実施例を示す ( また第 2 4図は接合部のナトリウム 5による損傷 1 1 を監視する手段 として、 絶縁リング 2の α —アルミナの内部にナトリウム 5が侵入した 場合に電気短絡回路を設置し、 運転時のき裂長さ aの位置を 1 ポイン ト 以上検出可能としたナトリウム一硫黄電池である。 FIG. 19 and FIG. 20 show an embodiment in which AE is used for the damage detection sensor. Crack detection is determined from the characteristics of the AE wave generated during battery temperature rise or fall and charge / discharge as shown in Fig. 21. As shown in Fig. 21 (a), the characteristics of the sound wave are different between 100 ° C or lower where sulfur or sodium solidifies and 100 ° C or higher of liquid. In this embodiment, characteristics at a high temperature of 100 ° C. or more are used. Figure 21 (b) shows the relationship between the crack length a and the number of peak waves, and Figure 21 (c) shows the relationship between the peak wave level and the crack length a. In the present invention, a method was adopted in which both crack lengths a were calculated and displayed on the monitoring device 26. When the second Fig. 2 using eddy current sensor 1 8 for the detection of damage crack, the second 3 figure shows an example of using the ultrasonic sensor 1 9 for the detection of damage Crack (The second 4 The figure shows a method of monitoring damage 1 caused by sodium 5 at the joint 1 1 by installing an electrical short circuit when sodium 5 intrudes into the α-alumina of the insulating ring 2 and the crack length a during operation. Is a sodium-sulfur battery that can detect more than one point.
本発明によりナ卜 リゥムによる損傷を定量的に監視できることより接 合部の信頼性が確保できる効果がある。 産業上の利用可能性  According to the present invention, the damage due to the sodium can be quantitatively monitored, and thus there is an effect that the reliability of the joint can be secured. Industrial applicability
本発明によれば、 負極活物質のナ卜リゥムによる負極蓋と絶縁リ ング の α _アルミナの接合部における損傷を定量的に常時監視することが可 能となり接合部の信頼性が確保できる。 また、 損傷を制御するための電 池の運転法や、 電池の交換や、 回路切換えタイ ミ ングをより効率良く実 施できる。 ADVANTAGE OF THE INVENTION According to the present invention, it is possible to quantitatively constantly monitor the damage at the joint between the negative electrode cover and the α-alumina of the insulating ring due to the sodium of the negative electrode active material, thereby ensuring the reliability of the joint. In addition, battery operation methods to control damage, battery replacement, and circuit switching timing can be performed more efficiently. Can be applied.

