WO1997031302A1 - Method and apparatus for controlling travel of unmanned vehicle - Google Patents
Method and apparatus for controlling travel of unmanned vehicle Download PDFInfo
- Publication number
- WO1997031302A1 WO1997031302A1 PCT/JP1997/000450 JP9700450W WO9731302A1 WO 1997031302 A1 WO1997031302 A1 WO 1997031302A1 JP 9700450 W JP9700450 W JP 9700450W WO 9731302 A1 WO9731302 A1 WO 9731302A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steering
- command
- steering angle
- control
- traveling
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 21
- 238000006073 displacement reaction Methods 0.000 claims description 25
- 230000008859 change Effects 0.000 claims description 7
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 230000004044 response Effects 0.000 description 5
- 238000013500 data storage Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0223—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/18—Steering angle
Definitions
- the present invention relates to a travel control method and apparatus for controlling a travel locus of an unmanned vehicle during automatic travel. Background technology
- an unmanned vehicle traveling system capable of unmanned traveling of a vehicle along a predetermined traveling course.
- an unmanned dump truck operation system that transports sediment using unmanned vehicles, for example, unmanned dump trucks, is well known.
- This unmanned dump truck operation system is, for example, as follows.
- the running course of the unmanned dump truck is taught in advance by a predetermined method, and coordinate data at a predetermined distance or time on the running course is stored as running course data in a storage device.
- the unmanned dump truck detects and confirms the current position where the vehicle is actually traveling by the position detecting means at every predetermined sampling time, and checks the actual traveling position and the previously stored traveling course data. Is calculated. Then, the steering control of the unmanned dump is performed so as to reduce the deviation, and the unmanned dump is controlled so as to travel along the traveling course stored in advance.
- the vehicle speed during automatic driving is determined by the engine fuel injection amount so as to reduce the deviation between the prescribed vehicle speed value predetermined for each section of the traveling course and the actual vehicle speed detected by the vehicle speed detecting means. This is done by controlling the transmission and brakes.
- the vehicle speed detecting means detects the vehicle speed based on, for example, the number of revolutions of the drive wheel shaft per unit time.
- the driver is usually forced to use an unmanned vehicle to ensure safety. It is often stopped by applying a brake.
- the vehicle speed is limited to a low specified value so that stability is not impaired even when sudden braking is applied.
- the allowable value of the displacement amount is reduced so that even if the braking distance is large, contact with another vehicle does not occur.
- the present invention has been made in order to solve the problems of the related art, and suppresses the occurrence of sudden stop due to a course during automatic driving, and furthermore, does not reduce the work efficiency, and provides the driving safety and safety. It is an object of the present invention to provide an unmanned vehicle traveling control method and device capable of securing traveling trajectory accuracy.
- a first traveling control method for an unmanned vehicle according to the present invention includes:
- a steering angle command is output to reduce the amount of displacement between the target position and the current position, and the steering angle command is compared with the steering angle of the steering handle to determine the steering angle deviation.
- the steering is controlled based on the steering angle deviation and the steering control gain, and the speed is controlled so as to travel at a specified vehicle speed.
- speed control is performed by increasing the specified vehicle speed value, and at least one control of steering control by changing the steering control gain is performed. It is a feature.
- the positional deviation amount when the positional deviation amount becomes equal to or more than the predetermined threshold value, the positional deviation amount tends to increase. Therefore, the vehicle speed is reduced, and the steering control gain is changed.
- the steering control gain is changed to improve steering responsiveness and improve travel trajectory accuracy.
- the traveling direction is corrected before the course out so that the positional deviation amount becomes small.
- the sudden stop of the unmanned vehicle due to the course is eliminated, so that the work efficiency is improved, and the traveling trajectory accuracy is improved, and the traveling safety is improved.
- the second traveling control method for an unmanned vehicle when the amount of displacement is increasing, speed control is performed by reducing a prescribed vehicle speed value, and steering control is performed by changing a steering control gain. It is characterized by performing at least one control.
- the deceleration reduces the followability of the traveling direction control, and the steering response gain is improved by changing the steering control gain to improve the traveling response. Is also good.
- the traveling direction is corrected earlier before the amount of positional deviation becomes larger than judgment based on the amount of positional deviation. Becomes possible. Therefore, the traveling direction is corrected before the course leaves. As a result, as in the case of the first method, work efficiency and traveling safety are improved.
- the first unmanned vehicle travel control device is
- a controller that calculates target position data on the traveling course that automatically travels, and outputs a steering command that reduces the amount of displacement between the target position data and the current position data, and a controller that outputs the steering command and steering handle.
- a steering control unit for controlling the steering based on the steering angle deviation and the steering control gain to obtain a steering angle deviation by comparing the steering angle with the steering angle.
- the controller outputs a command to change the steering control gain to the steering control means when the amount of displacement is equal to or greater than a predetermined threshold.
- the running direction is corrected before the course leaves. As a result, similar to the first method, The work efficiency and running safety are improved.
- the traveling control device for a second unmanned vehicle according to the present invention
- Calculates target position data on the traveling course for automatic driving outputs a steering command to reduce the amount of displacement between the target position data and the current position data, and issues a speed command so that the vehicle speed becomes the specified vehicle speed value.
- the controller that outputs the output, the speed control means that controls so as to reduce the vehicle speed deviation between the speed command and the actual vehicle speed, and the steering angle deviation by comparing the steering command with the steering angle of the steering handle And a steering control means for controlling the steering based on the steering angle deviation and the steering control gain.
- the controller outputs at least one of an output of a deceleration command to the speed control means and an output of a change command of the steering control gain to the steering control means when the displacement amount is equal to or more than a predetermined threshold value. It is characterized by performing
- This configuration is a configuration in which the first method is expressed as an apparatus, and the same operation and effect as those of the first method can be obtained.
- the traveling direction is corrected so that the displacement becomes smaller in a shorter time.
- unmanned vehicles will not have a sudden stop due to course out, or will have a very low frequency of sudden stops.
- work efficiency is further improved, and traveling trajectory accuracy is also improved, thereby improving traveling safety.
- FIG. 1 is a control configuration block diagram of the travel control device for an unmanned vehicle according to the present invention.
- FIG. 2 is an explanatory diagram of the operation of the travel control device for an unmanned vehicle according to the present invention.
- FIG. 3 is a processing flowchart of the travel control device for an unmanned vehicle according to the present invention.
- the position detecting means 1 2 automatically moves the unmanned vehicle 1 (see FIG. 2).
- the current position in the traveling coordinate system representing the area is detected, and this position data is output to the controller 11.
- the position detecting means 12 for example, a means for detecting an absolute coordinate position by a GPS system or the like is used.
- the position detecting means 12 may use a known reference based on the traveling direction data (angle data) detected by the ji mouth or the like and the traveling distance data detected by the rotation speed of the driving wheels or the like.
- a coordinate position relative to the position may be obtained by calculation.
- the traveling course data storage means 20 stores position data of each point on a predetermined traveling course at a predetermined distance and a prescribed vehicle speed value for each predetermined section of the traveling course.
- the position data is stored as coordinate data in the traveling coordinate system.
- the controller 11 is composed of a general computer system mainly composed of, for example, a micro computer.
- the controller 11 calculates coordinate data of a traveling target position at predetermined time intervals based on each position data stored in the traveling course data storage means 20 during automatic traveling. Then, the controller 11 calculates the speed command V and the steering fingering 0 of the steering handle so as to travel toward the traveling target position. That is, the controller 11 calculates the traveling direction and the traveling distance based on the current position data input from the position detecting means 12 and the coordinate data of the traveling target position at the predetermined time intervals.
