[go: up one dir, main page]

WO1997022995A1 - Semiconductor device containing two or more metallic wiring layers and method for manufacturing the same - Google Patents

Semiconductor device containing two or more metallic wiring layers and method for manufacturing the same Download PDF

Info

Publication number
WO1997022995A1
WO1997022995A1 PCT/JP1996/003685 JP9603685W WO9722995A1 WO 1997022995 A1 WO1997022995 A1 WO 1997022995A1 JP 9603685 W JP9603685 W JP 9603685W WO 9722995 A1 WO9722995 A1 WO 9722995A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive
metal wiring
conductive layer
semiconductor device
Prior art date
Application number
PCT/JP1996/003685
Other languages
French (fr)
Japanese (ja)
Inventor
Juri Kato
Yukiharu Kobayashi
Masanori Yasuhara
Yutaka Maruo
Hiroo Sato
Kazuharu Kawamura
Takeshi Watanabe
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Publication of WO1997022995A1 publication Critical patent/WO1997022995A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53214Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being aluminium
    • H01L23/53223Additional layers associated with aluminium layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor device having a multilayer wiring layer made of a material containing aluminum as a main component and a method for manufacturing the same.
  • a semiconductor device with a metal wiring layer of two or more scraps! As shown in FIG. 11, a first metal wiring layer is formed on a substrate, an element formation region formed on a certain plate, and a region 200 including at least an insulating layer. 10 is formed.
  • the first additional wiring layer 10 includes a first conductive layer 12 made of aluminum or an aluminum alloy, and a second layer 14 formed on the first conductive dust 12.
  • Consists of The second conductive dust 14 is made of, for example, a ⁇ -melting metal such as titanium or molybdenum or an alloy thereof. Functions as an anti-reflection film.
  • insulating layer 2 0 made of S i 0 2 or PSG is formed.
  • a resist layer 30 for passing through holes is formed on the insulating layer 20 between chips.
  • etching for example, dry etching is performed using a gas containing fluorine such as CF 4 to remove the interlayer insulating layer 20 and the second conductive layer 14, thereby forming a through hole 40 having a predetermined pattern. You. After that, the resist layer 30 is removed, and a second metal wiring (not shown) is formed.
  • An object of the present invention is to prevent the generation of a substance that hinders the patterning of a metal wiring layer, and to perform patterning with a high degree of bonding.
  • An object of the present invention is to provide a semiconductor device including a metal wiring and a method of manufacturing the same.
  • the manufacturing method of the present invention is a method of manufacturing a semiconductor device including two or more gold wiring layers, and includes the following steps (a) to (d).
  • the above-mentioned undesired deposits (foreign matter) that cause the patterning failure ⁇ of the second metal wiring layer include aluminum and a resist component.
  • the generation mechanism of this foreign matter is not necessarily clear, when a through-hole is formed by etching the insulating layer between layers and the second conductive layer constituting the first metal wiring layer below the insulating layer between layers. Then, the first conductive layer exposed in the through-hole, the aluminum constituting the layer, the resist component, and the etching gas component react with each other, so that they can be subjected to the asshing treatment with oxygen plasma and the wet cleaning with a commonly used organic solvent.
  • reaction product It has been confirmed that it grows in the form of a screen (screen shape) during the asking process or cleaning process using oxygen plasma.
  • the interlayer insulating layer can be etched while completely covering the first layer mainly composed of aluminum. Therefore, it is possible to prevent the reaction between aluminum, which is a substance causing the foreign matter, and the etching gas and the resist component. As a result, there is no occurrence of a reaction product which causes short-circuiting or disconnection of the second metal wiring layer, and a highly reliable and high-yield integrated device can be manufactured.
  • the semiconductor device according to the present invention has 2 ′ or more gold wiring layers, and the first gold wiring layer means a metal wiring layer below the upper gold wiring layer, Fl, the second metal wiring layer means a gold wiring layer which is above and closest to the gold wiring layer of the above (1).
  • the first conductive layer containing aluminum as a main component is made of aluminum or an aluminum alloy such as aluminum-silicon, aluminum-copper, and aluminum-silicon-copper.
  • the second conductive layer containing the high melting point metal may be made of a high melting point metal such as titanium, molybdenum and tungsten, or an alloy of these metals, for example, titanium-nitrogen, molybdenum-silicon, tungsten-silicon, It is composed of titanium-tungsten or the like.
  • the second conductive dust preferably has a thickness of 20 to 200 nm, more preferably 40 to 100 nm.
  • the thickness of the second conductive dust in this range, not only does it function as an antireflection film for light during exposure and as a barrier waste, but also the second conductive layer is formed when forming a through hole. It is possible to secure a margin for preventing the first conductive layer from being exposed by being removed by etching. This margin is set in consideration of the difference in the depth of each through hole, etching conditions, and the like.
  • etching is performed using the interlayer insulating layer as a mask to remove the second conductive layer in a region corresponding to the through hole. It is preferable that the step (e) is right and then the step (d) is performed.
  • the first conductive dust constituting the first metal wiring layer comes into contact with the contact conductor formed in the through-hole, so wherein c can be a metal wiring layer to reduce the contact resistance between the contactor preparative conductive portion and the second conductive layer is to contain the refractory metal, electrical resistance than the first conductive layer mainly composed of Aruminiumu Since it is large, the contact resistance in the contact conductive portion can be reduced by not interposing the second conductive layer in the contact conductive portion. However, if the contact resistance in the contact conductive portion is acceptable, the semiconductor device of the present invention described later can be manufactured by a simple process by not performing the step (e).
  • the resist layer is removed in a gas phase containing oxygen plasma.
  • the step (b) by leaving the second conductive bending constituting the first metal wiring layer, an undesired deposition in the step of removing the resist layer in the step (c) is performed.
  • the generation of objects can be prevented.
  • the resist layer can be sufficiently removed by the asshing treatment in a gas phase containing oxygen plasma. For this reason, a cleaning process using a liquid which is normally required in removing the resist layer is not required or can be extremely simplified, so that the process can be simplified.
  • a semiconductor device according to the present invention is a semiconductor device including two or more gold wiring layers.
  • a second metal wiring layer which is located higher than the first metal wiring layer and has at least a first conductive layer mainly containing aluminum;
  • a dust insulating layer which is present between the first metal wiring ⁇ and the second metal wiring ⁇ , electrically insulates both, and has a through hole at a predetermined position;
  • a contact conductive portion formed in the through hole of the interlayer insulating dust and electrically connecting the first metal wiring layer and the second metal wiring layer,
  • the contact conductive portion is connected to the first gold bent wiring, and And electrically connected to the first conductive layer via the conductive layer.
  • this semiconductor device in the step of forming a through hole in the insulating layer by leaving the second conductive layer, aluminum, a resist component, and an etching gas component constituting the first metal wiring layer Since no reaction product is generated, no deposit that hinders the patterning of the second metal wiring layer is generated. Therefore, it is possible to provide a semiconductor device which can be manufactured by a simple process and has high reliability and good yield.
  • 1 to 7 are cross-sectional views schematically showing a method of manufacturing a semiconductor device according to the first embodiment of the present invention in the order of steps.
  • FIG. 1 is a cross-sectional view showing a step of forming a first metal wiring ⁇ on an element formation region.
  • FIG. 2 is a cross-sectional view illustrating a step of forming a dust insulating layer.
  • FIG. 3 is a cross-sectional view showing a step of removing the resist layer.
  • FIG. 4 is a cross-sectional view showing a step of etching the second conductive layer.
  • FIG. 5 is a cross-sectional view showing a step of forming a barrier layer forming the second metal wiring layer.
  • FIG. 6 is a cross-sectional view showing a step of forming a first conductive layer forming a second metal wiring layer.
  • FIG. 7 is a sectional view showing a step of forming a passivation layer.
  • FIGS. 8 to 10 are cross-sectional views schematically illustrating a method of manufacturing a semiconductor device according to a second embodiment of the present invention in the order of steps.
  • FIG. 18 is a cross-sectional view showing a step of forming a barrier layer constituting the second metal wiring layer.
  • FIG. 9 is a cross-sectional view showing a step of forming a first conductive layer constituting a second metal wiring layer.
  • FIG. 10 is a cross-sectional view showing a step of forming a passivation layer.
  • FIG. 11 is a cross-sectional view schematically showing one example of a conventional method for manufacturing a semiconductor device. [Best Mode for Carrying Out the Invention]
  • an element isolation region 2 and an element formation region 100000 are formed on a semiconductor substrate 100 by a normal method, and further, these element isolation region 2 and an element formation region 100 ⁇ Form the first layer 8
  • a through hole is formed at a predetermined position of the insulating layer 8 of the first layer by an ordinary method.
  • a first conductive layer 12 having a thickness of 200 to 100 nm is formed on the first interlayer insulating layer 8, and then a second conductive layer 12 having a thickness of 40 to 100 nm is formed.
  • the conductive layer 14 is formed, for example, by a sputtering method.
  • the first conductive layer 12 is made of aluminum or an alloy containing aluminum as a main component, for example, aluminum-silicon, aluminum-copper, aluminum-silicon-copper.
  • the second conductive layer 14 may be made of a melting point of gold, such as titanium, molybdenum and tungsten, or gold of these metals, for example, titanium-nitrogen, molybdenum-carbon, tungsten-silicon, titanium-tungsten. It is composed of
  • the film thickness of the second conductive layer 14 is not only a function as an antireflection layer and a barrier layer for light during exposure, but also the second conductive layer is removed by etching when a through hole is formed. The setting is made in consideration of a margin for preventing the first conductive dust from being exposed.
  • a first metal wiring layer 10 consisting of 14 is formed (FIG. 1).
  • the element forming region 1 0 0 0 In this example, element consists formed on the semiconductor substrate 1 0 0 on eg S i 0 2 chips (LOCOS) - formed in the regions partitioned by the f- isolation region 2 Formed in the substrate 100, for example, in a source / drain region. It is configured to include impurity diffusion debris 4 constituting a region and a gate electrode 6 formed on a substrate 100 via an insulating film.
  • LOC S i 0 2 chips
  • FIG. 1 a MOS element is shown as an example of an element in a conventional manner, but the element formation region 100 includes all types of semiconductor elements and element isolation structures capable of forming an electronic circuit. There are many things you can do.
  • the element formation region 100 can be formed by a method generally used depending on various devices.
  • a second inter-layer insulating layer 20 made of, for example, Si 02, PSG, etc., is formed on the first metal wiring brows 10 with a film thickness of 200 to 400 Formed in nm.
  • a resist layer 30 having a predetermined pattern is formed on the second inter-insulation layer 20 by using a commonly used method.
  • Through holes 40a are formed in the second interlayer insulating layer 20 by dry etching using the resist waste 30 as a mask and using, for example, a fluorocarbon-based gas as a reaction gas.
  • CF "CHF 3, C 2 F f , or the like can be used.
  • the etching gas helium, argon, an inert gas such as nitrogen is added
  • an inert gas such as nitrogen
  • the etching rate of the second conductive layer 14 can be reduced, and as a result, the second conductive j ′ is removed and the second conductive layer 14 is removed. Exposure of the conductive debris is prevented.
  • the preferred composition of the etching gas depends on the selection ratio between the second insulating layer between debris 20 and the second lightning layer 14 and the like. For example, it is desirable to set the ratio between the fluorocarbon-based gas and the inert gas to be 10:90 to 9 °: 10 by volume ratio. Second conductive debris 14 that constitutes metal wiring layer 10 remains In this state, a through hole 40a is formed in the second interlayer insulating dust 20 (FIG. 2).
  • the second conductive layer 12 is etched during the second inter-layer insulating layer 20. Does not produce deposits containing aluminum and resist components.
  • the resist layer 30 is removed by asshing with, for example, oxygen plasma (FIG. 3).
  • oxygen plasma FOG. 3
  • the deposit since the deposit is not formed in the step (B), no substance that inhibits the subsequent patterning of the second metal wiring layer remains. In this state, the resist layer 30 can be almost completely removed by asking with the oxygen plasma.
  • jet cleaning using a liquid such as an organic solvent can also be used.
  • the second interlayer insulating layer 2 0 as a mask for example, SF t:, by removing the second 3 ⁇ 4 layer 1 4 an etching gas Te Kawai such CF 4, the first conductive (4) A through hole 40b is formed with the layer 12 exposed (FIG. 4).
  • a barrier layer 54 having a film thickness of 20 to 200 nm is formed by, for example, a sputtering method.
  • the metal constituting the barrier layer 54 is not particularly limited, and a commonly used melting point metal such as titanium, titanium-nitrogen, titanium-tungsten or a combination thereof can be used (FIG. 5).
  • a first conductive layer 52 made of aluminum or an alloy containing aluminum as a main component is formed by, for example, a sputtering method. This first conductive waste 5
  • a material similar to the material constituting the first conductive i 12 can be used. Further, the barrier layer 54 and the first conductive dust 52 are patterned by a commonly used lithography technique and etching technique to form a second metal wiring layer 50. By the above-mentioned step (E) and this step (F), a contact conducting portion 56 composed of a barrier layer 54 and a first conductive layer 52 is formed in the through hole 40b (see FIG. 6).
  • a passivation layer 60 composed of SiO 2 or the like is formed by a commonly used method (FIG. 7).
  • the first resistive layer 30 is removed while the second conductive layer 14 constituting the first metal wiring ⁇ 10 is removed.
  • the conductive layer 12 and the components of the etching gas and the resist debris 30 can be prevented, and as a result, a reaction product that inhibits the patterning of the second metal wiring ⁇ 50 Is not formed. Therefore, it is possible to avoid the occurrence of troubles such as short-circuit disconnection in the second metal wiring layer 50 as follows:
  • the thickness of the second conductive dust 14 of the first metal wiring layer 10 is set to the above-mentioned range larger than usual, and an inert gas is added to the etching gas of the second interlayer insulating layer 20.
  • an inert gas is added to the etching gas of the second interlayer insulating layer 20.
  • the contact conductive portion 56 for electrically connecting the first gold wiring 10 and the second gold wiring layer 50 is formed of the first gold wiring. It is formed by removing the portion of the second conductive layer 14 having relatively high electric resistance, which constitutes the layer 10, so that the contact conductive portion 56 and the first gold bent wiring dust 10 are not formed. Contact resistance can be reduced.
  • the second conductive layer 14 of the first metal wiring layer 10 is formed in the contact region for connecting the first metal wiring layer 10 and the second metal wiring layer 50. This is different from the first embodiment in that the first embodiment is not removed. Hereinafter, the manufacturing process of the present embodiment will be described physically.
  • This step corresponds to the step (E) of the first embodiment, and a barrier layer 54 is formed on the second interlayer insulating layer 20 (FIG. 8). Manufacturing conditions and materials of barrier layer 54 Is the same as that of the first barrier layer 54.
  • This step corresponds to the step (F) of the first embodiment, and a first conductive layer 52 mainly composed of aluminum is formed on the barrier layer 54.
  • the method and material for forming the second conductive layer are the same as those of the first conductive layer 52 of the first embodiment.
  • the barrier waste 54 and the first conductive waste 52 are patterned to form a second metal wiring layer 50 (FIG. 9). Then, by the step (H) and the step (I), a contact conductive portion 56 composed of the barrier layer 54 and the first conductive t 52 is formed in the through hole 42.
  • This step corresponds to the step (G) of the first embodiment, in which a passivation layer 60 is formed on the surface of the second metal wiring layer 50 (FIG. 10). ).
  • the semiconductor rest having two layers of bending wiring layers 10 and 50 manufactured by the above-described process is the contact conductive part 56 of the second metal wiring 50 and the metallization of 51.
  • the wiring M 10 is connected to the first conductive layer 12 via the second conductive dust 14.
  • the contact resistance between the first metal wiring layer 10 and the second metal wiring layer 50 is larger than that of the semiconductor device of the first embodiment, Since there is no step (D), the number of manufacturing steps can be reduced, and the manufacturing process can be simplified.
  • a reaction product that adversely affects the patterning of the second metal wiring layer 50 is not generated, a semiconductor device with high reliability and high yield is manufactured. be able to.
  • the semiconductor device having two metal wiring circumferences and the manufacturing method thereof have been described.
  • the present invention relates to a semiconductor device having three or more metal wiring wastes. Can be similarly applied.
  • the present invention is not limited to the above-described embodiments, and can take various forms within the scope of the gist of the present invention.
  • the present invention provides a method in which a barrier layer is provided in the lowermost chip of the first metal wiring layer, and a reflection preventing anti-reflection layer is formed on a conductive layer of the uppermost gold wiring layer. It is possible to adopt a configuration such as having conductive waste.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A method for manufacturing a semiconductor device containing two or more metallic wiring layers comprises: the step (a) of forming a first metallic wiring layer (10) having a first conductive layer (12) made mainly of at least aluminum and a second conductive layer (14) containing a metal having a melting point higher than that of the layer (12); the step (b) of forming an interlayer insulating layer (20) having a through hole by forming an insulating layer exhibiting electrical insulation on the first metallic wiring layer (10) and a resist layer of a prescribed pattern on the insulating layer, and patterning the insulating layer in such a way that at least part of the second conductive layer (14) is left by etching the insulating layer, using the resist layer as a mask; the step (c) of removing the resist layer; and the step (d) of forming a second metallic wiring layer (50) including a first conductive layer (52) made mainly of at least aluminum on the interlayer insulating layer (20) and electrically connecting the first and second wiring layers (12 and 50) to each other by forming a conductive section in the through hole. In this method, the reaction of the aluminum contained in the first conductive layer (12) with the etching gas and the resist components is prevented and no reaction product that hinders the patterning of the second metallic wiring layer (50) is formed, because the resist layer is removed while the second conductive layer (14) is left. Therefore, defects such as short-circuit and disconnection in the second metallic wiring layer (50) is prevented reliably.

Description

明 細 書  Specification
2 1¾以上の金/ ί5配線層を含む半 ¾体装置およびその製造方法 [技術分野] 2 Semiconductor device including 11% or more gold / 5 wiring layers and method of manufacturing the same
本発明は、 アルミニウムを主成分とした材料からなる多層の配線層を有する半 ¾体装^およびその製造方法に関する。  The present invention relates to a semiconductor device having a multilayer wiring layer made of a material containing aluminum as a main component and a method for manufacturing the same.
[ ΐ景技術] [Landscape technology]
2屑以上の金属配線層を する半導体装;!を形成するには、 図 1 1に例示する ように、 基板、 某板上に形成された素子形成領域および層問絶縁^を少なく とも 含む領域 2 0 0の上に、 第 1の金属配線層 1 0が形成される。 この第 1の余 ¾配 線層 1 0は、 アルミニゥムあるいはアルミニゥム合金からなる第 1の導 ¾層 1 2 と、 この第 1の導電屑 1 2の上に形成される第 2の 層 1 4とからなる。 第 2 の ¾電屑 1 4は、 例えば、 チタンやモリブデンなどの β融点金屈あるいはそれら の合金からなり、 主として、 第 1の金屈配線 © 1 0のパターニングの際に、 露光 のための光の反射防止膜として機能する。 そして、 ί¾ 1の金/ S配線屑 1 0の上に は、 S i 0 2や P S Gなどからなる屑問絶縁層 2 0が形成される。 次いで、 屑間絶 縁層 2 0の上にはスルーホールのパ夕一ニングのためのレジス ト層 3 0が形成さ れる。 その後、 エッチング、 例えば C F 4などのフッ素を含むガスによって ドライ エッチングを行い、 層間絶縁 2 0および第 2の導電層 1 4を除去することによ り、 所定のパターンのスルーホール 4 0が形成される。 その後、 レジス ト層 3 0 を除去し、 図示しない第 2の金属配線 ¾が形成される。 A semiconductor device with a metal wiring layer of two or more scraps! As shown in FIG. 11, a first metal wiring layer is formed on a substrate, an element formation region formed on a certain plate, and a region 200 including at least an insulating layer. 10 is formed. The first additional wiring layer 10 includes a first conductive layer 12 made of aluminum or an aluminum alloy, and a second layer 14 formed on the first conductive dust 12. Consists of The second conductive dust 14 is made of, for example, a β-melting metal such as titanium or molybdenum or an alloy thereof. Functions as an anti-reflection film. Then, on the gold / S wire scrap 1 0 I¾ 1 is waste question insulating layer 2 0 made of S i 0 2 or PSG is formed. Next, a resist layer 30 for passing through holes is formed on the insulating layer 20 between chips. Thereafter, etching, for example, dry etching is performed using a gas containing fluorine such as CF 4 to remove the interlayer insulating layer 20 and the second conductive layer 14, thereby forming a through hole 40 having a predetermined pattern. You. After that, the resist layer 30 is removed, and a second metal wiring (not shown) is formed.
本願発明者等は、 上述したプロセスにおいて、 レジス ト^ 3 0を例えば酸素プ ラズマを用いたドライエッチングによって除去した ¾合に、 第 2の金履配線屑の パター二ングが何らかの堆積物によって阻害されることがあることを見出してい る。  In the above-described process, when the resist ^ 30 is removed by, for example, dry etching using oxygen plasma, the patterning of the second metal wiring traces is obstructed by some deposits. Have been found to be
[発明の開示] 本発明の目的は、 金厲配線層のパターニングを阻害する物質の生成を防止し、 結度の高いパターニングが可能であって、 ^い 留まりで、 かつ高い 頼性を有 する、 2層以上の金厲配線^を含む半導体装置およびその製造方法を提供するこ とにある。 [Disclosure of the Invention] An object of the present invention is to prevent the generation of a substance that hinders the patterning of a metal wiring layer, and to perform patterning with a high degree of bonding. An object of the present invention is to provide a semiconductor device including a metal wiring and a method of manufacturing the same.
本発明の製造方法は、 金屈配線層が 2層以上含まれる半導体装置の製造方法で あって、 以下の工程 (a ) 〜 (d ) を含む。  The manufacturing method of the present invention is a method of manufacturing a semiconductor device including two or more gold wiring layers, and includes the following steps (a) to (d).
( a ) 少なく ともアルミニウムを主成分とする !Ϊ5 1の導電層、 およびこの笫 1 の導電層より高融点の金 ¾を含む第 2の^; 層を有する第 1の金属配線層を形成 する工程、  (a) Forming a first metal wiring layer having at least a conductive layer of aluminum at least as a main component and a second ^; layer containing gold having a higher melting point than the conductive layer of the layer Process,
( b ) 前記第 1の金属配線層の上に、 電気的絶縁性を有する絶縁 を形成し、 この絶縁層の上に所定パターンのレジス ト層を形成し、 このレジス ト層をマスク として前 絶緣屑のエッチングを行うことにより、 前記第 2の 層の少なくと も一部を残した状態で前記絶縁層のパター二ングを行い、 スルーホールを有する 屑間絶縁層を形成する工程、  (b) forming an insulating material having an electrical insulating property on the first metal wiring layer, forming a resist layer having a predetermined pattern on the insulating layer, and using the resist layer as a mask, A step of patterning the insulating layer while leaving at least a part of the second layer by etching the debris, thereby forming a debris insulating layer having a through hole;
( c ) 前記レジスト層を除去する工程、 および  (c) removing the resist layer; and
( d ) 前記 IS ^絶縁層の上に、 少なく ともアルミニウムを主成分とする第 1の 導電層を含む第 2の金属配線屑を形成し、 かつ、 前記スルーホール内に導 ί¾部を 形成して前記第 1の金属配線層と前記第 2の金屈配線層とを電気的に接続するェ 程。  (d) forming, on the IS ^ insulating layer, at least a second metal wiring scrap including a first conductive layer containing aluminum as a main component, and forming a conductive portion in the through hole; Electrically connecting the first metal wiring layer and the second gold wiring layer.
本願発明者等によれば、 前述した、 第 2の金属配線層のパターニング不 βの原 因となる望ましくない堆積物 (異物) は、 アルミニウムおよびレジス ト成分を含 むことが確認されている。 この異物の生成メカニズムは必ずしも明らかではない せ、 層問絶縁層およびこの層問絶縁層の下位にある第 1の金属配線層を構成する 第 2の導電層をエッチングしてスルーホールを形成する際に、 スルーホール内に 露出した第 1の導', 層を構成するアルミニウム、 レジスト成分およびエッチング ガス成分が反応することによって、 酸素プラズマによるアツシング処理および通 常用いられる有機溶剤によるウエッ トクリーニングによっても除去できない反応 生成物が生じ、 この反応生成物によって第 2の金属配線屑のパターニングが阻害 されるものと考えられる。 さらに、 本願発明者等によれば、 前記反応生成物は、 酸素プラズマによるアツシング処理あるいはクリーニング処理時に、 衝立状 (ス クリーン状) に成長することが確認されている。 According to the inventors of the present application, it has been confirmed that the above-mentioned undesired deposits (foreign matter) that cause the patterning failure β of the second metal wiring layer include aluminum and a resist component. Although the generation mechanism of this foreign matter is not necessarily clear, when a through-hole is formed by etching the insulating layer between layers and the second conductive layer constituting the first metal wiring layer below the insulating layer between layers. Then, the first conductive layer exposed in the through-hole, the aluminum constituting the layer, the resist component, and the etching gas component react with each other, so that they can be subjected to the asshing treatment with oxygen plasma and the wet cleaning with a commonly used organic solvent. It is considered that a reaction product that cannot be removed is generated, and this reaction product inhibits the patterning of the second metal wiring dust. Further, according to the present inventors, the reaction product is: It has been confirmed that it grows in the form of a screen (screen shape) during the asking process or cleaning process using oxygen plasma.
本発明にかかる半導体装^の製造方法によれば、 前記工程 (b ) で、 スルーホ —ルを形成する際に、 ¾融点金屈を含む第 2の^ ¾層の少なくとも一部を残すこ とにより、 アルミニウムを主体とする第 1の 層を完全に覆った状態で層間絶 縁^をエッチングすることができる。 従って、 異物の原因物質となるアルミニゥ ムと、 エッチングガスおよびレジス ト成分との反応を防止することができる。 そ の結果、 第 2の金厲配線層のショートゃ断線の原 ¾となる反応生成物を生ずるこ とがなく、 信頼性が くかつ歩 ¾まりの高い' 体装置を製造することができる。 なお、 本発明にかかる半導体装置は、 2 '以上の金屈配線層を有し、 前記第 1 の金屈配線層とは ί 上段の金^配線層より下にある金属配線層を意味し、 前,] fl第 2の金属配線層とは前記 ¾ 1の金厲配線層より上にあってかつ最も近い金屈配線 層を意味する。  According to the method of manufacturing a semiconductor device according to the present invention, at the time of forming the through-hole in the step (b), at least a part of the second layer containing the gold melting point is left. Thereby, the interlayer insulating layer can be etched while completely covering the first layer mainly composed of aluminum. Therefore, it is possible to prevent the reaction between aluminum, which is a substance causing the foreign matter, and the etching gas and the resist component. As a result, there is no occurrence of a reaction product which causes short-circuiting or disconnection of the second metal wiring layer, and a highly reliable and high-yield integrated device can be manufactured. Note that the semiconductor device according to the present invention has 2 ′ or more gold wiring layers, and the first gold wiring layer means a metal wiring layer below the upper gold wiring layer, Fl, the second metal wiring layer means a gold wiring layer which is above and closest to the gold wiring layer of the above (1).
本発明において、 アルミニウムを主成分とする第 1の導電層は、 アルミニウム、 あるいはアルミニウム一ケィ素, アルミニウム一銅, アルミニウム一ケィ素一銅 などのアルミニウム合金から構成される。 また、 前記高融点の金属を含む第 2の 導^層は、 チタン、 モリブデンおよびタングステンなどの高融点金属、 あるいは これらの金属の合金、 例えばチタン一窒素, モリブデン一ケィ素, タングステン —ケィ素, チタン—タングステンなどから構成される。 この第 2の導電屑は、 そ の膜厚が、 好ましくは 2 0〜 2 0 0 n m、 より好ましくは 4 0〜 1 0 0 n mであ る。 第 2の導' 屑は、 その膜厚をこの範囲に設定することにより、 露光時の光の 反射防止膜およびバリヤ屑としての機能を有するだけでなく、 スルーホール形成 時に第 2の導電層がエッチングによって除去されて第 1の導 ί¾層が露出しないた めのマージンを確保することができる。 このマージンは、 各スルーホールの深さ の相違やエッチング条件等を考慮して設定される。  In the present invention, the first conductive layer containing aluminum as a main component is made of aluminum or an aluminum alloy such as aluminum-silicon, aluminum-copper, and aluminum-silicon-copper. The second conductive layer containing the high melting point metal may be made of a high melting point metal such as titanium, molybdenum and tungsten, or an alloy of these metals, for example, titanium-nitrogen, molybdenum-silicon, tungsten-silicon, It is composed of titanium-tungsten or the like. The second conductive dust preferably has a thickness of 20 to 200 nm, more preferably 40 to 100 nm. By setting the thickness of the second conductive dust in this range, not only does it function as an antireflection film for light during exposure and as a barrier waste, but also the second conductive layer is formed when forming a through hole. It is possible to secure a margin for preventing the first conductive layer from being exposed by being removed by etching. This margin is set in consideration of the difference in the depth of each through hole, etching conditions, and the like.
本発明にかかる半導体装^の製造方法においては、 前記工程 (c ) に引き続い て、 前記層間絶縁層をマスクとしてエッチングを行い、 前記スルーホールに対応 する領域の前記第 2の導電層を除去する工程 (e ) を右し、 その後前記工程 (d ) を行うことが望ましい。 この製造方法によれば、 第 1の金属配線層を構成する第 1の導電屑と前記スル —ホール内に形成されたコン夕ク ト導^部とが接触する状態となるため、 前記第 1の金属配線層と前記コンタク ト導電部との接触抵抗を小さくすることができる c 前記第 2の導電層は高融点金属を含むため、 アルミニゥムを主成分とする第 1の 導電層より電気抵抗が大きいので、 コンタク ト導電部において前記第 2の導電層 を介在させないことにより、 コンタク ト導電部における接触抵抗を小さくするこ とができる。 ただし、 コンタク ト導電部における接触抵抗の点で許容できる場合 には、 前記工程 ( e ) を行わないことにより、 簡易なプロセスで後述する本発明 の半導体装置を製造することができる。 In the method for manufacturing a semiconductor device according to the present invention, subsequent to the step (c), etching is performed using the interlayer insulating layer as a mask to remove the second conductive layer in a region corresponding to the through hole. It is preferable that the step (e) is right and then the step (d) is performed. According to this manufacturing method, the first conductive dust constituting the first metal wiring layer comes into contact with the contact conductor formed in the through-hole, so wherein c can be a metal wiring layer to reduce the contact resistance between the contactor preparative conductive portion and the second conductive layer is to contain the refractory metal, electrical resistance than the first conductive layer mainly composed of Aruminiumu Since it is large, the contact resistance in the contact conductive portion can be reduced by not interposing the second conductive layer in the contact conductive portion. However, if the contact resistance in the contact conductive portion is acceptable, the semiconductor device of the present invention described later can be manufactured by a simple process by not performing the step (e).
さらに、 本発明にかかる製造方法においては、 前記ェ¾ ( c ) で、 前記レジス ト層は酸素ブラズマを含む気相中において除去されることが望ましい。  Further, in the manufacturing method according to the present invention, in the step (c), it is preferable that the resist layer is removed in a gas phase containing oxygen plasma.
本発明においては、 上述したように、 工程 (b ) において、 第 1の金属配線層 を構成する第 2の導電屈を残すことによって、 工程 ( c ) でのレジスト層の除去 工程で望ましくない堆積物の発生を防止することができる。 その結果、 酸素ブラ ズマを含む気相中におけるアツシング処理によってレジスト層を充分に除去する ことができる。 そのため、 レジスト層の除去ェ ¾において通常必要とされる液体 によるクリーニング処理を必要としないか、 若しくは極めて節略化できるので、 プロセスの簡易化が可能である。  In the present invention, as described above, in the step (b), by leaving the second conductive bending constituting the first metal wiring layer, an undesired deposition in the step of removing the resist layer in the step (c) is performed. The generation of objects can be prevented. As a result, the resist layer can be sufficiently removed by the asshing treatment in a gas phase containing oxygen plasma. For this reason, a cleaning process using a liquid which is normally required in removing the resist layer is not required or can be extremely simplified, so that the process can be simplified.
本発明にかかる半導体装置は、 金 配線層が 2屑以上含まれる半導体装 であ つて、  A semiconductor device according to the present invention is a semiconductor device including two or more gold wiring layers.
アルミニウムを主成分とする第 1の導' 層、 およびこの第 1の導電層より高融 点の金属を含む第 2の導電層を冇する第 1の金厲配線層、  A first conductive layer containing aluminum as a main component, and a first metal wiring layer connecting a second conductive layer containing a metal having a higher melting point than the first conductive layer;
前記第 1の金属配線層より上位に位置し、 少なくともアルミニウムを主成分と する第 1の導電層を有する第 2の金属配線層、  A second metal wiring layer which is located higher than the first metal wiring layer and has at least a first conductive layer mainly containing aluminum;
前記第 1の金属配線^と前記第 2の金属配線^との間に存在し、 両者を電気的 に絶縁し、 かつ所定位置にスルーホールを有する屑問絶縁層、 および  A dust insulating layer which is present between the first metal wiring ^ and the second metal wiring ^, electrically insulates both, and has a through hole at a predetermined position; and
前記層間絶縁屑のスルーホール内に形成され、 前記第 1の金属配線層と前記第 2の金属配線層とを電気的に接続するコンタク ト導電部を含み、  A contact conductive portion formed in the through hole of the interlayer insulating dust and electrically connecting the first metal wiring layer and the second metal wiring layer,
前記コンタク ト導電部は、 前記第 1の金屈配線 との接続において、 前記第 2 の導電層を介して前記第 1の導電層に電気的に接続されている。 The contact conductive portion is connected to the first gold bent wiring, and And electrically connected to the first conductive layer via the conductive layer.
この半導体装置によれば、 前記第 2の導電層を残すことにより、 問絶縁層に スル一ホールを形成する工程において、 第 1の金属配線層を構成するアルミニゥ ム、 レジス ト成分およびエッチングガス成分の反応生成物を生じることがないた め、 第 2の金厲配線層のパターニングを阻害する堆積物を生成することがない。 従って、 簡易なプロセスによって製造でき、 かつ信頼性が高く歩留まりがよい半 体装置を提供することができる。  According to this semiconductor device, in the step of forming a through hole in the insulating layer by leaving the second conductive layer, aluminum, a resist component, and an etching gas component constituting the first metal wiring layer Since no reaction product is generated, no deposit that hinders the patterning of the second metal wiring layer is generated. Therefore, it is possible to provide a semiconductor device which can be manufactured by a simple process and has high reliability and good yield.
[図而の簡単な説明] [Brief description of the figure]
図 1〜図 7は、 本発明の第 1 ¾施例にかかる半導体装置の製造方法を工程順に 模式的に示す断面図である。  1 to 7 are cross-sectional views schematically showing a method of manufacturing a semiconductor device according to the first embodiment of the present invention in the order of steps.
図 1は、 素子形成領域上に、 第 1の金属配線^を形成するェ ¾を示す断面図で ある。  FIG. 1 is a cross-sectional view showing a step of forming a first metal wiring ^ on an element formation region.
図 2は、 屑問絶縁層を形成する工程を示す断面図である。  FIG. 2 is a cross-sectional view illustrating a step of forming a dust insulating layer.
図 3は、 レジス 卜層を除去する工程を示す断面図である。  FIG. 3 is a cross-sectional view showing a step of removing the resist layer.
図 4は、 第 2の導電層をエッチングする工程を示す断面図である。  FIG. 4 is a cross-sectional view showing a step of etching the second conductive layer.
図 5は、 第 2の金属配線層を構成するバリャ層を形成する工程を示す断面図で ある。  FIG. 5 is a cross-sectional view showing a step of forming a barrier layer forming the second metal wiring layer.
図 6は、 第 2の金属配線層を構成する第 1の導電層を形成する工程を示す断面 図である。  FIG. 6 is a cross-sectional view showing a step of forming a first conductive layer forming a second metal wiring layer.
図 7は、 パッシベ一ション層を形成する工程を示す断而図である。  FIG. 7 is a sectional view showing a step of forming a passivation layer.
図 8〜図 1 0は、 本発明の第 2実施例にかかる半導体装 ¾の製造方法を工程順 に模式的に示す断面図である。  8 to 10 are cross-sectional views schematically illustrating a method of manufacturing a semiconductor device according to a second embodiment of the present invention in the order of steps.
1 8は、 第 2の金厲配線層を構成するバリヤ層を形成する工程を示す断面図で ある。  FIG. 18 is a cross-sectional view showing a step of forming a barrier layer constituting the second metal wiring layer.
図 9は、 第 2の金厲配線層を構成する第 1の導電層を形成する工程を示す断面 図である。  FIG. 9 is a cross-sectional view showing a step of forming a first conductive layer constituting a second metal wiring layer.
図 1 0は、 パッシベーション層を形成する工程を示す断面図である。  FIG. 10 is a cross-sectional view showing a step of forming a passivation layer.
図 1 1は、 従来の半導体装- [Sの製造方法の一例を模式的に示す断面図である。 [発明を実施するための最良の形態] FIG. 11 is a cross-sectional view schematically showing one example of a conventional method for manufacturing a semiconductor device. [Best Mode for Carrying Out the Invention]
以下、 本発明をさらに β体的に説明するために、 その好適な実施例について説 明する。  Hereinafter, preferred embodiments of the present invention will be described in order to further explain the present invention in β form.
(第 1実施例)  (First embodiment)
本 ¾明の ¾ 1実施例にかかる半導体装 ΪΒ1の製造方法を、 図 1〜図 7を参照しな がら説明する。 A method for manufacturing the semiconductor device 1 according to the first embodiment of the present invention will be described with reference to FIGS.
( Α ) まず、 半導体基板 1 0 0に、 通常の方法によって素子分離領域 2および 素子形成領域 1 0 0 0を形成し、 さらにこれらの素子分離領域 2および素子形成 領域 1 0 0 0の上に ¾ 1の層問絶綠層 8を形成する。 そして、 ¾ 1の層問絶縁 8の所定位置に通常の方法によってスルーホールを形成する。 そして、 前記第 1 の層間絶縁層 8上に膜厚 2 0 0〜 1 0 0 0 n mの第 1の導電層 1 2を形成し、 次 いで膜厚 4 0〜 1 0 0 n mの第 2の導電層 1 4を、 例えばスパッ夕法によって形 成する。 前記第 1の導電層 1 2は、 アルミニウムあるいはアルミニウムを主成分 とする合金、 例えばアルミニウム一ケィ素, アルミニウム—銅, アルミニウム— ケィ素—銅から構成される。 前記第 2の導 ¾層 1 4は、 チタン、 モリブデンおよ びタングステンなどの髙融点金屈、 あるいはこれらの金属の 金、 例えばチタン 一窒素, モリブデン一ケィ索, タングステン一ケィ素, チタン一タングステンな どから構成される。 前記第 2の導^層 1 4の膜厚は、 露光時の光の反射防止層お よびバリヤ層としての機能だけでなく、 スルーホール形成時に第 2の^電層がェ ツチングによって除去されて第 1の導電屑が露出しないためのマ一ジンを考慮し て設定されている。  (Α) First, an element isolation region 2 and an element formation region 100000 are formed on a semiconductor substrate 100 by a normal method, and further, these element isolation region 2 and an element formation region 100層 Form the first layer 8 Then, a through hole is formed at a predetermined position of the insulating layer 8 of the first layer by an ordinary method. Then, a first conductive layer 12 having a thickness of 200 to 100 nm is formed on the first interlayer insulating layer 8, and then a second conductive layer 12 having a thickness of 40 to 100 nm is formed. The conductive layer 14 is formed, for example, by a sputtering method. The first conductive layer 12 is made of aluminum or an alloy containing aluminum as a main component, for example, aluminum-silicon, aluminum-copper, aluminum-silicon-copper. The second conductive layer 14 may be made of a melting point of gold, such as titanium, molybdenum and tungsten, or gold of these metals, for example, titanium-nitrogen, molybdenum-carbon, tungsten-silicon, titanium-tungsten. It is composed of The film thickness of the second conductive layer 14 is not only a function as an antireflection layer and a barrier layer for light during exposure, but also the second conductive layer is removed by etching when a through hole is formed. The setting is made in consideration of a margin for preventing the first conductive dust from being exposed.
これらの層を、 通常用いられるリソグラフィ技術および反応性イオンエツチン グ (R I E ) などのエッチング技術を用いてパ夕一ニングし、 所定のパターンを 有する第 1の導電屑 1 2および第 2の導¾屑 1 4からなる第 1の金属配線層 1 0 を形成する (図 1 ) 。  These layers are patterned using commonly used lithography technology and etching technology such as reactive ion etching (RIE) to form a first conductive dust 12 and a second conductive dust having a predetermined pattern. A first metal wiring layer 10 consisting of 14 is formed (FIG. 1).
前記素子形成領域 1 0 0 0は、 この例においては、 半導体基板 1 0 0上に形成 された例えば S i 0 2屑 ( L O C O S ) からなる素- f-分離領域 2によって区画され た領域に形成され、 前記基板 1 0 0内に形成された、 例えばソース/ドレイン領 域を構成する不純物拡散屑 4、 および基板 1 0 0上に絶縁膜を介して形成された ゲート電極 6を含んで構成される。 図 1においては、 素子の例として M O S素子 を校式的に示したが、 素子形成領域 1 0 0 0は、 電子回路を構成することができ るあらゆるタイプの半導体素子および素子分離構造を含むことができることはも ちろんである。 そして、 前記素子形成領域 1 0 0 0は、 各種デバイスに応じて通 常用いられる方法によって形成することができる。 The element forming region 1 0 0 0 In this example, element consists formed on the semiconductor substrate 1 0 0 on eg S i 0 2 chips (LOCOS) - formed in the regions partitioned by the f- isolation region 2 Formed in the substrate 100, for example, in a source / drain region. It is configured to include impurity diffusion debris 4 constituting a region and a gate electrode 6 formed on a substrate 100 via an insulating film. In FIG. 1, a MOS element is shown as an example of an element in a conventional manner, but the element formation region 100 includes all types of semiconductor elements and element isolation structures capable of forming an electronic circuit. There are many things you can do. The element formation region 100 can be formed by a method generally used depending on various devices.
( B ) 次いで、 第 1の金厲配線眉 1 0上に、 例えば S i 0 2 , P S Gなどからな る第 2の;', 間絶縁層 2 0を、 膜厚 2 0 0 ~ 4 0 0 n mで形成する。 次に、 第 2の ^間絶縁^ 2 0上に、 通常用いられる方法を用いて、 所定のパターンを有するレ ジス ト層 3 0を形成する。 このレジス ト屑 3 0をマスクとして、 たとえばフッ化 炭素系ガスを反応ガスとして用いて ドライエッチングにより前記第 2の層間絶縁 層 2 0にスル一ホール 4 0 aを形成する。 前記ドライエッチングに用いられるフ ヅ化炭素系ガスとしては、 C F " C H F 3、 C 2 F fなどを用いることができる。 さらに、 エッチングガスには、 ヘリウム、 アルゴン、 窒素などの不活性ガスが添 加されることが望ましい。 エッチングガスに不活性ガスを添加することにより、 第 2の導電層 1 4のェヅチングレートを小さくすることができ、 その結果、 この 第 2の導電 j' が除去されて第 1の導電屑が露出することを防止している。 前記ェ ツチングガスの組成は、 第 2の屑間絶縁層 2 0と第 2の導雷層 1 4との選択比な どによって好適な条件が選択されるが、 例えば、 フッ化炭素系ガスと不活性ガス との比率を体積比で 1 0 : 9 0〜 9◦ : 1 0に設^することが望ましい。 このェ 程によって、 第 1の金属配線層 1 0を構成する第 2の導電屑 1 4が残された状態 で、 第 2の層間絶緣屑 2 0にスルーホール 4 0 aが形成される (図 2 ) 。 (B) Next, a second inter-layer insulating layer 20 made of, for example, Si 02, PSG, etc., is formed on the first metal wiring brows 10 with a film thickness of 200 to 400 Formed in nm. Next, a resist layer 30 having a predetermined pattern is formed on the second inter-insulation layer 20 by using a commonly used method. Through holes 40a are formed in the second interlayer insulating layer 20 by dry etching using the resist waste 30 as a mask and using, for example, a fluorocarbon-based gas as a reaction gas. As the full Uz carbon-based gas used for dry etching, CF "CHF 3, C 2 F f , or the like can be used. Further, the etching gas, helium, argon, an inert gas such as nitrogen is added By adding an inert gas to the etching gas, the etching rate of the second conductive layer 14 can be reduced, and as a result, the second conductive j ′ is removed and the second conductive layer 14 is removed. Exposure of the conductive debris is prevented.The preferred composition of the etching gas depends on the selection ratio between the second insulating layer between debris 20 and the second lightning layer 14 and the like. For example, it is desirable to set the ratio between the fluorocarbon-based gas and the inert gas to be 10:90 to 9 °: 10 by volume ratio. Second conductive debris 14 that constitutes metal wiring layer 10 remains In this state, a through hole 40a is formed in the second interlayer insulating dust 20 (FIG. 2).
この工程においては、 アルミニゥムを主体とする第 1の導電層 1 2が高融点金 屈からなる第 2の導電^ 1 4によって ¾われているため、 第 2の 1¾間絶縁^ 2 0 のェツチング時にアルミニウムおよびレジス ト成分を含む堆積物を生成すること がない。  In this step, since the first conductive layer 12 mainly composed of aluminum is covered by the second conductive layer 14 made of high melting point metal, the second conductive layer 12 is etched during the second inter-layer insulating layer 20. Does not produce deposits containing aluminum and resist components.
( C ) 次いで、 レジスト層 3 0を、 例えば酸素プラズマによってアツシングし 除去する (図 3 ) 。 この工程においては、 前記工程 (B ) で前記堆積物が生成し ないことから、 後の第 2の金属配線層のパターニングを阻害する物贾が残存しな い状態で、 前記酸素プラズマによるアツシングによって前記レジス ト層 3 0をほ ぼ完全に除去することができる。 ただし、 この工程では、 必要に応じて、 有機溶 剤などの液体を用いたゥエツ トクリーニングを併用することもできる。 (C) Next, the resist layer 30 is removed by asshing with, for example, oxygen plasma (FIG. 3). In this step, since the deposit is not formed in the step (B), no substance that inhibits the subsequent patterning of the second metal wiring layer remains. In this state, the resist layer 30 can be almost completely removed by asking with the oxygen plasma. However, in this step, if necessary, jet cleaning using a liquid such as an organic solvent can also be used.
( D ) 次いで、 前記第 2の層間絶縁層 2 0をマスクとして、 例えば S F t:、 C F 4などのエッチングガスを川いて前記第 2の ¾層 1 4を除去することにより、 第 1の導 ¾層 1 2が露出した状態でスルーホール 4 0 bを形成する (図 4 ) 。 (D) Next, the second interlayer insulating layer 2 0 as a mask, for example, SF t:, by removing the second ¾ layer 1 4 an etching gas Te Kawai such CF 4, the first conductive (4) A through hole 40b is formed with the layer 12 exposed (FIG. 4).
( E ) 次いで、 膜 : 2 0〜 2 0 0 n mのバリヤ層 5 4を、 たとえばスパヅ夕法 で形成する。 バリヤ層 5 4を構成する金厲は特に限 されず、 通常使用されてい るチタン, チタン一窒素, チタン一タングステンなどの ^融点金属あるいはその 合^を用いることができる (図 5 ) 。  (E) Next, a barrier layer 54 having a film thickness of 20 to 200 nm is formed by, for example, a sputtering method. The metal constituting the barrier layer 54 is not particularly limited, and a commonly used melting point metal such as titanium, titanium-nitrogen, titanium-tungsten or a combination thereof can be used (FIG. 5).
( F ) 次いで、 アルミニウム、 あるいはアルミニウムを主成分とする合金から なる第 1の導電層 5 2を、 たとえばスパッタ法で形成する。 この第 1の導電屑 5 (F) Next, a first conductive layer 52 made of aluminum or an alloy containing aluminum as a main component is formed by, for example, a sputtering method. This first conductive waste 5
2は、 前記第 1の導電 i 1 2を構成する材料と同様のものを用いることができる。 さらに、 通常用いられるリソグラフィ技術およびエッチング技術によって、 バリ ャ層 5 4および第 1の導電屑 5 2のパターニングを行い、 第 2の金属配線層 5 0 を形成する。 前 Ώ工程 (E ) およびこの工程 (F ) によって、 スル一ホール 4 0 b内に、 バリヤ層 5 4および第 1の導電層 5 2からなるコンタク 卜導^部 5 6が 形成される (図 6 ) 。 For 2, a material similar to the material constituting the first conductive i 12 can be used. Further, the barrier layer 54 and the first conductive dust 52 are patterned by a commonly used lithography technique and etching technique to form a second metal wiring layer 50. By the above-mentioned step (E) and this step (F), a contact conducting portion 56 composed of a barrier layer 54 and a first conductive layer 52 is formed in the through hole 40b (see FIG. 6).
( G ) 次いで、 通常用いられる方法により、 S i 0 2などから構成されるパッシ ベーシヨン層 6 0が形成される (図 7 ) 。 (G) Next, a passivation layer 60 composed of SiO 2 or the like is formed by a commonly used method (FIG. 7).
以上の工程を含む本実施例の製造方法においては、 第 1の金属配線^ 1 0を構 成する第 2の 電層 1 4を残した状態でレジス ト屈 3 0を除去するため、 第 1の 導電層 1 2を構成するアルミニウムと、 エッチングガスおよびレジスト屑 3 0の 成分との反応を防止することができ、 その結果、 第 2の金属配線^ 5 0のパター ニングを阻害する反応生成物を形成することがない。 従って、 第 2の金属配線層 5 0においてショ一トゃ断線などのトラブルの ¾生を確:';^に回避することができ る。  In the manufacturing method of the present embodiment including the above-described steps, the first resistive layer 30 is removed while the second conductive layer 14 constituting the first metal wiring ^ 10 is removed. Of the conductive layer 12 and the components of the etching gas and the resist debris 30 can be prevented, and as a result, a reaction product that inhibits the patterning of the second metal wiring ^ 50 Is not formed. Therefore, it is possible to avoid the occurrence of troubles such as short-circuit disconnection in the second metal wiring layer 50 as follows:
また、 第 1の金属配線層 1 0の第 2の導電屑 1 4の膜厚を通常より大きい前記 範囲に設定すること、 および第 2の層間絶縁層 2 0のエッチングガスに不活性ガ スを加えることの少なくとも一方の手段、 好ましくは両者の手段を採用すること により、 スルーホール 4 0 aの深さの違いをクリアして、 すなわち最も深いスル —ホールの形成時に最も浅いスルーホールで第 2の導電層 1 4が残るように設定 することができる。 Further, the thickness of the second conductive dust 14 of the first metal wiring layer 10 is set to the above-mentioned range larger than usual, and an inert gas is added to the etching gas of the second interlayer insulating layer 20. By adopting at least one means of adding a hole, preferably both means, the difference in the depth of the through hole 40a can be cleared, that is, the deepest through hole can be formed at the shallowest through hole. It can be set so that the second conductive layer 14 remains.
さらに、 第 2の層間絶縁層 2 0および第 1の金属配線層 1 0の第 2の導電層 1 4のェツチングを異なる工程で行うことにより、 それそれのェツチング条件を ¾ 適化することができる。 .  Further, by performing the etching of the second interlayer insulating layer 20 and the second conductive layer 14 of the first metal wiring layer 10 in different steps, it is possible to optimize the respective etching conditions. . .
また、 図 7に示す半導体装置においては、 第 1の金屈配線^ 1 0と第 2の金 配線層 5 0とを電気的に接続するコンタク 卜導電部 5 6は、 第 1の金; 配線層 1 0を構成する比較的電気抵抗の i¾い第 2の導電層 1 4の部分を除去して形成され ているため、 コンタク ト導電部 5 6と第 1の金屈配線屑 1 0との接触抵抗を小さ くすることができる。  Further, in the semiconductor device shown in FIG. 7, the contact conductive portion 56 for electrically connecting the first gold wiring 10 and the second gold wiring layer 50 is formed of the first gold wiring. It is formed by removing the portion of the second conductive layer 14 having relatively high electric resistance, which constitutes the layer 10, so that the contact conductive portion 56 and the first gold bent wiring dust 10 are not formed. Contact resistance can be reduced.
(第 2実施例)  (Second embodiment)
本実施例においては、 第 1の金属配線層 1 0と第 2の金属配線層 5 0とを接続 するためのコンタク ト領域で、 第 1の金属配線層 1 0の第 2の導電層 1 4を除去 しない点で、 前記第 1実施例と異なっている。 以下に、 本実施例の製造工程を fi 体的に説明する。  In the present embodiment, in the contact region for connecting the first metal wiring layer 10 and the second metal wiring layer 50, the second conductive layer 14 of the first metal wiring layer 10 is formed. This is different from the first embodiment in that the first embodiment is not removed. Hereinafter, the manufacturing process of the present embodiment will be described physically.
素子形成領域 1 0 0 0の上に第 1の金属配線層 1 0を形成する工程 ( A ) 、 Forming a first metal wiring layer 10 on the element formation region 100 0 (A),
2の層^絶縁 2 0およびレジス 卜^ 3 0を形成し、 前記^間絶縁層 2 0に所定 のパターンでスル一ホール 4 0 aを形成する工程 (B ) 、 および前記 2の層問 絶縁層 2 0のマスクに用いれられたレジスト層 3 0を除去する工程 (C ) につい ては、 前記第 1実施例と同様であるため、 その図示および詳細な説明を省略する ( そして、 前記第 1実施例では、 工程 (D ) において、 第 2の屑間絶緣層 2 0を マスクとして第 1の金属配線層 1 0を構成する第 2の導電^ 1 4をエッチングし、 第 1の導電層 1 2が露出する状態でスルーホール 4 0 bを形成したが、 本実施例 では、 図 4に示す工程 (D ) を実施しない。 つまり前記工程 (A ) 〜 ( C ) に引 き続き、 以下の工程 (H ) 、 ( I ) および (J ) を行う。 A step (B) of forming a two-layer insulating layer 20 and a resist layer 30 and forming a through hole 40 a in a predetermined pattern in the inter-layer insulating layer 20 (B); Since the step (C) of removing the resist layer 30 used as the mask of the layer 20 is the same as in the first embodiment, its illustration and detailed description are omitted ( and the first In the embodiment, in the step (D), the second conductive layer 14 constituting the first metal wiring layer 10 is etched using the second insulating layer 20 as a mask, and the first conductive layer 1 Although the through hole 40b was formed in a state where 2 was exposed, in this embodiment, the step (D) shown in Fig. 4 was not performed, that is, following the steps (A) to (C), Steps (H), (I) and (J) are performed.
( H ) この工程は、 前記第 1実施例の工程 (E ) に相当し、 第 2の層間絶縁層 2 0の上にバリヤ層 5 4が形成される (図 8 ) 。 バリヤ層 5 4の製造条件や材質 は前記第 1のバリヤ層 5 4と同様である。 (H) This step corresponds to the step (E) of the first embodiment, and a barrier layer 54 is formed on the second interlayer insulating layer 20 (FIG. 8). Manufacturing conditions and materials of barrier layer 54 Is the same as that of the first barrier layer 54.
( I ) この工程は、 前記第 1実施例の工程 (F ) に相当し、 バリヤ層 5 4の上 にアルミニウムを主体とする第 1の導電層 5 2が形成される。 第 2の導電層の形 成方法および材 は前記第 1実施例の第 1の導電層 5 2と同様である。  (I) This step corresponds to the step (F) of the first embodiment, and a first conductive layer 52 mainly composed of aluminum is formed on the barrier layer 54. The method and material for forming the second conductive layer are the same as those of the first conductive layer 52 of the first embodiment.
そして、 前記バリャ屑 5 4および前記第 1の導電屑 5 2のパターニングを行い、 第 2の金属配線層 5 0を形成する (図 9 ) 。 そして、 前記工程 (H ) およびこの 工程 ( I ) によって、 スルーホール 4 2内に、 バリヤ層 5 4および第 1の導電 t 5 2からなるコンタク ト導電部 5 6が形成される。  Then, the barrier waste 54 and the first conductive waste 52 are patterned to form a second metal wiring layer 50 (FIG. 9). Then, by the step (H) and the step (I), a contact conductive portion 56 composed of the barrier layer 54 and the first conductive t 52 is formed in the through hole 42.
( J ) この丁.程は、 _ 記第 1実施例の工程 ( G ) に相当し、 第 2の金属配線層 5 0の表面にパッシべ一シヨン層 6 0が形成される (図 1 0 ) 。  (J) This step corresponds to the step (G) of the first embodiment, in which a passivation layer 60 is formed on the surface of the second metal wiring layer 50 (FIG. 10). ).
以上のプロセスによって製造された、 2層の^屈配線層 1 0 , 5 0を有する半 導休装^は、 第 2の金属配線^ 5 0のコンタク ト導電部 5 6が、 5 1の金属配線 M 1 0の第 2の導電屑 1 4を介して第 1の導電^ 1 2と接続されている。 この実 施例においては、 第 1の金属配線層 1 0と第 2の金属配線層 5 0との接触抵抗は 前記第 1実施例の半導体装置に比べて大きくなるものの、 前記第 1実施例の工程 ( D ) を有さないので、 製造工程数を減らすことができ、 製^プロセスを簡略化 することができる。 そして、 前記第 1実施例と同様に、 2の金属配線層 5 0の パターニングに悪影^を与える反応生成物を生成することがないため、 信頼性が 高くかつ歩留まりのよい半導体装置を製造することができる。  The semiconductor rest having two layers of bending wiring layers 10 and 50 manufactured by the above-described process is the contact conductive part 56 of the second metal wiring 50 and the metallization of 51. The wiring M 10 is connected to the first conductive layer 12 via the second conductive dust 14. In this embodiment, although the contact resistance between the first metal wiring layer 10 and the second metal wiring layer 50 is larger than that of the semiconductor device of the first embodiment, Since there is no step (D), the number of manufacturing steps can be reduced, and the manufacturing process can be simplified. As in the first embodiment, since a reaction product that adversely affects the patterning of the second metal wiring layer 50 is not generated, a semiconductor device with high reliability and high yield is manufactured. be able to.
以上述べた第 1実施例および第 2実施例においては、 金属配線周が 2屑の半導 体装置およびその製造方法について述べたが、 本発明は 3屑以上の金属配線屑を 有する半導体装置についても同様に適用することができる。  In the first embodiment and the second embodiment described above, the semiconductor device having two metal wiring circumferences and the manufacturing method thereof have been described. However, the present invention relates to a semiconductor device having three or more metal wiring wastes. Can be similarly applied.
また、 本発明は、 前, 実施例に限定されず、 本 ^ HJjの要旨の範 |#|で種々の態様 をとりうる。 たとえば、 本発明は、 第 1の金属配線層の最下屑にバリヤ層を有す るすること、 最上層の金屈配線^を構成する^ 1の導電層上に反射防止用の^ 2 の導電屑を有すること、 などの構成を採用できる。  In addition, the present invention is not limited to the above-described embodiments, and can take various forms within the scope of the gist of the present invention. For example, the present invention provides a method in which a barrier layer is provided in the lowermost chip of the first metal wiring layer, and a reflection preventing anti-reflection layer is formed on a conductive layer of the uppermost gold wiring layer. It is possible to adopt a configuration such as having conductive waste.

Claims

till till
1. 金屈配線層が 2屑以上含まれる半導体装置の製造方法であって、 以下の工程 (a) 〜 (d) を含む半導体装置の製造方法。 1. A method of manufacturing a semiconductor device including two or more gold wiring layers, the method including the following steps (a) to (d).
(a) 少なく ともアルミニウムを主成分とする第 1の導電屑、 およびこの第 1 の導 ¾ί屑より 融点の金屈を含む第 2の導電層を有する第 1の金属配線屑を形成 する工程、  (a) forming at least a first conductive dust mainly composed of aluminum and a first metal wiring dust having a second conductive layer including a gold melting point having a melting point higher than that of the first conductive dust;
 Request
(b) 前 第 1の金厲配線層の上に、 電気的絶縁性を有する絶縁層を形成し、 この絶縁層の上に所定パターンののレジス ト層を形成し、 このレジス ト屑をマスク として前記絶鉍屑のェツチングを行うことにより、 前記第 2の導電層の少なくと も一部を残した状態で前記絶縁屑のパター囲ニングを行い、 スルーホールを有する 間絶縁層を形成する工程、  (b) An insulating layer having electrical insulation is formed on the first metal wiring layer, a resist layer having a predetermined pattern is formed on the insulating layer, and the resist dust is masked. Forming the insulating layer while having at least a part of the second conductive layer left by patterning the insulating waste by etching the insulating waste. ,
( c ) 前記レジス 卜 !を除去する工程、 および  (c) removing the resist!
(d) 前記 H¾3絶縁層の上に、 少なく ともアルミニウムを主成分とする第 1の 導電層を含む第 2の金属配線層を形成し、 かつ、 前記スルーホールに導電部を形 成して前記第 1の金属配線層と前記第 2の金屈配線屑とを電気的に接続するェ稃 t (d) forming a second metal wiring layer including at least a first conductive layer containing aluminum as a main component on the H¾3 insulating layer, and forming a conductive portion in the through hole; E to electrically connect the second metal屈配line scrap the first metal wiring layer稃t
2. 詰求項 1において、 2. In claim 1,
前記工程 ( c) に引き続いて、 前記屑間絶縁層をマスクとしてエッチングを行 い、 前記スルーホールに対応する領域の前記第 2の導電層を除去する工程 (e) を有し、 その後前記工程 (d) を行う半導体装置の製造方法。  A step of removing the second conductive layer in a region corresponding to the through hole by performing etching using the inter-dust insulating layer as a mask following the step (c); (d) a method of manufacturing a semiconductor device.
3. 請求項 1または 2において、 3. In Claim 1 or 2,
前記工程 ( c) で、 前記レジスト^は酸素プラズマを含む気相中において除去 される半導体装置の製造方法。  In the step (c), a method for manufacturing a semiconductor device, wherein the resist is removed in a gas phase containing oxygen plasma.
4. 誥求項 1ないし 3のいずれかにおいて、 4. In any of items 1 to 3,
前記工程 (b) で、 前記エッチングは反応性ガスおよび不活性ガスが含まれた ^相中で行われる半導体装置の製造方法。 In the method (b), the etching is performed in a phase containing a reactive gas and an inert gas.
5 . S求項 1ないし 4のいずれかにおいて、 5. In any of the S-claims 1 to 4,
前記第 2の導電層は、 その膜厚が 2 0〜2 0 0 n mである半導体装置の製造方 法。  A method for manufacturing a semiconductor device, wherein the second conductive layer has a thickness of 20 to 200 nm.
6 . 金属配線層が 2層以上含まれる半導体装置であって、 6. A semiconductor device including two or more metal wiring layers,
アルミニウムを主成分とする第 1の導電層、 およびこの第 1の導電層より高融 点の金属を含む第 2の導電^を有する第 1の金属配線層、  A first conductive layer mainly containing aluminum, a first metal wiring layer having a second conductive layer containing a metal having a higher melting point than the first conductive layer,
前記第 1の金属配線層より ヒ位に位置し、 少なく ともアルミニウムを主成分と する第 1の導電層を冇する第 2の金属配線屑、  A second metal wiring debris that is located at a higher position than the first metal wiring layer and that forms at least a first conductive layer containing aluminum as a main component;
前記第 1の余属配線層と ϊ¼記第 2の金屈配線層との間に存在し、 両者を電気的 に絶緣し、 所定位置にスルーホールを有する屑問絶縁^、 および  A dust insulating layer which is present between the first extra wiring layer and the second gold wiring layer, electrically insulates both, and has a through hole at a predetermined position; and
前記屄間絶縁層のスルーホール内に形成され、 前記第 1の金属配線屑と前記第 2の金属配線層とを電気的に接統するコンタク ト導電部を含み、  A contact conductive portion formed in a through hole of the inter-layer insulating layer, and electrically connecting the first metal wiring dust and the second metal wiring layer;
—Γή記コンタク ト導電部は、 前記第 1の金属配線層との接続において、 前記第 2 の導電層を介して前記第 1の導電層に ¾ 的に接続されている半導体装置。  —The semiconductor device wherein the contact conductive portion is typically connected to the first conductive layer via the second conductive layer in connection with the first metal wiring layer.
7 . 請求項 6において、 7. In Claim 6,
前記第 2の導電層は、 その膜厚が 2 0〜2 0 0 n mである半導体装置。  The semiconductor device, wherein the second conductive layer has a thickness of 20 to 200 nm.
PCT/JP1996/003685 1995-12-18 1996-12-18 Semiconductor device containing two or more metallic wiring layers and method for manufacturing the same WO1997022995A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/329357 1995-12-18
JP32935795 1995-12-18

Publications (1)

Publication Number Publication Date
WO1997022995A1 true WO1997022995A1 (en) 1997-06-26

Family

ID=18220561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003685 WO1997022995A1 (en) 1995-12-18 1996-12-18 Semiconductor device containing two or more metallic wiring layers and method for manufacturing the same

Country Status (3)

Country Link
KR (1) KR19980702211A (en)
TW (1) TW367605B (en)
WO (1) WO1997022995A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7084463B2 (en) 2001-03-13 2006-08-01 Sanyo Electric Co., Ltd. Semiconductor device and manufacturing method thereof
JP2006339633A (en) * 2005-06-01 2006-12-14 Hynix Semiconductor Inc Manufacturing method of semiconductor device
JP2008306207A (en) * 2008-08-06 2008-12-18 Renesas Technology Corp Semiconductor device and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243431A (en) * 1988-01-20 1989-09-28 Philips Gloeilampenfab:Nv Method of forming electrical contact in lower structure constituting part of electronic device
JPH01255249A (en) * 1988-04-04 1989-10-12 Nec Corp Semiconductor integrated circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243431A (en) * 1988-01-20 1989-09-28 Philips Gloeilampenfab:Nv Method of forming electrical contact in lower structure constituting part of electronic device
JPH01255249A (en) * 1988-04-04 1989-10-12 Nec Corp Semiconductor integrated circuit device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7084463B2 (en) 2001-03-13 2006-08-01 Sanyo Electric Co., Ltd. Semiconductor device and manufacturing method thereof
JP2006339633A (en) * 2005-06-01 2006-12-14 Hynix Semiconductor Inc Manufacturing method of semiconductor device
JP2008306207A (en) * 2008-08-06 2008-12-18 Renesas Technology Corp Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
TW367605B (en) 1999-08-21
KR19980702211A (en) 1998-07-15

Similar Documents

Publication Publication Date Title
CN1192430C (en) Semiconductor device and method for manufacturing the same
US6445073B1 (en) Damascene metallization process and structure
US7301216B2 (en) Fuse structure
US5985751A (en) Process for fabricating interconnection of semiconductor device
US6821896B1 (en) Method to eliminate via poison effect
JPS62290153A (en) Manufacture of multilevel metallic integrated circuit
JPH065715A (en) Formation of wiring layer
WO1997022995A1 (en) Semiconductor device containing two or more metallic wiring layers and method for manufacturing the same
JP3014887B2 (en) Semiconductor device and manufacturing method thereof
KR100295141B1 (en) Metal wiring layer formation method of semiconductor device
JP2557281B2 (en) Semiconductor device
JP2653672B2 (en) Method of forming scalable fuse link device
JP2659285B2 (en) Method for manufacturing semiconductor device
US6372555B1 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP3267281B2 (en) Method for manufacturing semiconductor device
JPH10173051A (en) Wiring forming method
JPH06132404A (en) Multi-layer wiring method for semiconductors
KR100458588B1 (en) Fabrication method of semiconductor device
JPH08181213A (en) Manufacture of semiconductor device
JPH10223753A (en) Method of manufacturing semiconductor integrated circuit device and semiconductor integrated circuit device
JPH056941A (en) Method of forming multilayer wiring of semiconductor device
JPH10242272A (en) Method of forming interconnection structure in semiconductor device
JPH1056022A (en) Semiconductor device and manufacture thereof
JP2000323478A (en) Wiring structure of semiconductor device
KR20050066838A (en) Method for fabricating the via contact in semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

WWE Wipo information: entry into national phase

Ref document number: 1019970705606

Country of ref document: KR

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 894990

Date of ref document: 19971204

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1019970705606

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019970705606

Country of ref document: KR