Claims

請 求 の 範 囲 The scope of the claims
1 . 固体電解質袋管を介して、 負極活物質にナトリウムを、 正極活物質 に硫黄を用い、 固体電解質袋管の上部開口部に負極と正極を分離する絶 縁体リングが設置され、 該絶縁リ ングに負極蓋が接合された構造のナ卜 リゥムー硫黄電池において、 該絶縁リングと該負極蓋との接合部のナ卜 リゥムによる損傷を監視する手段を具備したことを特徴とするナ卜リウ ムー硫黄電池。  1. Using a solid electrolyte bag tube, sodium is used as the negative electrode active material and sulfur is used as the positive electrode active material. An insulator ring for separating the negative electrode and the positive electrode is installed at the upper opening of the solid electrolyte bag tube. A nutrium-sulfur battery having a structure in which a negative electrode lid is joined to a ring, comprising a means for monitoring damage caused by a nut in a joint between the insulating ring and the negative electrode lid. Mu sulfur battery.
2 . 複数のモジュールで構成されるナ卜リゥムー硫黄電池電力貯蔵シス テムの該モジュールを構成する最小のブロックのうち 1 プロック以上を 他より高温で運転し、 この高温で運転したブロック内の電池に対して、 2. One or more of the smallest blocks that make up the module in a natural sulfur battery power storage system composed of multiple modules are operated at a higher temperature than others, and the batteries in the blocks operated at this high temperature for,
1本以上の電池について前記接合部のナ 卜リゥムによる損傷を監視する 手段を具備したことを特徴とする特許請求の範囲第 1項に記載のナ卜リ ゥムー硫黄電池。 2. The sulfur battery as claimed in claim 1, further comprising means for monitoring damage to the joint of the at least one battery by the nursery.
3 . 複数のモジュールで構成されるナ卜 リゥムー硫黄電池電力貯蔵シス テムの該モジュールを構成する最小のブロックのうち 1 ブロック以上を 別系統で他より高速放電又は及び高速充電で運転し、 この高速運転した ブロック内の電池に対して、 1本以上の電池について前記接合部のナ卜 リウムによる損傷を監視する手段を具備したことを特徴とする特許請求 の範囲第 1項に記載のナ卜リゥムー硫黄電池。 ,  3. One or more of the smallest blocks that make up the module in a natural sulfur battery power storage system composed of multiple modules are operated by another system at a higher rate of discharge or charge than others, and 2. The battery according to claim 1, further comprising means for monitoring, for the batteries in the operated block, at least one battery for damage caused by sodium at the junction. Sulfur battery. ,
4 . 複数のモジュールで構成されるナトリゥムー硫黄電池電力貯蔵シス テムの該モジュールを構成する最小のブロックのうち 1 ブロック以上に おいて、 ブロック内で他の電池より高温に曝される電池に対して、 ブロ ック内で 1本以上の電池について前記接合部のナ卜リゥムによる損傷を 監視する手段を具備したことを特徴とする特許請求の範囲第 1項に記載 のナトリゥムー硫黄電池。 4. In one or more of the smallest blocks that make up a module in a storage battery system that is composed of multiple modules, a battery that is exposed to higher temperatures than other batteries in the block 2. The sulfur battery according to claim 1, further comprising means for monitoring at least one of the batteries in the block for damage caused by a stream of the joint.
5 . 特許請求の範囲第 2項あるいは第 3項に記載のナ卜 リゥム—硫黄電 池であって、 他より高温又は高速運転したプロックにおいて、 他の電池 より高温の 1本以上の電池について請求項 1 の接合部のナ卜リゥムによ る損傷を監視する手段を具備したことを特徴とするナ卜リゥムー硫黄電 池。 5. Claims for one or more of the sodium-sulfur batteries according to Claims 2 or 3, wherein the batteries are at a higher temperature or at a higher speed than other batteries. Item 2. A sulfur battery according to Item 1, which is provided with a means for monitoring damage by a joint at a joint.
6 . 複数のモジュールで構成されるナト リゥムー硫黄電池電力貯蔵シス テムにおいて、 ナ卜リゥムによる損傷を監視する手段を具備することに より検出された損傷のうち、 他のモジュールの損傷よりも大きな損傷を 有するモジュールに対して、 低温制御運転及び又は別系統にて低速放電 又は及び低速充電制御運転できることを特徴としたナ卜リゥムー硫黄電 池電力貯蔵システム。  6. In a natural sulfur battery power storage system composed of a plurality of modules, damage detected by providing a means for monitoring damage by a satellite is greater than damage to other modules. A low-temperature control operation and / or a low-speed discharge and / or low-speed charge control operation can be performed by a separate system for a module having a power storage system.
7 . 複数のモジュールで構成されるナ卜 リゥムー硫黄電池電力貯蔵シス テムにおいて、 ナトリウムによる損傷を監視する手段を具備することで、 検出した損慯のうち、 他のモジュールの損傷よりも大きな損傷を有する モジュールの回路を手動及び又は自動的に遮断し切換え運転できる回路 及び装置を具備したことを特徴とするナ卜リゥムー硫黄電池電力貯蔵シ ステム。  7. In a natural sulfur battery power storage system composed of multiple modules, by providing a means for monitoring damage caused by sodium, of the detected damage, damage larger than that of other modules can be prevented. A power storage system for a sulfur battery, comprising a circuit and a device capable of manually and / or automatically shutting down and switching operation of a module circuit.
8 . 複数のモジュールで構成されるナ卜リゥムー硫黄電池電力貯蔵シス テムにおいて、 ナ卜リゥムによる損傷を監視する手段を具備することで、 検出した損傷のうち、 他のモジュールの損傷よリも大きな損傷を有する モジュールに対し、 前記モジュールの回路を手動又は及び自動的に遮断 し切換える際、 当初より予備に設置したモジュールに対して回路を切換 える電池システムであり、 その予備モジュール電池を有することを特徴 とした特許請求の範囲第 7項に記載のナ卜リゥムー硫黄電池電力貯蔵シ ステム。 8. In a natural sulfur battery power storage system composed of a plurality of modules, by providing a means for monitoring damage by the nursery, the detected damage is larger than that of other modules. This is a battery system that switches the circuit of a damaged module manually or automatically and switches the module to a module that has been installed as a spare from the beginning, and has the spare module battery. 8. The power storage system according to claim 7, wherein the power storage system is a sulfur battery.