- a steering instruction 0 for directing the unmanned vehicle 1 in the traveling direction is calculated, and a steering command 0 is output to the steering control means 14. Further, it outputs a speed command V to the speed control means 13 based on the prescribed vehicle speed value stored in the traveling course data storage means 20. After completing the travel based on the calculated travel distance data, the current position data is input, the same processing as above is performed, and the steering finger 0 and the speed command V are calculated and output. By repeating such processing, the unmanned vehicle 1 can automatically travel along the traveling course.
- the vehicle speed detector 16 detects the actual vehicle speed of the unmanned vehicle 1, and outputs a vehicle speed signal corresponding to this vehicle speed.
- the vehicle speed detector 16 counts, for example, the number of pulses output from a pulse generator mounted on the axle of the drive wheel for each unit time. It is configured to calculate the vehicle speed value from the vehicle.
- the speed control means 13 compares the speed command V from the controller 11 with the vehicle speed signal from the vehicle speed detector 16 so that this deviation (hereinafter referred to as the speed deviation) becomes smaller.
- the vehicle speed is controlled by performing at least one of engine fuel injection amount control, transmission control, and brake braking control.
- the steering angle detector 17 detects the steering angle of the steering handle, and is composed of, for example, a potentiometer. This steering angle signal is input to the steering control means 14.
- the steering control means 14 compares the steering command S from the controller 11 with the steering angle signal, and adjusts the steering angle (not shown) so as to reduce this deviation (hereinafter referred to as steering angle deviation). Outputs a drive command in the drive mode and rotates the steering handle.
- the steering control means 14 calculates a drive command value to the steering drive mode based on the steering angle deviation and the steering control gain. For example, the steering control gain is calculated based on the steering angle deviation value.
- the driving order value can be obtained by multiplication.
- the speed control means 13 and the steering control means 14 are configured by a general computer system like the controller 1. Therefore, the controller 11, the speed control means 13 and the steering control means 14 can be constituted by a single computer system, which is more cost-effective.
- the unmanned vehicle 1 travels automatically along a predetermined traveling course 6. Further, it is assumed that the position coordinate data (X k, Y k) of each point on the traveling course 6 at every predetermined distance is stored in the traveling course data storage means 20. Where K is a natural number.
- the controller 11 travels during this time. 6 The coordinates (X m, Y m) of the coordinates of the target position of the automatic driving for each predetermined distance are calculated and obtained. After the calculation, the controller 11 performs the steering control and the vehicle speed control with the coordinate data (Xm, Ym) as a target.
- the actual traveling position (X n, Y n) of the unmanned vehicle 1 is equal to the target position (X m. Ym), and the displacement S occurs.
- a threshold value ⁇ that is smaller than the limit value is set, and when a displacement amount ⁇ 5 that exceeds the threshold value ⁇ occurs, the response of the steering control and the follow-up of the vehicle speed control are performed in order to correct the traveling direction.
- Some of the thresholds may be provided in stages so that the degree of the improvement can be changed according to the magnitude of the positional deviation amount 5.
- the threshold value ⁇ may be set in two stages, ⁇ 1 and ⁇ 2. Here, 0 ⁇ 1 ⁇ 2.
- the operation will be described with reference to the traveling control processing flowchart of FIG. 3 and FIG.
- the above-described threshold ⁇ is provided as an example.
- the step code of FIG. 3, for example, S1 is the power which is Step 1, and is described below simply as (S1) or S1.
- the position detection means 12 calculates the current position ( ⁇ , ⁇ ) by calculation and outputs this to the controller 11.
- the controller 11 determines whether or not the positional deviation amount (5 is equal to or greater than a predetermined threshold value ⁇ ). If the positional deviation amount ⁇ is equal to or greater than the threshold value, the process proceeds to S4. Proceed to.
- the controller 11 outputs a speed command V smaller than the current vehicle speed value to the speed control means 13 to reduce the speed, or sends the current steering control gain to the steering control means 14. Either output a command to change, or do at least one of them.
- S5 When the speed command V is input, the speed control means 13 performs speed control based on the speed command V. Further, when a steering control gain change command is input, the steering control means 14 switches to a steering control gain corresponding to the command, and performs steering control based on the steering control gain. Then, the process returns to S 1 and repeats the process.
- the controller 11 outputs a speed command V for setting a normal vehicle speed value to the speed control means 13 and issues a command for setting the normal steering control gain to the steering control means 14. Power.
- the speed control means 13 performs speed control so as to be a normal vehicle speed value.
- the steering control means 14 performs the steering control with a normal steering control gain. Then, the process returns to S 1 to repeat the processing.
- the controller 11 has a position shift amount ⁇ 5 Judge either 0 ⁇ (5 ⁇ a1), "al ⁇ ⁇ ⁇ 2", or " ⁇ 2 ⁇ 5".
- the speed command V is set to VI or the steering control gain is set to G1 and the speed command V is set to “ ⁇ 2 ⁇ 5”.
- At least one of the force of V 2 and the steering control gain of G 2 is performed, where V 2 ⁇ V 1 and the normal vehicle speed value.
- G2> G1> normal steering control gain is used.
- the deceleration force or the steering control gain is changed, and at least one of them is performed.
- the speed and the steering control gain are switched based on the magnitude of the positional deviation amount 5, but the present invention is not limited to this.
- the switching is performed according to the increasing tendency of the positional deviation amount 5. You may.
- the controller 11 determines the amount of misalignment (whether or not 5 is increasing), and if it is increasing, proceeds to S4 and proceeds to S4. This can be handled by performing the same processing.
- the present invention is useful as a traveling control method and apparatus for an unmanned vehicle that can suppress the occurrence of sudden stop due to a course out during automatic traveling and can secure traveling safety and traveling locus accuracy without lowering work efficiency. is there.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
A sudden stop due to off-course during automatic traveling is prevented, and travel safety and travel locus precision are ensured. When the deviation (δ) of the present position from a target position is greater than a predetermined threshold value (α) at the time of automatic traveling on a course (6), at least one of the following controls is performed: the operation of decreasing the prescribed vehicle speed to control the vehicle speed and the operation of altering the steering control gain to control the steering.
Description
明 細 書 無人車両の走行制御方法及び装置 技 術 分 野 Description Travel control method and device for unmanned vehicles
本発明は、 自動走行時の無人車両の走行軌跡を制御する走行制御方法及び装置 に関する。 背 景 技 術 The present invention relates to a travel control method and apparatus for controlling a travel locus of an unmanned vehicle during automatic travel. Background technology
従来、 車両を予め決められた走行コースに沿って無人走行させる無人車両走行 システム力 <、 多く提案されている。 広域の採石現場等においては、 無人車両、 例 えば無人ダンプ等により、 土砂運搬を行なう無人ダンプ運行システムがよ く 知ら れている。 この無人ダンプ運行システムは、 例えば次のようなものである。 無人 ダンプの走行コースを予め所定の方法によってティ 一チングし、 この走行コース 上の所定の距離又は時間毎の座標データを走行コースデータと して、 記憶装置内 に記憶しておく 。 自動走行すると き、 無人ダンプは、 実際に走行している現在位 置を所定のサンプリ ング時間毎に位置検出手段によって検出して確認し、 この実 際の走行位置と前記予め記憶した走行コースデータ との偏差を演算する。 そ して 、 この偏差を小さ く するように無人ダンプの操舵制御を行ない、 予め記憶した走 行コースに沿って走行するように無人ダンプを制御している。 Conventionally, there have been many proposals for an unmanned vehicle traveling system capable of unmanned traveling of a vehicle along a predetermined traveling course. At quarry sites in a wide area, an unmanned dump truck operation system that transports sediment using unmanned vehicles, for example, unmanned dump trucks, is well known. This unmanned dump truck operation system is, for example, as follows. The running course of the unmanned dump truck is taught in advance by a predetermined method, and coordinate data at a predetermined distance or time on the running course is stored as running course data in a storage device. At the time of automatic traveling, the unmanned dump truck detects and confirms the current position where the vehicle is actually traveling by the position detecting means at every predetermined sampling time, and checks the actual traveling position and the previously stored traveling course data. Is calculated. Then, the steering control of the unmanned dump is performed so as to reduce the deviation, and the unmanned dump is controlled so as to travel along the traveling course stored in advance.
また、 自動走行時の車速は、 走行コースの各区間毎に予め決められた規定車速 値と、 車速検出手段によつて検出した実際の車速との偏差を小さ く するよ うに、 ェンジン燃料噴射量、 変速機及びブレーキ等を制御することにより行われている 。 車速検出手段は、 例えば、 駆動輪軸の単位時間当たりの回転数に基づいて、 車 速を検出している。 The vehicle speed during automatic driving is determined by the engine fuel injection amount so as to reduce the deviation between the prescribed vehicle speed value predetermined for each section of the traveling course and the actual vehicle speed detected by the vehicle speed detecting means. This is done by controlling the transmission and brakes. The vehicle speed detecting means detects the vehicle speed based on, for example, the number of revolutions of the drive wheel shaft per unit time.
自動走行時に、 走行コースの目標位置と実際の位置との偏差、 すなわち位置ず れ量が、 許容値以上になった場合には、 通常、 安全性確保のために無人車両に急
制動をかけて停止させることが多い。 しかしながら、 も し高速走行中に急制動を かけると、 無人車両の走行安定性が損なわれ、 車両ス リ ップの恐れが生じる。 そ こで、 急制動をかけても安定性を損なわないような、 遅い規定車速値に制限して いる。 或いは、 規定車速値が大きい場合、 制動距離が大き く ても他の車両との接 触等が起こ らないように、 上記位置ずれ量の許容値を小さ く したり している。 こ のため、 遅い規定車速値に制限した場合には、 無人車両の単位時間当たりの作業 董が制限されて能率が低下し、 或いは位置ずれ量の許容値を小さ く した場合には 、 コースアウ ト (位置ずれ量が許容値をオーバ一) して急停止する頻度が多く な り易い。 即ち、 無人車両の稼働率が低下するという問題 ある。 発 明 の 開 示 If the deviation between the target position and the actual position of the traveling course, that is, the amount of displacement, exceeds the allowable value during automatic driving, the driver is usually forced to use an unmanned vehicle to ensure safety. It is often stopped by applying a brake. However, if sudden braking is applied during high-speed driving, the running stability of unmanned vehicles is impaired, and vehicle slipping may occur. Therefore, the vehicle speed is limited to a low specified value so that stability is not impaired even when sudden braking is applied. Alternatively, when the specified vehicle speed value is large, the allowable value of the displacement amount is reduced so that even if the braking distance is large, contact with another vehicle does not occur. For this reason, if the vehicle speed is restricted to a slower specified vehicle speed, the number of workers per unit time of the unmanned vehicle is limited and the efficiency is reduced, or if the tolerance of the displacement is reduced, the course out The frequency of sudden stops due to (position deviation exceeding the allowable value) is likely to increase. That is, there is a problem that the operation rate of the unmanned vehicle decreases. Disclosure of the invention
本発明は、 かかる従来技術の問題点を解消するためになされたもので、 自動走 行時のコースァゥ トによる急停止の発生を抑え、 しかも作業能率を低下させるこ とな く 、 走行安全性及び走行軌跡精度を確保可能な無人車両の走行制御方法及び 装置を提供することを目的と している。 The present invention has been made in order to solve the problems of the related art, and suppresses the occurrence of sudden stop due to a course during automatic driving, and furthermore, does not reduce the work efficiency, and provides the driving safety and safety. It is an object of the present invention to provide an unmanned vehicle traveling control method and device capable of securing traveling trajectory accuracy.
本発明に係る第 1 の無人車両の走行制御方法は、 A first traveling control method for an unmanned vehicle according to the present invention includes:
走行コースを自動走行する際、 目標位置と現在位置との位置ずれ量を小さ く する 操舵角度指令を出力し、 操舵角度指令とステア り ングハン ドルの操舵角度とを比 較して操舵角度偏差を求め、 操舵角度偏差及び操舵制御ゲイ ンに基づいて操舵制 御すると共に、 規定車速値で走行するように速度制御する無人車両の走行制御方 法において、 When the vehicle automatically travels on the traveling course, a steering angle command is output to reduce the amount of displacement between the target position and the current position, and the steering angle command is compared with the steering angle of the steering handle to determine the steering angle deviation. In the traveling control method for an unmanned vehicle, the steering is controlled based on the steering angle deviation and the steering control gain, and the speed is controlled so as to travel at a specified vehicle speed.
位置ずれ量が所定の閾値以上のとき、 規定車速値を'减速して速度制御すること、 及び操舵制御ゲイ ンを変更して操舵制御することの少なく と も一つの制御を行な う ことを特徴と している。 When the amount of displacement is equal to or greater than a predetermined threshold, speed control is performed by increasing the specified vehicle speed value, and at least one control of steering control by changing the steering control gain is performed. It is a feature.
かかる構成によれば、 位置ずれ量が所定の閾値以上になった場合、 位置ずれ量 が大き く なる傾向であるので、 車速を減速する、 及びノ又は操舵制御ゲイ ンを変 更する。 減速すると、 コースァゥ 卜する前に走行方向修正がし易いので、 走行方
向制御の追従性が改善される。 また、 操舵制御ゲイ ンを変更して、 操舵の応答性 を良く すると共に、 走行軌跡精度を改善する。 これによつて、 コースアウ ト前に 、 位置ずれ量が小さ く なるように走行方向が修正される。 この結果、 コースァゥ トによる無人車両の急停止が無く なるので、 作業能率が向上し、 また走行軌跡精 度が改善されて走行安全性が向上する。 According to such a configuration, when the positional deviation amount becomes equal to or more than the predetermined threshold value, the positional deviation amount tends to increase. Therefore, the vehicle speed is reduced, and the steering control gain is changed. When decelerating, it is easy to correct the running direction before the course The followability of the direction control is improved. In addition, the steering control gain is changed to improve steering responsiveness and improve travel trajectory accuracy. As a result, the traveling direction is corrected before the course out so that the positional deviation amount becomes small. As a result, the sudden stop of the unmanned vehicle due to the course is eliminated, so that the work efficiency is improved, and the traveling trajectory accuracy is improved, and the traveling safety is improved.
本発明に係る第 2の無人車両の走行制御方法は、 位置ずれ量が増加傾向にある と き、 規定車速値を減速して速度制御すること、 及び操舵制御ゲイ ンを変更して 操舵制御することの少なく と も一つの制御を行なう ことを特徴と している。 かかる構成によれば、 上記第 1 の方法と同様に、 減速するこ とによ り、 走行方 向制御の追従性が改善され、 また操舵制御ゲイ ン変更により、 操舵応答性が良く て走行軌跡もよい。 また、 位置ずれ量が増加傾向にあるか否かを判断しているの で、 位置ずれ量の大きさに基づいた判断より も、 位置ずれ量が大き く なる前に早 めに走行方向の修正が可能となる。 よって、 コースアウ ト前に、 走行方向が修正 される。 この結果、 上記第 1 の方法と同様に、 作業能率及び走行安全性が向上す る。 In the second traveling control method for an unmanned vehicle according to the present invention, when the amount of displacement is increasing, speed control is performed by reducing a prescribed vehicle speed value, and steering control is performed by changing a steering control gain. It is characterized by performing at least one control. According to this configuration, as in the first method, the deceleration reduces the followability of the traveling direction control, and the steering response gain is improved by changing the steering control gain to improve the traveling response. Is also good. In addition, since it is determined whether or not the amount of positional deviation is increasing, the traveling direction is corrected earlier before the amount of positional deviation becomes larger than judgment based on the amount of positional deviation. Becomes possible. Therefore, the traveling direction is corrected before the course leaves. As a result, as in the case of the first method, work efficiency and traveling safety are improved.
本発明に係る第 1 の無人車両の走行制御装置は、 The first unmanned vehicle travel control device according to the present invention is
自動走行する走行コース上の目標位置データを演算し、 目標位置データ と現在位 置データとの位置ずれ量を小さ く する操舵指令を出力するコ ン ト ローラと、 操舵 指令とステア リ ングハン ドルの操舵角度とを比較して操舵角度偏差を求め、 操舵 角度偏差及び操舵制御ゲイ ンに基づいて操舵を制御する操舵制御手段とを備える 無人車両の走行制御装置において、 A controller that calculates target position data on the traveling course that automatically travels, and outputs a steering command that reduces the amount of displacement between the target position data and the current position data, and a controller that outputs the steering command and steering handle. A steering control unit for controlling the steering based on the steering angle deviation and the steering control gain to obtain a steering angle deviation by comparing the steering angle with the steering angle.
コ ン トローラは、 位置ずれ量が所定の閾値以上のと き、 操舵制御ゲイ ンを変更す る指令を操舵制御手段に出力することを特徴と している。 The controller outputs a command to change the steering control gain to the steering control means when the amount of displacement is equal to or greater than a predetermined threshold.
かかる構成によれば、 位置ずれ量が所定の閾値以上になったと きは、 位置ずれ 量が大き く なる傾向なので、 操舵制御手段の操舵制御ゲイ ンを変更させる。 これ によ り、 上記と同様に、 操舵の応答性が良く なると共に走行軌跡精度が改善され According to such a configuration, when the positional deviation amount becomes equal to or more than the predetermined threshold value, the positional deviation amount tends to increase, so that the steering control gain of the steering control means is changed. As a result, as in the above, the steering response is improved, and the traveling trajectory accuracy is improved.
、 コースアウ ト前に走行方向が修正される。 この結果、 上記第 1 の方法と同様に
、 作業能率及び走行安全性が向上する。 The running direction is corrected before the course leaves. As a result, similar to the first method, The work efficiency and running safety are improved.
本発明に係る第 2の無人車両の走行制御装置は、 The traveling control device for a second unmanned vehicle according to the present invention,
自動走行する走行コース上の目標位置データを演算して、 目標位置データ と現在 位置データとの位置ずれ量を小さ く する操舵指令を出力し、 また車速が規定車速 値となるように速度指令を出力するコ ン ト ローラ と、 速度指令と実際の車速との 車速偏差を小さ く するように制御する速度制御手段と、 操舵指令とステア リ ング ハン ドルの操舵角度とを比較して操舵角度偏差を求め、 操舵角度偏差及び操舵制 御ゲイ ンに基づいて操舵を制御する操舵制御手段とを備える無人車両の走行制御 装置において、 Calculates target position data on the traveling course for automatic driving, outputs a steering command to reduce the amount of displacement between the target position data and the current position data, and issues a speed command so that the vehicle speed becomes the specified vehicle speed value. The controller that outputs the output, the speed control means that controls so as to reduce the vehicle speed deviation between the speed command and the actual vehicle speed, and the steering angle deviation by comparing the steering command with the steering angle of the steering handle And a steering control means for controlling the steering based on the steering angle deviation and the steering control gain.
コ ン トローラは、 位置ずれ量が所定の閾値以上のとき、 速度制御手段への減速指 令の出力、 及び操舵制御手段への操舵制御ゲイ ンの変更指令の出力の少な く と も 一つの出力を行う ことを特徴と している。 The controller outputs at least one of an output of a deceleration command to the speed control means and an output of a change command of the steering control gain to the steering control means when the displacement amount is equal to or more than a predetermined threshold value. It is characterized by performing
かかる構成は、 上記第 1 の方法を装置と して表現した構成であり、 第 1 の方法 と同様な作用効果が得られる。 尚、 車速の減速と操舵制御ゲイ ンの変更とを同時 に行う場合、 位置ずれ量がさ らに短時間で小さ く なるように、 走行方向が修正さ れる。 この結果、 無人車両は、 コースアウ トによる急停止が無く なるか、 或いは 急停止の頻度が極めて小さ く なる。 これにより更に、 作業能率が向上し、 また走 行軌跡精度が改善されて走行安全性が向上する。 図面の簡単な説明 This configuration is a configuration in which the first method is expressed as an apparatus, and the same operation and effect as those of the first method can be obtained. When the vehicle speed is reduced and the steering control gain is changed at the same time, the traveling direction is corrected so that the displacement becomes smaller in a shorter time. As a result, unmanned vehicles will not have a sudden stop due to course out, or will have a very low frequency of sudden stops. As a result, work efficiency is further improved, and traveling trajectory accuracy is also improved, thereby improving traveling safety. BRIEF DESCRIPTION OF THE FIGURES
図 1 は本発明に係る無人車両の走行制御装置の制御構成プロ ッ ク図である。 図 2 は本発明に係る無人車両の走行制御装置の作用の説明図である。 FIG. 1 is a control configuration block diagram of the travel control device for an unmanned vehicle according to the present invention. FIG. 2 is an explanatory diagram of the operation of the travel control device for an unmanned vehicle according to the present invention.
図 3 は本発明に係る無人車両の走行制御装置の処理フローチャー トである。 発明を実施するための最良の形態 FIG. 3 is a processing flowchart of the travel control device for an unmanned vehicle according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の好ま しい実施例を添付図面に従つて以下に詳述する。 Preferred embodiments of the present invention are described in detail below with reference to the accompanying drawings.
図 1 において、 位置検出手段 1 2 は、 無人車両 1 (図 2参照) が自動走行する
エリ アを表す走行座標系での現在位置を検出し、 この位置データをコ ン 卜 ローラ 1 1 に出力する。 位置検出手段 1 2 と しては、 例えば、 G P S シ ステム等による 絶対座標位置を検出するものが用いられる。 或いは位置検出手段 1 2 は、 ジャ ィ 口等により検出された走行方向データ (角度デ一夕) と、 駆動輪の回転数等によ り検出された走行距離データ とに基づいて、 既知の基準位置からの相対的な座標 位置を演算によって求めるものであってもよい。 走行コースデータ記憶手段 2 0 は、 予め決められた走行コース上の所定距離毎の各点の位置データ、 及び走行コ ースの所定区間毎の規定車速値を記憶している。 なお、 この各位置データは前記 走行座標系での座標データと して記憶されている。 In FIG. 1, the position detecting means 1 2 automatically moves the unmanned vehicle 1 (see FIG. 2). The current position in the traveling coordinate system representing the area is detected, and this position data is output to the controller 11. As the position detecting means 12, for example, a means for detecting an absolute coordinate position by a GPS system or the like is used. Alternatively, the position detecting means 12 may use a known reference based on the traveling direction data (angle data) detected by the ji mouth or the like and the traveling distance data detected by the rotation speed of the driving wheels or the like. A coordinate position relative to the position may be obtained by calculation. The traveling course data storage means 20 stores position data of each point on a predetermined traveling course at a predetermined distance and a prescribed vehicle speed value for each predetermined section of the traveling course. The position data is stored as coordinate data in the traveling coordinate system.
コ ン 卜 ローラ 1 1 は、 例えばマイ ク ロコ ンピュータ等を主体に した一般的なコ ン ピュ一タ システムで構成されている。 コ ン ト ローラ 1 1 は、 自動走行時に、 走 行コースデータ記憶手段 2 0 に記憶された各位置データに基づいて、 所定時間毎 の走行目標位置の座標データを演算する。 そ して、 コ ン ト ローラ 1 1 は、 この走 行目標位置に向かって走行するように、 速度指令 V及びステア リ ングハン ドルの 操舵指合 0を演算する。 すなわち、 コ ン ト ローラ 1 1 は、 位置検出手段 1 2から 入力した現在位置データと、 上記所定時間毎の走行目標位置の座標データとに基 づいて、 走行方向及び走行距離を演算する。 The controller 11 is composed of a general computer system mainly composed of, for example, a micro computer. The controller 11 calculates coordinate data of a traveling target position at predetermined time intervals based on each position data stored in the traveling course data storage means 20 during automatic traveling. Then, the controller 11 calculates the speed command V and the steering fingering 0 of the steering handle so as to travel toward the traveling target position. That is, the controller 11 calculates the traveling direction and the traveling distance based on the current position data input from the position detecting means 12 and the coordinate data of the traveling target position at the predetermined time intervals.
そ して、 この走行方向に無人車両 1 を向けるための操舵指合 0を演算し、 操舵 指令 0を操舵制御手段 1 4 に出力する。 また、 走行コースデータ記憶手段 2 0 に 記憶された規定車速値に基づいて、 速度指令 Vを速度制御手段 1 3 に出力する。 そ して、 上記演算した走行距離データに基づく 走行を完了した後、 現在位置デー タを入力して以上と同様の処理を行ない、 操舵指合 0及び速度指令 Vを演算して 出力する。 このような処理を繰り返すことによって、 無人車両 1 を走行コースに 沿って自動走行させることが可能となる。 Then, a steering instruction 0 for directing the unmanned vehicle 1 in the traveling direction is calculated, and a steering command 0 is output to the steering control means 14. Further, it outputs a speed command V to the speed control means 13 based on the prescribed vehicle speed value stored in the traveling course data storage means 20. After completing the travel based on the calculated travel distance data, the current position data is input, the same processing as above is performed, and the steering finger 0 and the speed command V are calculated and output. By repeating such processing, the unmanned vehicle 1 can automatically travel along the traveling course.
車速検出器 1 6 は無人車両 1 の実際の車速を検出しており、 この車速に対応し た車速信号を出力する。 車速検出器 1 6 は、 例えば駆動輪の車軸に装着されたパ ルスジェ ネ レ一夕から出力されるパルス数を単位時間毎に計数し、 この計数値か
ら車速値を演算するようなもので構成される。 速度制御手段 1 3 は、 コ ン ト 口一 ラ 1 1 からの速度指令 Vと車速検出器 1 6 からの車速信号とを比較し、 この偏差 (以後、 速度偏差と呼ぶ) が小さ く なるように、 エンジ ン燃料噴射量制御、 変速 機制御及びブレーキ制動制御の少なく と もいずれかの制御を行なって、 車速を制 御している。 The vehicle speed detector 16 detects the actual vehicle speed of the unmanned vehicle 1, and outputs a vehicle speed signal corresponding to this vehicle speed. The vehicle speed detector 16 counts, for example, the number of pulses output from a pulse generator mounted on the axle of the drive wheel for each unit time. It is configured to calculate the vehicle speed value from the vehicle. The speed control means 13 compares the speed command V from the controller 11 with the vehicle speed signal from the vehicle speed detector 16 so that this deviation (hereinafter referred to as the speed deviation) becomes smaller. In addition, the vehicle speed is controlled by performing at least one of engine fuel injection amount control, transmission control, and brake braking control.
操舵角度検出器 1 7 はステア リ ングハン ドルの操舵角度を検出しており、 例え ばポテン シ ョ メ ータ等で構成される。 この操舵角度信号は、 操舵制御手段 1 4 に 入力される。 操舵制御手段 1 4 は、 コ ン ト ローラ 1 1 からの操舵指令 S と上記操 舵角度信号とを比較し、 この偏差 (以後、 操舵角度偏差と呼ぶ) が小さ く なるよ うに、 図示しない操舵駆動モー夕に駆動指令を出力して、 ステア リ ン グハ ン ドル を回転させる。 このと き、 操舵制御手段 1 4 は、 上記操舵角度偏差及び操舵制御 ゲイ ンに基づいて、 操舵駆動モー夕への駆動指令値を演算しており、 例えば操舵 角度偏差値に操舵制御ゲイ ンを乗じて駆動指合値を求めるこ とができる。 The steering angle detector 17 detects the steering angle of the steering handle, and is composed of, for example, a potentiometer. This steering angle signal is input to the steering control means 14. The steering control means 14 compares the steering command S from the controller 11 with the steering angle signal, and adjusts the steering angle (not shown) so as to reduce this deviation (hereinafter referred to as steering angle deviation). Outputs a drive command in the drive mode and rotates the steering handle. At this time, the steering control means 14 calculates a drive command value to the steering drive mode based on the steering angle deviation and the steering control gain. For example, the steering control gain is calculated based on the steering angle deviation value. The driving order value can be obtained by multiplication.
なお、 速度制御手段 1 3及び操舵制御手段 1 4 は、 コ ン ト ローラ 1 と同様に 一般的なコ ンピュータ システムで構成されている。 したがって、 コ ン ト ローラ 1 1 、 速度制御手段 1 3及び操舵制御手段 1 4 を一つのコ ン ピュータ シ ステムで構 成するこ と も可能であり、 この方がコス 卜的にも好ま しい。 Note that the speed control means 13 and the steering control means 14 are configured by a general computer system like the controller 1. Therefore, the controller 11, the speed control means 13 and the steering control means 14 can be constituted by a single computer system, which is more cost-effective.
図 2 により、 走行制御装置の作用を説明する。 無人車両 1 は、 予め決められた 走行コース 6 に沿って自動走行するものとする。 また、 走行コース 6上の所定距 離毎の各点の位置座標データ (X k , Y k ) は、 走行コースデータ記憶手段 2 0 内に記憶されているものとする。 こ こで、 Kは自然数である。 無人車両 1 が記憶 されている位置座標データ (X k - 1 , Y k - 1 ) 及び (X k , Y k ) の間を自動走 行時、 コ ン ト ローラ 1 1 は、 この間の走行コース 6上にある更に細かい所定距離 毎の自動走行目標位置の座標デ一夕 (X m , Y m ) を演算して求める。 演算後、 コ ン ト ローラ 1 1 は、 座標データ ( X m , Y m ) を目標にして、 操舵制御及び車 速制御を行なう。 The operation of the travel control device will be described with reference to FIG. It is assumed that the unmanned vehicle 1 travels automatically along a predetermined traveling course 6. Further, it is assumed that the position coordinate data (X k, Y k) of each point on the traveling course 6 at every predetermined distance is stored in the traveling course data storage means 20. Where K is a natural number. When the vehicle automatically travels between the position coordinate data (Xk-1, Yk-1) and (Xk, Yk) in which the unmanned vehicle 1 is stored, the controller 11 travels during this time. 6 The coordinates (X m, Y m) of the coordinates of the target position of the automatic driving for each predetermined distance are calculated and obtained. After the calculation, the controller 11 performs the steering control and the vehicle speed control with the coordinate data (Xm, Ym) as a target.
このと き、 無人車両 1 の実際の走行位置 (X n , Y n ) は、 目標位置 ( X m .
Ym ) よりずれるこ とになり、 位置ずれ量 Sが発生する。 走行コース 6 に対して 所定の限界値 3以上の位置ずれ量 δが生じたと きは、 走行安全性の面で危険であ るので、 コースアウ ト と して急停止させるようにしている。 さ らに、 限界値 ょ り小さい値の閾値 αを設け、 閾値 α以上の位置ずれ量 <5が生じたと きは、 走行方 向を修正するために、 操舵制御の応答性及び車速制御の追従性を、 改善する処理 を行なうよ うにしている。 位置ずれ量 5の大き さに応じて上記改善の程度を変更 可能なように、 上記閾値 を幾つか段階的に設けるように してもよい。 例えば、 図 2 に示すように、 閾値 αを α 1 及び α 2 の 2段階と してよい。 こ こで、 0 < α 1 < α 2 である。 At this time, the actual traveling position (X n, Y n) of the unmanned vehicle 1 is equal to the target position (X m. Ym), and the displacement S occurs. When a displacement δ exceeding the predetermined limit value 3 with respect to the traveling course 6 occurs, it is dangerous in terms of traveling safety, and the vehicle is suddenly stopped as a course out. Furthermore, a threshold value α that is smaller than the limit value is set, and when a displacement amount <5 that exceeds the threshold value α occurs, the response of the steering control and the follow-up of the vehicle speed control are performed in order to correct the traveling direction. We try to improve the quality. Some of the thresholds may be provided in stages so that the degree of the improvement can be changed according to the magnitude of the positional deviation amount 5. For example, as shown in FIG. 2, the threshold value α may be set in two stages, α 1 and α 2. Here, 0 <α1 <α2.
図 3の走行制御処理フ ローチャ ー ト及び図 2 を参照して作用について説明する 。 こ こでは、 前述の閾値 αは一つ設けた例である。 なお、 図 3のステップ符号、 例えば S 1 は、 ステップ 1 である力く、 以下では単に ( S 1 ) 又は S 1 と記載して 説明する。 The operation will be described with reference to the traveling control processing flowchart of FIG. 3 and FIG. Here, the above-described threshold α is provided as an example. In addition, the step code of FIG. 3, for example, S1, is the power which is Step 1, and is described below simply as (S1) or S1.
( S 1 ) 位置検出手段 1 2 は現在位置 (Χη , Υη ) を演算で求め、 これをコ ン ト ロ一ラ 1 1 に出力する。 (S 1) The position detection means 12 calculates the current position (Χη, Υη) by calculation and outputs this to the controller 11.
( S 2 ) コ ン トローラ 1 1 は、 走行コース 6上の目標位置 ( Xm , Yin ) 及び 現在位置 (Χη , Υη ) に基づいて位置ずれ量 ( を演算する。 位置ずれ量 <5は、 次のようにして求まる。 先ず、 目標位置 (Xm . Ym ) と現在位置 (Χη , Yn ) との距離 L (図 2参照) を、 数式 「 L = [ ( Δ Xm ) 2 + ( Δ Ym ) 2 〕 1 /2 」 により求める。 こ こで、 Δ Χπι - Xm 一 Xn 、 Δ Y m = Υ m — Υη である。 次 に、 距離 Lと無人車両 1 の走行方向角度 f とに基づいて、 現在位置 ( Χπ , Yn ) の走行コース 6 に対する位置ずれ量 δを求める。 (S 2) The controller 11 calculates the displacement amount () based on the target position (Xm, Yin) and the current position (Χη, Υη) on the traveling course 6. obtained as a. first, a target position (Xm. Ym) and the current position (Kaiita, Yn) the distance between the L (see FIG. 2), the formula "L = [(Δ Xm) 2 + (Δ Ym) 2 / Πι-Xm-Xn, ΔYm = Υm — Υη. Then, based on the distance L and the traveling direction angle f of the unmanned vehicle 1, the current The position deviation amount δ of the position (Χπ, Yn) with respect to the traveling course 6 is obtained.
( S 3 ) コ ン ト ローラ 1 1 は位置ずれ量(5が所定の閾値 α以上か否かを判断し 、 位置ずれ量 δが閾値 以上のときは S 4へ進み、 否のときは S 6へ進む。 (S3) The controller 11 determines whether or not the positional deviation amount (5 is equal to or greater than a predetermined threshold value α). If the positional deviation amount δ is equal to or greater than the threshold value, the process proceeds to S4. Proceed to.
( S 4 ) コ ン ト ローラ 1 1 は、 速度制御手段 1 3 に現在の車速値より小さい速 度指令 Vを出力して減速させるか、 及び操舵制御手段 1 4 に現在の操舵制御ゲイ ンを変更する指令を出力するかの、 少なく と もいずれかを行なう。
( S 5 ) 速度制御手段 1 3 は、 減速された速度指令 Vを入力した場合、 速度指 令 Vに基づいて速度制御を行なう。 また操舵制御手段 1 4 は、 操舵制御ゲイ ンの 変更指令を入力した場合、 この指令に対応した操舵制御ゲイ ンに切り換え、 この 操舵制御ゲイ ンに基づいて操舵制御を行なう。 そ して、 S 1 に戻り処理を繰り返 す。 (S 4) The controller 11 outputs a speed command V smaller than the current vehicle speed value to the speed control means 13 to reduce the speed, or sends the current steering control gain to the steering control means 14. Either output a command to change, or do at least one of them. (S5) When the speed command V is input, the speed control means 13 performs speed control based on the speed command V. Further, when a steering control gain change command is input, the steering control means 14 switches to a steering control gain corresponding to the command, and performs steering control based on the steering control gain. Then, the process returns to S 1 and repeats the process.
( S 6 ) コ ン トローラ 1 1 は、 速度制御手段 1 3 に通常の車速値とする速度指 令 Vを出力し、 また、 操舵制御手段 1 4 に通常の操舵制御ゲイ ンとする指令を出 力する。 (S6) The controller 11 outputs a speed command V for setting a normal vehicle speed value to the speed control means 13 and issues a command for setting the normal steering control gain to the steering control means 14. Power.
( S 7 ) 速度制御手段 1 3 は、 通常車速値となるよう に速度制御を行なう。 操 舵制御手段 1 4 は、 通常の操舵制御ゲイ ンにて操砣制御を行なう。 そ して、 S 1 に戻り処理を繰り返す。 (S7) The speed control means 13 performs speed control so as to be a normal vehicle speed value. The steering control means 14 performs the steering control with a normal steering control gain. Then, the process returns to S 1 to repeat the processing.
以上のフローチャー トに関し、 閾値 αを段階的に複数設ける場合には、 次のよ うになる。 例えば図 2 のように、 閾値 α と して α 1 及び α 2 ( a 1 < α 2 ) を設 けた場台、 上記 S 3 において、 コ ン ト ローラ 1 1 は、 位置ずれ量 <5が 「 0 < (5 ≤ a 1 」 、 「 a l < δ ≤ α 2 」 、 又は 「 α 2 く <5 」 のいずれかを判断する。 そ して 、 「 l く <5 ≤ ひ 2 」 のと きは、 上記 S 4 において、 速度指令 Vを V I とするか 、 操舵制御ゲイ ンを G 1 とするかの少な く と もいずれかを行なう。 また 「 α 2 ぐ 5」 のときは、 速度指令 Vを V 2 とする力、、 操舵制御ゲイ ンを G 2 とするかの、 少なく と もいずれかを行なうよう にする。 こ こで、 V 2 < V 1 く通常車速値であ る。 また、 操舵制御ゲイ ンは、 例えば、 G 2 > G 1 >通常操舵制御ゲイ ンが用い られる。 In the above flow chart, when a plurality of thresholds α are provided stepwise, the following is performed. For example, as shown in FIG. 2, when the threshold α is set to α 1 and α 2 (a 1 <α 2), in the above S 3, the controller 11 has a position shift amount <5 Judge either 0 <(5 ≤ a1), "al <δ ≤ α2", or "α2 <5". When "l <5 ≤ hi2" In the above S4, the speed command V is set to VI or the steering control gain is set to G1 and the speed command V is set to “α2 α5”. At least one of the force of V 2 and the steering control gain of G 2 is performed, where V 2 <V 1 and the normal vehicle speed value. As the control gain, for example, G2> G1> normal steering control gain is used.
以上のように、 位置ずれ量 δが所定の閾値ひ より大き く なつたと きは、 減速す る力、、 又は操舵制御ゲイ ンを変化させるかの、 少な く と もいずれか一方を行なう As described above, when the positional deviation amount δ becomes larger than the predetermined threshold value, the deceleration force or the steering control gain is changed, and at least one of them is performed.
。 減速することにより位置ずれ量 δの増加を抑え、 位置ずれ量 δが限界値 /3に達 する以前に、 走行方向を修正し易く している。 したがって、 走行方向制御の追従 性が改善され、 コースアウ ト しな く なる。 また、 操舵制御ゲイ ンを変更して、 操 舵制御の応答性を良く する。 これにより、 走行軌跡精度が良く なつて位置ずれ量
δが小さ く なるので、 コースアウ ト しなく なる。 これらの結果、 走行軌跡精度及 び走行安全性を確保できると共に、 無人車両 1 の稼働率を向上できる。 . By reducing the speed, the increase in the displacement δ is suppressed, and the traveling direction can be easily corrected before the displacement δ reaches the limit value / 3. Therefore, the followability of the traveling direction control is improved, and the course does not go out. In addition, the steering control gain is changed to improve the response of the steering control. As a result, the accuracy of the travel trajectory is improved and the displacement Since δ becomes small, the course does not go out. As a result, traveling trajectory accuracy and traveling safety can be ensured, and the operation rate of the unmanned vehicle 1 can be improved.
なお、 以上の説明では、 位置ずれ量 5の大きさに基づいて速度及び操舵制御ゲ イ ンを切り換えているが、 これに限定されず、 例えば位置ずれ量 5の増加傾向に 応じて切り換えるようにしてもよい。 このと き、 上記フローチャー トの S 3でコ ン 卜 ローラ 1 1 は位置ずれ量(5が増加傾向にあるか否かを判断し、 增加傾向にあ ると きは S 4へ進んで上記同様に処理することにより対応可能である。 産業上の利用可能性 In the above description, the speed and the steering control gain are switched based on the magnitude of the positional deviation amount 5, but the present invention is not limited to this. For example, the switching is performed according to the increasing tendency of the positional deviation amount 5. You may. At this time, in S3 of the flowchart, the controller 11 determines the amount of misalignment (whether or not 5 is increasing), and if it is increasing, proceeds to S4 and proceeds to S4. This can be handled by performing the same processing.
本発明は、 自動走行時のコースアウ トによる急停止発生を抑え、 しかも作業能 率を低下させることなく 、 走行安全性及び走行軌跡精度を確保できる無人車両の 走行制御方法及び装置と して有用である。
INDUSTRIAL APPLICABILITY The present invention is useful as a traveling control method and apparatus for an unmanned vehicle that can suppress the occurrence of sudden stop due to a course out during automatic traveling and can secure traveling safety and traveling locus accuracy without lowering work efficiency. is there.
Claims
1 . 走行コース(6) を自動走行する際、 目標位置と現在位置との位置ずれ量を小 さ く する操舵角度指令を出力し、 前記操舵角度指令とステア リ ングハ ン ドルの操 舵角度とを比較して操舵角度偏差を求め、 前記操舵角度偏差及び操舵制御ゲイ ン に基づいて操舵制御すると共に、 規定車速値で走行するように速度制御する無人 車両の走行制御方法において、 1. When the vehicle automatically travels on the traveling course (6), a steering angle command for reducing the amount of displacement between the target position and the current position is output, and the steering angle command and the steering angle of the steering handle are output. A steering angle deviation is calculated by comparing the steering angle deviation and the steering control gain, and a traveling control method for an unmanned vehicle that performs speed control so as to travel at a specified vehicle speed value.
前記位置ずれ量 ( 5 ) が所定の閾値 ( ひ ) 以上のと き、 前記規定車速値を減速 して速度制御すること、 及び前記操舵制御ゲイ ンを変更して操舵制御することの 少な く と も一つの制御を行なう こ とを特徴とする無人車両の走行制御方法。 When the displacement amount (5) is equal to or greater than a predetermined threshold value (h), it is necessary to decelerate the specified vehicle speed value to perform speed control, and to change the steering control gain to perform steering control. A traveling control method for an unmanned vehicle, characterized by performing one type of control.
2 . 走行コース(6 ) を自動走行する際、 目標位置と現在位置との位置ずれ量を小 さ く する操舵角度指令を出力し、 前記操舵角度指令とステア リ ングハン ドルの操 舵角度とを比較して操舵角度偏差を求め、 前記操舵角度偏差及び操舵制御ゲイ ン に基づいて操舵制御すると共に、 規定車速値で走行するように速度制御する無人 車両の走行制御方法において、 2. When automatically traveling on the traveling course (6), a steering angle command for reducing the amount of displacement between the target position and the current position is output, and the steering angle command and the steering angle of the steering handle are compared. Determining a steering angle deviation by comparison, performing steering control based on the steering angle deviation and the steering control gain, and controlling the speed so that the vehicle runs at a specified vehicle speed value.
前記位置ずれ量 ( <? ) が増加傾向にあると き、 前記規定車速値を減速して速度 制御するこ と、 及び前記操舵制御ゲイ ンを変更して操舵制御することの少な く と も一つの制御を行なう ことを特徴とする無人車両の走行制御方法。 When the displacement amount (<?) Is increasing, the vehicle speed is controlled by decelerating the specified vehicle speed value, and the steering control is performed by changing the steering control gain. A driving control method for an unmanned vehicle, comprising:
3 . 自動走行する走行コース(6 ) 上の目標位置データを演算し、 前記目標位置デ —夕と現在位置データ との位置ずれ量を小さ く する操舵指令を出力するコ ン ト口 ーラ (1 1 )と、 前記操舵指令とステア リ ングハン ドルの操舵角度とを比較して操舵 角度偏差を求め、 前記操舵角度偏差及び操舵制御ゲイ ンに基づいて操舵を制御す る操舵制御手段( 14 )とを備える無人車両の走行制御装置において、 3. A controller that calculates target position data on the traveling course (6) for automatic driving, and outputs a steering command to reduce the positional deviation between the target position data and the current position data. A steering control means for comparing the steering command with the steering angle of a steering handle to obtain a steering angle deviation, and controlling steering based on the steering angle deviation and a steering control gain (14). In a travel control device for an unmanned vehicle comprising:
前記コ ン ト ローラ(1 1 )は、 前記位置ずれ量 ( 5 ) が所定の閾値 ( α ) 以上のと き、 前記操舵制御ゲイ ンを変更する指令を前記操舵制御手段(14 )に出力する こ と
を特徴とする無人車両の走行制御装置。 The controller (11) outputs a command to change the steering control gain to the steering control means (14) when the displacement (5) is equal to or larger than a predetermined threshold (α). thing A travel control device for an unmanned vehicle.
4 . 自動走行する走行コース(6) 上の目標位置データを演算して、 前記目標位置 データと現在位置データとの位置ずれ量を小さ く する操舵指令を出力し、 また車 速が規定車速値となるように速度指令を出力するコ ン トローラ(ι υと、 前記速度 指令と実際の車速との車速偏差を小さ く するように制御する速度制御手段(13)と4. Calculate the target position data on the automatic course (6), output a steering command to reduce the amount of displacement between the target position data and the current position data, and set the vehicle speed to the specified vehicle speed value. And a speed control means (13) for controlling so as to reduce a vehicle speed deviation between the speed command and the actual vehicle speed.
、 前記操舵指令とステアリ ングハン ドルの操舵角度とを比較して操舵角度偏差を 求め、 前記操舵角度偏差及び操舵制御ゲイ ンに基づいて操舵を制御する操舵制御 手段(14 )とを備える無人車両の走行制御装置において、 A steering control means for comparing the steering command with a steering angle of a steering handle to determine a steering angle deviation, and controlling steering based on the steering angle deviation and a steering control gain. In the travel control device,
前記コ ン ト ローラ(1 1 )は、 前記位置ずれ量 ( δ ) が所定の閾値 (ひ ) 以上のと き、 前記速度制御手段(13)への減速指令の出力、 及び前記操舵制御手段(14 )への 前記操舵制御ゲイ ンの変更指令の出力の少なく と も一つの出力を行う こ とを特徴 とする無人車両の走行制御装置。
The controller (11) outputs a deceleration command to the speed control means (13) when the displacement amount (δ) is equal to or larger than a predetermined threshold value (h), and outputs the steering control means ( 14. A travel control device for an unmanned vehicle, characterized in that at least one of the outputs of the steering control gain change command to (14) is output.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU17331/97A AU1733197A (en) | 1996-02-20 | 1997-02-19 | Method and apparatus for controlling travel of unmanned vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8/55368 | 1996-02-20 | ||
JP8055368A JPH09230939A (en) | 1996-02-20 | 1996-02-20 | Method and device for controlling travel of unmanned vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997031302A1 true WO1997031302A1 (en) | 1997-08-28 |
Family
ID=12996551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1997/000450 WO1997031302A1 (en) | 1996-02-20 | 1997-02-19 | Method and apparatus for controlling travel of unmanned vehicle |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPH09230939A (en) |
AU (1) | AU1733197A (en) |
WO (1) | WO1997031302A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108549373A (en) * | 2018-04-10 | 2018-09-18 | 清华大学 | A kind of method and apparatus that vehicle operating information processing is carried out based on navigation angular displacement |
US10248128B2 (en) | 2014-09-04 | 2019-04-02 | Hitachi Construction Machinery Co., Ltd. | Haulage vehicle and travel control system for the same |
CN112224186A (en) * | 2020-09-18 | 2021-01-15 | 珠海广通汽车有限公司 | Vehicle control method, device, computer-readable storage medium, and processor |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7208804B2 (en) * | 2019-01-17 | 2023-01-19 | 株式会社小松製作所 | Unmanned vehicle control system and unmanned vehicle control method |
JP2020185991A (en) * | 2020-07-27 | 2020-11-19 | トヨタ自動車株式会社 | Self-driving vehicle system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4965481A (en) * | 1972-10-31 | 1974-06-25 | ||
JPS61253514A (en) * | 1985-05-02 | 1986-11-11 | Nippon Yusoki Co Ltd | Curve detector for unmanned carrier |
JPH03127206A (en) * | 1989-10-13 | 1991-05-30 | Mitsubishi Electric Corp | Automatic drive controller for vehicle |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2904282B2 (en) * | 1989-05-17 | 1999-06-14 | マツダ株式会社 | Travel control device for mobile vehicles |
JPH07230315A (en) * | 1994-02-16 | 1995-08-29 | Fuji Heavy Ind Ltd | Traveling controller for autonomously traveling vehicle |
-
1996
- 1996-02-20 JP JP8055368A patent/JPH09230939A/en active Pending
-
1997
- 1997-02-19 WO PCT/JP1997/000450 patent/WO1997031302A1/en active Search and Examination
- 1997-02-19 AU AU17331/97A patent/AU1733197A/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4965481A (en) * | 1972-10-31 | 1974-06-25 | ||
JPS61253514A (en) * | 1985-05-02 | 1986-11-11 | Nippon Yusoki Co Ltd | Curve detector for unmanned carrier |
JPH03127206A (en) * | 1989-10-13 | 1991-05-30 | Mitsubishi Electric Corp | Automatic drive controller for vehicle |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10248128B2 (en) | 2014-09-04 | 2019-04-02 | Hitachi Construction Machinery Co., Ltd. | Haulage vehicle and travel control system for the same |
CN108549373A (en) * | 2018-04-10 | 2018-09-18 | 清华大学 | A kind of method and apparatus that vehicle operating information processing is carried out based on navigation angular displacement |
CN112224186A (en) * | 2020-09-18 | 2021-01-15 | 珠海广通汽车有限公司 | Vehicle control method, device, computer-readable storage medium, and processor |
CN112224186B (en) * | 2020-09-18 | 2025-03-21 | 珠海广通汽车有限公司 | Vehicle control method, device, computer readable storage medium and processor |
Also Published As
Publication number | Publication date |
---|---|
AU1733197A (en) | 1997-09-10 |
JPH09230939A (en) | 1997-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1862374B1 (en) | Steering control device for vehicles | |
KR101252917B1 (en) | Lane keeping assist device and lane keeping assist method | |
JP4282858B2 (en) | Vehicle travel control device | |
JP5050417B2 (en) | Vehicle steering control device | |
KR950005614A (en) | Vehicle traction control device | |
JPH06183288A (en) | Controller for stability of vehicle turning around curve | |
JP4973086B2 (en) | Vehicle driving support apparatus and method | |
JP2002211267A (en) | Follow-up run control device for vehicle | |
US20060102395A1 (en) | Regeneration control system | |
US11938951B2 (en) | Method and device for controlling vehicle motion during acceleration in the lateral direction | |
JP3987044B2 (en) | Inter-vehicle distance control device | |
JP5031961B2 (en) | Mobile terminal impact management system | |
JP3960406B2 (en) | Preceding vehicle tracking control device | |
CN112363505A (en) | Articulated sweeper speed planning method and system based on target distance | |
WO1997031302A1 (en) | Method and apparatus for controlling travel of unmanned vehicle | |
HK15297A (en) | Vehicle braking procedure and device for control of the brake torque applied to a wheel | |
AU674345B2 (en) | Apparatus for detecting slip of vehicle | |
JP3889916B2 (en) | Steering device and steering reaction force setting method | |
JP4670691B2 (en) | VEHICLE DRIVE CONTROL DEVICE, AUTOMOBILE, AND VEHICLE DRIVE CONTROL METHOD | |
JP2006069497A (en) | Steering device | |
JP2005028995A (en) | Vehicle speed controller of vehicle | |
JP4586882B2 (en) | Vehicle speed control device for vehicle | |
JP6453102B2 (en) | Vehicle motion control device | |
US11858574B2 (en) | Steering control device and steering control method | |
JPH10236328A (en) | Steering device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA CN DE GB US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |