WO1998012698A1 - Magnetic disk medium, magnetic head, magnetic disk apparatus using them, and production method of the disk apparatus - Google Patents
Magnetic disk medium, magnetic head, magnetic disk apparatus using them, and production method of the disk apparatus Download PDFInfo
- Publication number
- WO1998012698A1 WO1998012698A1 PCT/JP1996/002720 JP9602720W WO9812698A1 WO 1998012698 A1 WO1998012698 A1 WO 1998012698A1 JP 9602720 W JP9602720 W JP 9602720W WO 9812698 A1 WO9812698 A1 WO 9812698A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic disk
- disk medium
- magnetic
- substrate
- island
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 243
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000000758 substrate Substances 0.000 claims abstract description 77
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 73
- 238000000034 method Methods 0.000 claims abstract description 35
- 238000004544 sputter deposition Methods 0.000 claims abstract description 14
- 239000011651 chromium Substances 0.000 claims description 66
- 229910045601 alloy Inorganic materials 0.000 claims description 61
- 239000000956 alloy Substances 0.000 claims description 61
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 230000001681 protective effect Effects 0.000 claims description 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 22
- 229910052804 chromium Inorganic materials 0.000 claims description 21
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 18
- 229910052720 vanadium Inorganic materials 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 13
- 238000002844 melting Methods 0.000 claims description 13
- 229910052750 molybdenum Inorganic materials 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 229910052721 tungsten Inorganic materials 0.000 claims description 12
- 230000008018 melting Effects 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052697 platinum Inorganic materials 0.000 claims description 8
- 229910052763 palladium Inorganic materials 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 5
- -1 covanolate Chemical compound 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 239000000428 dust Substances 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 12
- 229910017052 cobalt Inorganic materials 0.000 claims 12
- 239000010941 cobalt Substances 0.000 claims 12
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims 10
- 229910052742 iron Inorganic materials 0.000 claims 8
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims 7
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 7
- 239000011733 molybdenum Substances 0.000 claims 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims 7
- 239000010937 tungsten Substances 0.000 claims 7
- 125000004429 atom Chemical group 0.000 claims 2
- 239000000696 magnetic material Substances 0.000 claims 2
- 239000011572 manganese Substances 0.000 claims 2
- 150000002736 metal compounds Chemical class 0.000 claims 2
- 229910001020 Au alloy Inorganic materials 0.000 claims 1
- 239000003353 gold alloy Substances 0.000 claims 1
- 150000002344 gold compounds Chemical class 0.000 claims 1
- 229910052740 iodine Inorganic materials 0.000 claims 1
- GFNNUPBGJQIMMA-UHFFFAOYSA-N nickel radium Chemical compound [Ni].[Ra] GFNNUPBGJQIMMA-UHFFFAOYSA-N 0.000 claims 1
- 239000003870 refractory metal Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 10
- 229910001004 magnetic alloy Inorganic materials 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 20
- 238000010586 diagram Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- 238000009792 diffusion process Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 239000011521 glass Substances 0.000 description 9
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 9
- 238000000089 atomic force micrograph Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 239000000470 constituent Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- 229910001096 P alloy Inorganic materials 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229910000599 Cr alloy Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- QQHSIRTYSFLSRM-UHFFFAOYSA-N alumanylidynechromium Chemical compound [Al].[Cr] QQHSIRTYSFLSRM-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 229910001260 Pt alloy Inorganic materials 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000010297 mechanical methods and process Methods 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 241000380131 Ammophila arenaria Species 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910001362 Ta alloys Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910000905 alloy phase Inorganic materials 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000010702 perfluoropolyether Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/187—Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
- G11B5/1871—Shaping or contouring of the transducing or guiding surface
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/48—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
- G11B5/58—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B5/60—Fluid-dynamic spacing of heads from record-carriers
- G11B5/6005—Specially adapted for spacing from a rotating disc using a fluid cushion
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/74—Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
- G11B5/82—Disk carriers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/8404—Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/8408—Processes or apparatus specially adapted for manufacturing record carriers protecting the magnetic layer
Definitions
- Magnetic disk medium, magnetic head, magnetic disk device using the same, and method of manufacturing the same Magnetic disk medium, magnetic head, magnetic disk device using the same, and method of manufacturing the same
- the present invention relates to a magnetic recording medium such as a magnetic disk medium, a magnetic head, and a magnetic disk device using the same, and more particularly to a magnetic disk device having good sliding reliability and a magnetic disk for realizing the same.
- Disc media and magnetic heads are particularly to a magnetic recording medium such as a magnetic disk medium, a magnetic head, and a magnetic disk device using the same, and more particularly to a magnetic disk device having good sliding reliability and a magnetic disk for realizing the same.
- the present invention relates to a method for manufacturing a magnetic disk medium, a magnetic head, and a magnetic storage device using the same.
- Japanese Patent Application Laid-Open No. 7-192260 provides a magnetic disk medium having good CSS characteristics by a method of forming a continuous gold urine and film on a glass substrate, fusing the film, and then cooling it to transform the continuous film into a concavo-convex formed product. It is described. According to this method, heating for a long time (3 minutes) is required after forming the metal film, and mass productivity is not clear.
- the low melting point metal reacts with or diffuses into the film formed on or in the film.
- the substrate diffuses through the film and becomes magnetic. It is reported to reach the surface of the disk media.
- the low-melting point metal such as No. 1 precipitates on the surface of the magnetic disk medium, it is deposited as an impurity on the surface of the magnetic head, and there is a problem that the sliding resistance is deteriorated.
- low melting point metal such as Ga and In is in a molten state when forming a projection, and as it is, the adhesive strength and strength with a magnetic disk medium are small. For this reason, it is necessary to form a medium film on the substrate, make the low-melting-point metal react with the medium-thinning film, and finally use a complicated fusing to prevent the residual low-melting-point metal from remaining in the molten state. .
- the present invention has been made in view of the above-mentioned problems of the related art, and is intended to form fine protrusions on the surface of a magnetic disk medium. It is an object of the present invention to provide a magnetic disk medium capable of maintaining its shape after formation.
- fine projections are formed on the surface facing the magnetic disk medium.
- the thermal stability of the projections is improved, and after the projections are formed, the magnetic head can maintain its shape stably.
- the purpose is to provide.
- magnetic disk media and magnetic heads suitable for mass production that can easily form magnetic disk media and magnetic heads with a fine texture formed on the surface by shortening the time of one processing
- the goal is to realize the manufacturing method of
- a projection is formed by sputtering using a material mainly containing an intermetallic compound as a target.
- This method does not substantially require post-heating to form protrusions, and is also suitable for forming protrusions on a magnetic recording film.
- the force of attracting constituent atoms that form the projection must be greater than the force of diffusing to the substrate surface to flatten it. Furthermore, after the projections are formed, the constituent atoms are substantially It must not diffuse and do not substantially react with adjacent layers. From the above, it is preferable that the substance that forms the protrusion is not a single element but a substance in which two or more types of element atoms are bonded to each other.
- the substance that forms the protrusion is preferably an intermetallic compound.
- an intermetallic compound is a substance that has a certain dissociation ratio and is composed of two or more types of alkali metals and metal elements other than the above-mentioned metals, and generally has a crystal structure different from that of the constituent elements alone. Have.
- the use of a metal intermetallic compound is desirable from the viewpoint of suppressing the diffusion of constituent atoms since heating is not required after the formation of the projections.
- FIG. 1 the process of forming the projections will be described with reference to FIGS. 1, 2, 3, and 4.
- FIG. 1 the process of forming the projections will be described with reference to FIGS. 1, 2, 3, and 4.
- Figure 1 is a part of the ⁇ - ⁇ equilibrium diagram consisting of A and B atoms.
- the vertical axis represents temperature
- the horizontal axis represents the concentration of B atoms in the AB system.
- the crystal phase of ⁇ atoms and the product phase 0 of the intermetallic compound composed of atoms and B atoms are 0.
- the fact that each exists at a ratio of b to a indicates that it is energetically stable.
- FIG. Figs. 2, 3 and 4 schematically show the process of forming the protrusions.
- the array or number of children is not necessarily the same as the actual example.
- a atoms 21 and B atoms 22 are formed.
- the particles reach the substrate 101 and combine with each other to form a crystal nucleus 20 of the intermetallic compound ⁇ . Since A atoms 21 and B atoms 22 are continuously supplied on the substrate 101, the A atoms 21 and B atoms 22 form the crystal nuclei 20 of the intermetallic compound ⁇ ⁇ on the substrate 101. Continue to reach places that aren't in one place with the same probability.
- the formation of the crystal nucleus 20 of the metal intermetallic compound ⁇ ⁇ ⁇ ⁇ is more energetically stable than the free atom. Therefore, the crystal nucleus 20 of the intermetallic compound ⁇ continues to grow by the driving force of diffusion until it reaches the composition in the equilibrium state (hook, abundance ratio of ⁇ phase-h: a).
- the product nuclei tend to be close to hemispherical and large in size on the substrate because they are intended to be stabilized by minimizing the surface area and minimizing the interfacial energy.
- the reason why the size of a single element increases is obvious from the fact that, for a similar shape, the surface area increases in proportion to the square of the radius, and the number of atoms increases in proportion to the cube of 3
- the process described above is time dependent.
- the frequency of occurrence of the crystal nucleus 20 of the metal intermetallic compound is affected by the material of the base formed on the surface of a certain plate 101. By appropriately selecting this, a desired projection density can be obtained.
- the material of the base is good in composition and temperature Any material may be used as long as it is stipulated in, but for magnetic disk media, alloys of glass, nickel (hereinafter abbreviated as Ni) and phosphorus (hereinafter abbreviated as P), Co alloys, carbon, etc. are preferably used. .
- the metabolic energy also increases, which has the effect of locally promoting the growth of crystal nuclei 20 of the metal intermetallic compound. Therefore, when processing marks are formed on the surface of the substrate 101, crystal nuclei 20 of the intermetallic compound can be arranged along the processing marks.
- the projections of the crystal nuclei 20 of the metal intermetallic compound are formed in a predetermined direction on the opposing surfaces of the magnetic disk medium and the magnetic head, and the arrangement of both projections is By arranging the magnetic disk medium surface so as to intersect each other when viewed from the vertical direction, the contact area is reduced, and good sliding reliability can be realized.
- the target for forming the projections by the crystal nucleus 20 of the intermetallic compound used in the present invention may be any system as long as it can generate an intermetallic compound as described above.
- A1 is selected as an atom because it diffuses easily even at low temperatures, improving the thermal stability of the intermetallic compound, and the reaction between the intermetallic compound and the films formed above and below the protrusions of this intermetallic compound
- the high melting point metal element (Co, Cr, Cu, I1 ⁇ 2) with a melting point of 100 ° C. or more as a B atom can be formed because the density can be reduced and fine intermetallic compound protrusions can be formed at a high density.
- Mn, Mo, Ni are examples of the high melting point metal element
- Pd , Pt, V, W , etc. and c also be desirable to select a configured intermetallic compound from a method for producing a target, the ⁇ 1 as a atoms from 3 ⁇ 4 locations prices, Select an element selected from Cr, Co, Mo, V, and W as the B atom. It is preferred.
- FIG. 1 is a part of a state diagram illustrating the process of forming protrusions.
- Figures 2 to 4 The figure is a diagram for explaining the process of forming protrusions.
- FIG. 5 is a sectional view of a magnetic disk medium according to an embodiment of the present invention.
- FIG. 6 is a part of an A1-Cr phase diagram illustrating a process of forming protrusions.
- FIG. 7 is a diagram showing an AFM image of the surface of the magnetic disk medium that is Embodiment 1 of the present invention.
- FIG. 8 is a diagram showing an AFM image of the surface of a magnetic disk medium using an A1-0% Cr target.
- FIG. 9 is a diagram showing an AFM image of the surface of a magnetic disk medium using an A1-5% Cr target.
- FIG. 10 is a diagram showing an AFM image of the surface of a magnetic disk medium using an A1-12.5 Cr target.
- FIG. 11 is a sectional view of a magnetic disk medium according to a second embodiment of the present invention.
- FIG. 12 is a sectional view of a magnetic disk medium according to a third embodiment of the present invention.
- FIG. 13 is a schematic view of a magnetic disk drive according to the present invention.
- FIG. 14 is a schematic diagram of a magnetic head applied to a magnetic disk drive according to Embodiment 4 of the present invention.
- FIG. 15 is a schematic diagram of a magnetic disk medium applied to a magnetic disk device according to Embodiment 4 of the present invention.
- FIG. 16 is a diagram showing the results of analyzing the respective ratios of A 1 and Cr deposited on the substrate by sputtering an Al—Cr target.
- FIG. 17 is a diagram showing the relationship between the process density and the protrusion density and the process conditions.
- FIG. 18 is a diagram showing the effect of the protrusion on the magnetic characteristics and sliding reliability.
- FIG. 19 is a diagram comparing the magnetic properties of a configuration in which the protrusion is formed below the magnetic film.
- FIG. 20 is a diagram showing the sliding reliability of the magnetic disk device according to the fourth embodiment of the present invention.
- FIG. 21 is a diagram showing the reflectance when a projection is formed on a silicon wafer by the method of the present invention.
- FIG. 22 is a view for explaining the projection height in the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
- FIG. 5 is a sectional view of a magnetic disk medium according to the first embodiment of the present invention.
- ⁇ 1 alloy substrate with an outer diameter of 95 strokes, an inner diameter of 25 mm, a thickness of 0.8, a disc with a concentric hole at the center of the hidden surface, and a center line average roughness Ra of 0.3 nra to 5 nm. 1
- the A1 alloy substrate 101 on which the Ni and P alloys are plated is heated by a lamp in a vacuum for the purpose of degassing and improving magnetic recording characteristics. At this time, the applied power is controlled so that the alloy layer 103 formed later has a temperature such that the alloy layer 103 has predetermined magnetic characteristics.
- an alloy layer 102 of chromium (hereinafter, referred to as Cr) and titanium (hereinafter, referred to as Ti) is formed on the substrate 101, and furthermore, covanolate (hereinafter, referred to as Co), Cr, and platinum (hereinafter, referred to as Pt). ) Are sequentially formed.
- the alloy layer 103 has a function of magnetic recording.
- the Cr and Ti alloy layer 102 has a good adhesion between the Co-Cr Pt alloy layer 103 on the substrate 101 and the crystal grain size and crystal orientation of the Co-Cr- alloy layer 103. Has the effect of forming a good controllability.
- the material used for the alloy layer 102 and the alloy layer 103 may be any other material as long as it has the functions and effects described above.
- the material of the substrate 101 is also non-magnetic and may be any material as long as there is no problem in flatness and strength.
- the substrate 101 is processed for a predetermined time by a processing device provided with a helm introducing mechanism, and the substrate is brought to a predetermined temperature suitable for forming A1 and the intermetallic compound projections 1 () 4. Cooling. This is unnecessary if the substrate temperature has dropped to a predetermined temperature due to radiation, conduction, or the like while the substrate 101 is being transported from the processing chamber to the processing chamber. Any gas may be used as long as it has a cooling effect. On the other hand, if the temperature of the substrate 101 is too low, the substrate 101 is heated again to a predetermined temperature. Subsequently, a projection ⁇ 04 of an intermetallic compound of ⁇ 1 and Cr is formed on the alloy layer 103 by sputtering a target made of ⁇ 1 and Cr.
- a protective film layer 105 for protecting the alloy layer 103 and the protrusions 104 from mechanical or chemical contact is subsequently formed.
- the device that formed the magnetic disk of this embodiment was an MDP250 machine manufactured by Ilinterbach, Inc. W
- the in-line sputtering system has a substrate heating chamber, a substrate cooling chamber, and a substrate processing chamber capable of performing a plurality of magnetron buttering operations.
- any apparatus can be used as long as the substrate temperature control and sputtering can be performed.
- the 1 0 2, 1 0 3, 1 0 4, 1 0 5 during the processes for forming the respective layers of be held under pressure sense 2. 0 X 10- 5 Pa or less of such antioxidant desirable.
- FIG. 2, FIG. 3, FIG. 4, and FIG. Figure 6 is a part of the Al-Cr equilibrium phase diagram with an intermetallic compound phase.
- FIG. 2, FIG. 3, and FIG. 4 are views for explaining the process of forming protrusions.
- the vertical axis indicates temperature
- the horizontal axis indicates the concentration of Cr atoms in the ⁇ 1-Cr system.