9 . 複数のモジュールで構成されるナ卜 リゥムー硫黄電池電力貯蔵シス テムにおいて、 ナトリゥムによる損傷を監視する手段を具備することで, 検出した損傷のうち、 他のモジュールの損傷よりも大きなモジュールに 対し、 前記手動又は及び自動的に切換える際、 大きな損傷を有するモジ ユールを取リ除く と共に新たなモジュールを導入する手段と、 除去電池 の保管スペース及び予備電池を保管するスペースを有することを特徴と した特許請求の範囲第 7項に記載のナ卜 リゥム—硫黄電池電力貯蔵シス テム。 9. In a natural-sulfur battery power storage system composed of a plurality of modules, by providing a means for monitoring damage caused by sodium, a module that is larger than the damage of other modules among the detected damage is provided. When the manual or automatic switching is performed, there is provided a means for removing a module having a large damage and introducing a new module, and a storage space for a removed battery and a space for storing a spare battery. 8. The power storage system for a sodium-sulfur battery according to claim 7.
1 〇 . 特許請求の範囲第 1項ないし第 9項のいずれかに記載のナ卜 リウ ムー硫黄電池において、 前記接合部のナ卜リゥムによる損傷を監視する 手段として、 負極蓋にひずみゲージを設置し、 運転中又は及び昇降温時 のひずみの変化よリ前記接合部のナ卜リゥムによる損傷を監視すること を特徴としたナト リウム—硫黄電池。  1. In the sodium-sulfur battery according to any one of claims 1 to 9, a strain gauge is provided on a negative electrode lid as a means for monitoring damage to the joint by the sodium. And a sodium-sulfur battery characterized by monitoring the damage of the joint by sodium during operation or a change in strain during temperature rise and fall.
1 1 . 特許請求の範囲第 1項ないし第 9項のいずれかに記載のナトリウ ムー硫黄電池において、 前記接合部のナト リゥムによる損傷を監視する 手段として、 負極蓋の内側と外側の変位を計測できる変位計を設置し、 運転中又は及び昇降温時の変位挙動の変化より前記接合部のナトリゥム による損傷を監視することを特徴としたナトリゥムー硫黄電池。  11. The sodium-sulfur battery according to any one of claims 1 to 9, wherein displacement of the inside and outside of the negative electrode lid is measured as a means for monitoring damage of the junction by sodium. A sodium-sulfur battery characterized by installing a displacement meter capable of monitoring the damage of the joint by sodium from a change in displacement behavior during operation or during temperature rise and fall.
1 2 . 特許請求の範囲第 1項ないし第 9項のいずれかに記載のナトリウ ムー硫黄電池において、 前記接合部のナ 卜 リゥムによる損傷を監視する 手段として、 負極蓋又は及び接合中間材の内側と外側の電位差を計測で きる端止を設置し、 運転中又は及び昇降温時の電位差の変化より前記接 合部のナトリウムによる損傷を監視することを特徴としたナト リウム一 硫黄電池。  12. The sodium-sulfur battery according to any one of claims 1 to 9, wherein the means for monitoring the joint for damage caused by the sodium is provided on the inside of the negative electrode lid or the joint intermediate material. A sodium-sulfur battery characterized by installing a stop capable of measuring a potential difference between the outside and the outside, and monitoring damage caused by sodium at the connection portion from a change in the potential difference during operation or during temperature rise and fall.
1 3 . 特許請求の範囲第 1項ないし第 9項のいずれかに記載のナ卜リウ ムー硫黄電池において、 前記接合部のナト リウムによる損傷を監視する 乎段として、 負極蓋又は及び絶縁リングにァコーステックェミッション ( A E ) センサを設置し、 運転中又は及び昇降温時の A E特性の変化よ リ前記接合部のナトリウムによる損傷を監視することを特徴としたナ卜 リゥムー硫黄電池。 13. The nutrient according to any one of claims 1 to 9. In the Mu sulfur battery, an acoustic emission (AE) sensor is installed on the negative electrode lid or insulating ring as a step to monitor the damage of the junction by sodium, and the AE characteristics during operation and during temperature rise and fall A sodium sulfur battery characterized in that the joint is monitored for damage caused by sodium at a change in the temperature.
1 4 . 特許請求の範囲第 1項ないし第 9項のいずれかに記載のナ卜 リウ ム一硫黄電池において、 前記接合部のナ卜リゥムによる損傷を監視する 手段として、 うず電流を検出するセンサを設置し、 運転時のうず電流の 変化より、 接合部のナトリウムによる損傷を監視することを特徴とした ナトリゥムー硫黄電池。  14. In the sodium-sulfur battery according to any one of claims 1 to 9, a sensor for detecting eddy current is provided as a means for monitoring damage by the sodium at the junction. The battery is characterized by monitoring the damage caused by sodium at the junction from changes in eddy current during operation.
1 5 . 特許請求の範囲第 1項ないし第 9項のいずれかに記載のナト リウ ム—硫黄電池において、 前記接合部のナトリウムによる損傷を監視する 手段として、 負極蓋に超音波探傷センサを設置し、 運転時の損傷を監視 することを特徴としたナト リゥム—硫黄電池。  15. In the sodium-sulfur battery according to any one of claims 1 to 9, an ultrasonic flaw detection sensor is provided on the negative electrode cover as a means for monitoring damage to the junction by sodium. A sodium-sulfur battery characterized by monitoring damage during operation.
1 6 . 特許請求の範囲第 1項ないし第 9項のいずれかに記載のナ卜 リウ ムー硫黄電池において、 前記接合部のナ卜リウムによる損傷を監視する 手段として、 絶縁材リングの内部にナトリウムによる短絡感知回路を設 置し、 1個所以上運転時の損傷き裂位置を監視することが可能であるこ とを特徴としたナトリウム—硫黄電池。  16. The sodium-sulfur battery according to any one of claims 1 to 9, wherein sodium is added to the inside of the insulating ring as a means for monitoring the joint for damage caused by sodium. A sodium-sulfur battery characterized by being able to monitor the location of damage cracks during operation at one or more locations by installing a short-circuit detection circuit.
1 7 . 特許請求の範囲第 4項あるいは第 5項に記載のナトリウム一硫黄 電池において、 前記接合部の温度を計測するため負極蓋に熱電対を設置 したことを特徴とするナト リゥムー硫黄電池。  17. The sodium-sulfur battery according to claim 4 or 5, wherein a thermocouple is provided on a negative electrode lid for measuring a temperature of the junction.
PCT/JP1997/000839 1997-03-17 1997-03-17 Sodium-sulfur cell WO1998042039A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000839 WO1998042039A1 (en) 1997-03-17 1997-03-17 Sodium-sulfur cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000839 WO1998042039A1 (en) 1997-03-17 1997-03-17 Sodium-sulfur cell

Publications (1)

Publication Number Publication Date
WO1998042039A1 true WO1998042039A1 (en) 1998-09-24

Family

ID=14180222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000839 WO1998042039A1 (en) 1997-03-17 1997-03-17 Sodium-sulfur cell

Country Status (1)

Country Link
WO (1) WO1998042039A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634570A (en) * 1986-06-25 1988-01-09 Hitachi Ltd Diagnosis of abnormality for sodium-sulfur battery
JPS6343971B2 (en) * 1979-08-03 1988-09-02 Yuasa Battery Co Ltd

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343971B2 (en) * 1979-08-03 1988-09-02 Yuasa Battery Co Ltd
JPS634570A (en) * 1986-06-25 1988-01-09 Hitachi Ltd Diagnosis of abnormality for sodium-sulfur battery

Similar Documents

Publication Publication Date Title
CN102273004B (en) Storage battery recycling apparatus
CN101689684B (en) In-cell shortcircuit detection device and method and cell pack
JP5148579B2 (en) Secondary battery abnormality prediction system
JP5347186B2 (en) Temperature detecting method and apparatus for power storage device, and temperature detecting device for power storage device in hybrid construction machine
CN104396084A (en) Secondary-battery system and secondary-battery-failure-detection system
JP2013543237A (en) Battery phase meter that detects the internal temperature of a lithium-ion rechargeable cell during charging and discharging
CN104485490A (en) On-line flexible package polymer lithium battery pack monitoring system and monitoring method thereof
JP2009032506A (en) Method and apparatus for detecting internal short circuit in non-aqueous electrolyte secondary battery
CN102150316A (en) Lead storage battery operating method and electrical storage device equipped with lead storage battery operated by this operating method
JP6050814B2 (en) Insulated container for assembled battery, controller for assembled battery, and failure detection method for assembled battery
JP2018516427A (en) Thermal characterization of electrochemical devices
CN114740390A (en) A UPS power supply health state monitoring system
CN108445413A (en) Lead-acid accumulator open failure pilot system and pre-judging method
CN104538694B (en) Lithium battery pack monitoring system and lithium battery pack monitoring method based on electrical impedance imaging technology
EP3564981B1 (en) Relay device
WO1998042039A1 (en) Sodium-sulfur cell
KR20160040326A (en) Method for operating intrinsically safe battery cells
JPH0974610A (en) Battery overcharge prevention device for electric vehicles
CN102156155A (en) Early diagnosis method for sodium-sulfur battery failure and protection device used by same
CN116500462B (en) A method and device for detecting battery cell aging
US20100159295A1 (en) On-line replacement of dcfc tubular elements
JP4656677B2 (en) Deteriorated battery detector
KR100520573B1 (en) Structure for mounting fuel cell stack and method of controlling shape memory alloy for the same
CN107069123A (en) Rapid detection system and detection method for damaged batteries in secondary lithium-ion battery packs
CN109103964B (en) Lithium battery charging temperature protection device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase