[go: up one dir, main page]

WO1997027337A1 - Procede de fonctionnement d'un fourneau a cuve - Google Patents

Procede de fonctionnement d'un fourneau a cuve Download PDF

Info

Publication number
WO1997027337A1
WO1997027337A1 PCT/JP1997/000164 JP9700164W WO9727337A1 WO 1997027337 A1 WO1997027337 A1 WO 1997027337A1 JP 9700164 W JP9700164 W JP 9700164W WO 9727337 A1 WO9727337 A1 WO 9727337A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
furnace
iron source
solid fuel
vertical furnace
Prior art date
Application number
PCT/JP1997/000164
Other languages
English (en)
French (fr)
Inventor
Masaaki Naito
Norimitsu Konno
Yasuhiko Fujiwara
Kyoichi Araki
Teruhiko Kokubun
Tadashi Obara
Yasushi Obara
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP03117896A external-priority patent/JP3516793B2/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP97900776A priority Critical patent/EP0818543B1/en
Priority to BRPI9704633-7A priority patent/BR9704633B1/pt
Priority to US08/913,836 priority patent/US6129776A/en
Priority to KR1019970706702A priority patent/KR100241854B1/ko
Priority to DE69720606T priority patent/DE69720606T2/de
Priority to RU97117883A priority patent/RU2144088C1/ru
Publication of WO1997027337A1 publication Critical patent/WO1997027337A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/02Making pig-iron other than in blast furnaces in low shaft furnaces or shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • C21B13/023Making spongy iron or liquid steel, by direct processes in shaft furnaces wherein iron or steel is obtained in a molten state
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention uses an iron-containing dust and iron ore or lump ore having a small amount of impurities such as iron scrap and iron or reduced iron as an iron source, and has good thermal efficiency and low fuel efficiency regardless of the properties of the solid fuel.
  • the present invention relates to a method for operating a solid furnace capable of continuously smelting pig iron at a specific ratio.
  • the blast furnace method is still the mainstream today.
  • the raw material charged from the furnace top is sufficiently preheated while descending by a high-temperature gas flowing from bottom to top, and iron oxide is converted to carbon monoxide ( CO), it is indirectly reduced at a rate of 60% or more.
  • the blast temperature is set to 1 000 ° C or more.
  • the main purpose is to dissolve iron sources such as iron shavings, garbage shavings, and pig iron.
  • the Cubola method uses a large-diameter coke for vehicles with a particle size of 100 to 150 mm, which reduces the reaction of the solute port after coke combustion. Restrained.
  • large-diameter coax for animals is expensive, it is considered effective to use small-grain coke to reduce fuel costs.
  • the solution loss reaction rate which is an endothermic reaction, increases, and the gas utilization rate co of the coating decreases.As a result, the amount of heat of fusion decreases and stable operation becomes difficult. Become.
  • solid-state furnaces that require self-reducing ore or iron slag as a main raw material and require a reduction function to dissolve.
  • a hard furnace does not use a raceway, but operates at a low blast temperature of 600 ° C or less.
  • Japanese Unexamined Patent Publication No. Hei 1-1501401 discloses a hot metal manufacturing apparatus comprising a blast furnace having a secondary tuyere and a hearth having a diameter larger than the diameter of the blast furnace and having a primary tuyere. I have. In this furnace, only the iron source is charged from the top of the furnace, and fuel is directly added to the fuel bed existing at the joint between the blast furnace and the hearth. Thus from the this blast furnace inside which is a nonexistent ore layer of fuel, Sorushi ® Nrosu reaction with the solid fuel does not proceed, exhaust gas composition has a high value of C0 2 / (C0 + C0 2 ), efficiency Good operation can be expected.
  • the self-reducing ore which is the main raw material, reacts with the coke in the coke bed in the hearth, causing smelting reduction, which is an endothermic reaction.
  • an exothermic reaction occurs as shown in the following equation (2), and it is considered that this heat is used for preheating, heating, or melting the ore to obtain hot metal.
  • the relationship between the addition position and the primary tuyere when fuel is added from the joint between the blast furnace and the hearth is not specifically specified in the above-mentioned Japanese Patent Publication No. 1-1501401. However, judging from FIG. 2 of the publication, the primary tuyere is located between the adjacent fuel addition positions.
  • Japanese Patent Publication No. Hei 1-1501401 proposes a melting furnace having a complicated furnace body structure, using small-grain coke, and using a large amount of self-reducing ore, resulting in high gas. Aiming at the utilization factor wco, we proposed a technology aimed at reducing the fuel ratio.
  • problems that hinder long-term stable operation such as the problem that shelves are easily suspended in the furnace and the problem of wear of the cots in the lower part of the furnace.
  • the problem to be solved in the present invention is that even when a solid fuel having a smaller particle size than that of a botanical coke is used, the gas utilization rate co of the solid fuel is not reduced, and it is also possible to avoid hanging on a shelf. Enables efficient operation
  • the present invention relates to reduction of dust agglomerate, self-reducing agglomerate ore (a lump ore that can be self-reduced by c inside the agglomerate ore), reduced iron with a low metallization rate (including reduced iron powder), etc.
  • One of the iron sources that require only the melting function such as HB1 (hot reduced iron), DRI (direct reduced iron), iron shavings, pig iron and return shavings.
  • the iron source including the seeds and the solid fuel are charged into the hardened furnace, and oxygen is contained at room temperature or 600 ° C or less from the tuyeres provided on the wall of the hardened furnace.
  • Fine-grained solid fuel can be used in the operation method of blowing and reducing and dissolving gas, and it is an index of the gas utilization rate in the furnace according to the type of iron source
  • V co (CO 2 / (C 0 + C 0 2 )
  • iron sources that require a reducing function such as dust agglomerate, self-reducing agglomerate, reduced iron with a low metallization rate, and HBI, DRI, iron shavings, type pigs, return scraps, etc.
  • the operating method of the solid-state furnace of the present invention in which the solid-state fuel and the iron source including any one of the iron sources having only the melting function are charged into the solid-state furnace has the following points.
  • the method of controlling the gas utilization rate in the furnace is to adjust the charging height (stock level) of the charge consisting of the iron source and solid fuel in the rigid furnace.
  • the charging height of the charge consisting of the iron source and solid fuel in the rigid furnace.
  • at least one of the height of the coke bed, the amount of air blow, the tuyere diameter, and the tuyere projection position should be changed.
  • the above tuyeres are provided, and the blow ratio of each tuyere installed in the height direction is changed according to the particle size of the solid fuel and the average metallization ratio of the iron source (average M.Fe / T.Fe).
  • the charging method two cycles or more are regarded as one cycle, and in each cycle, the weight ratio of the iron source Z solid fuel, the type of iron source, and the particle size of the solid fuel are at least 1 in each charge.
  • the iron source is controlled to a value of 7 7co suitable for the reductive dissolution.
  • an iron source with a high average metallization rate is mixed with the solid fuel and charged into the center of the furnace of the solid-state furnace to obtain the average metallization.
  • a low-rate iron source is mixed with the solid fuel and charged around the furnace of the rigid furnace.
  • the height of the coke bed at the lower part of the hardened furnace is adjusted to a predetermined height according to the particle size of the solid fuel composed of the cox to be fitted to the hardened furnace and the blowing conditions from the tuyeres. .
  • the particle size of solid fuel around the furnace of the solid-state furnace is 60 mm or less.
  • the particle size of the solid fuel to be charged into the center of the furnace is set to be larger than the particle size of the solid fuel to be charged into the periphery. Preferably it is at least 60 mm.
  • the weight ratio of C contained in the solid fuel to Fe contained in the iron source is set to 0.01 to 1.0. It shall be 0.05.
  • the charging height (stock level) of the charge consisting of the iron source and solid fuel to be charged into the periphery of the furnace with respect to the center of the furnace is determined by the average metal of the iron source. Change according to the conversion rate.
  • Fig. 1 (a) is a diagram showing an example of a reaction device and a charging device
  • Fig. 1 (b) is a diagram showing a central part
  • Fig. 1 (c) is a diagram showing a peripheral part.
  • Figure 2 (a) shows the charge with a high average metallization rate
  • Figure 2 (b) shows the charge with a low average metallization rate
  • Figure 2 (c) shows the charge in Figure 2 (a)
  • Fig. 3 is an explanatory diagram showing the relationship between the in-furnace gas utilization rate and the distance from the primary tuyere for the center and periphery.
  • FIG. 3 is a diagram showing the relationship between the average metallization ratio of the iron source and the co level at which the reduction and dissolution of the iron source can be performed without hindrance.
  • Fig. 4 (a) shows the relationship between the coke bed height and co when the coke particle size was changed at a furnace gas flow rate of 0.35Nm / s
  • Fig. 4 (b) Particle size: 30 mm the relationship between coke bed height and 7? Co when the gas velocity in the furnace changes
  • Fig. 4 (c) shows the coke when the gas velocity in the furnace changes. It is a figure which shows the relationship between bed height and co.
  • FIG. 5 shows the relationship between the stock level and co.
  • Fig. 6 (a) shows the relationship between the furnace temperature and r-co at the time of coex mixing of dust (self-reducing ore) containing iron
  • Fig. 6 (b) shows the FIG. 4 is a graph showing the relationship between the furnace temperature and the reduction rate with and without coexisting dust (self-reducing ore) contained.
  • FIGS 7 (a) to 7 (d) show examples of typical charging methods.
  • FIG. 8 is a diagram showing an operation example.
  • FIG. 9 is a diagram showing an operation example. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 (b) and 1 (c) show the upper charging device of FIG. 1 (a). It has a bucket 1, a bell 2, a movable armor 3, and a charging guide 4 as a charging device.
  • a furnace body 5 is provided with an exhaust gas pipe 6 at an upper part and a tuyere 7 at a lower part. The charge can be divided into a central part 9 and a peripheral part 8 and can be charged.
  • the cossett 10 is formed at the lower part of the furnace body with its height adjusted.
  • the reactor has two or more tuyeres 7 in the height direction.
  • a charging device that can be charged separately in the radial direction (Figs. 1 (b) and (c)).
  • the blowing condition is room temperature blowing or hot air blowing at 600 ° C or less.
  • the tuyere diameter is set so that a raceway is not formed at the tuyere tip.
  • the secondary tuyere changes the protruding position in the furnace depending on the charged material.
  • the raw materials are iron scrap, pig iron, swarf scrap, hot brigated iron (HBI), reduced iron DRI and other metal sources with high metallization rates, dust agglomerates, self-reducing ores, and oxidation.
  • Reduced metal lump lump iron source with low metallization rate such as powder
  • Fuel is mainly solid fuel such as coke and anthracite.
  • the charging method is the normal charging method in which raw fuel is completely mixed or layered after the coke is charged to form a coat bed, and the raw fuel is separated in the radial direction and charged. A new charging method was adopted.
  • Fig. 2 (a) shows that only the melting of iron debris is performed in the central part 16a, coke + dust is used in the peripheral part 17a, and the height of the coke bed 10 is The charge is 13a at the center and 14a at the periphery.
  • Fig. 2 (b) shows that the central part 16b is made of coke, iron dust and dust, the peripheral part 17b is made of coke + dust, and the height of the coke bed 10 is The charge is 13b at the center and 14b at the periphery.
  • a gas such as oxygen is supplied from the primary tuyere 11 and the secondary tuyere 12 and forms a gas flow 15 in the furnace to reduce and dissolve.
  • Fig. 2 (c) shows the relationship between the in-furnace gas utilization rate co and the distance from the primary tuyere in Fig. 2 (a) for the center and periphery.
  • New charging methods can be broadly classified into those that aim for efficient operation and those that use large amounts of fine iron sources.
  • the metallization rates of the charged raw materials are divided by weighted average metallization rate (average M.Fe / T.Fe).
  • average M.Fe / T.Fe weighted average metallization rate
  • the operation of the reactor is controlled by adjusting the height of the coke bed, the stock level, the charging method according to the type of raw material, and the position of the secondary tuyere.
  • the optimal height of the coke bed is mainly due to melting of the iron source
  • the upper limit position of the coix bed is set at a position corresponding to the target CO, depending on whether the reduction is the main.
  • the reaction rate of the coke combustion reaction and the force reaction of the solu- tion loss reaction after combustion are adjusted by the solid fuel particle size, gas flow rate, and blast temperature.
  • the stock level position is related to the rate of temperature rise of the raw fuel, and particularly affects the solution reaction rate of solid fuel, so it is used as a control means to prevent reduction in reaction efficiency.
  • the radial charging method the part with high metallization rate and the part with low metallization rate are separated, and the former is oriented to melting-oriented operations, and the secondary combustion rate; Aiming for the upper limit of co, with emphasis on reduction in the latter, controlling the secondary combustion rate required for reduction in accordance with the average metallization rate and C content of the raw material to achieve the best overall efficiency Operation can be oriented.
  • the secondary tuyere is used effectively, and the secondary blast is aimed at the upper limit of the secondary combustion rate.
  • the melt-weighted portion is set to the center side, it is most effective to set the secondary tuyere projecting position at the boundary between the center and the periphery of the furnace.
  • control of the in-furnace co of the present invention will be described.
  • the control of the present invention is summarized as the following 1 to 5.
  • the average metallization ratio (average M.Fe / T.Fe) is calculated from the components and the amount (use amount) of the iron source charged to the solid-state furnace.
  • Average metallization rate Metallization rate obtained by weighting the average of several iron sources.
  • the coke volume from the primary tuyere can be determined from the data in Fig. 4 depending on the solid fuel particle size used.
  • Set the head height. When adopting the radius division charging method, set the appropriate coke bed height separately for the center side and the peripheral side.
  • Equation (3) is an approximation line using the least squares method, which may vary slightly depending on the type of iron source and the metallization rate.However, based on the target 7? Co, the stock level H (m) Set.
  • the fuel ratio is set separately for the center and peripheral sides before charging.
  • iron sources such as iron shavings, pig iron, waste shavings, HB I, and reduced iron DRI
  • a reduction function is not required. Higher conditions are preferred for low fuel ratio operation, and the target is co> 80% operation.
  • thermodynamics for reducing pure wustite (FeO) to iron As an equilibrium (equilibrium) condition, for example, in a temperature range of 1 000 ° C or more, a gas condition of about 30% is required.
  • Iron sources that require these conditions are wustite (FeO) with a 0% metallization ratio, and sinter, pellets and lump ore charged to the blast furnace.
  • the gas atmosphere outside the agglomerate is co> At about 30%, even if the reduction of FeO to iron does not progress equilibrium, due to the presence of C inside the agglomerate, inside the agglomerate? A condition of 7 co and about 30% is formed, and reduction to reduced iron proceeds. Has been confirmed to be used.
  • Ni will this Yo, changes be sampled click levels, is responsible for controlling the Atsushi Nobori rate of the raw fuel in the furnace, the control means of the exhaust gas eta co.
  • Fig. 4 shows the relationship between coke particle size and air flow (gas flow rate).
  • the method of radially charging the charge does not reduce the combustion efficiency of the solid-state furnace even when small solid fuel is used, and is an effective means for controlling 77 co. It is explained that installing multiple multi-stage tuyeres on the wall of the shaft in the furnace height direction is more effective for 7? CO control.
  • the solution loss reaction expressed by equation (4) occurs, and the ratio of this solution loss reaction must be reduced as much as possible, and the use of small solid fuels Even so, the method that can be operated without reducing the gas utilization rate of the solid-state furnace is the charge method in the radial direction of the charge.
  • the iron source and the solid fuel are charged so as to have different amounts of iron source and solid fuel on the furnace central side and the furnace peripheral side.
  • the weight ratio of the solid source / solid fuel at the center of the furnace is increased, that is, the ratio of solid fuel is reduced, the weight ratio of the iron source Z solid fuel at the periphery of the furnace is reduced, and fine solid
  • the use of a fine-grained coke with high ventilation resistance around the furnace can direct the centralized flow of gas.
  • the temperature around the furnace, where the gas flow rate is small is lower than that at the center of the furnace, including the effect of water spray cooling of the furnace body, and the amount of solution reaction loss of coke around the furnace can be suppressed.
  • the amount of gas in the center of the furnace is large, the amount of charging coke is small, so that the solution reaction of the equation (4) can be compared with the ordinary mixed charging method or stratified charging method. The amount can be controlled.
  • the method of radially charging the charged material is an effective means for 7? CO control without decreasing the gas utilization rate of the solid-state furnace even when using small solid fuel.
  • the reduction and melting method of the iron source which adopts the radial charging method, is effective for operation stability and low fuel ratio operation, and aims for efficient operation regardless of the iron source type and particle size.
  • the iron source type and particle size explain what can be done and how to operate more efficiently depending on the properties of the iron source and solid fuel.
  • One is an example of increasing the CO in the furnace and aiming for efficient operation. This is a fractionation method using M.Fe / T.Fe of the iron source, and the other is a fractionation method according to the particle size of the iron source.
  • an iron source with a high metallization rate such as pig iron (type pig), iron Waste, waste, reduced iron, HB and DRI are charged into the center of the furnace, and iron sources with low metallization rate (dust agglomerate, self-reducing ore, partially oxidized reduced iron) And pellets) around the furnace.
  • This is a charging method in which the core of the furnace has a melting function and the periphery of the furnace has a reducing function.An iron source with a low metallization rate is charged around the furnace, and the metallization rate is reduced at the center of the furnace.
  • the reason for installing a high iron source is to make it easier to control the height of the coke bed in the center of the furnace, to secure the center gas flow, and to operate at a low fuel ratio. is there.
  • the tuyere tuyere shall have a structure in which the tuyere tip protrudes into the furnace from the furnace wall. Ideally, it is provided at the boundary of the part.
  • the solid fuel in the periphery is preferably fine, and the solid fuel in the center is preferably large.
  • the reason for setting the secondary tuyere at the boundary between the central part and the peripheral part of the furnace is to prevent secondary blast from being used for combustion of solid fuel existing around the periphery. This is to make it work for gas combustion. Since the core of the furnace mainly has a melting function, it is most efficient if the secondary blast directs the operation of co> 90% in the center of the furnace, and the solid fuel in the center of the furnace is carburized with the lowest fuel ratio. Minutes. Therefore, suddenly In addition to suppressing the change in the height of the coke bed, the coke that maintains the particle size becomes the co-bead, enabling low fuel ratio operation with ventilation and liquid permeability. Becomes
  • the appropriate secondary air flow is determined by the height of the coke bed.
  • the height of the coke bed varies depending on the coke particle size and the gas flow velocity in the furnace.
  • the upper end of the coke bed is set at the optimum position (co> 90%)
  • the next blast is unnecessary. If co at the upper end of the coke bed is 90% or less, co> 90% can be set by the secondary ventilation, and ideal operation is possible in the center of the furnace.
  • the coke bed height should be set to co> 65% at the top of the coke bed.
  • the height of the cold bead is set at a predetermined position at the start of operation.
  • the coke bed height can be maintained by charging coke from the furnace top that matches the coke consumption in the furnace.o
  • C is installed inside the dust containing iron. It is effective to increase the amount of interior C.
  • the upper limit of the amount of interior C is about 20% due to strength restrictions.
  • Fig. 3 shows the average metallization rate of the iron source and the reduction and dissolution of the iron source can be performed without any trouble; This is an example of examining the co-level.
  • the co-level slightly varies depending on the amount of C contained in the dust containing iron, but is it possible to operate based on the average metallization rate of the iron source of the wearer? 7 Co level can be determined.
  • coke As a solid fuel, coke is generally used, but carbonaceous materials such as anthracite can also be used.
  • the iron sources charged from the furnace top include dust agglomerate, self-reducing ore, lump-reduced iron (HB I, DR 1), iron shavings, wood shavings, and pig iron (pig iron).
  • Figures 7 (a) to 7 (d) show typical examples of charging methods for charging ore, pellets or reduced iron powder.
  • Figures 7 (a) and 7 (b) show an iron source with a high metallization rate, namely pig iron, iron shavings, lump reduced iron, and large coke for charging coke bed and carburizing.
  • the iron source with low metallization rate dust agglomerate, self-reducing ore, partially oxidized reduced iron, pellets
  • the partially oxidized lump-reduced iron can be charged into the furnace center.
  • the tapping ratio can be increased even if the reaction efficiency in the furnace is somewhat sacrificed.
  • reduced iron powder and fine-grained solid fuel are mixed and charged around the furnace, and large-sized dust agglomerate ore, self-reducing ore, etc.
  • iron sources with a low metallization rate may be charged.
  • the multi-functional operation is possible according to the type and properties of the iron source by adopting the directional sorting charging method.
  • the stock level (height from primary tuyere H) / (hearth diameter D) ⁇ 2.0 is appropriate.
  • target 7? Co 50%
  • the stock level should be set to about 2.4 for HZD.
  • the difficulty in controlling the coke bed height is located in the lower center of the furnace. If the coke ratio is not appropriate, unreduced FeO melts and reduces at the lower part of the furnace, consuming coke bed. This causes abnormal wear of the coke bed. In particular, if such coke is abnormally consumed in the lower center of the furnace, it may hinder the melting of the iron source, and it may also become impossible to operate due to solidification of the slag. It becomes a title.
  • the core of the furnace is mainly melted by charging an iron source with a high metallization rate, i.e., pig iron, iron chips, and metal scraps. It is an operation that does not easily cause reduction, and suppresses abnormal wear of the cool bed in the center of the furnace.
  • the solid fuel to be charged into the center of the furnace is separated from the solid fuel to be charged around the furnace, and a large diameter coke is used.
  • a large diameter coke is used.
  • the installation position of the upper tuyere depends on the operating parameters such as coke particle size and air flow, etc.
  • the force at which an appropriate position exists Basically, the /? CO level at the secondary tuyere is 65% Co is about 90% or more.
  • the top position of the coke bed differs depending on the type of iron source to be charged, and the location of the iron source that does not require a reduction function is restricted to a position below the secondary tuyere. However, it is preferable to suppress the burning of polar coke. On the other hand, it is preferable that the upper end of the coke bed is located above the secondary tuyere at the charging site of the iron source that requires the reduction function. This is because it is necessary to control the co at the upper end position of the coke bed according to the ratio of M.Fe / T.Fe of the iron source.
  • Simple methods for controlling or monitoring the height of the coke bed include visual observation at the secondary tuyere and judgment based on the pressure drop in the furnace. Observation at the secondary tuyere can at least determine that the molten portion of the iron source exists either above or below the secondary tuyere. Also, by detecting the pressure loss difference between the primary tuyere and the secondary tuyere, it is possible to confirm the upper end position of the coke bed. According to the operation example, when the upper end of the coke bed is below the secondary tuyere, a large pressure drop difference between the primary tuyere and the secondary tuyere can be detected. You. This is because the presence of the melting portion increases the pressure loss value.
  • the height of the coke bed it can be determined by measuring the descending behavior of a vertical sonde or iron wire charged from the upper part of the furnace.
  • a vertical sonde the temperature inside the furnace suddenly rises to 1200 ° C or higher, and when iron wire is used, the point where the descent speed stops corresponds to the upper end of the coke bed. I do.
  • the iron source with a low average metallization rate charged into the periphery was mixed with solid fuel and charged, and the coke charged into the periphery of the furnace was made into small-grain coke.
  • directing the charging method with a different ratio of iron source Z solid fuel in the furnace radial direction is effective in avoiding hanging from the shelves.
  • a large amount of dust containing iron is used. In this case, deposits tend to be formed on the furnace wall. For example, the reduction reaction slows down,
  • a slag containing a large amount of FeO is generated, and this slag is cooled by smelting reduction, which is an endothermic reaction, and adheres to the furnace wall.
  • a large amount of slag containing FeO is flooded at the bottom of the furnace.
  • This slag is blown up and adheres to the furnace wall, or the rising high-temperature gas causes unreduced FeO to melt at the upper part of the furnace and bond or fuse with the adjacent iron source and adhere to the furnace wall
  • a large amount of slag melt is generated near the furnace wall, or liquefied by bonding or fusing with an adjacent iron source, which adheres to the furnace wall and becomes an adhering substance.
  • the particle size of the solid fuel is small. This is because if the same weight of coke is charged, the number of charged small solid fuels is larger and the contact between iron sources can be sufficiently avoided.
  • the small solid fuel here, for example,
  • a blast furnace coke (particle size of 60 mm or less) or a blast furnace small lump coatas having a particle size of about 30 mm is preferred.
  • the weight ratio of the iron source Z solid fuel is divided into the furnace center and the furnace periphery, and an iron source with a high metallization rate is charged into the furnace center and charged into the center Reduce the coke weight and increase the amount of coke charged into the periphery as much as possible.
  • the proportion of solid fuel charged around the furnace depends somewhat on the metallization rate of the iron source charged, such as dust agglomerate, self-reducing ore, and reduced iron. For example, in the case of using 75% of self-reducing ore lump containing 12% of C, 15% of reduced iron and 10% of iron scrap as charged iron source, iron scrap that does not require reduction is used. It has been confirmed by operations that the ratio between the removed iron source and the solid fuel can be avoided under the condition of (self-reducing ore + reduced iron) Z solid fuel ⁇ 5.
  • This condition corresponds to a solid fuel of ⁇ 1.24 (weight of metal M.Fe in charged iron source).
  • the iron scrap other than iron scrap contains C, so basically, only the iron scrap and the C content required for carburizing It is only necessary to replenish the fuel and, in addition, to replenish the solid fuel that is consumed by burning part of the coke bed.
  • the amount of carburizing in the furnace is 2 to 4% by weight of the iron chips.
  • the test results showed that the coke bed consumption in the center of the furnace was about 10 kg / t (corresponding to about 0.01 in terms of ratio).
  • the charging method for example, using a bell type charging device, armor is used, and the weight ratio of the iron source solid fuel is changed for each charging, and the first charging is performed in the center of the furnace. It has been confirmed that the prescribed charging can be achieved by charging the second charge around the furnace.
  • a top-open type charging device that is often found in melting furnaces such as cubora
  • the charging device shown in Fig. 1 (a) to (c) is used to It is effective to charge them separately.
  • the charging method is somewhat complicated, At the time of charging, there is a method in which only solid fuel is charged near a wall, and an iron source and solid fuel are mixed and charged inside the solid fuel. Specifically, 1 cycle is charged with 3 charges, 1st charge is charged with solid fuel only around the wall around the furnace, 2nd charge is charged into the center of the furnace, 3 charges By mixing and charging the iron source and the solid fuel into the periphery of the furnace, predetermined charging becomes possible.
  • the boundary position between the furnace central part and the furnace peripheral part is somewhat in the radial direction of the furnace, depending on the average metallization ratio of the iron source divided by the coke particle size and the usage ratio of the dust containing iron. Moving.
  • the boundary position ri between the central part of the furnace and the peripheral part of the furnace can be obtained by Eq. (6) if the iron source and the amount of solid fuel to be charged into each part are determined.
  • a rigid furnace with tuyere structure was used.
  • a charging equipment capable of sorting charging positions in the direction of the furnace radius was used.
  • furnace top exhaust gas composition (C0 2, T0 M / (CO, ⁇ ⁇ »+ C0 2 1T0PI) defined).
  • the iron source to be charged is C (4 to 20%) self-reducing ore lumps (40 mm x 20 IX 30 mni in size) and reduced iron lumps with a particle size of 3 nun or less.
  • Agglomerate ore produced by mixing dust agglomerate mainly composed of blast furnace secondary ash, and agglomerated by mixing dust in steelworks, iron-shredder scrap iron, which is general market waste, particle size Reduced iron of 5 mm or more and particle size of 3 mn! ⁇ 5 nun of reduced iron powder.
  • Example 1 (b) differs from Example 1 (a) in that the central charging large coax was replaced with a partial small lump coatas, and the height of the bed coax was reduced by gas. This is an example of more efficient operation by changing to a position near the highest combustion temperature, that is, a position 40 cm from the lower tuyere.
  • Example 2 and Comparative Example 2 are reduction dissolution test examples of dust agglomerate 20% by weight and kersh redder—iron scrap 80% by weight, and Comparative Example 2 was charged with raw fuel completely mixed.
  • Example 2 (a) is an example in which the stock level was adjusted.
  • Examples 2 (b) to (d) 20% by weight of dust agglomerate and a small lump mix were mixed and charged into the periphery, and Table 1
  • Example 2 (d) a large coke for carburizing and 80% by weight of karstletter iron waste were charged into the furnace.
  • Example 2 (d) the lower impeller protruded about 20 cm inside the furnace, and the tuyere diameter was changed from 50 mm to 40 mm.
  • Example 2 (d) the gas flow rate in the furnace was 0 mm. ⁇ ⁇ ⁇ This is a case of wind to raise to 8 mZ s.
  • Comparative Example 3 is a case where the stock level which was applied in the normal operation state, that is, the case where the stock level was set to 4.2 m above the primary tuyere, was compared with Example 3 (a).
  • Example 3 (c) in which the stock level was changed by referring to equation (1) and Fig. 3 based on the airflow rate, the primary air temperature was set to 200 ° C hot air.
  • Example 3 (d) is an example in which only one-stage blast was used and the blast temperature was 550 ° C hot air, and Example 3 (e) was self-reducing.
  • Fig. 3 shows an example in which co is changed. ratio Compared to the comparative example, the operation of the example was better, and the efficiency was improved by controlling the stock level according to the iron source in the radial direction and changing the ventilation temperature.
  • Example 4 and Comparative Example 4 are cases in which 80% by weight of kershredder scrap iron, 20% by weight of pig iron and large lump coke were charged in the center, and small lump coke was charged in the periphery. Is a case set at a stock level of 4.2 m, but the embodiment is an example in which the stock level is adjusted to enable highly efficient operation.
  • Example 5 and Comparative Example 5 are cases in which 80% by weight of kersch resin and large lump coke were charged in the center, and 20% by weight of dust agglomerate and small lump coke were charged in the periphery.
  • the comparative example is a case where the stock level is set to 4.2 m, while the embodiment is an example in which the stock level is adjusted to enable a highly efficient operation.
  • Example 6 (b) is a case in which 100% by weight of kershredder scrap iron and large lump coke are charged in the center and small lump coke is charged in the periphery.
  • the iron source and coke Prior to Example 6 (b), the iron source and coke were completely mixed and charged in an operation similar to the normal cuvola operation, the coke bed height was set to about lm above the primary tuyere, and the storage was stopped.
  • Example 6 (a) 3 ⁇ 4 at the upper end of the coke bed, set the height of the coat bed to 60 cm above the primary tuyere and set the stock level to 3.0m.
  • the set operation was also implemented (Example 6 (a)).
  • co could be operated only at a low level of about 2053 ⁇ 4, and the coke ratio had to be increased.
  • Example 6 (b) even when a large amount of fine coke was used, 7? It was operated at 50 m2, and it was confirmed that the coke bed and stock level control were effective.
  • Example 6 (b) the height was further increased due to radial division charging. co (> 90) was achieved and the most efficient operation was confirmed. (Fig. 8)
  • Example 7 is a case where iron fines were not used and a large amount of fine reduced iron powder was used.
  • the present invention proposes a more efficient operation method utilizing a new raw material and fuel charging method in a pig iron production method using dust and Z or iron scraps containing iron as a main raw material.
  • the development will enable continuous operation, high combustion efficiency, and the use of inexpensive small solid fuel, which will enable high productivity and low fuel ratio operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

明 細 書 堅型炉の操業方法
技術分野
本発明は、 鉄を含有するダス トおよびノまたは鉄屑類およびノま たは還元鉄等の不純物の少ない塊鉱石を鉄源と し、 固体燃料の性状 によ らず、 熱効率良く 、 低燃料比で銑鉄を連続的に溶製可能とする 堅型炉の操業方法に関する。 背景技術
未還元鉱石から銑鉄を製造する方法と しては、 これまでに種々開 発されてきたが、 今日でも高炉法がその主流となっている。 この高 炉法では、 炉頂から装入された原料は降下していく 間に、 下から上 に向かって流れる高温ガスによって十分に予熱されるとと もに、 酸 化鉄は一酸化炭素 (CO) により、 60 %以上の比率で間接還元される 。 高炉法では、 このような間接還元率を確保するために、 羽口前に レースゥ ヱイ空間を設け、 ここで、 ガス利用率 7? co ( = C 0 2 Z ( CO + C0 2 ) ) = 0 の還元ガスを製造するようにしている。 また、 上記の 高温ガスとなる燃焼ガスの温度を高めるために、 送風温度は 1 000 °C 以上と している。
しかしながら、 鉄を含有するダス 卜および/または鉄屑等の鉄源 を主原料とする溶解炉では、 羽口部で還元ガスを製造する必要性が 薄れ、 したがって、 羽口前でのコークスの燃焼は、 原燃料の昇熱あ るいは溶解のための熱源を確保する手段と して活用するこ とが効率 的とされている。
例えば、 鉄屑、 铸物屑、 銑鉄等の鉄源を溶解するこ とが主目的で 、 還元機能を必要と しないキュボラ法では、 通常、 原燃料を混合し て装入し、 co=40〜50%の条件下で、 鉄源の溶解を実施している 。 このようなガス組成とするために、 キュボラ法では、 粒度 100〜 150mm の铸物用大径コ一クスを使用 しており、 これによつて、 コー クス燃焼後のソルーシ ヨ ン口ス反応を抑制している。 しかし、 铸物 用大径コ一ク スは高価なこ とから、 燃料コス トの削減のため、 小粒 度のコ一クスを使用するこ とが有効と考えられる。 と ころがこの場 合には、 吸熱反応であるソル一ショ ンロス反応速度が大き く なり、 コ一タスのガス利用率 coが低下する結果、 溶融熱量が低下して安 定した操業は困難になる。
一方、 自己還元性鉱塊、 鉄屑を主原料と して、 溶解まで行う還元 機能を必要とする堅型炉の操業例は少ない。 このような堅型炉では 、 高炉とは異なって、 レースゥ ヱイを設ける こ とはせず、 送風温度 を 600°C以下と低く して操業を行っている。
Goksel ζ (Transactions of the American Foundrymen s Society Vol 85 AFS Des Plaines, III. (1977), p.327 一 332)によれば、 送風温度を 450°Cと した熱風キュボラで、 含 Cペレツ トを 5重量% 用いて行った試験の報告はあるが、 常温送風キュボラあるいは含炭 ペレ ツ 卜の多量配合時の堅型炉の操業についての従来例は見当たら ない。
特表平 1 一 501401号公報には、 2次羽口を有する高炉と、 高炉の 直径より大きな直径を備え、 かつ 1 次羽口が存在する炉床とからな る溶銑製造装置が開示されている。 この炉では、 炉頂部から鉄源の みを装入し、 燃料は高炉と炉床の結合部に存在する燃料べッ ド上に 直接添加する構造となつている。 従って高炉内部は燃料の存在しな い鉱石層となっているこ とから、 固体燃料によるソルーシ ョ ンロス 反応は進行せず、 排ガス組成は C02 / (C0+C02)の値が高い、 効率 の良い操業が期待できる。 この炉においては、 主原料となる自己還 元性鉱塊が、 炉床部において、 コークスべッ ド内のコ一クスと接触 反応し、 吸熱反応である溶融還元を生じる。 しかし、 2 次羽口部で は、 下記 ( 2 ) 式のような発熱反応を生じるため、 この熱が鉱石の 予熱、 加熱、 あるいは溶解に向けられて溶銑が得られる と考えられ ている。
C0+ 1 / 2 02 →C02 + 67590kcal/kmol - CO … ( 2 ) しかしながら、 この場合には、 高炉炉頂部から燃料は装入せずに 鉱石のみを装入するため、 長時間にわたって連続操業を行う場合、 操業時間の経過と共に、 コ一クスべッ ド内のコーク スが溶銑に浸炭 して消費されるよう になり好ま し く ない。 また、 Fe— C _ 0平衡状 態図から明らかなように、 ガス利用率 η co≥ 30%の酸化度の高いガ ス組成で、 かつ温度 1000 C以上の環境下では、 Cを内装する自己遝 元性鉱塊であっても、 FeOから Feへのガス還元は進行し難く 、 その ため、 炉下部において溶融還元が不可避となり、 コークスべッ ド内 コークス消費量の増大、 炉熱の低下、 あるいは融液量増大による通 気不良を招来する可能性がある。 さ らに、 鉱石は、 高温帯で溶着 · 溶融する際に炉壁と接触して付着物となり、 棚吊りの原因となる。
これらの問題に加え、 炉の形状が複雑となるため、 スケールア ツ プの際には、 炉体冷却の面で問題があり、 大型化は難しいと考えら れる。
一方、 高炉と炉床の結合部から燃料を添加する際の添加位置と 1 次羽口との相互関係については、 前記特表平 1 一 501401号公報に、 具体的に明記されていない。 しかし、 同公報の図 2 から判断すると 、 隣り合う燃料添加位置の中間に 1 次羽口が設置されている。
炉床平均径1 ≥ 1.00mの炉においては、 このように隣り合う燃料 添加位置の中間に 1 次羽口が存在する場合、 1 次羽口部で燃焼した コ 一クスの補充は、 直上にある装入物で行われる。 したがって、 こ の場合には、 炉上方から降下してきた鉱石が燃焼したコ 一クスと置 き代る状況にあり、 添加した燃料がスムーズに降下するとは考えら れず、 操業不能に陥る可能性が大きい。 発明の開示
鉄源に対する従来の溶解炉操業では、 高価な大径コ一タスの使用 を余儀なく されてきた。 それに対して、 特表平 1 一 501401号公報で は、 複雑な炉体構造を有する溶解炉を案出し、 小粒コ ーク スの使用 、 並びに自己還元性鉱塊の多量使用下で、 高いガス利用率 w coを目 指し、 燃料比低減を指向した技術を提案した。 しかしながら、 炉内 で棚吊りが発生しやすいという問題や、 炉内下部のコ一タスべッ ド の消耗の問題など、 長期安定操業に支障となる問題が残されている 。 また、 スケールアップにおける設備的な問題もある。
このように、 自己還元性鉱塊ゃ鉄屑等を溶解する従来の技術では 、 小粒固体燃料の多量使用を前提と した場合、 低燃料比を指向する 長期安定操業は困難と考えられてきた。
本発明において解決すべき課題は、 铸物コ一クスより も小粒度の 固体燃料を使用する場合でも、 固体燃料のガス利用率 coを低下さ せることなく、 また、 棚吊りを回避して、 効率の良い操業を可能と
" る しとにある
本発明は、 ダス ト塊成鉱、 自己還元性塊成鉱 (塊成鉱に内装する cで自己還元できる塊成鉱) 、 金属化率の低い還元鉄 (還元鉄粉を 含む) 等、 還元機能が必要な鉄源と、 HB 1 (ホッ トブリ ケッ ト還元鉄 ) , DR I (直接還元鉄) 、 鉄屑、 型銑、 戻り屑等、 溶解機能だけでよ い鉄源のうちいずれか 1種を含む鉄源と固体燃料を堅型炉に装入し 、 堅型炉の壁面に設けた羽口から常温または 600°C以下の酸素含有 ガスを送風して還元、 溶解する操業方法において、 細粒の固体燃料 が使用でき、 鉄源の種類に応じて、 炉内のガス利用率の指標である
V co = (CO 2 / ( C0 + C02 ) ) を制御して、 効率良く 、 低燃料比で前記 鉄源を還元、 溶解することを特徴とする。
すなわち、 ダス ト塊成鉱、 自己還元性塊成鉱、 金属化率の低い還 元鉄等、 還元機能が必要な鉄源と、 HB I, DR I、 鉄屑、 型銑、 戻り屑 等、 溶解機能だけでよい鉄源のうちのいずれか 1 種を含む鉄源と固 体燃料を堅型炉に装入する本発明の堅型炉の操業方法は、 以下の点 を要旨とする。
炉内のガス利用率 7? coを制御する方法と して、 鉄源と固体燃料か らなる装入物の堅型炉内の装入高さ (ス ト ッ ク レベル) を調節する こ と、 また固体燃料の粒度に応じて、 コークスべッ ドの高さ、 送風 量、 羽口径、 羽口突出 し位置のうち、 少なく と も一つを変更するこ と、 炉高さ方向に 2段以上の羽口を設け、 固体燃料の粒度、 鉄源の 平均金属化率 (平均 M. Fe/T. Fe)に応じて、 高さ方向に設置した各羽 口の送風比を変更するこ と、 装入方法において、 2 チ ャージ以上を 1 サイ クルと し、 各サイ クルの中ではチ ャージ毎に鉄源 Z固体燃料 の重量比、 鉄源の種類、 固体燃料の粒度の少なく と も 1 つを調節し て、 前記サイ クル単位で同一の装入を繰り返すこ とにより、 前記鉄 源の還元溶解に適した 7? co値に制御する。
また、 炉上部から、 鉄源と固体燃料を炉内に装入するに当たり、 平均金属化率が高い鉄源を固体燃料と混合して堅型炉の炉中心部に 装入し、 平均金属化率が低い鉄源を固体燃料と混合して堅型炉の炉 周辺部に装入する。 その際に、 堅型炉に装人するコ一ク スからなる 固体燃料の粒度および羽口からの送風条件により、 堅型炉下部のコ ークスべッ ド高さを所定の高さに調節する。
さ らに、 堅型炉の炉周辺部に装人する固体燃料の粒度を 60mm以下 と し、 炉中心部に装入する固体燃料の粒度は、 周辺部に装入する固 体燃料の粒度より大き く 設定する。 好ま し く は 60mm以上とする。 ま た、 堅型炉の炉中心部に固体燃料と鉄源とを混合して装入する際に 、 固体燃料に含まれる C と鉄源に含まれる F eの重量比を 0. 0 1〜0. 05 とする。
さ らに、 堅型炉の炉中心部に対する炉周辺部に装入する鉄源と固 体燃料からなる装入物の装入高さ (ス ト ッ ク レベル) を、 鉄源の平 均金属化率に応じて変更する。
加えて、 半径方向で区分け装入する装入装置を提案する ものであ る 0 図面の簡単な説明
第 1 ( a ) 図は、 反応装置および装入装置の一例を示す図、 第 1 ( b ) 図は、 中心部装人、 第 1 ( c ) 図は、 周辺部装入を示す図で め O o
第 2 ( a ) 図は、 平均金属化率の大きい装入物、 第 2 ( b ) 図は 、 平均金属化率の小さい装入物、 第 2 ( c ) 図は、 第 2 ( a ) 図の 炉内ガス利用率と 1 次羽口からの距離との関係を中心と周辺につい て示す説明図である。
第 3図は、 鉄源の平均金属化率と鉄源の還元 · 溶解が支障な く 行 える coレベルとの関係を示す図である。
第 4 ( a ) 図は、 炉内ガス流速 : 0. 35Nm/sで、 コ一クス粒度が変 ィ匕した時のコーク スベッ ド高さ と coの関係、 第 4 ( b ) 図は、 コ ークス粒度: 30mm で、 炉内ガス流速が変化した時のコ一クスべッ ド 高さ と 7? coの関係、 第 4 ( c ) 図は、 炉内ガス流速が変化した時の コ一クスべッ ド高さと coの関係を示す図である。
第 5 図は、 ス ト ッ ク レベルと coの関係を示す図である。 第 6 ( a ) 図は、 鉄を含有するダス ト (自己還元性鉱塊) のコ一 ク ス混合の時の炉内温度と r? coの関係、 第 6 ( b ) 図は、 鉄を含有 するダス ト (自己還元性鉱塊) のコ一クス混合有無での炉内温度と 還元率との関係を示す図である。
第 7 ( a ) 〜第 7 ( d ) 図は、 代表的な装入方法の例を示す図で あ O
第 8図は、 操業例を示す図である。
第 9図は、 操業例を示す図である。 発明を実施するための最良の形態
最初に、 本発明の装置および操業法について説明する。
本発明の反応装置を第 1 ( a ) 〜 ( c ) 図に示す。 第 1 ( b ) 、 ( c ) 図は第 1 ( a ) 図の上部装入装置を示したものである。 装入 装置と してバケツ ト 1 、 ベル 2、 可動アーマー 3および装入ガイ ド 4を有し、 炉体 5 には上部に排ガス管 6、 下部に羽口 7が設けられ ている。 装入物は、 中心部 9 と周辺部 8 に区分けされて装入可能で ある。 なお、 コ一クスべッ ト 1 0は炉体下部に高さを調整して形成 される。
反応装置は高さ方向に 2段以上の羽口 7を有し、 炉頂部には半径 方向に区分け装入が可能な装入装置を有する (第 1 ( b ) 、 ( c ) 図) 。 送風条件は常温送風または 6 0 0 °C以下の熱風送風で、 酸素 富化を考慮し、 羽口径については、 羽口先でレースウェイを作らな いように羽口径を設定する。 2次羽口は、 装入原料によって炉内突 き出し位置を変更する。
原料は、 鉄屑、 銑鉄、 铸物屑、 ホ ッ トブリ ゲッ ト鉄 (H B I ) 、 還元鉄 D R I のよ うな金属化率の高い鉄源とダス ト塊成鉱、 自己還 元性鉱塊、 酸化した還元鉄塊 · 粉等のような金属化率の低い鉄源を 主体と し、 燃料はコークスゃ無煙炭等の固体燃料を主体とする。 装入方法は、 コ一タスべッ ド層を形成するためにコークスを装入 した後、 原燃料を完全混合または層状装入する通常の装入方法と、 原燃料を半径方向で区分け装入する新装入方法を採用 した。
第 2 ( a ) 図は、 中心部 1 6 aに鉄屑類の溶解のみと し、 周辺部 1 7 aにはコークス +ダス ト類と し、 コ一クスべッ ド 1 0 の高さは 中心部で 1 3 a、 周辺部で 1 4 a と した装入を示す。 第 2 ( b ) 図 は、 中心部 1 6 bにコ一クス、 鉄屑、 ダス ト と し、 周辺部 1 7 bに はコーク ス +ダス ト類と し、 コークスベッ ド 1 0 の高さは中心部で 1 3 b、 周辺部で 1 4 b と した装入を示す。 これらの図で、 1 次羽 口 1 1 および 2次羽口 1 2から酸素等のガスが供給され、 炉内ガス 流 1 5 を形成して還元 ' 溶解する。 第 2 ( c ) 図は、 第 2 ( a ) 図 における炉内ガス利用率り coと 1 次羽口からの距離との関係を、 中 心部と周辺部について示したものである。
新装入方法は、 反応効率の良い操業を狙う方法と細粒鉄源の多量 使用を狙う方法に大別される。 前者については、 第 2 ( a ) および ( b ) 図に示すように、 装入原料の各金属化率を加重平均した平均 金属化率 (平均 M. Fe/T. Fe)で場合分け し、 平均金属化率の高い原料 を中心側に、 平均金属化率の低い原料を細粒コークスと混合して周 辺側に装入するこ とで、 反応効率の高い操業を指向する。 後者につ いては、 第 2 ( a ) 図、 第 2 ( b ) 図において、 周辺側に細粒 (一 5 m m ) 鉄源と細粒固体燃料を混合装入し、 中心側に粒度の大きな 鉄源を装入するこ とにより、 ガス流れを安定させた条件で、 細粒鉄 源の多量使用を指向する。
反応炉の操業は、 コ一クスべッ ド高さ、 ス ト ッ ク レベル位置の調 整と原燃料品種に応じた装入区分け法、 2次羽口突き出 し位置等で 制御する。 コークスべッ ドの最適高さは、 鉄源の溶解が主か、 鉄源 の還元が主かによつて異なり、 目標 C Oに対応する位置にコ 一クス べッ ド上端位置を設定する。 なお、 コーク スべ ッ ド内では、 コーク スの燃焼反応と、 燃焼後のソルー シ ヨ ンロス反応が進行する力 両 反応の反応速度を、 固体燃料粒度、 ガス流速、 送風温度により調整 する。
また、 ス ト ッ ク レベル位置については、 原燃料の昇温速度と関係 し、 特に、 固体燃料のソルー シ ヨ ンロス反応速度に影響するため、 反応効率を低下させないための制御手段と して使用する。 半径方向 の区分け装入法については、 金属化率の高い部分と金属化率の低い 部分を区分けして、 前者については溶解重視の操業を指向し、 2 次 燃焼率;? coの上限を狙い、 後者については還元重視で、 原料の平均 金属化率や含 C量に応じて、 還元に必要な 2次燃焼率を制御するこ とにより、 全体と して最も効率の良い操業を指向するこ とができる 。 金属化率の高い溶解重視部分は、 2次羽口を有効利用 し、 2 次送 風により 2 次燃焼率の上限を狙う。 半径方向区分け装入で、 溶解重 視部分を中心側に設定する場合、 2次羽口の突き出し位置は、 炉の 中心と周辺の境界位置に設定すると最も効果がある。
次に、 ガス利用率? 7 c oを制御する方法を説明する。 本発明の C O 制御法の一例は下記のとおりである。
本発明の炉内 coの制御フローの概要について説明する。 本発明 の制御は次の①〜⑤のようにま とめられる。
① 堅型炉への装入鉄源の成分および配合量 (使用量) から、 平均 金属化率 (平均 M . Fe/ T . Fe) を求める。
より効率の良い操業を指向する場合に、 半径方向区分け装入を実 施するが、 この装入法を適用する場合、 中心側、 周辺側に装入する 鉄源に対し、 それぞれ平均金属化率を求める。
② この装入鉄源の平均金属化率 (平均 M . Fe/ T . F e ) と、 鉄源 中の含 C量とから、 ( 1 ) 式 (第 3 図) をもとに、 操業に.適した 77 COレベル範囲を特定する。 半径方向区分け装入法を適用する場合、 中心側、 周辺側それぞれに適正 7? COを特定する。
1.5 C%≤ 7] CO- 0.7 x ( 平均 M, Fe/T. Fe) 3.0 x C¾ .·- · (1) 但し、 C: 鉄源中に含有する C!lであって、 0 ≤C¾;≤20)¾ 、
η co: ガス利用率( 、
(平均 M. Fe/T. Fe): 平均金属化率(SO 、
金属化率: 鉄源中の金属鉄(M. Fe)
I 鉄源中の トータル鉄(T. Fe:)、
平均金属化率: 数種の鉄源を加重平均した金属化率.
③ 溶解炉の操業条件 (出鉄量の目安) により、 炉内平均ガス流速 (Nm/ s ) が決まるため、 使用する固体燃料粒度により、 第 4 図の データから 1 次羽口からのコークスべッ ド高さを設定する。 半径区 分け装入法を採用する場合、 中心側、 周辺側で別々 に、 適正なコー クスべッ ド高さを設定する。
④ ス ト ッ ク レベルについては、 ( 3 ) 式 (第 5 図) をもとに、 目 標 coに対応したス ト ッ ク レベル ( 1 次羽口からの装入面高さ) H
(m) を特定し、 設定する。
( 3 ) 式は、 最小自乗法による近似線で、 鉄源種類、 金属化率に よって、 多少異なると思われるが、 目標 7? coをもとに、 ス ト ッ ク レ ベル H (m) を設定する。
H = - 0.02775 n co+ 4.755 ( 3 )
半径区分け装入法を採用する場合、 中心側、 周辺側それぞれ別々 に、 ス ト ッ ク レベルを設定するのが好ま しい。
⑤ 燃料比については、 炉の特性である炉体放散熱 (kcal/ h ) と 、 目標出鉄量 ( t Zd) ならびに鉄源種類、 品質等を含む操業条件 に加え、 上記に示す目標 coが決まれば、 熱 · 物質バラ ンスから燃 料比 (k g/ t ) レベルが决ま る ことから、 最終的には、 2 次送風量 の微調整、 ス ト ッ ク レベルの微調整を実施して、 目標 " coレベルを 維持するようにして操業する。
半径区分け装入法を採用する場合、 中心側、 周辺側それぞれ別々 に、 燃料比を設定して装入する。
以下に、 本発明についてさ らに詳述する。
前記鉄源を還元 · 溶解する際に、 鉄源に含まれる鉄の平均金属化 率 (M . Fe/ T . F e ) に応じて、 炉内 coを調節制御する必要があ る理由を説明する。
鉄屑、 銑鉄、 铸物屑、 HB I、 還元鉄 DR I のよ う に金属化率が、 例 えば 90 %以上と高い鉄源を溶解する操業では、 還元機能を必要と し ないため、 coの高い条件が低燃料比操業を指向する上で好ま し く 、 co〉80 %の操業が目標となる。
一方、 ダス ト塊成鉱やき己還元性鉱塊あるいは一部酸化した還元 鉄、 還元鉄粉等、 金属化率の低い鉄源を還元 · 溶解するケースでは 、 固気反応で還元を進行させて、 固体鉄を多 く 製造して、 その後溶 解させるのが操業の安定性、 溶銑品質面において好ま し く 、 そのた めには、 純粋ウスタイ ト(FeO) を鉄に還元するための熱力学的 (平 衡論的) 条件と して、 例えば 1 000°C以上の温度領域では、 coく約 30 %のガス条件が必要である。
この条件が必要な鉄源は、 金属化率 0 %のウスタイ ト(FeO) や、 高炉装入物である焼結鉱、 ペレツ ト、 塊鉱石等である。
一方、 - Cを内装した塊成鉱、 例えば本発明で使用する Cを内装す る自己還元性鉱塊ゃ Cを含むダス ト塊成鉱等では、 塊成鉱外部のガ ス雰囲気は co〉約 30 %で、 平衡論的には F eOから鉄への還元が進 まない条件でも、 塊成鉱内部に存在する Cの存在によって、 塊成鉱 内部において? 7 coく約 30 %の条件が形成され、 還元鉄への還元が進 行するこ とが確認されている。
例えば、 C 二 12 %を内装する自己還元性鉱塊を 50 %配合、 鉄屑 50 %配合の操業では、 炉頂 77 co = 50 %程度のガス条件でも、 操業は良 好に推移 しており、 炉内では適度に還元が進行している こ とを示唆 する。
このよう に、 鉄源の還元プロセスが重視される金属化率の低いダ ス ト類の多量使用条件では、 高 coは望めないが、 鉄源の溶解がメ イ ンである鉄屑類の溶解操業や、 金属化率の高い鉄源の多量使用操 業、 あるいは金属化率の低いダス トの少量使用条件では、 高 77 C O操 業が指向できる。
つま り、 鉄源の種類、 M . Fe/ T . Feの割合に応じて、 還元反応 に支障のない範囲で、 7? coレベルを管理し、 制御するこ とが望ま し い。
次に、 coを制御する方法について述べる。
coを制御する方法と して、 本発明では、 ①装入物の装入高さ位 置 (ス ト ッ ク レベル) の制御、 ②コ一タスべッ ド高さ等の制御、 ③ 多段羽口の使用、 ④装入物の半径方向区分け装入法を提案した。 以 下に各技術に関し、 順を追って説明する。
まず最初に、 鉄源と固体燃料からなる装入物の堅型炉内の装入高 さ (ス ト ッ ク レベル) を変更することが、 7? C O制御に有効なこ とを 説明する。
ス ト ッ ク レベルについては、 例えば、 大径の铸物用コークスを使 用 し、 鉄屑、 铸物屑を溶解処理するキュボラ操業では、 通常、 下段 羽口からス ト ッ ク レベルまでの高さ (H ) Z炉径 (D ) = 4 〜 5 に 設定されているが、 高炉用コークスなどの細粒コークスを使用 し、 かつダス ト還元などの還元機能を必要とする堅型炉に関しては、 ス ト ツ ク レベルに関する検討結果が見当たらない。 そこで、 鉄屑多量 使用条件下で、 ス ト ッ ク レベル変更試験を実施し、 排ガス 7J C 0との 関係を第 5 図に整理した。
炉床径 D = 1 . 4 mの堅型炉を用いた試験結果によると、 H Z D = 2. 0 と小さ く 設定するこ とで、 排ガス?? co〉 70 %と高く 維持できる こ と、 ス ト ッ ク レベルを上昇するこ とで、 排ガス coを低下させる こ とが可能なこ とが判明した。
これは、 ス ト ッ ク レベルを高く すると、 ガスから原燃料への伝熱 が良好となり、 固体燃料の予熱、 昇温がより上部から進行する結果 、 ( 4 ) 式のソルーシ ョ ンロス反応領域が炉上部に拡がるためで、 この結果、 Cの消費量が多く なり、 coが低下することを示唆して いる。
C + C0 2 = 2 CO ( 4 ) このよ う に、 ス ト ッ ク レベルの変更は、 炉内の原燃料の昇温速度 を制御する役割があり、 排ガス η c oの制御手段となる。
つぎに、 堅型炉内下部のコ一クスベッ ド高さを変更するこ と、 さ らには、 送風量、 羽口径、 羽口突出 し位置の変更が、 co制御に有 効なこ とを説明する。
第 4 図は、 コー ク ス粒度および送風量 (ガス流速) を変化させて
、 羽口からのコーク スべッ ド高さ と、 その部位の 7? coの推移を調査 したオフライ ンシ ミ ュ レータ一による実験結果である。 第 4 図によ ると、 羽口から送風された空気中の酸素ならびに富化酸素は、 ( 5
) 式
C + 0 2 - C02 ( 5 )
の反応で、 コークスと燃焼して C02 を生成し、 0 2 が消失した部位 で完全燃焼に至る。 この部位が、 最もガス温度が高く 、 これより上 部では、 吸熱反応である ( 4 ) 式のソルー シ ヨ ンロス反応が進行し て、 ? c oが低下し、 ガス温度も低下する。 コ一クス粒度が小さ く なると、 ( 5 ) 式の燃焼速度が速く なるた め、 最高ガス温度 (02 = 0 で co= 100 % ) の部位は、 羽口に近 く なる。 また、 送風量を増量し、 ガス流速を上げた場合、 羽口から 吹き込まれた酸素の炉内流速が上昇し、 羽口近傍の C との接触時間 が短く なるため、 ( 5 ) 式の燃焼反応は炉上部に拡がる。 そのため 、 同じコ 一 ク ス粒度で、 流速を上げると、 第 4 ( a ) 、 ( b ) 図に 見られるよう に、 炉内における coは流速の低い場合に比べて、 全 体的に高く なる。 1 次羽ロを炉内に突き出すこと、 あるいは羽口径 を絞り、 羽口風速を上げる こ とは、 送風酸素と C との接触時間を短 縮するこ とに相当し、 炉内流速を上げるのと同様の効果がある。 こ のように、 堅型炉内下部のコークスべッ ド高さを変更するこ と、 さ らには、 送風量、 羽口径、 羽口突出し位置を変更するこ とは、 炉内 7? co制御に有効な手段となる。
次に、 装入物の半径方向区分け装入方法が、 小粒の固体燃料使用 時にも、 堅型炉の燃焼効率を低下させず、 77 co制御に有効な手段と なること、 堅型炉のシ ャ フ 卜部壁面に、 炉高さ方向に複数から成る 多段羽口を設置することが、 7? CO制御に、 より有効となるこ とを説 明する。
1 次羽口部では、 ( 5 ) 式で示される反応によって固体燃料が燃 焼し、 その後に ( 4 ) 式で示されるソルー シ ヨ ンロス反応により、 COガスを生成する。 一方、 1 次羽口より上に位置する 2 次羽口部で は、 下方から上昇してく る COガスを ( 2 ) 式で示される反応によつ て燃焼させ、 この発熱反応を利用 して、 鉄源の予熱を行い、 高 77 co を実現して、 燃料化の低減を図る。 実験によると、 2 次送風量 Z 1 次送風量 = 1 / 4 の条件下で、 coは 15%以上向上できるこ とを確 認しており、 多段羽口使用による上段送風は、 炉内 り coを制御する 手段となり う る。 ただし、 2 次羽口部でも ( 4 ) 式で示されるソルー シ ヨ ンロス反 応は生じており、 このソルーシ ョ ンロス反応の比率を少しでも小さ く するこ と、 ならびに小粒の固体燃料を使用 しても、 堅型炉のガス 利用率を低下させずに操業できるこ とを狙った手段が、 装入物半径 方向区分け装入法である。
この装入方法は、 炉中心側と炉周辺側の鉄源と固体燃料の装入量 を異なるよ うに装入する方法である。 例えば、 炉中心部の跌源/固 体燃料の重量比を大き く 、 つま り固体燃料の割合を少なく し、 炉周 辺側の鉄源 Z固体燃料の重量比を小さ く 、 かつ細粒固体燃料を周辺 側に多量に装入する方法を例にとると、 炉周辺部に通気抵抗の大な る細粒コ一クスを使用する こ とにより、 ガスの中心流化が指向でき るこ と、 ガス流量の少な く なる炉周辺部は、 炉体散水冷却の影響も 含め、 炉中心部に比べ温度が低下しており、 炉周辺部コークスのソ ルーシ ヨ ンロス反応量が抑制できる。 また、 炉中心部はガス量は多 いが、 装入コ一ク ス量が少ないため、 通常の混合装入法あるいは層 状装入法に比べ、 ( 4 ) 式のソルー シ ヨ ンロ ス反応量を抑制できる 。 このように、 装入物の半径方向区分け装入方法が、 小粒の固体燃 料使用時にも、 堅型炉のガス利用率を低下させずに、 7? C O制御に有 効な手段となる。
次に、 半径方向の区分け装入法を採用 した鉄源の還元溶解法が、 操業の安定性、 低燃料比操業に有効で、 鉄源の種類、 粒度によらず 、 効率の良い操業が指向できるこ と、 また、 鉄源、 固体燃料の性状 に応じて、 効率の良い操業を指向するための操業方法について、 説 明する。
半径方向の区分け装入法については、 鉄源の種類によって、 適正 な装入法がある。
一つは、 炉内の 77 C Oを高く して、 効率の良い操業を指向する例で 、 鉄源の M . Fe/ T . Feによる分別法であり、 一方は鉄源の粒度に 応じた分別法である。
まず、 最初に、 鉄源の金属化率 (M . Fe/ T . Fe) による分別法 力 操業安定化に寄与し、 効率の良い操業が指向でき る こ とを説明 する。
還元溶解に使用する鉄源が、 数種類に及び、 M . Fe/ T . Feの大 小で分別できる場合、 好ま し く は、 金属化率の高い鉄源、 例えば銑 鉄 (型銑) 、 鉄屑、 铸物屑、 還元鉄、 HBし DR I等は炉中心部に装入 し、 金属化率の低い鉄源 (ダス ト塊成鉱、 自己還元性鉱塊、 一部酸 化した還元鉄、 ペレツ 卜類) を炉周辺部に装入する。 これは、 炉中 心部は溶解機能、 炉周辺部は還元機能を持たせる装入方法であり、 炉周辺部に金属化率の低い鉄源を装入し、 炉中心部に金属化率の高 い鉄源を装入する理由は、 炉中心部のコ一クスべ ッ ドの高さ制御を 容易にする こ と、 中心ガス流を確保すること、 低燃料比操業を指向 す しとにある。
この操業を指向する場合、 2 次羽口は、 羽口先端が炉壁より も炉 内部に突き出した構造と し、 基本的には、 2次羽口の先端位置を、 炉中心部と炉周辺部の境界に設けるのが理想的である。 また、 ガス 流を中心流と し、 炉周辺部に装入する鉄源の還元機能を重視すると 、 周辺部の固体燃料は細粒が好ま し く 、 中心部の固体燃料は大粒が 好ま しい。
2次羽口を炉の中心部と周辺部の境界に設定する理由は、 2次送 風を周边部に存在する固体燃料の燃焼に使用させないためで、 2次 送風は ( 2 ) 式の COガス燃焼用に作用させるためである。 炉中心部 は溶解機能を主体とするため、 2次送風により、 炉中心部の co〉 90 %の操業を指向すれば最も効率的であり、 炉中心部の固体燃料は 最低燃料比である浸炭分程度とするこ とができ る。 そのため、 急激 なコ一クスべッ ド高さの変化を抑制できる上、 粒径を維持したコ一 クスがコ一タ スべッ ドとなるため、 通気 ' 通液性を確保した低燃料 比操業が可能となる。
この操業においては、 コーク スべ ッ ド高さにより、 適正 2 次送風 量が決まる。 コークスべッ ド高さは、 前記したよう に、 コーク ス粒 度ゃ炉内ガス流速等によって異なるが、 最適位置にコークスべッ ド 上端をセッ 卜 した場合 ( co > 90%) には、 2 次送風は不要となる 。 コークスベッ ド上端位置の coが 90%以下の場合には、 2 次送風 により、 co〉 90%に設定可能であり、 炉中心部に関しては理想的 な操業が可能となる。
また、 炉中心部のコークスに関し、 細粒コ一クスを使用する操業 でも、 第 4 図に示すように大粒コークス使用時に比べ、 コータスべ ッ ド高さを低く 設定する こ とにより、 も し く は、 送風量の調節によ り、 77 coを変化させずに、 効率の良い操業を理論的には指向できる コ一クスべッ ド上端位置については、 この部位で鉄源が溶解する ため、 鉄屑類の溶解操業では、 コークスべッ ド高さの最適位置は、 最もガス温度が高い部位、 すなわち、 02 = 0 %で 7? co- 100 %近 傍とするこ とが望ま しい。
2 次送風量 / 1 次送風量 = 1 / 4 で多段送風を行った堅型炉の試 験操業において、 上段送風によって、 coは 15%以上向上できてお り、 これを参照すると、 co〉 80%の操業を指向する場合、 コーク スべッ ド上端位置では co〉 65%となるコ一クスべッ ド高さに設定 すればよい。
一方、 平均金属化率の低い鉄源を装入した周辺部位では、 コ一ク スべッ ド上端部より上部位置で、 還元を進める必要があり、 0 2 二 0で co= 100 %の部位を下限位置と して、 鉄源の種類や M. Fe/ T . Fe等に応じてコークスベッ ド高さを高く 設定して、 コーク スべ ッ ド上端部の 7? C Oを制御する必要がある。
コ一ク スべ ッ ド高さは、 所定の位置に操業開始時点で予め設定す る。 操業中は、 炉内でのコーク ス消費量に見合う コ一ク スを炉上部 から装入することにより、 コークスべッ ド高さの維持が可能である o
80mmの大径コ一 ク スを使用する場合、 炉内ガス流速 1 NmZ s の操 業時において、 コ一クスべ ッ ド上端部で c o〉 65 %を狙う操業を指 向する場合、 第 4 図より、 コークスべッ ド高さは、 下段羽口から 60 cm〜 90 cmの位置が適当である。
また、 コークスべッ ド上端部で 7? c oく 30 %を狙う操業を指向する 場合、 8 0 m mの大塊コー ク ス使用時には、 1 次羽口から 1 3 0 c m以上に、 3 0 m mの高炉小塊コーク スを使用する場合、 1 次羽口 から 1 2 0 c m以上に設定する。
つぎに、 金属化率の低い鉄源を炉周辺部に装入する場合に固体燃 料と混合する装入法が効率的であるこ とを説明する。
7? c oの高い操業を指向できれば、 低燃料比の操業が可能となるが 、 還元機能を必要とする金属化率の低い鉄源を 77 c o〉 30 %の条件で 還元させる実験を実施したと ころ、 コ一クスと混合しない条件では 、 鉄源中のウ スタイ 卜から鉄への還元反応は進行せず、 高温部で操 業に悪影響を及ぼす溶融還元を引き起こす。 それに対し、 金属化率 の低い鉄源でも、 コ一クスと混合して装入する と、 コークスと混合 しない場合に比べ、 少なく と も 20 %以上の還元率改善効果があるこ とが、 第 6 ( b ) 図に示すようなオフ ラ イ ンシ ミ ュ レータ一の検討 結果で明らかとなった。
このこ とは、 金属化率の低い鉄源を装入する操業では、 固体燃料 (コーク ス) と混合する装入法が、 固体燃料 (コーク ス) と混合し ない操業に比べると、 鉄源の還元性改善に効果があり、 その結果、 溶融時のスラ グ融液量を低減するこ とができ、 棚吊り回避にも寄与 する。
炉周辺部に装入する金属化率の低い鉄源の還元を促進し、 溶融前 の鉄源の還元率を高く する方法と して、 鉄を含有するダス 卜中に C を内装するこ と、 内装 C量を多 くするこ とが有効である。 内装 C量 の上限は、 強度制約上 20 %程度である。
第 3 図は鉄源の平均金属化率と鉄源の還元 · 溶解が支障な く 行え る ;? coレベルを検討した一例であり、 鉄を含有するダス トに内装す る C量によって多少 coレベルは異なるが、 装人鉄源の平均金属化 率から、 操業可能な ?7 coレベルを判定できる。
固体燃料と しては、 一般的に、 コークスを使用するが、 無煙炭の ような炭材なども使用できる。
つぎに、 炉頂から装入する鉄源と して、 ダス ト塊成鉱、 自己還元 性鉱塊、 塊還元鉄 (HB I , DR 1 ) 、 鉄屑、 铸物屑、 銑鉄 (型銑) 、 鉱 石、 ペレツ 卜あるいは還元鉄粉等を装入するケースについて、 装入 方法の代表例を第 7 ( a ) 〜 ( d ) 図に示す。 この中で第 7 ( a ) と第 7 ( b ) 図は、 金属化率の高い鉄源、 すなわち銑鉄、 鉄屑、 塊 還元鉄とコークスべッ ド捕給用かつ浸炭用の大粒コークスを炉中心 部に装入し、 金属化率の低い鉄源 (ダス ト塊成鉱、 自己還元性鉱塊 、 一部酸化した還元鉄、 ペレ ツ ト) を小粒コーク スと混合して炉周 辺部に装入する装入方法であり、 燃焼効率の高い操業を可能と し、 低燃料比を指向する上で、 最も効率的である。 なお、 一部酸化した 塊還元鉄については、 第 7 ( c ) 図にもあるよう に、 炉中心部に装 入すること も可能である。
また、 例えば一 5 mmの粒度の還元鉄粉を炉頂から多量に装入する ケースにおいては、 炉内反応効率を多少犠牲にしても、 出銑比を高 める操業を指向 し、 例えば、 還元鉄粉と細粒固体燃料を混合して炉 周辺側に装入し、 炉中心側には、 粒度の大きいダス ト塊成鉱ゃ自己 還元性鉱塊等、 金属化率の低い鉄源類の装入も考えられる。 この場 合、 還元に必要な固体燃料比を炉中心側に装入する必要があり、 炉 内反応効率的には劣るが、 細粒鉄源の多量使用を行える利点がある このよう に、 半径方向の区分け装入法の採用により鉄源の種類、 性状に応じて多機能な操業が可能となつた。
つぎに、 堅型炉の半径方向に装入する原燃料の装入部位に応じて 、 ス ト ツ ク ライ ンを変更する ことが有効なことについて説明する。 例えば、 還元が必要でない鉄屑、 銑鉄、 铸物屑等を炉中心部に装 入する場合においては、 C Oは極力高いほうが望ま しく 、 77 C O〉70
%以上を目標とすると、 ス ト ッ ク レベルは ( 1 次羽口からの装入高 さ H ) / (炉床径 D ) < 2. 0 が適当である。 また、 還元が必要なダ ス ト塊成鉱、 自己還元性鉱塊、 還元鉄を還元 · 溶解する場合、 co を低下させることが必要で、 この場合、 例えば、 7? co = 50 %を目標 とすると、 ス ト ッ ク レベルは、 H Z D 二約 2. 4 に設定すればよい。 このように、 装入する鉄源の種類に応じて、 半径方向でス ト ッ ク レ ベルの適正値が存在する。
つぎに、 コークスべッ ド高さを維持するための制御方法について 述べる。
コ一クスべッ ド高さの制御が難しいのは、 これが炉の中心下部に あり、 コーク ス比が適当でなければ未還元の FeO分が炉下部で溶融 還元し、 コークスべッ ドを消費するこ とによって、 コ一クスべ ッ ド の異常消耗が引き起こされるためである。 特に、 炉の中心下部で、 このようなコークスの異常消耗が生じると、 鉄源の溶解に支障とな る上、 スラ グの固化等により、 操業不能に陥いる可能性もあり、 問 題となる。
そこで、 前記したように、 炉中心部には、 主と して金属化率の高 い鉄源、 すなわち型銑、 鉄屑、 铸物屑類を装入するこ とにより、 炉 中心部で溶融還元の生じ難い操業と し、 炉中心部のコ一ク スべ ッ ド の異常消耗を抑制する。
また、 コークスのソルーシ ョ ンロス反応を極力抑制するために、 炉中心部に装入する固体燃料を、 炉周辺部に装入する固体燃料と区 別し、 大径コ一クスを使用する。 これによつて、 炉中心部のコ一ク スベッ ドの異常損耗を抑制でき、 さ らに、 炉下部のガス利用率 77 C O を高めた操業が可能となる。
上段羽口の設置位置は、 コークス粒度、 送風量等の操業諸元によ つて、 適正位置が存在する力 基本的には、 2 次羽口部での /? C Oレ ベルが、 65 %く coく 90数%程度が目安となる。
また、 コ一ク スべッ ド上端位置は、 装入する鉄源の種類によって 異なり、 還元機能の不必要な鉄源の装入部位については、 2 次羽口 より下の位置に抑制して、 極カコークス燃焼を抑制するのが好ま し い。 一方、 還元機能が必要な鉄源の装入部位では、 コーク スべ ッ ド 上端位置は、 2次羽口より上部とすることが好ま しい。 これは、 鉄 源の M . F e/ T . Feの割合により、 コークスベッ ド上端位置での c oをコ ン ト ロールするこ とが必要なためである。
コ一ク スベッ ド高さを制御または監視する簡易法と して、 2 次羽 口部での肉眼観察、 炉内圧損値による判定などがある。 2 次羽口部 での観察は、 少なく と も、 鉄源の溶融部位が、 2 次羽口上部か下部 のいずれかに存在することを判定できる。 また、 1 次羽口と 2 次羽 口の圧損差を検知することにより、 コークスべ ッ ド上端位置の確認 が可能である。 操業例によると、 コークスべッ ド上端部が 2 次羽口 より下にある場合、 1 次羽口と 2 次羽口の圧損差が大き く 検知でき る。 これは、 溶融部位の存在が圧損値を大き く するためである。 また、 コー ク スベッ ド高さを、 精度良く測定する方法と しては、 炉上部から装入した垂直ゾンデも し く は鉄線類の降下挙動を測定す るこ とによって、 判定可能である。 垂直ゾンデの場合、 炉内温度が 急に上昇し、 1200°C以上となる部位に相当し、 鉄線類を用いた場合 、 降下速度がス ト ップした地点が、 コークスベッ ドの上端部に相当 する。
つぎに、 周辺部に装入する平均金属化率の低い鉄源を固体燃料と 混合して装入するこ と、 また炉周辺部に装入するコ一クスを小粒コ ークスとするこ と、 さ らには炉半径方向で鉄源 Z固体燃料の比を変 えた装入法を指向するこ とが、 棚吊り回避に有効なことを説明する 一般に、 鉄を含有するダス トを多量に使用する場合には、 炉壁に 付着物が生成しやすい。 例えば、 還元反応が遅く なり、 その結果、
FeOを多量に含有するスラグが生成し、 このスラグが、 吸熱反応で ある溶融還元により冷却されて、 炉壁に付着するケース、 多量の F eO含有スラグが、 炉下部でフラ ッディ ング状態となり、 このスラ グ が吹き上げられて炉壁に付着するケース、 あるいは、 上昇する高温 ガスにより未還元の FeOが炉上部で溶融し、 隣接する鉄源と結合な いしは融合して、 炉壁に付着するケース等がある。 いずれのケース も、 炉壁近傍で、 多量のスラグ融液が発生し、 あるいは、 隣接する 鉄源と結合ない しは融合して液状化し、 これが炉壁に付着して付着 物となり、—棚吊りの原因となる。
そこで、 この棚吊りを回避するために、 炉周辺部の融液生成量を 減ら し、 さ らに、 隣接する鉄源同士が極力、 接触しないよう にする こ とが必要である。
炉周辺部の融液量を減少させるためには、 鉄源の還元率を高める 必要があり、 そのためには、 前記したように、 炉周辺部に装入する 鉄源については固体燃料と混合して装入することが有効である。 こ のときの固体燃料の粒度については、 小粒の方が望ま しい。 これは 、 同じ重量のコークスを装入するならば、 小粒の固体燃料の方が、 装入個数が多く、 鉄源同志の接触を十分に回避することが可能であ るためである。 なお、 ここでいう小粒の固体燃料と しては、 例えば
、 高炉用コ一クス (粒度 60mm以下) 、 あるいは、 粒度が 30mm程度の 高炉用小塊コータスが好ま しい。
また、 炉周辺部に装入する固体燃料重量を炉中心部に装入する固 体燃料重量より多くすることも有効である。 このためには、 鉄源 Z 固体燃料の重量比を、 炉中心部と炉周辺部とで分け、 炉中心部には 金属化率の高い鉄源を装入して、 中心部に装入するコークス重量を 減らし、 極力周辺部に装入するコークス量を増大させる。
炉周辺部に装入する固体燃料比率は、 ダス ト塊成鉱、 自己還元性 鉱塊、 還元鉄等装入する鉄源の金属化率によって多少異なる。 たと えば装入鉄源と して、 Cを 1 2 %内装する自己還元性鉱塊 75 %、 還元 鉄 1 5 %、 鉄屑 1 0 %を使用したケースでは、 還元を必要と しない鉄屑 を除いた鉄源と固体燃料との比率が、 (自己還元性鉱塊 +還元鉄) Z固体燃料 ^ 5の条件において、 棚吊りが回避できることを操業に よつて確認している。
この条件は、 (装入鉄源中の金属 M . F e重量) ノ固体燃料 < 1 . 24 に相当する。
平均^属化率の低い鉄源を使用する場合には、 炉周辺部に装入す る固体燃料をさ らに多くする必要がある。 逆に、 平均金属化率の高 い鉄源を使用する場合には、 炉周辺部に装入する固体燃料を低減で さ ^ o
つぎに、 炉周辺部に小粒の固体燃料、 還元鉄、 自己還元性鉱塊、 ダス ト塊成鉱等、 金属化率の低い鉄源と固体燃料とを装入し、 炉中 心部に鉄屑、 铸物屑、 銑鉄等の金属化率の高い鉄源と固体燃料とを 装入するケースにおいて、 炉中心部に装入する固体燃料に含まれる
C と鉄源に含まれる F eの重量比を、 0. 01≤ C Z F e≤ 0. 05に設定する こ とが有効なこ とを説明する。
炉中心部に装入する鉄源が、 鉄屑、 铸物屑、 銑鉄の場合、 鉄屑以 外は Cを含有しているため、 基本的には、 鉄屑のみ、 浸炭に要する C分を補給し、 それに加えて、 一部コークスべッ ドの燃焼で消費さ れる分の固体燃料を補充すればよい。 炉内での鉄屑に対する浸炭量 は、 鉄屑の 2 〜 4重量%である。 また、 炉中心部のコ一クスべッ ド 消費量は約 10k g/ t (割合と しては 0. 01程度に相当) との試験結果 を得た。
中心部に装入する鉄源と して、 鉄屑を用いる場合が、 最も装入コ 一クス量を多く 必要とする。 この場合、 浸炭と して、 C Z Fe = 0. 02 〜 0. 04が必要となるため、 コークスべッ ドの消費を加え合わせると 、 0. 03≤ C / Fe O. 05となる。 また、 中心部に装入する鉄源と して 铸物屑、 銑鉄を装入し、 鉄屑を装入しない場合が、 最も装入コ一ク ス量の少ないケースであり、 この場合には浸炭に必要なコークスは 必要ないため、 炉中心部のコ一タスべッ ド消費量に相当する C Z Fe = 0. 01の割合で、 固体燃料を装入すればよい。 したがって、 炉中心 部に装入する固体燃料に含まれる C と鉄源に含まれる Feの重量比を 0. 01≤ C Z F e ^ 0. 05と して、 固体燃料と鉄源の装入割合を決めれば よい。
装入方法については、 例えば、 ベル式装入装置で、 アーマーを使 用 し、 鉄源 固体燃料の重量比を装入チャージ毎に変更するように して、 1 チャージ目を炉中心部に、 2 チャージ目を炉周辺部に装入 する ことにより、 所定の装入が可能となることを確認している。 ま た、 キュボラなどの溶融炉に多く 見られる炉頂解放型の装入装置を 使用する場合には、 第 1 ( a ) 〜 ( c ) 図に示す装入装置により、 炉中心部と炉周辺部とを区分け して装入する方法が有効である。
また、 鉄源の平均金属化率に関係なく 、 棚吊りを回避する方法と しては、 第 7 ( d ) 図にもあるように、 多少装入方法が複雑になる が、 炉周辺部の装入に際して、 壁際に固体燃料のみを装入し、 その 内側に鉄源と固体燃料とを混合して装入する方法が挙げられる。 具体的には、 1 サイ クルを、 3 チャージ装入と し、 1 チャージ目 は、 炉周辺部の壁際に固体燃料のみを装入し、 2 チャージ目に炉中 心部へ装入、 3 チャージ目に炉周辺部へ鉄源と固体燃料とを混合し て装入する ことにより、 所定の装入が可能となる。
本発明でいう炉中心部と炉周辺部の境界位置は、 鉄源の平均金属 化率ゃコークス粒度、 さ らには、 鉄を含有するダス トの使用割合に よって、 多少は炉半径方向で移動する。
この炉中心部と炉周辺部の境界位置 riは、 各部に装入する鉄源と 固体燃料の量が決まれば、 式 ( 6 ) によって求められる。
(Wm(C)/pm(C) + Wc(C)/ 3 c<C))
r 1 —
{(Wm(C)/ m(C>+ Wc(CVpc(C))+ (Wm(P)/ m(P) + Wc(P)/^ c(P>)}
… ( 6 ) 中心部と周辺部との無次元境界半径 (一)
Wm <C) 中心部に装入する鉄源重量 (kg/チャージ)
W c (C1 中心部に装入する固体燃料重量 (kgZチャージ)
Wm (p) 周辺部に装入する鉄源重量 (kg/チャージ)
W c (p' 周辺部に装入する固体燃料重量 (kg/チャージ) p m 中心部に装入する鉄源の嵩密度 (kgZm3 )
P c 中心部に装入する固体燃料の嵩密度 (kgZm3 ) p m : 周辺部に装入する鉄源の嵩密度 (kgZm3 ) p c {p] 周辺部に装入する固体燃料の嵩密度 (kgZm 3 ) なお、 この r iは、 無次元半径で表されており、 炉中心部と炉周辺 部の装入物の降下速度を一定と した場合の境界位置を示している。
この riで示される境界位置を調節するための装入方法については 、 種々考えられるが、 ベル式の装入装置を使用する場合でも、 ァー マーを使用 し、 装入チャージ毎に中心装入、 周辺装入を交互に繰り 返して装入するこ とにより、 一部混合層が生成する ものの、 所定の 境界設定は可能である。 実施例
以下、 実施例により本発明の特徴をさ らに具体的に説明する。 炉床径 1.4m、 1 次羽口数 6本、 2 次羽口数 6本、 ス ト ッ ク レべ ルの上限位置が、 1 次羽口上、 5.0mの炉頂解放型で移動層型 2段 羽口構造の堅型炉を用いた。 また、 装入装置については、 炉半径方 向で装入位置の区分けが行える装入装置を使用 した。
なお、 炉頂排ガス組成は、 co ITO P) = (C02 ,T0 M / (CO ,το ρ» + C02 1T0PI ))で定義した。
さ らに、 操業諸元のう ち、 送風湿分は大気湿分である 15g /Nm3 、 炉頂から装入する石灰石原単位は、 スラグ塩基度 = 1.0 を目標と して設定した。
装入する鉄源は、 C (4 〜20%) 内装の自己還元性鉱塊 (大きさ が 40mmx 20 I X 30mniで、 粒度 3 nun以下の還元鉄塊に、 高炉 2次灰及 びコークス粉を混合して製造した塊成鉱) 、 高炉 2 次灰を主体と し 製鉄所内ダス トを混合して塊成化したダス 卜塊成鉱、 一般の市中屑 である力一シュ レッダー屑鉄、 粒度 5 m m以上の還元鉄ならびに粒 度 3 mn!〜 5 nunの還元鉄粉である。
固体燃料と して、 炉周辺部に粒度約 30 の高炉用小塊コークスと 約 80mmの大塊コークスを使用 している。
第 1 表に検討状況の詳細を示す。
【第 1 表】
実施例 〗 ( a ) および ( b ) 、 比較例 1 は、 重量比で自己還元性 鉱塊 ( T. Fe= 59.5%, M. Fe/T. Fe=0.19, C 4 %) : ダス ト 塊成鉱 (T. Fe= 50.81 %, M. Fe/T. Fe = 0.057) : カー シ ユ レ ッ ダ—屑鉄 (T. Fe- 90%, M. Fe/T. Fe= 0.99) : 還元鉄粉 ( 丁. Fe= 87%, M. Fe/T. Fe= 0.80) = 50 : 10 : 30: 10の場合の 操業で、 装入鉄源の平均金属化率は 56%である。 実施例 1 ( a ) お よび ( b ) は、 周辺部に自己還元性鉱塊、 ダス ト塊成鉱、 還元鉄粉 及び小粒コ 一 ク スを混合装入し、 中心部には、 カーシュ レッ ダ一屑 鉄及び浸炭用大塊コ一クスを装入した。
比較例 1 は、 上記鉄源と固体燃料を完全混合して装入したケース であるが、 炉内燃焼効率 co= 20%と低レベルで溶銑温度が低迷し 、 スラグ排出が困難であるのに対し、 半径方向区分け装入法を採用 した実施例 1 ( a ) および ( b ) では炉内燃焼率 coは高く なり、 溶銑温度も 1500°C程度に上昇し、 安定した操業が可能となった。 実 施例 1 ( b ) は実施例 1 ( a ) に対し、 中心装入大塊コ一 ク スを一 部小塊コータスに置換した操業で、 べッ ドコ一クスの高さ レベルを 、 ガス燃焼温度が最高となる付近の位置、 すなわち、 下段羽口から 4 0 c mの位置に変更するこ とにより、 より効率良い操業が可能と なった例である。
実施例 2 、 比較例 2 はダス ト塊成鉱 2 0重量%、 カーシュ レ ッ ダ —鉄屑 8 0重量%の還元溶解試験例で、 比較例 2 は原燃料を完全混 合して装入したケースであるのに対し、 実施例 2 ( a ) はス ト ッ ク レベルを調整した例である。 また、 実施例 2 ( b ) 〜 ( d ) は周辺 部にダス ト塊成鉱 2 0重量%と小塊コ一ク スを混合装入し、 中心部 第 1表
Figure imgf000030_0001
第 1表(^き)
Figure imgf000031_0001
第 1表(^き)
Figure imgf000032_0001
にカー シュ レ ツダー鉄屑 80重量%と浸炭用大塊コ一クスを装入した 例で、 実施例 2 ( b ) に対し、 大塊コ一クスを小塊コ一クスに置換 する過程において、 実施例 2 ( c ) は下段羽ロを炉内側に約 2 0 c m突き出し、 羽口径を 5 O mmから 4 0 mmに変更したケース、 実 施例 2 ( d ) は炉内ガス流速を 0. 8 mZ s に上昇させるため、 增 風したケースである。 実施例は比較例に比べ、 小塊コ一タ スの多量 使用が可能となり、 また、 効率の良い操業が実施できている。 また 、 ス ト ッ ク レベル、 羽口構造変更、 炉内ガス流速の適正化が有効で 実施例 1 より効率がよ く なつている。
実施例 3 、 比較例 3 は自己還元性鉱塊 ( C 1 2 %) : ダス ト塊成 鉱 ( C 4 %) : カー シュ レ ッ ダ一屑鉄 : 還元鉄粉 (T. Fe=87%, M. Fe/T. Fe= 0.80) = 50: 10: 30: 10の場合の操業で、 周辺部 に自己還元性鉱塊、 ダス ト塊成鉱、 還元鉄粉及び小粒コークスを混 合装入し、 中心部には、 カーシュ レッダ一屑鉄及び浸炭用大塊コ一 クスを装入した。 装入鉄源の平均金属化率は 56%であり、 周辺部に 装入した鉄源の金属化率は 2 9. 6 %に相当する。
比較例 3 は通常操業状態で適用 していたス ト ッ ク レベルすなわち 、 1 次羽口上 4. 2 mにセッ ト したケースであるが、 実施例 3 ( a ) は、 式 ( 1 ) 、 第 3図を参考例と し、 り co = 55 を目標と して、 ス ト ツ ク レベルを 3. 2 mに設定した操業例、 実施例 3 ( b ) は中心 側、 周辺側それぞれの金属化率から、 式 ( 1 ) 、 第 3図を参考に、 ス ト ッ ク レベルを変更した例、 実施例 3 ( c ) はさ らに 1 次送風温 度を 2 0 0 °Cの熱風と し、 酸素富化 0 %と した操業、 実施例 3 ( d ) は、 1段送風のみと し、 送風温度を 5 5 0 °Cの熱風と した例、 実 施例 3 ( e ) は自己還元性鉱塊と して内装 C == 2 0 %の鉄源を使用 し、 送風条件を変更した例、 実施例 3 ( f ) は装入鉄源の種類を変 更する時に、 式 ( 1 ) 、 第 3図により coを変更した例である。 比 較例に比べ、 実施例は操業が良好であり、 半径方向の鉄源に応じた ス ト ツ ク レベルの制御や送風温度の変更などによる効率化等が明ら 力、と 7よった。
実施例 4 、 比較例 4 は中心部にカーシュ レッ ダ一屑鉄 8 0重量% 、 型銑 2 0重量%と大塊コークスを、 周辺部に小塊コ一クスを装入 したケースで、 比較例はス ト ッ ク レベル 4 . 2 mにセッ ト したケー スであるが、 実施例はス ト ツ ク レベルを調節して高効率の操業を可 能と した例である。
実施例 5 、 比較例 5 は中心部にカーシュ レツダ一屑鉄 8 0重量% と大塊コ一クスを、 周辺部にダス ト塊成鉱 2 0重量%と小塊コーク スを装入したケースで、 比較例はス ト ッ ク レベル 4 . 2 mにセッ ト したケースであるが、 実施例はス ト ッ ク レベルを調節して高効率の 操業を可能と した例である。
実施例 6 ( b ) は、 中心部にカーシュ レッダ一屑鉄 100 重量% と大塊コークスを、 周辺部に小塊コークスを装入したケースである 。 実施例 6 ( b ) に先立ち、 通常キュボラ操業に類した操業で、 鉄 源とコークスを完全に混合して装入し、 コークスべッ ド高さを 1 次 羽口上約 l mに、 ス ト ッ ク レベルを 4. 2mにセッ ト して操業した通常操 業のケース( 比較例 6)、 および完全混合装入ではあるが、 炉内平均 ガス流速約 0. 7m/sであることを考慮し、 コークスべッ ド上端位置の 7] co = 80〜90 !¾ を狙って、 コ一タスべッ ド高さを 1 次羽口上 60 cmに セッ ト し、 ス ト ッ ク レベルを 3. 0mにセッ ト した操業も実施した( 実 施例 6 (a) ) 。 比較例 6 では、 coは 205¾ 程度と低いレベルでの操業 しか行えず、 コークス比上昇を余儀なく されたが、 実施例 6 (a)の場 合、 細粒コークス多量使用下でも、 7? co= 50 ¾ で操業できており、 コークスべッ ド、 ス ト ッ ク レベル制御が有効であることを確認した 。 また、 実施例 6 ( b)では、 半径方向区分け装入により、 さ らに高;? c o ( 〉90 ) が達成でき、 最も効率よい操業が行えることを確認した 。 ( 第 8 図)
実施例 7 は、 鉄屑類を使用せず、 細粒の還元鉄粉を多量に使用し たケースである。
鉄源と して、 C 7 ¾!含有する含 C ダス ト塊成鉱と粒度 3 〜5mm の細 粒の遣元鉄粉をそれぞれ 50 % づっ装人したケースで、 炉内通気性を 確保するため、 炉中心部に含ダス ト塊成鉱、 炉周辺部に還元鉄粉を それぞれ粒度 30關の細粒コークスと混合して装入した。 鉄源と して 使用した含 C ダス ト塊成鉱、 還元鉄粉とも、 金属化率(M. F e /T. F e ) は 60 ¾ であり、 目檫 co = 50 !Siでの操業となるように、 コークスべッ ドは 1 次羽口上 1 . 0m、 ス ト ッ ク レベルを 1 次羽口上 3. 0mに設定した o
実施例 7 に先立ち、 含 C ダス ト塊成鉱と還元鉄粉を完全に混合し 、 コークスベッ ド、 ス ト ッ ク レベルを管理せずに操業を行った比較 例 7 では、 炉内圧力が 2500腿 Aqをオーバーする操業となり、 操業継 続が難しい状況であつたのに対し、 実施例 7 では、 炉内圧力が 1 800 mmAq程度で推移でき、 当初目標と した co = 約 50 % の操業を安定し て継続できた。 (第 9図) 産業上の利用可能性
本発明は、 鉄を含有するダス トおよび Zまたは鉄屑類を主原料と した銑鉄製造法における新しい原燃料装入方法を活用した操業にお いて、 より効率の良い操業法を提示しており、 その開発によって、 連続操業が可能で、 しかも燃焼効率が良く、 さ らには安価な小粒固 体燃料が使用できることから、 生産性が高く、 燃料比の低い操業が 可能である。

Claims

請 求 の 範 囲
1. ダス ト塊成鉱、 自己還元性塊成鉱 (塊成鉱に内装する Cで自 己還元できる塊成鉱) 、 金属化率の低い還元鉄 (還元鉄粉を含む) 等の還元が必要な鉄源と、 H B I (ホッ トブリ ゲッ ト還元鉄) 、 D R I (直接還元鉄) 、 鉄屑、 型銑、 戻り屑等のうち少なく とも一種 を含む溶解のみが必要な鉄源と、 固体燃料を竪型炉に装入し、 竪型 炉の壁面に設けた羽口から常温または 6 0 0 °C以下の酸素含有ガス を送風して還元 · 溶解する操業方法において、 鉄源の平均金属化率 (平均 Metallic F e /Total F e ) に基づく還元 ' 溶解の最適 τ? co (ガス利用率) に、 竪型炉の排ガス V coを制御することを特徴と する竪型炉の操業方法。
2. 前記妷源の平均金属化率 (平均 Metallic F e /Total F e ) に基づいて還元, 溶解の最適 7? co (ガス利用率) を求め、 鉄源と 固体燃料からなる装入物の竪型炉内の装入高さを調節することによ つて、 前記 coを制御する請求の範囲 1記載の竪型炉の操業方法。
3. 前記鉄源の平均金属化率 (平均 Metallic F e /Total F e ) に基づいて還元, 溶解の最適 77 co (ガス利用率) を求め、 鉄源中 に含有する C重量%を変数と して ( 1 ) 式で求め、 鉄源と固体燃料 からなる装入物の竪型炉内の装入高さを調節する請求の範囲 1 また は 2記載の竪型炉の操業方法。
1.5 X C%≤ n co- 0.7 x ( 平均 Μ· Fe/T. Fe)≤3.0 x C¾…- (1) 但し、 C: 鉄源中に含有する Ci¾であって、 0%≤C!¾≤20!¾ 、
η co: ガス利用率(¾) 、
(平均 M. Fe/T. Fe): 平均金属化率(SO 、
金属化率: 鉄源中の金属鉄(M. Fe)
I 鉄源中の トー夕ル鉄(T. Fe)、 平均金属化率: 数種の鉄源を加重平均した金属化率.
4. ダス ト塊成鉱、 自己還元性塊成鉱、 金属化率の低い還元鉄等 の還元が必要な鉄源と、 H B I、 DR I、 鉄屑、 型銑、 戻り屑等の うち少なく とも一種を含む溶解のみが必要な鉄源と、 固体燃料を竪 型炉に装入し、 竪型炉の壁面に設けた羽口から常温または 6 0 0 °C 以下の酸素含有ガスを送風して還元 · 溶解する操業方法において、 鉄源の平均金属化率 (平均 Metallic F e /Total F e ) に基づい て還元 · 溶解の最適 co (ガス利用率) を求め、 コークスベッ ドの 高さ、 送風量、 羽口径、 羽口突出し位置のうち少なく とも一つを調 節することによって、 前記?? coを制御することを特徴とする竪型炉 の操業方法。
5. 前記鉄源の鉄源の平均金属化率 (平均 Metallic F e /Tota 1 F e ) に基づいて還元 ' 溶解の最適 co (ガス利用率) を ( 1 ) 式で求め、 コークスべッ ドの高さ、 送風量、 羽口径、 羽口突出し位 置のうち少なく とも一つを調節する請求の範囲 4記載の竪型炉の操 業方法。
6. 前記固体燃料の粒度に応じて、 コ一クスべッ ドの高さ、 送風 量、 羽口径、 羽口突出し位置のうち少なく とも一つを調節する請求 の範囲 4記載の竪型炉の操業方法。
7. 前記羽口が、 炉高さ方向に少なく とも二段の位置に設けられ 、 固体燃料の粒度および鉄源の平均金属化率 (平均 Metallic F e XTotal F e ) に応じて、 前記炉高さ方向に設けられる各羽口の送 風比を調節する請求の範囲 2または 4記載の竪型炉の操業方法。
8. 前記鉄源および固体燃料を竪型炉に装入するに際し、 2チ ヤ ージ以上を 1サイクルと し、 各サイクル中のチャージ毎に、 鉄源 固体燃料の重量比、 鉄源の種類、 固体燃料の種類、 固体燃料の粒度 のうち少なく とも一つを調節して、 前記サイ クル単位で同一装入を 繰り返す請求の範囲 2 または 4記載の竪型炉の操業方法。
9. ダス ト塊成鉱、 自己還元性塊成鉱、 金属化率の低い還元鉄等 の還元が必要な鉄源と、 H B I 、 D R I 、 鉄屑、 型銑、 戻り屑等の うち少なく とも一種を含む溶解のみが必要な鉄源と、 固体燃料を竪 型炉に装入し、 竪型炉の壁面に設けた羽口から常温または 6 0 0 °C 以下の酸素含有ガスを送風して還元 · 溶解する操業方法において、 平均金属化率が高い鉄源を固体燃料と混合して竪型炉の炉中心部に 装入し、 平均金属化率が低い鉄源を固体燃料と混合して竪型炉の炉 周辺部に装入することを特徴とする竪型炉の操業方法。
10. 前記平均金属化率が高い鉄源を固体燃料と混合して竪型炉の 炉中心部に装入し、 平均金属化率が低い鉄源を固体燃料と混合して 竪型炉の炉周辺部に装入するに際し、 鉄源の平均金属化率 (平均 M etallic F e /Total F e ) に基づいて還元 · 溶解の最適 /? co (ガ ス利用率) を求め、 鉄源と固体燃料からなる装入物の竪型炉内の装 入高さを調節することによって、 前記?7 coを制御する請求の範囲 9 記載の竪型炉の操業方法。
11. 前記鉄源の平均金属化率 (平均 Metallic F e /Total F e ) に基づいて還元 · 溶解の最適 /? co (ガス利用率) を求めるに際し 、 ( 1 ) 式を適用する請求の範囲 10記載の竪型炉の操業方法。
12. 前記固体燃料と してのコークスの粒度および羽口からの送風 条件に応じて、 竪型炉下部のコ一クスべッ ト高さを所定の高さに調 節する請求の範囲 2 または 9記載の竪型炉の操業方法。
13. 前記鉄源と固体燃料を混合し竪型炉の炉周辺部に装入するに 際し、 前記固体燃料の粒度を 6 0 mm以下とする請求の範囲 9記載 の竪型炉の操業方法。
14. 前記鉄源と固体燃料を混合し竪型炉の炉中心部に装入する装 入物中の固体燃料に含まれる Cと鉄源に含まれる F eの重量比を 0
. 0 1 〜 0 . 0 5 とする請求の範囲 9記載の竪型炉の操業方法。
15. 前記竪型炉に装入される鉄源と固体燃料からなる装入物の炉 中心部に対する炉周辺部高さを、 鉄源の平均金属化率に応じて調節 する請求の範囲 9記載の竪型炉の操業方法。
PCT/JP1997/000164 1996-01-26 1997-01-24 Procede de fonctionnement d'un fourneau a cuve WO1997027337A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP97900776A EP0818543B1 (en) 1996-01-26 1997-01-24 Method for operating shaft furnace
BRPI9704633-7A BR9704633B1 (pt) 1996-01-26 1997-01-24 método de operação de forno vertical com uma tubagem fornecida em uma superfìcie da parede do dito forno vertical.
US08/913,836 US6129776A (en) 1996-01-26 1997-01-24 Operation method of vertical furnace
KR1019970706702A KR100241854B1 (ko) 1996-01-26 1997-01-24 수직로의 조업방법
DE69720606T DE69720606T2 (de) 1996-01-26 1997-01-24 Verfahren zum betreiben eines schachtofens
RU97117883A RU2144088C1 (ru) 1996-04-17 1997-01-24 Способ эксплуатации вертикальной печи

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP03117896A JP3516793B2 (ja) 1996-01-26 1996-01-26 竪型炉へのダスト塊成鉱、自己還元性鉱塊、鉄屑、固体燃料等の原燃料装入方法
JP8/31178 1996-01-26
JP11823896 1996-04-17
JP8/118238 1996-04-17
JP14490196 1996-05-16
JP8/144901 1996-05-16

Publications (1)

Publication Number Publication Date
WO1997027337A1 true WO1997027337A1 (fr) 1997-07-31

Family

ID=27287232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000164 WO1997027337A1 (fr) 1996-01-26 1997-01-24 Procede de fonctionnement d'un fourneau a cuve

Country Status (8)

Country Link
US (1) US6129776A (ja)
EP (1) EP0818543B1 (ja)
KR (1) KR100241854B1 (ja)
CN (1) CN1061099C (ja)
BR (1) BR9704633B1 (ja)
DE (1) DE69720606T2 (ja)
MY (1) MY126384A (ja)
WO (1) WO1997027337A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050151307A1 (en) * 2003-09-30 2005-07-14 Ricardo Viramontes-Brown Method and apparatus for producing molten iron
JP4308878B2 (ja) * 2007-09-07 2009-08-05 新日本製鐵株式会社 竪型炉
CA2745763A1 (en) * 2009-01-23 2010-07-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Process for manufacturing granular iron
TWI402507B (zh) * 2011-03-09 2013-07-21 China Steel Corp Sampling Device for Sampling Raw Material
DE102011107326A1 (de) * 2011-07-14 2013-01-17 Linde Aktiengesellschaft Schachtofen und Verfahren zum Betreiben desselben
JP6219266B2 (ja) * 2014-12-26 2017-10-25 株式会社神戸製鋼所 高炉のメタリック原料装入方法
KR20230048633A (ko) * 2020-09-15 2023-04-11 아르셀러미탈 제철용 용광로
CN116694842A (zh) * 2023-04-18 2023-09-05 武汉科技大学 一种氢基还原竖炉还原气流调节方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290711A (ja) * 1988-05-19 1989-11-22 Sumitomo Metal Ind Ltd 溶銑の製造方法
JPH0480312A (ja) * 1990-07-20 1992-03-13 Sumitomo Metal Ind Ltd 溶銑の製造方法
JPH08199213A (ja) * 1995-01-26 1996-08-06 Sumitomo Metal Ind Ltd 溶銑の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1386351A (fr) * 1963-11-28 1965-01-22 Siderurgie Fse Inst Rech Perfectionnements aux procédés de contrôle et de conduite des opérations de réduction dans un haut fourneau
JPS56119710A (en) * 1980-02-28 1981-09-19 Kawasaki Steel Corp Operation method for preventing failure of blast furnace tuyere
CN1005676B (zh) * 1985-04-01 1989-11-01 电子工业部第三研究所 扬声器大功率谐波失真测量仪和测量方法
JPS6210203A (ja) * 1985-07-08 1987-01-19 Kawasaki Steel Corp 高炉の操業方法
JPS62270708A (ja) * 1986-05-20 1987-11-25 Nippon Kokan Kk <Nkk> 高炉炉熱制御方法
BR8605001A (pt) * 1986-10-13 1988-05-31 Setepla Tecnometal Engenharia Equipamento para producao de metais ferrosos ou nao a partir de minerios ou aglomerados auto-redutores e auto-fundentes ou nao
JPH01142006A (ja) * 1987-11-30 1989-06-02 Nkk Corp 高炉操業方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290711A (ja) * 1988-05-19 1989-11-22 Sumitomo Metal Ind Ltd 溶銑の製造方法
JPH0480312A (ja) * 1990-07-20 1992-03-13 Sumitomo Metal Ind Ltd 溶銑の製造方法
JPH08199213A (ja) * 1995-01-26 1996-08-06 Sumitomo Metal Ind Ltd 溶銑の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0818543A4 *

Also Published As

Publication number Publication date
US6129776A (en) 2000-10-10
DE69720606T2 (de) 2004-03-04
EP0818543A1 (en) 1998-01-14
KR100241854B1 (ko) 2000-03-02
BR9704633A (pt) 1998-06-09
CN1061099C (zh) 2001-01-24
EP0818543B1 (en) 2003-04-09
BR9704633B1 (pt) 2012-02-07
MY126384A (en) 2006-09-29
KR19980703298A (ko) 1998-10-15
CN1178560A (zh) 1998-04-08
EP0818543A4 (en) 1998-07-15
DE69720606D1 (de) 2003-05-15

Similar Documents

Publication Publication Date Title
CA2698888C (en) Method for manufacturing molten iron
US8617459B2 (en) Method and apparatus for manufacturing granular metallic iron
JP4350153B2 (ja) 竪型炉及びその操業方法
MXPA04007099A (es) Metodo de produccion de hierro fundido.
WO1997027337A1 (fr) Procede de fonctionnement d&#39;un fourneau a cuve
JP3814046B2 (ja) 竪型炉の操業方法
JP4047422B2 (ja) 竪型炉の操業方法
JP2004176170A (ja) 溶鉄の製法
JP4005682B2 (ja) 竪型炉の操業方法
RU2144088C1 (ru) Способ эксплуатации вертикальной печи
JP3516793B2 (ja) 竪型炉へのダスト塊成鉱、自己還元性鉱塊、鉄屑、固体燃料等の原燃料装入方法
JPH11209810A (ja) 竪型炉の操業方法
JP2933808B2 (ja) 移動層型スクラップ溶融炉への原料装入方法
JP4005683B2 (ja) 粉状廃棄物を処理する竪型炉操業方法
JP5862514B2 (ja) スクラップ溶解竪型炉の操業方法
JPH11158521A (ja) 竪型炉の操業方法
JPH07278634A (ja) スクラップ溶融炉の操業方法
JP2837282B2 (ja) 含クロム溶銑の製造方法
JP5626072B2 (ja) 竪型溶解炉の操業方法
JP2014019882A (ja) 溶融還元炉の操業方法
JPH01240628A (ja) ステンレス鋼製造時の副生物からの有価金属回収方法
JPS61291930A (ja) クロム含有溶融金属の製造方法
JPS6187847A (ja) クロム鉱石の還元法
JPH0243310A (ja) 溶銑の製造方法
JPH08143923A (ja) 自己還元性鉱塊を主原料とする銑鉄製造装置および銑鉄製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97190042.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN KR RU US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08913836

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019970706702

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1997900776

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1199700980

Country of ref document: VN

WWP Wipo information: published in national office

Ref document number: 1997900776

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970706702

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970706702

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997900776

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI9704633

Country of ref document: BR