- the concentration of Cr atoms is 10 atomic% and the temperature is 500 K
- the solid solution phase ⁇ of A] and the intermetallic compound phase ⁇ are present in a ratio of about 1: 4. Indicates that it is energetically stable.
- phase and phase 0 will be formed in a ratio of 1: 4. In the state where the concentration of Cr atoms is 12.5 atomic% and the temperature is 500 K, only phase can be obtained.
- a projection made of an intermetallic compound of A1 and Cr is formed on the alloy layer 103 by sputtering a target made of A1-10 at% Cr.
- the target is obtained by uniformly mixing and sintering fine powders of ⁇ ] and Cr, and the intermetallic compound mainly composed of Al 7 Cr and Al. Cr are uniformly mixed. .
- the target has a Cr content of 10 atomic%, so that the atoms of A1 and Cr are sputtered and reach the alloy layer 103, and diffuse on the surface of the alloy layer 103.
- the actual sputtered target To check if atoms have reached the substrate at a given ratio
- Constant analysis was performed by the ICPS (Inductively-Coupled Plasma Spectroscopy) method. The results are shown in FIG. The analysis was performed at a Cr concentration of 5% and] 0%. It can be seen that atoms having substantially the same quantitative ratio as the target have reached the alloy layer 103.
- the target material is not limited to the above-mentioned 10 atomic% Cr and may be any type of material as long as it can form an intermetallic compound phase in an equilibrium state.
- the process by which the intermetallic compound protrusions are formed on the alloy layer 103 is the same as in FIGS. 2, 3, and 4.
- each element reach the alloy layer 103.
- the alloy layer] 0 3 1- each atom of Al and Cr is bonded to form a crystal nucleus 20 of a metal intermetallic compound Al 7 Cr.
- the ⁇ 1 and Cr atoms supplied continuously continue to reach the same probability to the place where the crystal nucleus 20 of the gold intercalation compound on the mixed debris 103 is not located.
- ⁇ of ⁇ things because better formed is energetically more stable than is the atomic free wipe, sintered products nucleus 2 0 of intermetallic compound A1 7 0 driving force acts diffusion up to the composition of the equilibrium Will continue to grow.
- the diffusion coefficient at the surface of the alloy layer 103 is so large that the metal alloy can be formed even at a low temperature of 600 K or less in the case of the first material.
- the alloy ⁇ 103 may contain atoms forming an intermetallic compound with each of Al and Cr, but the atoms of the alloy layer 103 may be included before the target is shattered. Has already formed a stable crystal structure, does not actually react at low temperatures below 600 ⁇ , and the reaction on the surface of the alloy layer 103 is actually limited to ⁇ ⁇ ] and Cr atoms. Is done.
- the product nucleus 20 of the residual compound is intended to be stabilized by minimizing the surface area and minimizing the interfacial energy. is there. The reason that one dimension becomes larger is that, if the shape is similar, the surface area is proportional to the square of the radius, and the fundamental number is proportional to the cube of 3. It is clear from the increase.
- the excess A1 atoms are so small that they cannot form a crystal lattice, they are insignificant, if any, even if they diffuse, and in any case, are substantially equivalent to the adjacent alloy fe; 103 or the overcoat layer 105. Will not react. However, atoms of alkali metal, alkaline earth metal, and halogen element have high reactivity and cannot be used as a projection material, and are not used in the present invention.
- the process described above is time dependent. Since the diffusion process takes a certain amount of time, it is limited within a limited time, and generally does not reach an equilibrium composition.
- FIG. 7 shows the result of observing the surface shape of the magnetic disk medium of the present embodiment formed as described above using an atomic force microscope (AFM).
- the projection height is defined as the mode value in the histogram of the height measured by the AFM as the projection height 0, and the distance from the surface at the projection height 0 as the projection height.
- the density of the projections was 2.5 x 10 / s and the height of the projections was 30 nm on average. The density of the projections and the height of the projections were as shown in Fig. 17.
- the density of the projections is 1.0 X 10 ' ⁇ / or more, and the average thickness of the projections is 10 nm or more.
- the higher the substrate temperature the easier the diffusion of atoms.
- the height of the protrusion increases, and the target is injected to increase the protrusion density. It is necessary to increase the power or the sputtering time, but if it is excessive, the diameter of the projections themselves increases, the projections coalesce to form huge projections, the number of projections decreases, and finally the flatness is almost flat Surface.
- the protrusions and flat portions were analyzed by Auger electron spectroscopy (AES) in the depth direction of the magnetic disk medium of Example 1 without the protective film layer 105 being formed. It was confirmed that ⁇ 1 was distributed on the outermost surface except for the protruding portions, and the structure was such that the intermetallic compounds of A1 and Cr existed on the protruding portions.
- AES analysis of the magnetic disk medium of Example 1 with the protective film layer 105 formed up to the protective film layer 105 showed that the 1-atom alloy layer 103 and the protective film were analyzed. It was confirmed that the diffusion into layer 105 was substantially negligible.
- a protrusion of an intermetallic compound was formed by an Al-Cr target having a Cr concentration of 10%, and the protective film layer 105 was formed.
- the magnetic disk medium of Example 1 (projection density: 2.5 ⁇ 10
- the magnetic properties of 12 protrusions / m 2 and an average protrusion height of 30 ⁇ ) were examined.
- the sliding reliability of a magnetic disk medium having a 3 nm lubricating film composed mainly of perfluoropolyether was examined.
- the coercive force He and the squareness ratio S * were used as parameters for the magnetic properties, and the initial adhesive force, initial tangential force, and the adhesive force after 10,000 times of CSS were used as the sliding reliability parameters.
- VS Vehicle Sample Magnetometer
- the sliding test used a magnetic head known to those skilled in the art.
- a magnetic disk medium prepared under the same conditions without forming the protrusions 104 was prepared, and the protrusions of the intermetallic compound were formed using the ⁇ ] -Cr target having a Cr concentration of 10%.
- the results for the formed magnetic disk media of Example 1 and Comparative Example are shown in FIG. As a result, it can be seen that the magnetic disk medium having the protrusion of Mi Example 1 has the same magnetic properties as the comparative example, and the dynamic reliability is better than the comparative example.
- the magnetic head 3 is provided in the magnetic disk device 5 so as to face the magnetic disk medium 1.
- the spindle motor 2 rotates the magnetic disk medium 1, and the magnetic head 3 is positioned at a predetermined position on the magnetic disk medium 1 by the head drive unit 4.
- the recording / reproduction is performed by the magnetic head 3 floating above the magnetic disk medium 1 when the magnetic disk medium 1 rotates.
- Fine polishing marks called texturing are formed on the surface of the A1 alloy substrate 101 substantially in the running direction of the magnetic head, and the alloy layers 102 and 103 are formed on the substrate 101. Then, Hc (L) / Hc (R) can be increased. Usually magnetic recording it is necessary to increase the order circumferential coercive force Hc in the running direction, i.e. the magnetic disk medium head the magnetic (L) is required H c (L) Hc (R ).
- the projections 1 0 4 of the present embodiment may be formed on the alloy layer 1 0 3, without the value of Ri by the fact that the formation of the projections 1 0 4 Hc (L) / H c (R) is reduced, A magnetic disk medium having Hc (L) / Hc (R) of 1.1 or more can be realized.
- the value of Hc (L) / Hc (R) is preferably set to 1.1 or more and 1.5 or less.
- Hc (L) / H value of c (R) 1. 5 exceeds the undesirable reduction in output at high linear recording density when ® corner of head to magnetic has ⁇ becomes remarkable.
- Example 1 the surface shapes of the magnetic disk media manufactured by changing the Cr concentration of the Ato Cr target were compared. There are four types of samples with different concentrations of Cr in the target Cr target, 0, 5, 12.5, and 20 percent, respectively. In the same manner as in the above test, the surface was observed by AFM without forming the protective film layer 105, and the composition of the protruding portion and the flat portion was analyzed by Auger electron spectroscopy (AES).
- AES Auger electron spectroscopy
- Fig. 9 shows an AFM image of the surface when using a target with a concentration of 5 atomic%.
- the thickness of the A1 rich layer in FIG. 4 is large. ⁇ The valleys are filled in and the protrusions of the intermetallic compound become unclear. I have.
- A1 was detected on the entire surface. For this reason, the 3.5 nm ⁇ 1 rich layer was scraped off with a submerged etch, and surface analysis was performed again by AES.As a result, the composition ratio of the protruding portion was approximately 11% Cr, and the intermetallic compound was the main component.
- FIG. 10 shows an AFM image of the surface when the target is riverbed. ⁇ ( ⁇ -(( ⁇ ) atoms are also substantially consumed to form intermetallic compounds, and no surplus is left in the flat part. This is confirmed by the AES analysis. When a target with a Cr concentration of 20 atomic% was crucible, From the AFM image and AES analysis of the surface, it was confirmed that virtually all of the ⁇ 1 and Cr atoms were consumed to form the metal intermetallic compound, and no surplus atoms remained in the flat part.
- the state where Al and Cr atoms are sputtered on the flat part is fixed as a non-equilibrium state.
- the intended purpose can be achieved by using a target in which the concentration of the added atom (Cr in this embodiment) is 0.4 to 1 times the concentration of the atoms constituting the intermetallic compound. .
- the metal intermetallic compound Al 4 Cr can also form protrusions, so that the Cr concentration is preferably 5 atomic% or more and 20 atomic% or less.
- Co is 7-29 atomic%
- Mo and V force are S3-25 atomic%
- W is 3-20%. It is suitable.
- FIG. 11 is a sectional view of a magnetic disk medium according to a second embodiment of the present invention.
- a Cr-Ti alloy layer 102 is formed on the A1 alloy substrate 101 on which the Ni and P alloys are plated, and a Co-Cr-Pt alloy layer 103 is sequentially formed.
- a metal atom compound is protruded in the same manner as in Example 1 above, using a target of 10 atomic% and 0 target. Was formed.
- FIG. 12 is a sectional view of a magnetic disk medium according to a third embodiment of the present invention.
- a projection 104 of an intermetallic compound was formed on a glass substrate 101 under the same conditions as in Example 1. Then, an alloy film 102, 103 and a protective film 105 were formed thereon. Observation of the surface of the magnetic disk medium of Example 3 by observation revealed that the protrusions 104 of the intermetallic compound were formed in the same manner as in Example 1.
- Example 1 Example 3, alloy films 102, 103, and protective film 105 were formed under the same conditions, and the magnetic characteristics were compared without forming protrusions. Therefore, the values of He and were measured.
- the results are shown in FIG. In Example 3 in which the protrusion 104 was below the alloy dust ⁇ 03, no protrusion was formed, and it can be seen that the magnetic properties were lower than in the example. This is because the alloy layer 03 contributing to magnetic recording is waving.
- the value of Hc (L) / Hc (R) could be set to 0.95 or more and 1.05 or less, and a decrease in output at high linear recording density could be prevented.
- the magnetic disk medium can be made thinner than the metal substrate.
- a ceramic substrate such as glass for the magnetic disk substrate.
- magnetic value of Hc (L) / H c ( R) is greater than 1.0 5 A disk medium cannot be formed.
- the magnetic disk of Example 3 instead of forming texturing on the substrate surface, the magnetic disk of Example 3 in which the intermetallic compound protrusion 104 was formed in contact with the alloy film 103 on the side of the alloy film 103, that is, on the substrate 10.1. It is preferred that the medium is flowing.
- the direction of magnetic anisotropy can be made uniform even in a magnetic disk medium having a glass substrate, so that the value of H C (L) / H (:( R) is 0.95. If Hc (L) / Hc (R) is less than 0.95, the coercive force in the row direction of the head decreases, and at a high linear recording density of lOOkBPI or more,
- the projections 104 are not preferable because the projections 104 can be formed on the glass substrate 101 in a single contact as in the third embodiment, but particularly the fine projections 104 are formed.
- FIG. 14 is a schematic diagram of the magnetic head 3 according to the fourth embodiment.
- the magnetic head 3 according to the present embodiment includes a slider 31 and an element 32 for performing recording / reproduction on the magnetic disk medium 1. After striations were formed on the surface 31 1 of the slider 31 facing the magnetic disk medium 1 by a mechanical method, the element 32 was formed on the slider 31. Next, a magnetic head 3 having an intermetallic compound protrusion 30 was formed on the opposing surface 311 of the slider in the same manner as in Example 1. Further, a carbon target was sputtered in an argon-20% hydrogen atmosphere to form a protective film on the surface of the magnetic head 3 facing the slider 31 and the element 32, thereby obtaining the magnetic head 3.
- the target used when the protrusion was formed is 1-7 atomic%.
- the material and process of the protective film are not limited to those described above.
- the target used for forming the projections may be of any type as long as it can generate a phase of a metal intermetallic compound in an equilibrium state in an amount of 40% or less.
- FIG. 15 shows a schematic diagram of the magnetic disk medium in the fourth embodiment.
- a polishing table was rotated while rotating a disk-shaped A1 alloy substrate with an outer diameter of 95 mm, an inner diameter of 25 mtn, a thickness of 0.8 mm, and a concentric hole in the center. Is pressed to mechanically work to give a streak in the circumferential direction.
- the surface roughness is controlled so that on average Rp is in the range of 4 to 8 nm.
- the magnetic disk medium 1 having the intermetallic compound projections 0 was formed on the substrate processed as described above in the same manner as in Example 1.
- the target used when the protrusion 10 was formed was A1-7 atomic%.
- the target can be any system capable of producing an intermetallic compound phase in equilibrium at 40% or more. It may be.
- the method of forming a streak on the opposing surface is not limited to the mechanical method described above, but may be a method such as a combination of photolithography and dry etching, as long as the surface area is locally increased approximately at a constant cycle. .
- the arrangement of the protrusions of both the magnetic disk medium 1 and the magnetic head 3 is arranged so as to intersect with the surface of the magnetic disk medium from the lead
- the initial tangential force, the initial viscous force, and the adhesive force after 10,000 times of CSS were measured as parameters of the sliding characteristics.
- the measurement was performed using a magnetic disk device composed of a combination of a magnetic head without protrusions and a magnetic disk medium as a comparative example. The results are shown in FIG. It can be seen that the magnetic disk device of Example 4 is less likely to stick between the magnetic head and the magnetic disk medium than the comparative example.
- Protrusion 5 a mirror-polished silicon wafer was formed with protrusions of an intermetallic compound.
- protrusions of intermetallic compounds of 1 and Co are formed by sputtering a target consisting of A1-14 atomic% Co.
- the target is not limited to the target made of A1% Co and may be any type of target as long as it can generate an intermetallic compound phase in an amount of 40% or more in an equilibrium state.
- the reflectance of the mirror obtained by the shearing was measured using a mercury lamp and a reflectance measuring device using a river. Figure 21 shows the results. The reflectance can be controlled by changing the formation temperature and the formation time.
- the present invention it is possible to provide a magnetic disk device which is less likely to cause adhesion between the magnetic head and the magnetic disk medium and has excellent sliding resistance.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
A method of producing a magnetic recording disk medium, which comprises the step of forming island-like protrusions by sputtering a target consisting principally of an intermetallic compound on a substrate on which a magnetic alloy film is formed. This method can shorten a single processing time, improve thermal stability of the protrusions, and maintain the shape of these protrusions. The resulting magnetic disk medium is not likely to adhere to the head in the case of a narrow head gap. This method can be also applied to the formation of island-like protrusions on the opposed surface of the magnetic head to a slider. A magnetic disk apparatus having a high recording density and reliable lubricity can be obtained by applying the resulting magnetic disk medium or magnetic head.
Description
明 細 書 Specification
磁気ディスク媒体、 磁気ヘッド、 それを用いた磁気ディスク装置及びその製 造方法 技術分野 Magnetic disk medium, magnetic head, magnetic disk device using the same, and method of manufacturing the same
本発明は磁気ディスク媒体等の磁気記録媒体、 磁気へッド及びこれらを適 用した磁気ディスク装置に係り、 特に良好な耐摺動信頼性を有する磁気ディ スク装置及びこれを実現するための磁気ディスク媒体及び磁気へッドに関す る。 The present invention relates to a magnetic recording medium such as a magnetic disk medium, a magnetic head, and a magnetic disk device using the same, and more particularly to a magnetic disk device having good sliding reliability and a magnetic disk for realizing the same. Disc media and magnetic heads.
さらに、 磁気ディスク媒体、 磁気ヘッド及びこれらを適用した磁気記憶装 置の製造方法に関する。 背景技術 Further, the present invention relates to a method for manufacturing a magnetic disk medium, a magnetic head, and a magnetic storage device using the same. Background art
近年、 磁気ディスク装置の小型化と大容量化にともない磁気デイスク媒体 の高記録密度化が進んでいる。 磁気ディスク媒体の高記録密度化のためには 磁気ディスク媒体の磁気記録膜と磁気へッドとの距離を小さくすることは重 要な要件である。 しかしながら、 磁気ディスク媒体、 磁気ヘッドともに平滑 な表面を持っている場合、 コンタク ト · スタート ·ス トップ (CSS) 時に両 者が当接した場所が高いスティクションを持つこととなり、 潤滑剤の存在下 では粘着事故をひきおこす可能性がある。 このため、 高記録密度および高信 頼性を同時に実現するために、 磁気ディスク媒体表面に微細な表面構造 (テ クスチヤ) を与えて低浮上高さでも粘着しにくい構成とする必要がでてきた。 磁気デイスク媒体表面に微細なテクスチャを形成する技術としては例えば 特開平 7- 254 H6号に記載のように磁気記録特性を損なわないよう磁気記録膜 を形成した後, 粒子をマスクとして保護膜に突起を形成するという構成が提
案されている。 し力、し、 粒子をマスクとする方法を用いているので工程が簡 略化できるかどうか明らかでない。 In recent years, as the size and capacity of magnetic disk drives have been reduced, the recording density of magnetic disk media has been increasing. To increase the recording density of a magnetic disk medium, it is an important requirement to reduce the distance between the magnetic recording film and the magnetic head of the magnetic disk medium. However, if both the magnetic disk medium and the magnetic head have smooth surfaces, the area where they abut during contact start stop (CSS) will have high stiction, and the presence of lubricant Can cause sticking accidents. For this reason, in order to achieve high recording density and high reliability at the same time, it has become necessary to provide a fine surface structure (texture) to the surface of the magnetic disk medium so that it does not easily adhere even at a low flying height. . As a technique for forming a fine texture on the surface of a magnetic disk medium, for example, as described in JP-A-7-254H6, after forming a magnetic recording film so as not to impair the magnetic recording characteristics, protrusions are formed on the protective film using particles as a mask. The configuration that forms Is being planned. It is not clear whether the process can be simplified because a method using particles and a mask as a mask is used.
特開平 7- 192260 には、 ガラス基板上に連続した金尿,膜を形成した後熔融 させ、 さらに冷却して連続膜を凹凸形成物に変成させる方法により CSS特性 のよい磁気ディスク媒体が提供できると記載されている。 この方法によれば、 金属膜形成後長時間 (3分間) の加熱が必要であり、 量産性については明ら かでない。 Japanese Patent Application Laid-Open No. 7-192260 provides a magnetic disk medium having good CSS characteristics by a method of forming a continuous gold urine and film on a glass substrate, fusing the film, and then cooling it to transform the continuous film into a concavo-convex formed product. It is described. According to this method, heating for a long time (3 minutes) is required after forming the metal film, and mass productivity is not clear.
また、 特開平 4-255909号ではガラス基板上 ίこ表面ェネルギ一の低い T i等の 金属下地膜を形成後 A1等の凝^エネルギーの大きレ、低融点余¾をスバッタリ ングして微小な突起を形成している。 低融点金属の成膜中あるいは成膜後に 基板を加熱して低融点金属を凝集させ不連鋭な突起形状を作る必要がある。 またこの突起を形成した基板上に形成する磁性膜の磁 zヌ ί特性を向上するため にはこの突起を形成した基板を最適な温度まで加熱してド地膜、 磁性膜や保 護膜を形成する必要がある。 この時、 低融点金属はその上又はドに形成され る膜と反応し、 或いは膜中に拡散する。 例えば、 基板 に Λ1を低融点金厲と して突起を形成しこの上に下地膜、 磁性膜及び保護膜を形成した磁気ディス ク媒体を 280 Cに加熱すると Λ1が膜中を拡散して磁気ディスク媒体表面まで 達することが報告されている。 (IEEE Transactions on Magnetics , vol.31,No.6,p.2731, 1995) In Japanese Patent Application Laid-Open No. 4-255909, after forming a metal underlayer such as Ti having a low surface energy on a glass substrate, a large amount of coagulation energy such as A1 and a low melting point margin are sputtered to form fine particles. A projection is formed. It is necessary to heat the substrate during or after the deposition of the low-melting-point metal to agglomerate the low-melting-point metal to form a discontinuous projection. In order to improve the magnetic characteristics of the magnetic film formed on the substrate on which the protrusions are formed, the substrate on which the protrusions are formed is heated to an optimum temperature to form a ground film, a magnetic film, and a protective film. There is a need to. At this time, the low melting point metal reacts with or diffuses into the film formed on or in the film. For example, when a magnetic disk medium with a base film, a magnetic film and a protective film formed on the substrate with protrusions made of low-melting point metal and heated to 280 C, the substrate diffuses through the film and becomes magnetic. It is reported to reach the surface of the disk media. (IEEE Transactions on Magnetics, vol.31, No.6, p.2731, 1995)
このように Α1等の低融点金属が磁気ディスク媒体表面に析出すると磁気 へッ ド表面にも不純物として堆積して、 耐摺動特性が悪化するという問題が あった。 また、 Gaや In等の低融点金展,は突起を形成するときは溶融状態であ り、 そのままでは磁気ディスク媒体との接着力や強度が小さい。 このため、 必ず基板上に中問膜を形成し、 低融点金属と中問膜を反応させ、 最終的に溶 融状態の低融点金属が残留しないようにする複雑なフ' スを必要とする。
本発明は上記従来技術の問題点に鑑みてなされたものであり、 磁気ディス ク媒体の表面に微細な突起を形成するものであり、 この突起形成物の熱的な 安定性が向上し、 突起形成後はその形状を安定に保持できる磁気ディスク媒 体を提供することを目的とする。 As described above, when the low-melting point metal such as No. 1 precipitates on the surface of the magnetic disk medium, it is deposited as an impurity on the surface of the magnetic head, and there is a problem that the sliding resistance is deteriorated. Further, low melting point metal such as Ga and In is in a molten state when forming a projection, and as it is, the adhesive strength and strength with a magnetic disk medium are small. For this reason, it is necessary to form a medium film on the substrate, make the low-melting-point metal react with the medium-thinning film, and finally use a complicated fusing to prevent the residual low-melting-point metal from remaining in the molten state. . The present invention has been made in view of the above-mentioned problems of the related art, and is intended to form fine protrusions on the surface of a magnetic disk medium. It is an object of the present invention to provide a magnetic disk medium capable of maintaining its shape after formation.
さらに、 磁気記録特性と耐摺動信頼性を満足するような磁気ディスク媒体 を提供することを目的とする。 It is another object of the present invention to provide a magnetic disk medium that satisfies magnetic recording characteristics and sliding reliability.
また、 磁気ディスク媒体との対向面に微細な突起を形成するものであり、 この突起形成物の熱的な安定性が向上し、 突起形成後はその形状を安定に保 持できる磁気へッドを提供することを目的とする。 In addition, fine projections are formed on the surface facing the magnetic disk medium. The thermal stability of the projections is improved, and after the projections are formed, the magnetic head can maintain its shape stably. The purpose is to provide.
このほか、 一回の処理の時間を短縮して表面に微細なテクスチャが形成さ れた磁気ディスク媒体及び磁気へッドを容易に形成できる量産性に適した磁 気ディスク媒体及び磁気へッドの製造方法を実現することを 的とする。 また、 この磁気ディスク媒体或いは磁気ヘッドを用いることにより、 磁気 記録特性と耐摺動信頼性に優れた磁気ディスク装^を提供することを目的と する。 発明の開示 In addition, magnetic disk media and magnetic heads suitable for mass production that can easily form magnetic disk media and magnetic heads with a fine texture formed on the surface by shortening the time of one processing The goal is to realize the manufacturing method of It is another object of the present invention to provide a magnetic disk device having excellent magnetic recording characteristics and sliding resistance by using the magnetic disk medium or the magnetic head. Disclosure of the invention
本発明の目的を達成するため、 金属間化合物を主成分とする材料をタ一 ゲットとしてスパッタリングにより突起を形成する。 この方法は突起を形成 するための後加熱を実質的に必要としないほか、 磁気記録膜上に突起を形成 する場合にも適する。 In order to achieve the object of the present invention, a projection is formed by sputtering using a material mainly containing an intermetallic compound as a target. This method does not substantially require post-heating to form protrusions, and is also suitable for forming protrusions on a magnetic recording film.
まず、 突起形成後の構成原子の拡散を抑制するための条件について説明す る。 第一に突起が形成されるためにはその突起を形成する構成原子どうしの 引き付け合う力が基板表面へ拡散して平坦化しようとする力よりも大きくな ければならない。 さらに、 突起が形成されたあとは実質的に構成原子が長距
離を拡散せず、 隣り合う層と実質的に反応しないことが必要である。 以上か ら, 突起を形成する物質は元素単体ではなく, 2種類以上の元素原子が互い に結合しているものがよい。 また、 それぞれの構成原子は隣り合う層と実質 的に反応しないことが望ましいから, 前記構成^子はアルカリ金属, アル力 リ土類金属及びハロゲン元素等の反応性の高い原子は除かれる。 上記 2点力 ら, 突起を形成する物質は金属間化合物が適している。 ここで金属間化合物 とは, 2種類以上のアルカリ金属及びアル力リ上類金属を除く金属元素から 構成される一定の糾成比を持った物質であり, 一般に構成元素単体と異なる 結晶構造を持つ。 金属問化合物を用いることは, 突起形成後に加熱を必要と しないので構成原子の拡散を抑制するという見地からも望ましい。 First, conditions for suppressing the diffusion of the constituent atoms after the formation of the protrusions will be described. First, in order for a projection to be formed, the force of attracting constituent atoms that form the projection must be greater than the force of diffusing to the substrate surface to flatten it. Furthermore, after the projections are formed, the constituent atoms are substantially It must not diffuse and do not substantially react with adjacent layers. From the above, it is preferable that the substance that forms the protrusion is not a single element but a substance in which two or more types of element atoms are bonded to each other. Further, since it is desirable that each constituent atom does not substantially react with an adjacent layer, highly reactive atoms such as alkali metals, alkaline earth metals and halogen elements are excluded from the constituent elements. From the above two-point force, the substance that forms the protrusion is preferably an intermetallic compound. Here, an intermetallic compound is a substance that has a certain dissociation ratio and is composed of two or more types of alkali metals and metal elements other than the above-mentioned metals, and generally has a crystal structure different from that of the constituent elements alone. Have. The use of a metal intermetallic compound is desirable from the viewpoint of suppressing the diffusion of constituent atoms since heating is not required after the formation of the projections.
次に突起が形成される過程を第〗図、 第 2図、 第 3図、 第 4図を参照して 説明する。 Next, the process of forming the projections will be described with reference to FIGS. 1, 2, 3, and 4. FIG.
第 1図は A原子と B原子からなる Λ-Β系平衡状態図の一部分である。 第 1図 において縦軸は温度、 横軸は A-B系の B原子の濃度を示す。 例えば第 1図中の、 B原子の濃度が x lであり ¾1度が T 1である X点では、 Λ原子の結晶相ひ及び Λ原 子と B原子からなる金属間化合物の結品相 0がそれぞれ b対 aの割介で存在す るのがエネルギ的に安定であることを示している。 これは、 全体に対して B 原子の占める割合は(a/a + b) X 100%であり、 全体に対して Λ原子の占める割 合は(1- (a/a + b) ) X 100= (b/a + b) X 100%となるからである。 Figure 1 is a part of the Λ-Β equilibrium diagram consisting of A and B atoms. In Fig. 1, the vertical axis represents temperature, and the horizontal axis represents the concentration of B atoms in the AB system. For example, in FIG. 1, at the point X where the concentration of B atoms is xl and 度 1 degree is T1, the crystal phase of Λ atoms and the product phase 0 of the intermetallic compound composed of atoms and B atoms are 0. The fact that each exists at a ratio of b to a indicates that it is energetically stable. This means that the proportion of B atoms to the whole is (a / a + b) X 100%, and the proportion of Λ atoms to the whole is (1-(a / a + b)) X 100 = (b / a + b) X 100%.
つまり B原子の濃度が x l、 温度が T 1の状態で拡散が十分に起こる程度に fiい時間保持すれば A原子の結品相ひ及び金 S問化合物の結晶相 Θがそれぞ れ b対 aの割合で生成する。 B原子の濃度が X 2、 温度が T 1の状態では金厲 間化合物の結晶相 0のみを得ることができる。 In other words, if the concentration of B atoms is xl and the temperature is T 1, and if it is held for a period of time sufficient for diffusion to occur sufficiently, the product phase of A atoms and the crystal phase 金 of the gold S intermetallic compound b Generated at the rate of a. When the concentration of B atoms is X 2 and the temperature is T 1, only crystalline phase 0 of the intermetallic compound can be obtained.
次に第 2図、 第 3図、 第 4図を用いて突起が形成される過程を説明する。 なお第 2図、 第 3図、 第 4 ¾は突起の形成過程を模式的に したもので、 原
子の配列あるいは個数は実際の例と必ずしも同 -ではなレ、。 Next, a process of forming a projection will be described with reference to FIGS. 2, 3, and 4. FIG. Figs. 2, 3 and 4 schematically show the process of forming the protrusions. The array or number of children is not necessarily the same as the actual example.
まず、 第 2図、 第 3図に示すように、 B原子 2 2の濃度が第 1図における X 1である組成のタ一ゲットがスパッタされると、 A原子 2 1及び B原子 2 2 が基板 1 0 1上に到達して結合しあい、 金属間化合物 Θの結晶核 2 0を形成 する。 基板 1 0 1上では A原子 2 1及び B原子 2 2が継続して供給されるため、 A原子 2 1及び B原子 2 2は基板 1 0 1上の金属間化合物 Θの結晶核 2 0のあ る場所にもない場所にも同じ確率で到達し続ける。 しカゝし、 金属問化合物 Θ の結晶核 2 0を形成したほうが遊離状の原子であるよりもエネルギ的に安定 である。 そこで、 金属間化合物 Θの結晶核 2 0は、 前記の平衡状態の組成 (ひ扣、 Θ相の存在比- h : a) にいたるまで拡散の駆動力が働き成長し続ける。 一般に結品核は表面積を最小にして界面エネルギを最小にして安定化しょう とするので、 基板上では半球状に近くかつ一個の寸法が大きくなる傾向があ る。 一個の寸法が大きくなる理由は、 相似形であれば表面積は半径の 2乗に 比例し、 原子数は 3乗に比例して増大することから明らかである。 First, as shown in FIGS. 2 and 3, when a target having a composition in which the concentration of B atoms 22 is X1 in FIG. 1 is sputtered, A atoms 21 and B atoms 22 are formed. The particles reach the substrate 101 and combine with each other to form a crystal nucleus 20 of the intermetallic compound Θ. Since A atoms 21 and B atoms 22 are continuously supplied on the substrate 101, the A atoms 21 and B atoms 22 form the crystal nuclei 20 of the intermetallic compound 上 の on the substrate 101. Continue to reach places that aren't in one place with the same probability. However, the formation of the crystal nucleus 20 of the metal intermetallic compound エ ネ ル ギ is more energetically stable than the free atom. Therefore, the crystal nucleus 20 of the intermetallic compound が continues to grow by the driving force of diffusion until it reaches the composition in the equilibrium state (hook, abundance ratio of Θ phase-h: a). In general, the product nuclei tend to be close to hemispherical and large in size on the substrate because they are intended to be stabilized by minimizing the surface area and minimizing the interfacial energy. The reason why the size of a single element increases is obvious from the fact that, for a similar shape, the surface area increases in proportion to the square of the radius, and the number of atoms increases in proportion to the cube of 3
また、 B原子 2 2の濃度が X 1である組成のタ一ゲッ 卜がスパッタされた場 合では、 拡散に十分な時間経過後の平衡状態において金属問化合物の相 0の ほかに A原子 2 1の結晶相 αが存在する。 過剰の Α原子 2 1は反^すべき B原 '(■2 2が実質的に無いことから束縛を受けることなく自由に拡散するが、 そ のほとんどは拡散係数の高い基板〗 0 1の最表面に一様に分布し、 Λ原子 2 1 リッチ層 3 0を形成することになる (第 4図) 。 In addition, when a target having a composition in which the concentration of B atoms 22 is X 1 is sputtered, in addition to the phase 0 of the metal intermetallic compound and the A atoms 2 in an equilibrium state after a lapse of time sufficient for diffusion. There is one crystalline phase α. Excess Αatom 21 diffuses freely without being constrained due to the substantial absence of the B element to be repelled (反 22, but most of it is the substrate 2 0 1 with a high diffusion coefficient). It will be uniformly distributed on the surface and form a Λ atom 21 rich layer 30 (Fig. 4).
上述した過程は時間に依存するものである。 例えば基板 1 0 1の温度が高 いほど拡散速度は速く、 一定の時問内では金属間化合物の結晶核 2 0の高さ を高くできる。 また、 金属問化合物の結晶核 2 0の発生頻度は、 某板 1 0 1 の表面に形成される下地の材料に影響を受ける。 これを適当に選ぶことによ り所望の突起密度を得ることができる。 前記下地の材料は組成、 温度が良好
に規定されていればどのようなものでもよいが、 磁気ディスク媒体に関して はガラス、 ニッケル (以下 Niと記す) 及びリン (以下 Pと^す) の合金、 Co 合金、 カーボン等が好んで用いられる。 The process described above is time dependent. For example, the higher the temperature of the substrate 101 is, the higher the diffusion rate is, and within a certain time, the height of the crystal nucleus 20 of the intermetallic compound can be increased. In addition, the frequency of occurrence of the crystal nucleus 20 of the metal intermetallic compound is affected by the material of the base formed on the surface of a certain plate 101. By appropriately selecting this, a desired projection density can be obtained. The material of the base is good in composition and temperature Any material may be used as long as it is stipulated in, but for magnetic disk media, alloys of glass, nickel (hereinafter abbreviated as Ni) and phosphorus (hereinafter abbreviated as P), Co alloys, carbon, etc. are preferably used. .
また、 基板 1 0 1の表面に加工を加えて表面積を增大させておくと表而ェ ネルギも大きくなり局所的に金属問化合物の結晶核 2 0の成長を促す効果が ある。 そこで、 基板 1 0 1の表面に加工痕を形成すると加工痕に沿って金属 間化合物の結晶核 2 0を配列させることができる。 In addition, if the surface of the substrate 101 is processed to increase the surface area, the metabolic energy also increases, which has the effect of locally promoting the growth of crystal nuclei 20 of the metal intermetallic compound. Therefore, when processing marks are formed on the surface of the substrate 101, crystal nuclei 20 of the intermetallic compound can be arranged along the processing marks.
例えば、 磁気ディスク装置において、 磁気ディスク媒体と磁気へッ ドの両 者の対向面に前記金属問化合物の結晶核 2 0の突起を一定方向に配列させて 形成し、 かつ両者の突起の配列が磁気ディスク媒体表面に対して鉛直方向か ら見て互いに交差するように配|¾することで接触面積が減少し、 良好な耐摺 動信頼性を実現することができる。 For example, in a magnetic disk drive, the projections of the crystal nuclei 20 of the metal intermetallic compound are formed in a predetermined direction on the opposing surfaces of the magnetic disk medium and the magnetic head, and the arrangement of both projections is By arranging the magnetic disk medium surface so as to intersect each other when viewed from the vertical direction, the contact area is reduced, and good sliding reliability can be realized.
本発明で用いる金属間化合物の結晶核 2 0による突起を形成するための タ一ゲットは上:記のごとく金^間化合物を生成し得る系であればどのような ものでもよいが、 A1が低温でも拡散しやすいことから Λ原子として A1を選択 し、 金属問化合物の熱的安定性が向上すること、 また、 金属間化合物とこの 金属問化合物の突起の上下に形成される膜との反応性が低減できること、 さ らに、 微細な金属間化合物の突起を 密度に形成できることから、 B原子と して融点が 1 0 0 0 °C以上の高融点金属元素 (Co、 Cr、 Cu、 I½、 Mn、 Mo、 Ni . Pd、 Pt、 V、 W等) とから構成される金属間化合物を選択することが望ましい c また、 ターゲットの製造方法、 価格等の ¾地から A原子として Λ1を、 B原子と して Cr、 Co、 Mo、 V、 Wから選ばれる元素を選択することが好ましい。 図面の簡単な説明 The target for forming the projections by the crystal nucleus 20 of the intermetallic compound used in the present invention may be any system as long as it can generate an intermetallic compound as described above. A1 is selected as an atom because it diffuses easily even at low temperatures, improving the thermal stability of the intermetallic compound, and the reaction between the intermetallic compound and the films formed above and below the protrusions of this intermetallic compound In addition, the high melting point metal element (Co, Cr, Cu, I½) with a melting point of 100 ° C. or more as a B atom can be formed because the density can be reduced and fine intermetallic compound protrusions can be formed at a high density. , Mn, Mo, Ni. Pd , Pt, V, W , etc.) and c also be desirable to select a configured intermetallic compound from a method for producing a target, the Λ1 as a atoms from ¾ locations prices, Select an element selected from Cr, Co, Mo, V, and W as the B atom. It is preferred. BRIEF DESCRIPTION OF THE FIGURES
第 1図は突起の生成過程を説明する状態図の 部である。 第 2図から第 4
図は突起の生成過程を説明する図である。 第 5図は本発明の一実施例である 磁気ディスク媒体の断面図である。 第 6図は突起の生成過程を説明する A1- Cr状態図の一部である。 第 7図は本発明の実施例 1である磁気ディスク媒体 の表面の AFM像を表す図である。 第 8図は A1- 0%Crタ一ゲッ トを用いた磁気 ディスク媒体の表面の AFM像を表す図である。 第 9図は A1- 5%Crターゲッ トを 用いた磁気ディスク媒体の表面の AFM像を表す図である。 第 1 0図は A1 - 12. 5 Crターゲットを用いた磁気デイスク媒体の表面の AFM像を表す図である。 第 1 1図は本発明の実施例 2である磁気ディスク媒体の断面図である。 第 1 2図は本発明の実施例 3である磁気ディスク媒体の断面図である。 第 1 3図 は本発明における磁気ディスク装置の概略図である。 第 1 4図は本発明の実 施例 4である磁気ディスク装置に適用される磁気へッドの模式図である。 第 1 5図は本発明の実施例 4である磁気ディスク装置に適用される磁気ディス ク媒体の模式図である。 第 1 6図は Al- Crターゲッ トをスパッタ リ ングする ことにより基板に堆積した A 1 , Crのそれぞれの量比を分析した結果を表す図 である。 第 1 7図は突起密度及び突起高さとプロセス条件との関係を表わす 図である。 第 1 8図は磁気特性および摺動信頼性に対する突起の効果を表わ す図である。 第 1 9図は突起を磁性膜の下に形成した構成での磁気特性を比 較する図である。 第 2 0図は本発明の実施例 4である磁気ディスク装置の摺 動信頼性を表わす図である。 第 2 1図は本発明の方法によりシリコンウェハ 上に突起を形成した場合の反射率を表わす図である。 FIG. 1 is a part of a state diagram illustrating the process of forming protrusions. Figures 2 to 4 The figure is a diagram for explaining the process of forming protrusions. FIG. 5 is a sectional view of a magnetic disk medium according to an embodiment of the present invention. FIG. 6 is a part of an A1-Cr phase diagram illustrating a process of forming protrusions. FIG. 7 is a diagram showing an AFM image of the surface of the magnetic disk medium that is Embodiment 1 of the present invention. FIG. 8 is a diagram showing an AFM image of the surface of a magnetic disk medium using an A1-0% Cr target. FIG. 9 is a diagram showing an AFM image of the surface of a magnetic disk medium using an A1-5% Cr target. FIG. 10 is a diagram showing an AFM image of the surface of a magnetic disk medium using an A1-12.5 Cr target. FIG. 11 is a sectional view of a magnetic disk medium according to a second embodiment of the present invention. FIG. 12 is a sectional view of a magnetic disk medium according to a third embodiment of the present invention. FIG. 13 is a schematic view of a magnetic disk drive according to the present invention. FIG. 14 is a schematic diagram of a magnetic head applied to a magnetic disk drive according to Embodiment 4 of the present invention. FIG. 15 is a schematic diagram of a magnetic disk medium applied to a magnetic disk device according to Embodiment 4 of the present invention. FIG. 16 is a diagram showing the results of analyzing the respective ratios of A 1 and Cr deposited on the substrate by sputtering an Al—Cr target. FIG. 17 is a diagram showing the relationship between the process density and the protrusion density and the process conditions. FIG. 18 is a diagram showing the effect of the protrusion on the magnetic characteristics and sliding reliability. FIG. 19 is a diagram comparing the magnetic properties of a configuration in which the protrusion is formed below the magnetic film. FIG. 20 is a diagram showing the sliding reliability of the magnetic disk device according to the fourth embodiment of the present invention. FIG. 21 is a diagram showing the reflectance when a projection is formed on a silicon wafer by the method of the present invention.
第 2 2図は本発明における突起高さを説明する図である。 発明を実施するために最良の形態 FIG. 22 is a view for explaining the projection height in the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.
第 5図は本発明における実施例 1の磁気テ' スク媒体の断面図である。 まず、
外径 95画,内径 25瞧,厚さ 0. 8隱の中央に同心円状の穴のあいた円盤状であつ て表面の中心線平均粗さ Raが 0. 3nra以上 5nm以下の Λ1合金基板 1 0 1に N'i及び Pの合金をメツキする。 この Ni及び Pの合金のメツキされた A1合金基板 1 0 1 を脱ガスおよび磁気記録特性向上の目的で真空中でランプ加熱する。 このと き投入電力は、 後に形成される合金層 1 0 3が所定の磁気特性を持つような 温度となるように制御する。 加熱後基板 1 0 1上にクロム (以下 Crと記す) およびチタニウム (以下 Tiと記す) の合金層 1 0 2を形成し, さらにコバノレ ト (以下 Coと記す) ,Cr及び白金 (以下 Ptと記す) の合金層 1 0 3を順次形 成する。 合金層 1 0 3は磁気記録の機能を有する。 Cr及び Tiの合金層 1 0 2 は基板 1 0 1上に Co- Cr Ptの合金層 1 0 3を密着性良く, かつ Co- Cr- の合 金層 1 0 3の結晶粒径および結晶方位を制御性 ί¾く形成する効果を有する。 合金層 1 0 2および合金層 1 0 3に用いる材料は前記の機能 ·効果を有する ものであれば他の材料でも差し支えない。 また, 基板 1 0 1の材料も非磁性 で平坦度, 強度に問題なければどのようなものでも良い。 FIG. 5 is a sectional view of a magnetic disk medium according to the first embodiment of the present invention. First, Λ1 alloy substrate with an outer diameter of 95 strokes, an inner diameter of 25 mm, a thickness of 0.8, a disc with a concentric hole at the center of the hidden surface, and a center line average roughness Ra of 0.3 nra to 5 nm. 1 Add N'i and P alloy. The A1 alloy substrate 101 on which the Ni and P alloys are plated is heated by a lamp in a vacuum for the purpose of degassing and improving magnetic recording characteristics. At this time, the applied power is controlled so that the alloy layer 103 formed later has a temperature such that the alloy layer 103 has predetermined magnetic characteristics. After heating, an alloy layer 102 of chromium (hereinafter, referred to as Cr) and titanium (hereinafter, referred to as Ti) is formed on the substrate 101, and furthermore, covanolate (hereinafter, referred to as Co), Cr, and platinum (hereinafter, referred to as Pt). ) Are sequentially formed. The alloy layer 103 has a function of magnetic recording. The Cr and Ti alloy layer 102 has a good adhesion between the Co-Cr Pt alloy layer 103 on the substrate 101 and the crystal grain size and crystal orientation of the Co-Cr- alloy layer 103. Has the effect of forming a good controllability. The material used for the alloy layer 102 and the alloy layer 103 may be any other material as long as it has the functions and effects described above. The material of the substrate 101 is also non-magnetic and may be any material as long as there is no problem in flatness and strength.
その後、 ヘリゥム導入機構を備えた処理¾にて所定時間基板 1 0 1を処 ': し、 基板を A1及び Οの金属間化合物の突起 1 () 4を形成するのに好適な所定 の温度に冷却する。 なおこれは基板 1 0 1 を処理室から処现室へ搬送する間 に放射や伝導等により基板温度が所定の温度に下がっていれば不要である。 使用するガスは冷却効果があればどのようなものでもよい。 また、 反対に基 板 1 0 1の温度が下がりすぎている場合には再度所定の温度に加熱を行う。 続いて合金層 1 0 3上に Λ1及び Crの金属間化合物の突起〗 0 4を Λ1及び Cr からなるターゲッ トをスバッタリングすることにより形成する。 Thereafter, the substrate 101 is processed for a predetermined time by a processing device provided with a helm introducing mechanism, and the substrate is brought to a predetermined temperature suitable for forming A1 and the intermetallic compound projections 1 () 4. Cooling. This is unnecessary if the substrate temperature has dropped to a predetermined temperature due to radiation, conduction, or the like while the substrate 101 is being transported from the processing chamber to the processing chamber. Any gas may be used as long as it has a cooling effect. On the other hand, if the temperature of the substrate 101 is too low, the substrate 101 is heated again to a predetermined temperature. Subsequently, a projection〗 04 of an intermetallic compound of Λ1 and Cr is formed on the alloy layer 103 by sputtering a target made of Λ1 and Cr.
さらに前記合金層 1 0 3及び突起 1 0 4を機械的あるいは化学的接触から保 護するための保護膜層 1 0 5を続いて形成する。 Further, a protective film layer 105 for protecting the alloy layer 103 and the protrusions 104 from mechanical or chemical contact is subsequently formed.
本実施例の磁気テ"イスクを形成した装置は米 [ilィンテバック社製 MDP250機で,
W The device that formed the magnetic disk of this embodiment was an MDP250 machine manufactured by Ilinterbach, Inc. W
基板の加熱室、 基板の冷却室及び複数のマグネトロンスバッタリングを行え る基板処理室を持つインラインスパッタ装置であるが, 基板温度制御及びス バッタリングが行えればどのような装置でも差し支えない。 また 1 0 2、 1 0 3、 1 0 4 、 1 0 5の各層を形成する各処理の間は酸化防止等の意味で 2. 0 X 10—5Pa以下の圧力下に保持されることが望ましい。 The in-line sputtering system has a substrate heating chamber, a substrate cooling chamber, and a substrate processing chamber capable of performing a plurality of magnetron buttering operations. However, any apparatus can be used as long as the substrate temperature control and sputtering can be performed. The 1 0 2, 1 0 3, 1 0 4, 1 0 5 during the processes for forming the respective layers of be held under pressure sense 2. 0 X 10- 5 Pa or less of such antioxidant desirable.
以下に前記突起 1 0 4を形成するための方法を第 2図、 第 3図、 第 4図、 第 6図を用いて詳細に説明する。 第 6図は金属間化合物相を持つ A l -Cr系平 衡状態図の一部分である。 第 2図、 第 3図、 第 4図は突起が形成される過程 を説明する図である。 第 6図において縦軸は温度、 横軸は Λ1- Cr系の Cr原子 の濃度を示す。 例えば第 6図中の、 Cr原子の濃度が 10原子%であり温度が 500 Kである Y点では、 A】の固溶体相 α及び金属間化合物の相 Θがおよそ 1 対 4の割合で存在するのがエネルギ的に安定であることを示している。 よつ て Cr原子の濃度が 10原子%、 温度が 500 Kの状態で拡散が十分に起こる程度 に βレ、時間保持すれば相ひ及び相 0が 1対 4の割合で生成する。 また、 Cr原子 の濃度が 12. 5原子%、 温度が 500 Kの状態では、 相 Θのみを得ることができ る。 Hereinafter, a method for forming the protrusions 104 will be described in detail with reference to FIG. 2, FIG. 3, FIG. 4, and FIG. Figure 6 is a part of the Al-Cr equilibrium phase diagram with an intermetallic compound phase. FIG. 2, FIG. 3, and FIG. 4 are views for explaining the process of forming protrusions. In FIG. 6, the vertical axis indicates temperature, and the horizontal axis indicates the concentration of Cr atoms in the Λ1-Cr system. For example, at point Y in FIG. 6 where the concentration of Cr atoms is 10 atomic% and the temperature is 500 K, the solid solution phase α of A] and the intermetallic compound phase 金属 are present in a ratio of about 1: 4. Indicates that it is energetically stable. Therefore, if the concentration of Cr atoms is 10 atomic% and the temperature is 500 K, β will be enough to cause sufficient diffusion, and if the time is maintained, phase and phase 0 will be formed in a ratio of 1: 4. In the state where the concentration of Cr atoms is 12.5 atomic% and the temperature is 500 K, only phase can be obtained.
次に、 合金層 1 0 3上に A1 - 10原子%Crからなるターゲッ トをスバッタリン グすることにより A1及び Crの金属間化合物の突起 1 0 4を形成する。 前記 タ一ゲッ卜は Λ】および Crの微細な粉末を均一に混合して焼結して得たもので、 Al7Crを主とする金属間化合物および Al. Crが均一に混在している。 図 6より タ一ゲットは Crの割合が 10原子%であるから、 A1および Crの各原子がスパッ タリングされて合金層 1 0 3上に到達し、 合金層 1 0 3の表面を拡散して平 衡状態に達した場合、 金属間化合物 Al7Crの割合が 80%、 残りが A1という構成 (Al : Al7Cr=l : 4)になる。 実際のプロセスでは基板 1 0 1の温度や形成時間な どのフロセス条件により変化する。 なお, 実際にスパッタされたターゲット
から所定の量比で基板に原子が到達しているかどうか確認するためNext, a projection made of an intermetallic compound of A1 and Cr is formed on the alloy layer 103 by sputtering a target made of A1-10 at% Cr. The target is obtained by uniformly mixing and sintering fine powders of Λ] and Cr, and the intermetallic compound mainly composed of Al 7 Cr and Al. Cr are uniformly mixed. . As can be seen from FIG. 6, the target has a Cr content of 10 atomic%, so that the atoms of A1 and Cr are sputtered and reach the alloy layer 103, and diffuse on the surface of the alloy layer 103. When the equilibrium state is reached, the ratio of the intermetallic compound Al 7 Cr is 80%, and the rest is A1 (Al: Al 7 Cr = l: 4). In an actual process, it varies depending on the process conditions such as the temperature of the substrate 101 and the formation time. The actual sputtered target To check if atoms have reached the substrate at a given ratio
ICPS (Inductively- Coupled Plasma Spectroscopy)法により定 分析を行つ た。 この結果を第 1 6図に示す。 Cr濃度 5 %及び] 0 %で分析を行っている。 実質的にターゲッ卜と同じ量比の原子が合金層 1 0 3上に到達していること が分かる。 また、 ターゲッ トの材料は平衡状態で金属間化合物の相を生成す るものであれば前記 A卜 10原子%Crに限らずどのような系のものでもよい。 金属間化合物の突起]. 0 4が合金層 1 0 3上に形成される過程は第 2図、 第 3図、 第 4図と同様である。 Constant analysis was performed by the ICPS (Inductively-Coupled Plasma Spectroscopy) method. The results are shown in FIG. The analysis was performed at a Cr concentration of 5% and] 0%. It can be seen that atoms having substantially the same quantitative ratio as the target have reached the alloy layer 103. The target material is not limited to the above-mentioned 10 atomic% Cr and may be any type of material as long as it can form an intermetallic compound phase in an equilibrium state. The process by which the intermetallic compound protrusions are formed on the alloy layer 103 is the same as in FIGS. 2, 3, and 4.
まず第 2図、 第 3図のように、 ターゲッ トがスハッタされると A1, 各原 子が合金層 1 0 3 卜.に到達する。 合金層 ] 0 3 1 -では Al,Cr各原子が結合し、 金属問化合物 Al7Crの結晶核 2 0を形成する。 継続して供給される Λ1 , Cr各原 子は合余屑 1 0 3上の金厲問化合物の結晶核 2 0のある場所にもない場所に も同じ確率で到達し続けるが、 前記金屈 ^化^物を形成したほうが遊離伏の 原子であるよりもエネルギ的に安定なので、 前記の平衡状態の組成にいたる まで拡散の駆動力が働き金属間化 物 A170の結品核 2 0は成^;し続ける。 なお、 合金層 1 0 3表面における拡散係数は Λ1系材料の場合、 600 K以下の 低温においても前記金 ½問化合物を形成できる ¾度に大きい。 また、 合金^ 1 0 3にも Al,Cr各 fと金属間化合物を形成し ΰる原子が含まれている場 合があるが、 合金層 1 0 3の原子は前記ターゲッ トをスハッタリングする前 にすでに安定な結晶構造を形成しており、 600Κ以下の低温では実 的に反応 せず、 合金層 1 0 3の表面での反応はスバッタされた Α]および Crの原子に実 ft的に限定される。 一般に余厲問化合物の結品核 2 0は表面積を最小にして 界面エネルギを最小にして安定化しょうとするので、 合金層 1 0 3上では半 球状に近くかつ一個の 法が大きくなる傾向がある。 一個の寸法が大きくな る理由は、 相似形であれば表面積は半径の 2乗に比例し、 原 Λ数は 3乗に比例
して増大することから明らかである。 First, as shown in Figs. 2 and 3, when the target is shattered, A1 and each element reach the alloy layer 103. In the alloy layer] 0 3 1-, each atom of Al and Cr is bonded to form a crystal nucleus 20 of a metal intermetallic compound Al 7 Cr. The 供給 1 and Cr atoms supplied continuously continue to reach the same probability to the place where the crystal nucleus 20 of the gold intercalation compound on the mixed debris 103 is not located. ^ of ^ things because better formed is energetically more stable than is the atomic free wipe, sintered products nucleus 2 0 of intermetallic compound A1 7 0 driving force acts diffusion up to the composition of the equilibrium Will continue to grow. The diffusion coefficient at the surface of the alloy layer 103 is so large that the metal alloy can be formed even at a low temperature of 600 K or less in the case of the first material. In addition, the alloy ^ 103 may contain atoms forming an intermetallic compound with each of Al and Cr, but the atoms of the alloy layer 103 may be included before the target is shattered. Has already formed a stable crystal structure, does not actually react at low temperatures below 600Κ, and the reaction on the surface of the alloy layer 103 is actually limited to バ ッ] and Cr atoms. Is done. In general, the product nucleus 20 of the residual compound is intended to be stabilized by minimizing the surface area and minimizing the interfacial energy. is there. The reason that one dimension becomes larger is that, if the shape is similar, the surface area is proportional to the square of the radius, and the fundamental number is proportional to the cube of 3. It is clear from the increase.
また、 上記 Λ1- 10原子。/。 Crの濃度では平衡状態においても金属間化合物の相 のほかに過剰の A1原子が存在する。 これらの A1原子は反応すべき Crが実質的 に無いことから束縛を受けることなく自由に拡散するが、 第 4図のように、 そのほとんどは拡散係数の高い合金層 1 0 3の最表面に A1リツチ層として一 様に分布することになる。 この過剰な Λ1の原子も結晶格子を形成してしまえ ば安定化する。 過剰な A1の原子が結晶格子を形成できない程度に少ない場合 はたとえ拡散したとしても量的にわずかで、 いずれにしても隣接する合金 fe; 1 0 3または保護膜層 1 0 5と実質的に反応することはない。 ただし、 アル カリ金属、 アル力リ土類金属およびハロゲン元素の原子の場合は反応性が高 く突起材料として不可であり、 本発明では用いない。 In addition, the above Λ1-10 atoms. /. At the Cr concentration, even in the equilibrium state, there is an excess of A1 atoms in addition to the intermetallic compound phase. These A1 atoms diffuse freely without being constrained because there is substantially no Cr to be reacted, but as shown in Fig. 4, most of them are located on the outermost surface of the alloy layer 103 with a high diffusion coefficient. It will be uniformly distributed as A1 rich layer. This excess Λ1 atom is stabilized once it forms a crystal lattice. If the excess A1 atoms are so small that they cannot form a crystal lattice, they are insignificant, if any, even if they diffuse, and in any case, are substantially equivalent to the adjacent alloy fe; 103 or the overcoat layer 105. Will not react. However, atoms of alkali metal, alkaline earth metal, and halogen element have high reactivity and cannot be used as a projection material, and are not used in the present invention.
上述した過程は時間に依存するものである。 拡散過程は一定の時間を要す るから、 限られた時問のなかでは制約を受け、 般には平衡状態の組成には 至らない。 The process described above is time dependent. Since the diffusion process takes a certain amount of time, it is limited within a limited time, and generally does not reach an equilibrium composition.
以上のようにして形成した本実施例の磁気テ"イスク媒体の表面形状を原子問 力顕微鏡(AFM)で観察した結果を第 7図に示す。 一辺の、1-法は 10マイク口 メ一トルである。 ここで、 突起高さとは、 第 2 2図に示すように AFMで測定 した高さのヒストグラムにおける最頻値を突起高さ 0とし、 その突起高さ 0 の面からの距離として定義する。 第 7図のエリア内で突起の密度は 2. 5 X 10 個/ 、 突起の高さは平均 30nmであった。 突起の密度及び突起の高さは第 1 7図に示すようにプロセス条件を変えることによって制御可能である。 磁 特性、 摺動信頼性の点から突起の密度は 1. 0 X 10'嗰 / 以上、 突起の さは 平均 10nm以上であることが望ましい。 同じターゲット投入電力およびスパッ タ時間においては基板温度が高いほど原子の拡散がおこりやすくなるから突 起の高さは高くなる。 また、 突起密度を増加させるためにはターゲッ ト投入
電力またはスパッタ時間を増大させる必要があるが、 過剰であると突起その ものの直径が大きくなって突起どうしが合体し巨大な突起が生成し、 突起の 数は少なくなり、 最終的には略平坦な面となる。 FIG. 7 shows the result of observing the surface shape of the magnetic disk medium of the present embodiment formed as described above using an atomic force microscope (AFM). Here, as shown in Fig. 22, the projection height is defined as the mode value in the histogram of the height measured by the AFM as the projection height 0, and the distance from the surface at the projection height 0 as the projection height. In the area of Fig. 7, the density of the projections was 2.5 x 10 / s and the height of the projections was 30 nm on average.The density of the projections and the height of the projections were as shown in Fig. 17. From the viewpoint of magnetic properties and sliding reliability, it is desirable that the density of the projections is 1.0 X 10 '嗰 / or more, and the average thickness of the projections is 10 nm or more. At the target input power and sputtering time, the higher the substrate temperature, the easier the diffusion of atoms. As a result, the height of the protrusion increases, and the target is injected to increase the protrusion density. It is necessary to increase the power or the sputtering time, but if it is excessive, the diameter of the projections themselves increases, the projections coalesce to form huge projections, the number of projections decreases, and finally the flatness is almost flat Surface.
また、 実施例] の磁気ディスク媒体において保護膜層 1 0 5を形成しない 状態で突起部分及び平坦部をォージェ電子分光分析法 (AES)により深さ方向 分析した結果, 第 4図に示したような突起部分以外の最表面に Λ1が分布し、 突起部分に A1及び Crの金属間化合物が存在する構造になっていることが確認 された。 また, 保護膜層 1 0 5まで形成した '吏-施例 1の磁気ディスク媒体に ついて AESにより突起部分及び平坦部を深さ方向に分析した結果、 Λ1原子の 合金層 1 0 3及び保護膜層 1 0 5への拡散は実質的に無視できる程度に小さ いことが確認された。 また、 Crの濃度 1 0 %の Al-Crターゲッ トにより金属 間化合物の突起を形成し保護膜層 1 0 5まで形成した^施例 1の磁気ディス ク媒体 (突起密度: 2. 5 X 1012個 /m2、 平均突起高さ : 30ηπι) について磁気特 性を調べた。 さらにパーフルォロポリエーテルを主成分とする潤滑膜を 3nm 形成した構成の磁気ディスク媒体で摺動信頼性を調べた。 磁気特性のパラ メータとしては保磁力 He,角形比 S*を, 摺動信頼性のパラメータとしては初 期粘着力、 初期接線力及び CSS 1万回後の粘着力をとつた。 He, S*の測定には VS (Vibrating Sample Magnetometer)を川いた。 摺動試験は当業者に公知の 磁気へッドを用いた。 比較例として突起 1 0 4を形成せずに他は同条件で作 成した磁気ディスク媒体を用意し、 上記 Crの濃度 1 0 %の Λ] - Crタ一ゲッ 卜 により金属間化合物の突起を形成した ¾施例 1 と比較例の磁気ディスク媒体 についての結果を第〗 8図に示した。 この結果、 Mi例 1の突起を有する磁 気ディスク媒体は磁 特性は比較例と同等であり、 ^動信頼性は比較例より すぐれていることがわかる。 In addition, as shown in FIG. 4, the protrusions and flat portions were analyzed by Auger electron spectroscopy (AES) in the depth direction of the magnetic disk medium of Example 1 without the protective film layer 105 being formed. It was confirmed that Λ1 was distributed on the outermost surface except for the protruding portions, and the structure was such that the intermetallic compounds of A1 and Cr existed on the protruding portions. The AES analysis of the magnetic disk medium of Example 1 with the protective film layer 105 formed up to the protective film layer 105 showed that the 1-atom alloy layer 103 and the protective film were analyzed. It was confirmed that the diffusion into layer 105 was substantially negligible. In addition, a protrusion of an intermetallic compound was formed by an Al-Cr target having a Cr concentration of 10%, and the protective film layer 105 was formed. The magnetic disk medium of Example 1 (projection density: 2.5 × 10 The magnetic properties of 12 protrusions / m 2 and an average protrusion height of 30ηπι) were examined. In addition, the sliding reliability of a magnetic disk medium having a 3 nm lubricating film composed mainly of perfluoropolyether was examined. The coercive force He and the squareness ratio S * were used as parameters for the magnetic properties, and the initial adhesive force, initial tangential force, and the adhesive force after 10,000 times of CSS were used as the sliding reliability parameters. VS (Vibrating Sample Magnetometer) was used for measurement of He and S *. The sliding test used a magnetic head known to those skilled in the art. As a comparative example, a magnetic disk medium prepared under the same conditions without forming the protrusions 104 was prepared, and the protrusions of the intermetallic compound were formed using the Λ] -Cr target having a Cr concentration of 10%. The results for the formed magnetic disk media of Example 1 and Comparative Example are shown in FIG. As a result, it can be seen that the magnetic disk medium having the protrusion of Mi Example 1 has the same magnetic properties as the comparative example, and the dynamic reliability is better than the comparative example.
次に実施例 1 の磁 デイスク媒体を適用した磁気テ" ク装置を第 1 3 Mに
示す。 磁気ディスク装置 5において磁気へッド 3を磁気ディスク媒体 1に対 向して設ける。 スピンドルモータ 2は磁気ディスク媒体 1を回転させ、 磁気 へッド 3はへッド駆動部 4により磁気ディスク媒体 1上の所定の位置に位置 づけられる。 磁気ディスク媒体 1の回転時に磁気へッド 3が磁気ディスク媒 体 1上を浮上することにより記録/再生を行う。 Next, a magnetic recording apparatus using the magnetic disk medium of the first embodiment was changed to a 13M magnetic recording apparatus. Show. The magnetic head 3 is provided in the magnetic disk device 5 so as to face the magnetic disk medium 1. The spindle motor 2 rotates the magnetic disk medium 1, and the magnetic head 3 is positioned at a predetermined position on the magnetic disk medium 1 by the head drive unit 4. The recording / reproduction is performed by the magnetic head 3 floating above the magnetic disk medium 1 when the magnetic disk medium 1 rotates.
磁気へッドの浮上量 0 . 0 2 z mとして、 実施例】の磁気ディスク媒体の 磁気ヘッ ドの走行方向 (磁気ディスク媒体の円周方向) に測定した保磁力 HC(L)と、 磁気ディスク媒体の面内で磁気ヘッ ドの走行方向と垂直方向 (磁 気ディスク媒体の半径方向) に測定した保磁力 Hc(R)との比率、 Hc(L)/Hc(R)を測定すると ] . 1以上と高く、 高線記録密度で高い出力が得 られ、 S/Nの値は] . 6と良好であった。 Assuming that the flying height of the magnetic head is 0.02 zm, the coercive force H C (L) measured in the running direction (circumferential direction of the magnetic disk medium) of the magnetic disk medium of the embodiment] the ratio between the traveling direction and the vertical direction of the magnetic heads in the plane of the disk media coercivity Hc measured in (magnetic radial direction of the disk medium) (R), measured to H c (L) / Hc ( R) ] 1 and higher, high output was obtained at high linear recording density, and the S / N value was as good as 6.
A1合金基板 1 0 1の表面に略磁気へッ ドの走行方向にテクスチャリング と呼ばれる微細な研磨痕が形成されており、 この基板 1 0 1上に合金層 1 0 2、 1 0 3を形成すると Hc(L)/Hc(R)を高めることができる。 通常磁気記録 には磁気へッ ドの走行方向つまり磁気ディスク媒体の円周方向の保磁力 Hc(L)が必要であるため Hc(L) Hc(R)を高める必要がある。 本実施例の突起 1 0 4は合金層 1 0 3上に形成できるので、 突起 1 0 4を形成したことによ り Hc(L)/Hc(R)の値が低下することがなく、 Hc(L)/Hc(R)が 1 . 1以上の磁 気ディスク媒体を実現できる。 特に lOOkBPI以上の高線記録密度での出力 を向上するためには Hc(L)/Hc(R)の値を 1 . 1以上 1 . 5以下とすることが 好ましい。 Hc(L)/Hc(R)の値が 1 . 5を越えると磁気へッ ドのョ一角が增し たときに高線記録密度での出力の低下が著しくなるので好ましくない。 さらに、 実施例 1において、 A卜 Crターゲッ トの Crの濃度を変えて製造し た磁気ディスク媒体の表面形状を比較した。 Λ卜 Crタ一ゲッ卜の Crの濃度を 変えたものが 4種類で、 それぞれ 0、 5、 1 2 . 5及び 2 0 子%である。
上記試験と同様に、 保護膜層 1 0 5を形成しない状態で表面を AFM観察した ほか、 突起部分及び平坦部をオージュ電子分光分析法 (AES)により組成分析 した。 Fine polishing marks called texturing are formed on the surface of the A1 alloy substrate 101 substantially in the running direction of the magnetic head, and the alloy layers 102 and 103 are formed on the substrate 101. Then, Hc (L) / Hc (R) can be increased. Usually magnetic recording it is necessary to increase the order circumferential coercive force Hc in the running direction, i.e. the magnetic disk medium head the magnetic (L) is required H c (L) Hc (R ). Since the projections 1 0 4 of the present embodiment may be formed on the alloy layer 1 0 3, without the value of Ri by the fact that the formation of the projections 1 0 4 Hc (L) / H c (R) is reduced, A magnetic disk medium having Hc (L) / Hc (R) of 1.1 or more can be realized. In particular, in order to improve the output at a high linear recording density of 100 kBPI or more, the value of Hc (L) / Hc (R) is preferably set to 1.1 or more and 1.5 or less. Hc (L) / H value of c (R) 1. 5 exceeds the undesirable reduction in output at high linear recording density when ® corner of head to magnetic has增becomes remarkable. Further, in Example 1, the surface shapes of the magnetic disk media manufactured by changing the Cr concentration of the Ato Cr target were compared. There are four types of samples with different concentrations of Cr in the target Cr target, 0, 5, 12.5, and 20 percent, respectively. In the same manner as in the above test, the surface was observed by AFM without forming the protective film layer 105, and the composition of the protruding portion and the flat portion was analyzed by Auger electron spectroscopy (AES).
まず Cr濃度 0 %すなわち純 A1のタ一ゲットを用いた場合は突起を形成すベ き金属間化合物を生成し得ないので第 8図の AFM像に示すように実質的に平 坦な表面しか得られない。 表面を AiiS分析したところ全面に A1が検出された。 なお第 8図中の斜めにはいっている 線は磁気デイスク媒体取り极ぃ中生じ た傷によるものである。 First, when a target with a Cr concentration of 0%, that is, a pure A1 target is used, no intermetallic compound that should form a projection can be generated, and therefore, as shown in the AFM image in Fig. 8, only a substantially flat surface is obtained. I can't get it. When AiiS analysis was performed on the surface, A1 was detected on the entire surface. Note that the oblique line in FIG. 8 is due to a scratch generated during the removal of the magnetic disk medium.
次に、 濃度が 5原子%のタ一ゲッ トを用いた場合の表面の AFM像を第 9 図に示す。 突起を形成する金属間化合物よりも過剰に存在する Λ1のほうが多 く第 4図における A1リツチ層の厚みが大きく Λ1に谷間が埋められて金属間化 合物の突起部分が不明瞭になっている。 表面を AESにより組成分析した結果 全面に A1が検出された。 このため、 スバッタエツチにより 3. 5nmの Λ1リ ッチ 層を削り取って再度 AESにて表面分析した結果、 突起部分の組成比はおよそ Crが 11%であって、 金属間化合物がその主成分であることが確認された。 こ のことから Cr濃度が 5原子%のターゲットを用いた場合でも金属問化合物の 突起形成に対する寄与は認、められる。 前記の 濃度が 1 0 ½ (子。 /。の場合と同 様、 摺動信頼性をテストした結采を第 1 8図に合わせて示す。 この結果、 Cr 濃度が 5原子%の場合は、 Cr濃度が 1 0原子。/。の場合には及ばないものの、 突起を形成しない場合に比べ磁気特性、 摺動 頼性において効果を するこ とが分かる。 Next, Fig. 9 shows an AFM image of the surface when using a target with a concentration of 5 atomic%. There is more excess of the intermetallic compound than the intermetallic compound that forms the protrusions.Λ1 The thickness of the A1 rich layer in FIG. 4 is large.ΛThe valleys are filled in and the protrusions of the intermetallic compound become unclear. I have. As a result of composition analysis of the surface by AES, A1 was detected on the entire surface. For this reason, the 3.5 nm Λ1 rich layer was scraped off with a submerged etch, and surface analysis was performed again by AES.As a result, the composition ratio of the protruding portion was approximately 11% Cr, and the intermetallic compound was the main component. It was confirmed that. From this, even when a target with a Cr concentration of 5 atomic% is used, the contribution of the metal intermetallic compound to the formation of protrusions is recognized. As in the case of the above concentration of 10% (child./.), The results of the sliding reliability test are also shown in Fig. 18. As a result, when the Cr concentration is 5 atomic%, It can be seen that although the Cr concentration is not more than 10 atoms //, it is more effective in the magnetic properties and sliding reliability than when no projection is formed.
さらに、 Cr濃度が 1 2 . 5原子。んのターゲッ 卜を川いた場合の表面の AFM像 を第 1 0図に示す。 Λΐίίί (了-も (;τ "原子も金属間化合物を形成するために実質的 にすベて消費され、 平坦部分には余剰 1 子は残つていない。 これは AES分析 の結果からも確認された。 Cr濃度が 2 0原子%のターゲッ トを坩いた場合も、
その表面の AFM像及び AES分析の結果から Λ1原子も Cr原子も金属問化合物を形 成するために実質的にすべて消費され、 平坦部分には余剰原子は残っていな いことが確認された。 In addition, the Cr concentration is 12.5 atoms. Figure 10 shows an AFM image of the surface when the target is riverbed. Λΐίίί (了-((τ) atoms are also substantially consumed to form intermetallic compounds, and no surplus is left in the flat part. This is confirmed by the AES analysis. When a target with a Cr concentration of 20 atomic% was crucible, From the AFM image and AES analysis of the surface, it was confirmed that virtually all of the Λ1 and Cr atoms were consumed to form the metal intermetallic compound, and no surplus atoms remained in the flat part.
ただし、 基板温度が低い、 あるいは基板温度が高いとしてもその保持時間 が短かった場合などは非平衡状態として平坦部分にスパッタされたままの Al、 Cr各原子の混じりあった状態が固定される。 However, if the substrate temperature is low or the holding time is short even if the substrate temperature is high, the state where Al and Cr atoms are sputtered on the flat part is fixed as a non-equilibrium state.
添加する原子(本実施例の場合 Cr)の濃度が金属間化合物を構成する原子の 濃度の 0. 4倍から 1倍の問にあるターゲットを用いれば所期の目的を達成す ることができる。 本実施例の A1- Cr系では金属問化合物 Al4Crも突起形成させ ることができるので、 Cr濃度 5原子%以上 2 0原子%以下が好適である。 同様 に A1- Co, A1- Mo,Al -W,Al- Vの系でもそれぞれ Coが 7 - 2 9原子%、 Mo, V力 S 3 - 2 5原子%、 Wが 3 - 2 0 %が好適である。 The intended purpose can be achieved by using a target in which the concentration of the added atom (Cr in this embodiment) is 0.4 to 1 times the concentration of the atoms constituting the intermetallic compound. . In the case of the A1-Cr system of the present embodiment, the metal intermetallic compound Al 4 Cr can also form protrusions, so that the Cr concentration is preferably 5 atomic% or more and 20 atomic% or less. Similarly, in the A1-Co, A1-Mo, Al-W, and Al-V systems, Co is 7-29 atomic%, Mo and V force are S3-25 atomic%, and W is 3-20%. It is suitable.
次に実施例 2について説明する。 第 1 1図は本発明における実施例 2の磁 気ディスク媒体の断面図である。 Λ1合金基板 1 0 1に Ni及び Pの合金をメッ キする。 この Ni及び Pの合金のメツキされた A1合金基板 1 0 1上に Cr-Tiの合 金層 1 0 2を形成し, さらに Co- Cr- Ptの合金層 1 0 3を順次形成する。 合金 層 1 0 3の上にアモルファスカーボン膜を 3 nmスパッタ形成した後 A卜 10原 子%0タ一ゲットを用いて上記の実施例 1と同様の方法で金属問化合物の突 起] 0 4を形成した。 この磁気ディスク媒体の表面を AFM観察した結果、 合 金相 1 0 3と金属間化合物の突起 1 0 4の間に設けられたカーボン膜〗 0 6 は突起 1 0 4の密度を増大させる効果を奏することが分かった。 また、 ター ゲットと基板との距離を短くすることでターゲッ ト材料が基板へ付着する確 率を増加させて金属間化合物の突起 1 0 4の密度を増大させることもできる。 第 1 2図は本発明における実施例 3の磁気ディスク媒体の断面図である。 ガラス基板 1 0 1上に金属間化合物の突起 1 0 4を実施例 1 と同じ条件で形
成し、 その上に合金膜 1 0 2、 1 0 3、 保護膜 1 0 5をそれぞれ形成した。 この実施例 3の磁気ディスク媒体の表面を ΛΡΜ観察すると金属間化合物の突 起 1 0 4自体は実施例〗 と同様に形成されていることがわかった。 Next, a second embodiment will be described. FIG. 11 is a sectional view of a magnetic disk medium according to a second embodiment of the present invention. Λ1 Alloy Ni and P alloy on 1 alloy substrate 101. A Cr-Ti alloy layer 102 is formed on the A1 alloy substrate 101 on which the Ni and P alloys are plated, and a Co-Cr-Pt alloy layer 103 is sequentially formed. After forming an amorphous carbon film on the alloy layer 103 with a thickness of 3 nm by sputtering, a metal atom compound is protruded in the same manner as in Example 1 above, using a target of 10 atomic% and 0 target. Was formed. As a result of AFM observation of the surface of the magnetic disk medium, the carbon film カ ー ボ ン 06 provided between the alloy phase 103 and the projection 104 of the intermetallic compound has an effect of increasing the density of the projection 104. It turned out to play. In addition, by shortening the distance between the target and the substrate, the probability that the target material adheres to the substrate can be increased, and the density of the intermetallic compound protrusions 104 can be increased. FIG. 12 is a sectional view of a magnetic disk medium according to a third embodiment of the present invention. A projection 104 of an intermetallic compound was formed on a glass substrate 101 under the same conditions as in Example 1. Then, an alloy film 102, 103 and a protective film 105 were formed thereon. Observation of the surface of the magnetic disk medium of Example 3 by observation revealed that the protrusions 104 of the intermetallic compound were formed in the same manner as in Example 1.
次に実施例 1、 実施例 3及び合金膜 1 0 2、 1 0 3、 保護膜 1 0 5を同条 件で形成し突起を形成しなレ、例につレ、て磁気特性を比較するため He及び の 値を測定した。 この結果を第 1 9図に示す。 突起 1 0 4が合金屑〗 0 3の下 にある実施例 3は突起を形成しなレ、例と比較して磁気特性が下がつているこ とがわかる。 これは磁気記録に寄与する合金躬〗 0 3が波うつているためで ある。 一方、 Hc(L)/Hc(R)の値を 0 . 9 5以上 1 . 0 5以下とすることがで き、 高線記録密度時の出力の低下を防ぐことができた。 Next, Example 1, Example 3, alloy films 102, 103, and protective film 105 were formed under the same conditions, and the magnetic characteristics were compared without forming protrusions. Therefore, the values of He and were measured. The results are shown in FIG. In Example 3 in which the protrusion 104 was below the alloy dust〗 03, no protrusion was formed, and it can be seen that the magnetic properties were lower than in the example. This is because the alloy layer 03 contributing to magnetic recording is waving. On the other hand, the value of Hc (L) / Hc (R) could be set to 0.95 or more and 1.05 or less, and a decrease in output at high linear recording density could be prevented.
磁気ディスク装置の容量や高さを小さくする目的に対しては、 磁気ディス ク基板にガラス等のセラミックス基板を用いると Λ 1介金基板に比べて磁気 ディスク媒体を薄くできるため好ましい。 ガラス基板の場合には、 A1合金基 板で用いたように表面にテクスチャリングを形成することが不可能なため、 Hc(L)/Hc(R)の値が 1 . 0 5を上回る磁気デイスク媒体を形成することがで きない。 ガラス基板の場合には基板表面にテクスチャリング形成する代わり に金属間化合物の突起 1 0 4を合金膜 1 0 3のド側つまり基板 1 0 .1上に | 接形成した実施例 3の磁気デイスク媒体を川いることが好ましい。 ¾施例 3 によればガラス基板の磁気ディスク媒体においても磁気異方性の方向を均 - にすることができるため、 HC(L)/H(:(R)の値を 0 . 9 5以上- 1 . 0 5以下と することができる。 Hc(L)/Hc(R)が 0 . 9 5未満ではへッドの 行方向の保 磁力が低下し、 lOOkBPI以上の高線記録密度での出力が低下するので好ま しくない。 ここで、 突起 1 0 4は実施例 3にようにガラス基板 1 0 1上に [1 接形成することができるが、 特に微細な突起 1 0 4を形成する場合は基板 1 0 1 上 に 非 磁性 Co-Cr 合 金 、 非 磁性 Co-Cr-Ta 合 金 或 い は
1¾/13,21<,11812 1? を主たる成分とする合金による下地膜を膜厚が 5nm以 上 lOOnm以下となるように形成しこの下地膜上に突起 1 0 4を形成すると 均一な形状の微細な突起 1◦ 4を高密度に形成できる。 For the purpose of reducing the capacity and height of the magnetic disk device, it is preferable to use a ceramic substrate such as glass for the magnetic disk substrate because the magnetic disk medium can be made thinner than the metal substrate. In the case of glass substrates, since it is impossible to form a texturing to the surface as used in the A1 alloy board, magnetic value of Hc (L) / H c ( R) is greater than 1.0 5 A disk medium cannot be formed. In the case of a glass substrate, instead of forming texturing on the substrate surface, the magnetic disk of Example 3 in which the intermetallic compound protrusion 104 was formed in contact with the alloy film 103 on the side of the alloy film 103, that is, on the substrate 10.1. It is preferred that the medium is flowing. According to the third embodiment, the direction of magnetic anisotropy can be made uniform even in a magnetic disk medium having a glass substrate, so that the value of H C (L) / H (:( R) is 0.95. If Hc (L) / Hc (R) is less than 0.95, the coercive force in the row direction of the head decreases, and at a high linear recording density of lOOkBPI or more, Here, the projections 104 are not preferable because the projections 104 can be formed on the glass substrate 101 in a single contact as in the third embodiment, but particularly the fine projections 104 are formed. In this case, non-magnetic Co-Cr alloy, non-magnetic Co-Cr-Ta alloy or 1¾ / 13, 21 <, 11812 1? An underlayer consisting of an alloy with a main component of not less than 5 nm and not more than 100 nm is formed. Fine protrusions 1◦4 can be formed at high density.
次に本発明を磁気テ"イスク装置に適用した実施例 4について説明する。 Next, a fourth embodiment in which the present invention is applied to a magnetic disk apparatus will be described.
実施例 4における磁気へッド 3の模式図を第 1 4図に示す。 本実施例にお ける磁気へッド 3はスライダ 3 1 と磁気ディスク媒体 1 へ記録 Z再生を行う 素子 3 2から構成される。 スライダ 3 1の磁気ディスク媒体 1 との対向面 3 1 1に機械的方法で条痕を与えた後、 スライダ 3 1に素子 3 2を形成した。 次に、 スライダの対向面 3 1 1に実施例 1 と同様の方法により金属間化合物 の突起 3 0を有する磁気へッド 3を形成した。 さらにアルゴン- 2 0 %水素 雰囲気中でカーボンターゲットをスパッタして磁気へッド 3のスライダ 3 1 及び素子 3 2の対向面に保護膜を形成して磁気ヘッド 3を得た。 ただし、 突 起を形成したときに使用したターゲットは 1-7原子%\\'である。 保護膜の材 料およびプロセスは上記のものに限らない。 また、 突起形成に用いるター ゲットは平衡状態で金属問化合物の相を 40%以丄:の量で生成しうるものであ ればどのような系のものでもよい。 FIG. 14 is a schematic diagram of the magnetic head 3 according to the fourth embodiment. The magnetic head 3 according to the present embodiment includes a slider 31 and an element 32 for performing recording / reproduction on the magnetic disk medium 1. After striations were formed on the surface 31 1 of the slider 31 facing the magnetic disk medium 1 by a mechanical method, the element 32 was formed on the slider 31. Next, a magnetic head 3 having an intermetallic compound protrusion 30 was formed on the opposing surface 311 of the slider in the same manner as in Example 1. Further, a carbon target was sputtered in an argon-20% hydrogen atmosphere to form a protective film on the surface of the magnetic head 3 facing the slider 31 and the element 32, thereby obtaining the magnetic head 3. However, the target used when the protrusion was formed is 1-7 atomic%. The material and process of the protective film are not limited to those described above. The target used for forming the projections may be of any type as long as it can generate a phase of a metal intermetallic compound in an equilibrium state in an amount of 40% or less.
実施例 4における磁気デイスク媒体の模式図を第 1 5図に示す。 FIG. 15 shows a schematic diagram of the magnetic disk medium in the fourth embodiment.
まず、 N i及び Pの合金をメツキした外径 95瞧,内径 25mtn,厚さ 0. 8mmであって 中央に同心円状の穴のあいた円盤状の A 1合金基板を回転させながら研磨テ一 ブを押しつけることにより機械的に加工して円周方向に条痕を与える。 表面 の荒さは平均で Rpが 4ないし 8 nmの範囲にはいるよう制御する。 First, a polishing table was rotated while rotating a disk-shaped A1 alloy substrate with an outer diameter of 95 mm, an inner diameter of 25 mtn, a thickness of 0.8 mm, and a concentric hole in the center. Is pressed to mechanically work to give a streak in the circumferential direction. The surface roughness is controlled so that on average Rp is in the range of 4 to 8 nm.
以上のようにして加工した基板上に実施例 1と同様の方法により金属間化 合物の突起】 0を有する磁気ディスク媒体 1を形成した。 突起 1 0を形成し たときに使用したタ一ゲッ トは A1- 7原子% である。 ターゲッ トは平衡状態 で金属間化合物の相を 40%以上の量で生成しうるものであればどのような系
のものでもよい。 The magnetic disk medium 1 having the intermetallic compound projections 0 was formed on the substrate processed as described above in the same manner as in Example 1. The target used when the protrusion 10 was formed was A1-7 atomic%. The target can be any system capable of producing an intermetallic compound phase in equilibrium at 40% or more. It may be.
対向面に条痕を与える方法は上記した機械的方法に限らず、 フォ卜リソぉ よびドライエッチングの組み合わせ等の方法によってもよく、 おおよそ一定 の周期で局所的に表面積が大きくなっていればよい。 The method of forming a streak on the opposing surface is not limited to the mechanical method described above, but may be a method such as a combination of photolithography and dry etching, as long as the surface area is locally increased approximately at a constant cycle. .
上記の磁気デイスク媒体 1および磁気へッド 3を用いて磁気ディスク装置 A magnetic disk drive using the above magnetic disk medium 1 and magnetic head 3
5を構成する際、 磁気ディスク媒体 1、 磁気へッ ド 3の双方の突起の配列が 磁気ディスク媒体表面に対して鉛 | 方向から兑て互いに交差するように配置 する。 このことにより、 磁 ディスク媒体 1 と磁気ヘッド 3の双方の対向面 の接触面積が減少し、 摺動特^が向上する。 When configuring 5, the arrangement of the protrusions of both the magnetic disk medium 1 and the magnetic head 3 is arranged so as to intersect with the surface of the magnetic disk medium from the lead | direction. As a result, the contact area between the opposing surfaces of the magnetic disk medium 1 and the magnetic head 3 is reduced, and the sliding characteristics are improved.
実施例 4の磁気ディスク装置について摺動特性のパラメータとして初期接 線力、 初期粘若力および CSS 1万回後の粘着力を測定した。 同様に、 突起な しの磁気へッドと磁気ディスク媒体の組み合わせにより構成された磁気ディ スク装置を比較例として測定を行った。 これらの結果を第 2 0図に示す。 実 施例 4の磁気デイスク装置は比較例と比べ、 磁気へッ ドと磁 デイスク媒体 の粘着が起きにくいことがわかる。 With respect to the magnetic disk device of Example 4, the initial tangential force, the initial viscous force, and the adhesive force after 10,000 times of CSS were measured as parameters of the sliding characteristics. Similarly, the measurement was performed using a magnetic disk device composed of a combination of a magnetic head without protrusions and a magnetic disk medium as a comparative example. The results are shown in FIG. It can be seen that the magnetic disk device of Example 4 is less likely to stick between the magnetic head and the magnetic disk medium than the comparative example.
突施例 5として鏡面研磨されたシリコンウェハ こ金属間化合物の突起を 形成した。 In Protrusion 5, a mirror-polished silicon wafer was formed with protrusions of an intermetallic compound.
加熱により 100 ± 10nmの酸化膜が形成されているシリ コンウェハ基板上に Λ1及び Coの金属間化合物の突起を A1 - 14原子%C.oからなるターゲッ トをスパッ タリングすることにより形成する。 ターゲットは平衡状態で金属間化合物の 相を 40%以 hの量で生成しうるものであれば前記 A1 京 %Coからなるタ一 ゲッ卜に限らずどのような系のものでもよい。 二れによって得られたミラ一 の反射率を水銀ランプを用レ、た反射率測定装置を川レ、て測定した。 この結果 を第 2 1図に示す。 形成温度、 形成時間を変化させることで反射率を制御す ることができる。
産業上の利用可能性 On a silicon wafer substrate on which an oxide film of 100 ± 10 nm is formed by heating, protrusions of intermetallic compounds of 1 and Co are formed by sputtering a target consisting of A1-14 atomic% Co. The target is not limited to the target made of A1% Co and may be any type of target as long as it can generate an intermetallic compound phase in an amount of 40% or more in an equilibrium state. The reflectance of the mirror obtained by the shearing was measured using a mercury lamp and a reflectance measuring device using a river. Figure 21 shows the results. The reflectance can be controlled by changing the formation temperature and the formation time. Industrial applicability
本発明により磁気へッドと磁気ディスク媒体の粘着の生じ難レ、耐摺動性に 優れた磁気ディスク装置を提供できる。 According to the present invention, it is possible to provide a magnetic disk device which is less likely to cause adhesion between the magnetic head and the magnetic disk medium and has excellent sliding resistance.
また、 一回の処理の時間を短縮し、 突起形成後はその形状を安定に保持し、 かつ磁気記録特性と耐摺動信頼性を同時に満足するような磁気ディスク媒体 及び磁気へッドを容易に構成することができる。
In addition, it is possible to shorten the time of one processing, to easily maintain the shape after forming the protrusions, and to easily manufacture magnetic disk media and magnetic heads that simultaneously satisfy the magnetic recording characteristics and the sliding reliability. Can be configured.
Claims
1. 基板上にコバルト (Co) を主成分とする合金層をスパッタリングにより 形成し、 該合金層上にアルミニウム (A1) の原子およびクロム、 コバルト、 モリブデン、 バナジウム、 タングステン、 銅、 鉄、 マンガン、 ニッケル、 ノ ラジウム或いは白金 (0,0),1^0 ^,01 6^ ,1^或ぃは? のうちから 選ばれた一種の元素の原子から構成されるタ一ゲッ トをスバックリングする ことにより島状の突起を形成し、 該合金層及び該突起上に保護膜層を形成す ることを特徴とする磁気ディスク媒体の製造方法。 1. An alloy layer containing cobalt (Co) as a main component is formed on a substrate by sputtering, and aluminum (A1) atoms and chromium, cobalt, molybdenum, vanadium, tungsten, copper, iron, manganese, and the like are formed on the alloy layer. Nickel, noradium or platinum (0,0), 1 ^ 0 ^, 01 6 ^, 1 ^ or? Forming an island-like protrusion by buckling a target composed of atoms of one kind of element selected from the above, and forming a protective film layer on the alloy layer and the protrusion. A method for manufacturing a magnetic disk medium.
2. 基板上にコバルト (Co) を主成分とする合金層を形成し、 该合金層上に 力一ボン層を形成し、 該カ一ボン層上にアルミニウム (Λ1) の原子およびク ロム、 コノくノレト、 モリブデン、 バナジウム、 タングステン、 銅、 鉄、 マンガ ン、 ニッケル、 パラジウム或いは白金 (0, (;0,1^0 , ,[:11, ,1^,.\' ド(1或ぃ は Pt) のうちから選ばれた一種の元素の原子から構成されるターゲッ 卜をス バッタリングすることにより島状の突起を形成し、 該カ一ボン層及び該突起 上に保護膜層を形成することを特徴とする磁気デイスク媒体の製造方法。2. An alloy layer containing cobalt (Co) as a main component is formed on the substrate, a carbon layer is formed on the alloy layer, and aluminum (Λ1) atoms and chromium are formed on the carbon layer. Konoroku, molybdenum, vanadium, tungsten, copper, iron, manganese, nickel, palladium or platinum (0, (; 0,1 ^ 0,, [: 11,, 1 ^ ,. \ 'do (1 or Forms an island-like projection by sputtering a target composed of atoms of one kind of element selected from Pt), and forms a carbon layer and a protective film layer on the projection. A method for manufacturing a magnetic disk medium.
3. 基板上にアルミニウム (A1) の原子およびクロム、 コバルト、 モリブデ ン、 バナジウム、 タングステン、 銅、 鉄、 マンガン、 ニッケル、 パラジウム 或いは白金 (0 0, !^0 ,(1_1, 6,1^, ,?(1或ぃは1^) のうちから選ばれた —種の元素の原子から構成されるタ一ゲッ トをスパッタリングすることによ り ¾状の突起を形成し、 該基板及び該突起上にコバルト (Co) を. 'π成分とす る合金層を形成し、 該合金屑ヒに保護膜 'を形成することを特徴とする磁気 ディスク媒体の製造方法。 3. Aluminum (A1) atoms and chromium, cobalt, molybdenum, vanadium, tungsten, copper, iron, manganese, nickel, palladium or platinum (0 0,! ^ 0, (1_1, 6,1 ^, ,? (1 or ^ or 1 ^) are formed by sputtering a target composed of atoms of a certain kind of element to form a ¾-shaped protrusion, and the substrate and the protrusion are formed. A method for manufacturing a magnetic disk medium, comprising: forming an alloy layer containing cobalt (Co) as a π component thereon; and forming a protective film on the alloy dust.
4. 前記ターゲットの元素の組成が Λ 1 -X原子% (χ=5-20) 、 Λ 1 - X原チ% (x=3-25) 、 Al-xlJj(7-%Co (x=7-29) 、 A卜 xfti %V (x=3 25) 或いは Λ1 xJi
子 %W (x=3-20) であることを特徴とする請求項 1乃至 3記載の磁気ディスク 媒体の製造方法。 4. The composition of the target element is Λ 1 -X atomic% (χ = 5-20), Λ 1 -X atomic percent (x = 3-25), Al-xlJj (7-% Co (x = 7 -29), A xfti% V (x = 3 25) or Λ1 xJi 4. The method for manufacturing a magnetic disk medium according to claim 1, wherein the ratio is% W (x = 3-20).
5 . 基板、 該基板上に形成されたコバルト (Co) を主成分とする合金層、 該 合金層上に形成された金属間化合物よりなる島状の突起と該合金層及び該突 起上に形成された保護膜層からなることを特徴とする磁気デイスク媒体。 5. A substrate, an alloy layer containing cobalt (Co) as a main component formed on the substrate, an island-shaped protrusion made of an intermetallic compound formed on the alloy layer, and an upper surface of the alloy layer and the protrusion. A magnetic disk medium comprising a formed protective film layer.
6 . 基板、 該基板上に形成されたコバルト (Co) を主成分とする合金風;、 該 合金層上に形成されたカーボン層、 該カーボン層上に形成された金厲問化合 物よりなる島状の突起と該カ一ボン層及び突起上に形成された保護膜層から なることを特徴とする磁気ディスク媒体。 6. A substrate, an alloy wind mainly composed of cobalt (Co) formed on the substrate; a carbon layer formed on the alloy layer; and a gold-based compound formed on the carbon layer. A magnetic disk medium comprising an island-like protrusion, a carbon layer and a protective film layer formed on the protrusion.
7 . 基板、 該基板上に形成された金属問化合物よりなる島状の突起、 該基板 及び該突起ト.に形成されたコバルト (Co) を主成分とする合金層と該合金!^ 上に形成された保護膜層からなることを特徴とする磁気デイスク媒体。 7. The substrate, the island-shaped protrusions made of a metal compound formed on the substrate, the cobalt (Co) -based alloy layer formed on the substrate and the protrusions, and the alloy! A magnetic disk medium comprising a formed protective film layer.
8 . 前記 状の突起はアルミニウム (Λ1 ) の原子およびクロム、 コバノレト、 モリプデン、 バナジウム、 タングステン、 銅、 鉄、 マンガン、 ニッケル、 ノく ラジウム或いは 金 (0, (:0^0, ¥^,( 1], 0^11,]\ ,ド(1或ぃは?1;) のうちから 選ばれた一種の元素の原子から構成される金属間化合物よりなることを特徴 とする請求項 5乃至 7記載の磁気デイスク媒体。 8. The above-mentioned protrusions are composed of aluminum (Λ1) atoms and chromium, covanolate, molybdenum, vanadium, tungsten, copper, iron, manganese, nickel, nickel radium or gold (0, (: 0 ^ 0, ¥ ^, ( 8. An intermetallic compound composed of atoms of a kind of element selected from 1], 0 ^ 11,] \, and de (1 or? 1;). A magnetic disk medium as described.
9 . 前記金属間化合物中のクロム、 コバルト、 モリブデン、 バナジウム、 タ ングステン、 銅、 鉄、 マンガン、 ニッケル、 パラジウム或いは白金 (Cr, Co, Mo, V,W, Cu, Fe, Mn, Ni , Pd或いは Pt) のうち力 ら選ばれた一種の元素 の原子の濃度が 1原子%以上、 3 0原子%以下であることを特徴とする請求 項 8記載の磁気ディスク媒体。 9. Chromium, cobalt, molybdenum, vanadium, tungsten, copper, iron, manganese, nickel, palladium or platinum (Cr, Co, Mo, V, W, Cu, Fe, Mn, Ni, Pd) in the intermetallic compound 9. The magnetic disk medium according to claim 8, wherein the concentration of atoms of a kind of element selected from among Pt) is 1 atomic% or more and 30 atomic% or less.
1 0 . 前記島状の突起はアルミニウム (A1 ) の原子及び融点が 1 0 0 0で以 上の高融点金属元素から構成される金属間化合物よりなることを特徴とする 請求項 5乃至 7記載の磁気デイスク媒体。
10. The island-shaped protrusion is made of an intermetallic compound composed of aluminum (A1) atoms and a high melting point metal element having a melting point of 100. Magnetic disk media.
1 1 . 前記島状の突起は平衡状態において 4 0%以上の割合で金属問化合物 を含むことを特徴とする請求項 5乃至 1 0記載の磁気デイスク媒体。 11. The magnetic disk medium according to claim 5, wherein the island-like projections contain a metal intermetallic compound at a ratio of 40% or more in an equilibrium state.
1 2. 前記島状の突起の密度が平均して 1.0X 1012個/ 以上、 該突起の高さ が平均 lOnm以上であることを特徴とする請求項 5乃至 1 ]記載の磁気ディス ク媒体。 1. The magnetic disk medium according to claim 5, wherein the density of the island-shaped projections is 1.0 × 10 12 or more on average, and the height of the projections is an average of lOnm or more. .
1 3. 前記磁気ディスク媒体の円周方向に測定した保磁力 Hc(L)と、 前記磁 気ディスク媒体の半径方向に測定した保磁力 He (R)との比率、 Hc (l,)/Hc(R)が 1. i以上、 1.5以ドであることを特徴とする請求 ¾ 5または 6記載の磁 ディ スク媒体。 1 3. The ratio of the coercive force Hc (L) measured in the circumferential direction of the magnetic disk medium to the coercive force He (R) measured in the radial direction of the magnetic disk medium, Hc (l,) / Hc 7. The magnetic disk medium according to claim 5, wherein (R) is 1.i or more and 1.5 or more.
1 . 前記磁気デイ スク媒体の円周方向に測定した保磁力 He (L)と、 前記磁 気ディスク媒体の半径方向に測定した保磁力 Hc(R)との比率、 llc(L)/Hc(R)が 0.95以上、 1.05以卜-であることを特徴とする請求項 7記載の磁気デイスク媒 体。 1.The ratio of the coercive force He (L) measured in the circumferential direction of the magnetic disk medium to the coercive force Hc (R) measured in the radial direction of the magnetic disk medium, llc (L) / Hc ( 8. The magnetic disk medium according to claim 7, wherein R) is 0.95 or more and 1.05 or less.
1 5. 磁気ディスク媒体に対し記録/再生を行う素子及び該桌了-を搭載する スライダからなる磁気ヘッ ドにおいて、 1 5. In the magnetic head consisting of the element for recording / reproducing to / from the magnetic disk medium and the slider mounting the end,
前記スライダは磁気ディスク媒体に対する対 1( 面に金属問化合物よりなる島 状の突起を有することを特徴とする磁^へッ ド。 A magnetic head characterized in that the slider has an island-shaped protrusion made of a metal intermetallic compound on one side (a surface) with respect to a magnetic disk medium.
1 6. 前記島状の突起はアルミニウム (ΑΠ の原 及びクロム、 コバノレト、 モリブデン、 バナジウム、 タングステン、 銅、 鉄、 マンガン、 ニッケル、 バ ラジウム或いは白金 (0,(:0^0,¥,\^(^, 6, 1^,^, (1或ぃはド0 のうちから 選ばれた一種の元素の原子から構成される金¾ ^化合物よりなることを特徴 とする請求項〗 5記載の磁気へッド。 1 6. The island-shaped protrusions are made of aluminum (ΑΠ-no-hara and chromium, covanolate, molybdenum, vanadium, tungsten, copper, iron, manganese, nickel, vanadium or platinum (0, (: 0 ^ 0, ¥, \ ^ 6. The magnetic material according to claim 5, wherein the magnetic material is made of a gold compound composed of atoms of a kind of element selected from (^, 6, 1 ^, ^, (1 or 00). Head.
1 7. 前記島状の突起はアルミニウム (Λ1) の原子及び融点が 1 0 0 0 C以 hの高融点金属元素から構成される金展,問化合物よりなることを特徴とする 請求項 1 5記載の磁気へッド。
17. The island-shaped protrusion is made of a gold alloy or a compound composed of aluminum (Λ1) atoms and a refractory metal element having a melting point of 100 ° C. or higher. Magnetic head as described.
1 8 . 磁気ディスク媒体と、 該磁気ディスク媒体に対向して設けられ当該磁 気ディスク媒体上を浮上することにより記録 再生を行う磁気へッドと、 該 磁気へッドを前記磁気ディスク媒体上の所定の位置に位置づけるへッド駆動 部と、 前記磁気デイスク媒体を回転させるスピンドルモータとからなる磁気 δ ディスク装置において、 18. A magnetic disk medium, a magnetic head provided to face the magnetic disk medium and performing recording and reproduction by floating on the magnetic disk medium, and a magnetic head mounted on the magnetic disk medium A magnetic δ disk device, comprising: a head driving unit positioned at a predetermined position; and a spindle motor for rotating the magnetic disk medium.
前記磁気ディスク媒体は基板、 該基板上に形成されたコバルト (Co) を主成 分とする合金層、 該合金層上に形成された金属間化合物よりなる島状の突起 と該合金層及び該突起上に形成された保護膜層を有することを特徴とする磁 ディスク装置。 The magnetic disk medium includes a substrate, an alloy layer mainly composed of cobalt (Co) formed on the substrate, island-shaped protrusions made of an intermetallic compound formed on the alloy layer, and the alloy layer; A magnetic disk device having a protective film layer formed on a projection.
0 1 9 . 磁気ディスク媒体と、 該磁気ディスク媒体に対向して設けられ当該磁 気ディスク媒体上を浮上することにより記録 Z再生を行う磁気へッドと、 該 磁気へッドを前記磁気ディスク媒体上の所定の位置に位置づけるへッド駆動 部と、 前記磁気デイスク媒体を回転させるスピンドルモ一タとからなる磁気 ディスク装 f®において、0 1 9. A magnetic disk medium, a magnetic head which is provided to face the magnetic disk medium and performs recording and Z reproduction by floating above the magnetic disk medium, and the magnetic head A magnetic disk drive f® including a head drive unit positioned at a predetermined position on a medium, and a spindle motor for rotating the magnetic disk medium;
5 前記磁気ディスク媒体は基板、 該基板上に形成されたコバルト (Co) を主成 分とする合金層、 該合金層上に形成されたカーボン層、 該カーボン層上に形 成された金属間化合物よりなる島状の突起と該カーボン層及び該突起上に形 成された保護膜層を有することを特徴とする磁気デイスク装置。 5 The magnetic disk medium includes a substrate, an alloy layer mainly composed of cobalt (Co) formed on the substrate, a carbon layer formed on the alloy layer, and a metal layer formed on the carbon layer. A magnetic disk device comprising: an island-shaped protrusion made of a compound; a carbon layer; and a protective film layer formed on the protrusion.
2 0 .磁気ディスク媒体と、 該磁気デイスク媒体に対向して設けられ当該磁0 気ディスク媒体上を浮上することにより記録 再生を行う磁気ヘッドと、 該 磁気へッドを前記磁気ディスク媒体上の所定の位置に位置づけるへッド駆動 部と、 前記磁気デイスク媒体を回転させるスピンドルモータとからなる磁気 ディスク装置において、 20. A magnetic disk medium, a magnetic head provided opposite to the magnetic disk medium for performing recording and reproduction by floating above the magnetic disk medium, and a magnetic head mounted on the magnetic disk medium In a magnetic disk drive comprising a head drive unit positioned at a predetermined position, and a spindle motor for rotating the magnetic disk medium,
前記磁気ディスク媒体は基板、 該基板上に形成された金属間化合物よりなる5 島状の突起と該基板及び該突起上に形成されたコバルト (Co) を主成分とす
る合金層、 該合金屑上に形成された保護膜層を有することを特徴とする磁気 ディスク装置。 The magnetic disk medium is mainly composed of a substrate, a five-island protrusion formed of an intermetallic compound formed on the substrate, and cobalt (Co) formed on the substrate and the protrusion. A magnetic disk drive comprising: an alloy layer; and a protective film layer formed on the alloy scrap.
2 1 . 前記磁気へッドは前記磁気ディスク媒体に対し記録ノ再生を行う素子 及び該素子を搭載するスライダからなり、 21. The magnetic head comprises an element for performing recording / reproducing on the magnetic disk medium and a slider on which the element is mounted,
前記スライダは磁気ディスク媒体に対する対向面に金属間化合物よりなる島 状の突起と該スライダ及び該突起上に形成された保護膜層とを有することを 特徴とする請求項 1 8乃至 2 0記載の磁気ディスク装置。 21. The slider according to claim 18, wherein the slider has an island-shaped protrusion made of an intermetallic compound on a surface facing the magnetic disk medium, and the slider and a protective film layer formed on the protrusion. Magnetic disk unit.
2 2 . 前記磁気ディスク媒体は前記 ¾板の表 Γίυ'に特定方向に形成された条痕 を有しており、 前^磁気ディスク媒体に形成された島状の突起は該基板の表 面の条痕に沿った方向に優先的に形成されており、 前記磁気へッドは前 ス ラィダの磁気デイスク媒体に対する対向面に特定方向に形成された条痕を冇 しており、 前記磁気へッ ドに形成された島状の突起は該スライダの条痕に 沿った方向に優先的に形成されており、 前記磁 ディスク媒体の島状の突起 及び磁気へッドの S状の突起の配列は互いに交差するように配 Κされている ことを特徴とする請求項 2 1記載の磁気ディスク装置。 22. The magnetic disk medium has a streak formed in a specific direction on the surface of the substrate, and the island-shaped protrusions formed on the magnetic disk medium are formed on the surface of the substrate. The magnetic head is formed preferentially in a direction along the streak, and the magnetic head has a streak formed in a specific direction on a surface of the front slider facing the magnetic disk medium, and the magnetic head is The island-shaped projections formed on the magnetic disk medium are preferentially formed in the direction along the streaks of the slider, and the arrangement of the island-shaped projections of the magnetic disk medium and the S-shaped projections of the magnetic head are: 22. The magnetic disk drive according to claim 21, wherein the magnetic disk drives are arranged so as to cross each other.
2 3 . 前記島状の突起はアルミニウム (Λ1 ) の 了-およびクロム、 コノくルト、 モリブデン、 バナジウム、 タングステン、 銅、 鉄、 マンガン、 ニッケル、 パ ラジウム或いは白金 (Cr,Co, Mo,V,W,Cu,i''c,Mn, Ni,Pd或いは I ) のうちから 選ばれた一種の元素の原 fから構成される金属間化合物よりなることを特徴 とする請求項 1 8乃至 2 2記載の磁気ディスク装置。 23. The island-shaped protrusions are made of aluminum (Λ1) and chromium, cono-cort, molybdenum, vanadium, tungsten, copper, iron, manganese, nickel, palladium or platinum (Cr, Co, Mo, V, 33. An intermetallic compound composed of an element f of one kind of element selected from W, Cu, i''c, Mn, Ni, Pd or I). The magnetic disk drive according to the above.
2 4 . 前 ^島状の突起はアルミニウム (Λ 1 ) の 子および融点が 1 0 0 0。C 以上の高融点金属兀素から構成される金属問化合物よりなることを特徴とす る請求項 1 8乃 2 2記載の磁¾ディスク装^。
2 4. The front island-like protrusions are aluminum (Λ 1) particles and have a melting point of 1000. The magnetic disk device according to claim 18, wherein the magnetic disk device is made of a metal compound composed of a high melting point metal having a melting point of C or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1996/002720 WO1998012698A1 (en) | 1996-09-20 | 1996-09-20 | Magnetic disk medium, magnetic head, magnetic disk apparatus using them, and production method of the disk apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1996/002720 WO1998012698A1 (en) | 1996-09-20 | 1996-09-20 | Magnetic disk medium, magnetic head, magnetic disk apparatus using them, and production method of the disk apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998012698A1 true WO1998012698A1 (en) | 1998-03-26 |
Family
ID=14153864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1996/002720 WO1998012698A1 (en) | 1996-09-20 | 1996-09-20 | Magnetic disk medium, magnetic head, magnetic disk apparatus using them, and production method of the disk apparatus |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1998012698A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6372367B1 (en) | 1998-05-12 | 2002-04-16 | Hitachi, Ltd. | Magnetic recording medium, method for producing the same and magnetic recording apparatus using the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01134720A (en) * | 1987-11-20 | 1989-05-26 | Mitsubishi Electric Corp | Magnetic disk |
JPH05282646A (en) * | 1992-03-31 | 1993-10-29 | Sony Corp | Floating type magnetic head |
JPH0660368A (en) * | 1992-08-06 | 1994-03-04 | Fuji Electric Co Ltd | Magnetic recording medium and manufacturing method thereof |
JPH0737236A (en) * | 1993-07-20 | 1995-02-07 | Kubota Corp | Substrate for magnetic recording medium and magnetic recording medium using the substrate |
JPH07192260A (en) * | 1993-12-28 | 1995-07-28 | Nippon Sheet Glass Co Ltd | Manufacture of magnetic recording medium having ruggedness on surface |
JPH08147661A (en) * | 1994-11-21 | 1996-06-07 | Kao Corp | Magnetic recording media |
-
1996
- 1996-09-20 WO PCT/JP1996/002720 patent/WO1998012698A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01134720A (en) * | 1987-11-20 | 1989-05-26 | Mitsubishi Electric Corp | Magnetic disk |
JPH05282646A (en) * | 1992-03-31 | 1993-10-29 | Sony Corp | Floating type magnetic head |
JPH0660368A (en) * | 1992-08-06 | 1994-03-04 | Fuji Electric Co Ltd | Magnetic recording medium and manufacturing method thereof |
JPH0737236A (en) * | 1993-07-20 | 1995-02-07 | Kubota Corp | Substrate for magnetic recording medium and magnetic recording medium using the substrate |
JPH07192260A (en) * | 1993-12-28 | 1995-07-28 | Nippon Sheet Glass Co Ltd | Manufacture of magnetic recording medium having ruggedness on surface |
JPH08147661A (en) * | 1994-11-21 | 1996-06-07 | Kao Corp | Magnetic recording media |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6372367B1 (en) | 1998-05-12 | 2002-04-16 | Hitachi, Ltd. | Magnetic recording medium, method for producing the same and magnetic recording apparatus using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3371062B2 (en) | Magnetic recording medium, method of manufacturing the same, and magnetic storage device | |
JP6318333B2 (en) | Manufacturing method of magnetic recording medium and magnetic recording medium manufactured by the manufacturing method | |
US5252367A (en) | Method of manufacturing a magnetic recording medium | |
US5413835A (en) | Magnetic recording medium having an underlayer of low melting point metal alloy in the form of spherically shaped structures | |
JPH117622A (en) | Magnetic recording medium substrate, magnetic recording medium, and method of manufacturing magnetic recording medium | |
US6863998B2 (en) | Magnetic recording medium, method for producing the same, and magnetic recording apparatus | |
US5851628A (en) | Magnetic recording medium and method for manufacturing the same | |
WO1998012698A1 (en) | Magnetic disk medium, magnetic head, magnetic disk apparatus using them, and production method of the disk apparatus | |
JP2953287B2 (en) | Method for manufacturing magnetic recording medium having irregularities on its surface | |
JP2864770B2 (en) | Magnetic disk substrate and magnetic recording medium using the same | |
JP2819839B2 (en) | Magnetic disk substrate and magnetic recording medium using the same | |
WO2006030961A1 (en) | Method for manufacturing perpedicular magnetic recording medium, perpendicular magnetic recording medium, and magnetic recording/ reproducing apparatus | |
US6826825B2 (en) | Method for manufacturing a magnetic recording medium | |
JP2005190506A (en) | Perpendicular magnetic recording medium and manufacturing method thereof | |
JP3838491B2 (en) | Method for manufacturing magnetic recording medium | |
JPH04255908A (en) | Substrate for magnetic disk | |
JP3544645B2 (en) | Magnetic recording medium and magnetic storage device | |
JP4077964B2 (en) | Magnetic recording medium, method of manufacturing the same, and magnetic storage device | |
JP3794995B2 (en) | Recording medium and method for forming base layer of recording medium | |
JP2004288328A (en) | Manufacturing method of magnetic recording medium | |
JPS62117143A (en) | Production of magnetic recording medium | |
JP4238455B2 (en) | Magnetic recording medium manufacturing method and magnetic recording / reproducing apparatus | |
JPS61216125A (en) | Production of magnetic recording medium | |
JPH06119636A (en) | Production of magnetic recording medium and magnetic recording medium | |
JPH05325183A (en) | Manufacture of magnetic disk |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |