WO1997012216A1 - Vacuum absolute pressure measurement with resonator to excess temperature - Google Patents
Vacuum absolute pressure measurement with resonator to excess temperature Download PDFInfo
- Publication number
- WO1997012216A1 WO1997012216A1 PCT/EP1996/004134 EP9604134W WO9712216A1 WO 1997012216 A1 WO1997012216 A1 WO 1997012216A1 EP 9604134 W EP9604134 W EP 9604134W WO 9712216 A1 WO9712216 A1 WO 9712216A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- absolute pressure
- resonator
- resonance frequency
- pressure
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0001—Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
- G01L9/0008—Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
- G01L9/0019—Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a semiconductive element
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H13/00—Measuring resonant frequency
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L21/00—Vacuum gauges
- G01L21/16—Vacuum gauges by measuring variation of frictional resistance of gases
- G01L21/22—Vacuum gauges by measuring variation of frictional resistance of gases using resonance effects of a vibrating body; Vacuum gauges of the Klumb type
Definitions
- the invention relates to a method for measuring absolute pressure in a gas-diluted room according to the preamble of claim 1.
- Vacuum pressure measurements in a range from ⁇ 10 ⁇ 1 Pa to 10 5 Pa are usually carried out with commercially available, according to the Pirani principle, heat conduction vacuum gauges or with capacity gauges.
- the former have the disadvantage that the pressure cannot be specified regardless of the type of gas and that there is only a slight sensitivity, particularly in the range> 10 3 Pa.
- the measurement inaccuracy is around 50% there, in the remaining range around 20%.
- the capacitance gauges with an error of 0.5% on average are considerably more precise and measure regardless of the type of gas, but these advantages are offset by high manufacturing costs and sensitivity to vibration.
- Resonant systems such as quartz oscillators or mechanical beam or tongue resonators, show a characteristic dependence of their resonance frequency on the ambient pressure, which Tedoch is hardly suitable for pressure measurement in the range ⁇ 10 3 Pa. If the oscillation amplitude is additionally measured for beam resonators and integrated into the measurement signal, the result is only a shift in the lower detection limit of the pressure by approximately two powers of ten to 10 1 Pa. When using a micromechanically manufactured tongue or paddle resonator, there are usable amplitude changes down to 10 -1 Pa.
- the invention provides a method of the type mentioned is to be so improved that it can reduce the pressure in the range of ⁇ 1 0 -1 Pa to 10 5 Pa with high sensitivity marge ⁇ basis regardless of the type of gas or gas composition sen erfas ⁇ .
- the basic idea of the invention is to determine the resonance frequency and, at the same time, the mechanical vibration amplitude of a mechanical resonator, for example a bar resonator, tongue resonator or the like, which is at a certain excess temperature with respect to the environment, depending on the absolute pressure and the mean mass to measure the number of gas present in the measuring space, in order to first determine a characteristic field for absolute pressure p a , average mass number m (type of gas), vibration amplitude A and resonance frequency f, which can be described mathematically or graphically.
- a mechanical resonator for example a bar resonator, tongue resonator or the like
- a gas-independent, unambiguous assignment to the prevailing absolute pressure is thus obtained, so that subsequently measured values of the vibration amplitude A and the resonance frequency f can be easily assigned to the prevailing absolute pressure with the aid of the characteristic field determined once.
- the simultaneous detection of the oscillation amplitude and resonance frequency has the additional advantage that in the pressure range from> 10 2 Pa to normal pressure the measurement effect at the resonance frequency, which decreases due to the decreasing temperature dependence of the thermal conductivity of the gas surrounding the resonator, is compensated by an increasing sensitivity in the amplitude measurement becomes.
- a micromechanical beam oscillator is used as the sensor element.
- the resonance frequency of such a beam oscillator initially changes only in connection with increasing damping of the resonator (the relationship between resonance frequency and damping in the case of a forced oscillation is known analytically). Up to this point, the resonance frequency and the damping and thus the amplitude are also dependent quantities in this case too. This means that it is not possible to determine two variables by measuring only one independent variable. It is only through the trick relating to the invention that the beam oscillator is additionally heated up that the frequency and the amplitude become independent variables, and thus make it possible to determine two variables (pressure and mean molar mass) from two measured variables (frequency and amplitude of the oscillator). . The heating of the bar results in a frequency dependence on the gas pressure, which is due to the thermal conductivity of the gas.
- the resonance frequency of the beam oscillator depends very much on the voltage state of the beam. If the bar is heated with a certain heating power, a certain pretension is set due to the corresponding thermal expansion.
- the pressure-dependent heat conduction of the gas especially in the pressure range from 10 ⁇ 1 to 10 ⁇ PA, results in a change in the overtemperature and thus a change in the pretension. The effect directly affects a change in the resonance frequency of the bar.
- the U nterrace relate to advantageous embodiments of the invention.
- claim 4 is directed to the use of a known Si resonator with strain gauge full bridge circuit, which has proven to be particularly expedient for carrying out the method according to the invention.
- FIG. 1 shows a top view of a resonator known per se
- FIG. 2 shows a section along the line II-II in FIG. 1,
- FIG. 3 shows a section along the line III-III in FIG. 1,
- FIG. 4 shows a first embodiment of a measuring cell with a base for installation in the measuring cell
- FIG. 5 shows a sensor array constructed using the resonator according to FIG. 1 for installation in the measuring cell according to FIG. 4,
- FIG. 6 shows another embodiment of a measuring cell with a built-in sensor array and base
- FIG. 7 shows a top view of the base shown in FIG. 6,
- FIG. 8 shows a graphical representation of the change in resonance frequency measured with the measuring cell according to FIGS. 1 to 7 as a function of the absolute pressure
- Figure 9 is a graphical representation of the amplitude change as a function of absolute pressure
- FIG. 10 shows the characteristic field determined by plotting the change in resonance frequency against the change in amplitude with absolute pressure p and m as parameters.
- FIGS. 1 to 3 The known mechanical resonator shown in FIGS. 1 to 3 is in H. Bartuch et al., "Resonant silicon sensors with electrothermal excitation and DM S in metal thin film technology", 6th international trade fair with congress for sensor technology & system technology, Nuremberg, conference proceedings 2 (1993), pp. 17-24.
- This resonator, generally designated 10 in FIGS. 1 to 3 has, for example, a 50 ⁇ m thick and 1 mm wide silicon beam 12 as a bending oscillator, which is surrounded by a, for example, approximately 380 ⁇ m thick and thus comparatively rigid silicon frame 14. So that the beam 12 can swing freely, V-shaped longitudinal slots 16 are provided on both sides between the beam 12 and the frame 14.
- the micro-heating resistors 18 necessary for thermal excitation are placed, while in the middle of the bar and in the vicinity of the bar ends, the strain-gauge resistors 20 are arranged in a suitable full-bridge circuit in such a way that the greatest possible bridge detuning is achieved when the excitation occurs.
- Connection pads are attached to the frame for power supply. Since this Si resonator 10 and its mode of operation are known to the person skilled in the art, they need not be explained in more detail here.
- the strain gauge resistors 20 be used as heating elements for generating a sufficiently high excess temperature (eg 10 K) of the resonator beam 12, and that on the other hand the V-shaped slots 1 6 , which separate the beam 12 from the frame 14, have a width of the order of magnitude have an average free path length of the gas molecules, ie a few ⁇ m to a few 10 ⁇ m.
- a number of resonators 10 is combined according to FIG. 5 or FIG. 6 into a so-called sensor array 28, which can be installed in the measuring cell 24 together with a base 32 holding the electrical feedthroughs 30.
- Figures 4 and 5 on the one hand and Figures 6 and 7 on the other hand show two possible embodiments of the measuring cell 24 and 26 with internals.
- the one-off determination of the Afp -m characteristic field typical for a specific design of resonator and measuring cell is now carried out by flange-mounting the measuring cell 24 or 26 to a recipient which can be filled with different types of gas and which must be equipped with a measuring facility for absolute measurement.
- the change in the resonance frequency (Fig. 8) or amplitude change (Fig. 9) as a function of pressure is shown in FIG. 10.
- the absolute pressure to be measured can be determined as an intersection with an isobar at any time in an unknown gas or gas mixture by measuring the current f, A value pair with a measuring element 24 or 26 corresponding to the characteristic field.
- measurements in the range> 10 1 Pa give an indication of the average mass number m of the respective gas or gas mixture.
- the measuring accuracy of the absolute pressure p a and the average mass number m depends exclusively on the graphical procedure decisively on the number of gas types or gas mixtures included in the initial measurements.
- suitable interpolation methods eg Tschbyschew approximation
- the parameterization distance for p a and m can be kept practically arbitrarily small, so that the accuracy of the values to be determined only depends on the error of the approximation coefficients. This determination can be carried out in a manner familiar to a person skilled in the art with the aid of suitable follow-up electronics.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Pressure in a range between less than 10?-1 to 105¿ Pa can be determined with a high degree of sensitivity and largely independently of the gas type or composition. A silicon beam resonator (12) of 50 micron in thickness, 1 mm in width and 10 mm in length is stimulated by thermal microresistances (18) and heated via a strain gauge (20) to 10 °C excess temperature and measured. From the frequency increase and amplitude increase, an absolute pressure is obtained in a mass number characteristics family (m1, m2, m3). In addition, in a range above 10 Pa, an indication of the mean mass number (m) of the gas or gas mixture under investigation can also be obtained.
Description
VAKUUMABSOLUTDRUCKMESSUNG MIT RESONATOR AUF ÜBERTEMPERATUR VACUUM ABSOLUTE PRESSURE MEASUREMENT WITH RESONATOR TO OVER TEMPERATURE
Die Erfindung betrifft ein Verfahren zur Absolutdruckmessung in einem gasverdünnten Raum nach dem Oberbegriff des An¬ spruchs 1.The invention relates to a method for measuring absolute pressure in a gas-diluted room according to the preamble of claim 1.
Vakuumdruckmessungen in einem Bereich von <10~1Pa bis 105Pa werden in der Regel mit kommerziell erhältlichen, nach dem Piraniprinzip arbeitenden Wärroeleitungs-Vakuummetern oder mit Kapazitätsmanometern durchgeführt. Erstere haben den Nachteil, daß die Druckangabe nicht gasartenunabhangig erfol¬ gen kann und insbesondere im Bereich >103Pa nur noch eine geringe Empfindlichkeit vorliegt. Die Messungenauigkeit liegt dort bei ca. 50%, im übrigen Bereich um 20%. Die Kapa¬ zitätsmanometer mit im Mittel 0,5% Fehler sind zwar erheblich genauer und messen gasartenunabhangig, jedoch stehen diesen Vorteilen hohe Fertigungskosten und Empfindlichkeit gegen Vibration gegenüber.Vacuum pressure measurements in a range from <10 ~ 1 Pa to 10 5 Pa are usually carried out with commercially available, according to the Pirani principle, heat conduction vacuum gauges or with capacity gauges. The former have the disadvantage that the pressure cannot be specified regardless of the type of gas and that there is only a slight sensitivity, particularly in the range> 10 3 Pa. The measurement inaccuracy is around 50% there, in the remaining range around 20%. The capacitance gauges with an error of 0.5% on average are considerably more precise and measure regardless of the type of gas, but these advantages are offset by high manufacturing costs and sensitivity to vibration.
Verschiedentlich sind Versuche unternommen worden, den Meßbe¬ reich für das thermische Vakuummeßprinzip zu erweitern und
die Empfindlichkeit zu steigern. So wurden dünne Folien aus gut wärmeleitenden Materialien (Halbleiter, Metalle) mit Widerstandsmäandern versehen, die sowohl zum Aufheizen als auch zum Detektieren der Folientemperatur dienen. Dabei wurden, je nach Größe der beheizten Flächen, vor allen in unteren Druckbereichen bis ca. 5-10 JPa hohe Empfindlich¬ keiten erreicht. Für Drücke >103Pa wurde die Empfindlich¬ keit aufgrund vorherrschender druckunabhängiger Konvektion als bestimmendem Wärmetransportmechanismus sehr schnell unakzeptabel niedrig. Eine wesentliche Verbesserung kann in diesem Druckbereich dadurch erreicht werden, daß über die beheizten Flächen in einem der mittleren freien Weglänge der Gasmoleküle angepaßten Abstand (ca. 30μm) eine zusätzliche Warmesenke plaziert wird. In diesem Gebiet erfolgt dann der Wärmetransport auch bei relativ hohem Druck durch druckabhän¬ gige Wärmeleitung, so daß die Temperaturänderung z.B. über Thermopiles gemessen werden kann.Various attempts have been made to expand the measuring range for the thermal vacuum measuring principle and to increase sensitivity. For example, thin foils made of good heat-conducting materials (semiconductors, metals) were provided with resistance meanders, which serve both to heat up and to detect the foil temperature. Depending on the size of the heated surfaces, high sensitivities of up to approx. 5-10 J Pa were achieved, especially in the lower pressure ranges. For pressures> 10 3 Pa, the sensitivity very quickly became unacceptably low due to the prevailing pressure-independent convection as the determining heat transport mechanism. A significant improvement in this pressure range can be achieved by placing an additional heat sink over the heated surfaces at a distance (approx. 30 μm) adapted to the mean free path of the gas molecules. In this area, the heat is then transported even at relatively high pressure by pressure-dependent heat conduction, so that the change in temperature can be measured, for example, using thermopiles.
Resonante Systeme, wie Quarzoszillatoren oder mechanische Balken- bzw. Zungenresonatoren, zeigen eine charakteristische Abhängigkeit ihrer Resonanzfrequenz vom Umgebungsdruck, die Tedoch im Bereich <103Pa kaum zur Druckmessung geeignet ist. Wird bei Balkenresonatoren zusätzlich die Schwingungs¬ amplitude gemessen und in das Meßsignal integriert, so ergibt sich lediglich eine Verschiebung der unteren Nachweisgrenze des Drucks um ca. zwei Zehnerpotenzen auf 101Pa. Bei Verwendung eines mikromechanisch hergestellten Zungen- oder Paddelresonators ergeben sich nutzbare Amplitudenänderungen bis herab zu 10-1Pa.Resonant systems, such as quartz oscillators or mechanical beam or tongue resonators, show a characteristic dependence of their resonance frequency on the ambient pressure, which Tedoch is hardly suitable for pressure measurement in the range <10 3 Pa. If the oscillation amplitude is additionally measured for beam resonators and integrated into the measurement signal, the result is only a shift in the lower detection limit of the pressure by approximately two powers of ten to 10 1 Pa. When using a micromechanically manufactured tongue or paddle resonator, there are usable amplitude changes down to 10 -1 Pa.
Eine Detektion der im Meßraum befindlichen Gasart oder von Änderungen in der Gaszusammensetzung ist mit allen bekannten Vakuummeßverfahren nicht möglich.
Durch die Erfindung soll ein Verfahren der eingangs genannten Art so verbessert werden, daß es den Druck im Bereich von <10 -1Pa bis 105Pa mit hoher Empfindlichkeit weitge¬ hend unabhängig von der Gasart bzw. Gaszusammensetzung erfas¬ sen kann.A detection of the type of gas in the measuring room or of changes in the gas composition is not possible with all known vacuum measuring methods. The invention provides a method of the type mentioned is to be so improved that it can reduce the pressure in the range of <1 0 -1 Pa to 10 5 Pa with high sensitivity weitge¬ basis regardless of the type of gas or gas composition sen erfas¬.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.This object is achieved by the features of claim 1.
Der Grundgedanke der Erfindung besteht darin, die Resonanz¬ frequenz und gleichzeitig die mechanische Schwingungsamplitu¬ de eines sich gegenüber der Umgebung auf einer bestimmten Übertemperatur befindlichen mechanischen Resonators, z.B. eines Balkenresonators, Zungenresonators oder dergl., in Abhängigkeit vom Absolutdruck sowie von der mittleren Massen¬ zahl des im Meßraum vorhandenen Gases zu messen, um dadurch zunächst einmalig ein Kennlinienfeld für Absolutdruck pa, mittlere Massenzahl m (Gasart) , Schwingungsamplitude A und Resonanzfrequenz f zu ermitteln, welches mathematisch be¬ schrieben oder graphisch dargestellt werden kann. Damit wird eine gasartenunabhängige, eindeutige Zuordnung zum jeweils herrschenden Absolutdruck erhalten, so daß anschließend aktuell gemessene Werte der Schwingungsamplitude A und der Resonsanzfrequenz f mit Hilfe des einmalig ermittelten Kenn¬ linienfeldes ohne weiteres dem jeweils herrschenden Absolut¬ druck zugeordnet werden können. Die gleichzeitige Erfassung von Schwingungsamplitude und Resonanzfrequenz hat darüber hinaus den Vorteil, daß im Druckbereich von >102 Pa bis Normaldruck der auf Grund nachlassender Temperaturabhängig¬ keit der Wärmeleitfähigkeit des den Rensonator umgebenden Gases nachlassende Meßeffekt bei der Resonanzfrequenz durch eine zunehmende Empfindlichkeit bei der Amplitudenmessen kompensiert wird.
Als Sensorelement wird ein mikromechanischer Balken¬ schwinger verwendet. Die Resonanzfrequenz eines solchen Balkenschwingers ändert sich zunächst nur in Verbindung mit zunehmender Dämpfung des Resonators (der Zusammen¬ hang zwischen Resonanzfrequenz und Dämpfung bei einer erzwungenen Schwingung ist analytisch bekannt) . Bis hierher sind also auch in diesem Fall die Resonanzfre¬ quenz und die Dämpfung und damit die Amplitude abhängige Größen. D.h. die Bestimmung zweier Größen durch Messung nur einer unabhängigen Meßgröße ist nicht möglich. Erst durch den die Erfindung betreffenden Trick, daß der Bal¬ kenschwinger zusätzlich aufgeheizt wird, werden die Frequenz und die Amplitude unabhängige Variablen, und ermöglichen damit die Bestimmung zweier Größen (Druck und mittlere molare Masse) aus zwei Meßgrößen (Frequenz und Amplitude des Schwingers) . Das Aufheizen des Balkens hat nämlich eine Abhängigkeit der Frequenz vom Gasdruck zur Folge, der auf die Wärmeleitfähigkeit des Gases zu¬ rückzuführen ist. Die Resonanzfrequenz des Balkenschwin¬ gers hängt sehr stark von dem Spannungszustand des Bal¬ kens ab. Wird der Balken mit einer bestimmten Heizlei¬ stung erhitzt, stellt sich eine bestimmte Vorspannung aufgrund der entsprechenden Wärmeausdehnung ein. Die druckabhängige Wärmeleitung des Gases speziell im Druck¬ bereich von 10~1 bis 10^ PA hat eine Änderung der Über¬ temperatur und damit eine Änderung der Vorspannung zur Folge. Der Effekt wirkt sich direkt in einer Änderung der Resonanzfrequenz des Balkens aus.
Die Unteransprüche betreffen vorteilhafte Ausgestaltungen der Erfindung. Insbesondere ist Anspruch 4 auf die Verwendung eines an sich bekannten Si-Resonators mit DMS-Vollbrücken- schaltung gerichtet, was sich für die Durchführung des erfin¬ dungsgemaßen Verfahrens als besonders zweckmäßig erwiesen hat.The basic idea of the invention is to determine the resonance frequency and, at the same time, the mechanical vibration amplitude of a mechanical resonator, for example a bar resonator, tongue resonator or the like, which is at a certain excess temperature with respect to the environment, depending on the absolute pressure and the mean mass to measure the number of gas present in the measuring space, in order to first determine a characteristic field for absolute pressure p a , average mass number m (type of gas), vibration amplitude A and resonance frequency f, which can be described mathematically or graphically. A gas-independent, unambiguous assignment to the prevailing absolute pressure is thus obtained, so that subsequently measured values of the vibration amplitude A and the resonance frequency f can be easily assigned to the prevailing absolute pressure with the aid of the characteristic field determined once. The simultaneous detection of the oscillation amplitude and resonance frequency has the additional advantage that in the pressure range from> 10 2 Pa to normal pressure the measurement effect at the resonance frequency, which decreases due to the decreasing temperature dependence of the thermal conductivity of the gas surrounding the resonator, is compensated by an increasing sensitivity in the amplitude measurement becomes. A micromechanical beam oscillator is used as the sensor element. The resonance frequency of such a beam oscillator initially changes only in connection with increasing damping of the resonator (the relationship between resonance frequency and damping in the case of a forced oscillation is known analytically). Up to this point, the resonance frequency and the damping and thus the amplitude are also dependent quantities in this case too. This means that it is not possible to determine two variables by measuring only one independent variable. It is only through the trick relating to the invention that the beam oscillator is additionally heated up that the frequency and the amplitude become independent variables, and thus make it possible to determine two variables (pressure and mean molar mass) from two measured variables (frequency and amplitude of the oscillator). . The heating of the bar results in a frequency dependence on the gas pressure, which is due to the thermal conductivity of the gas. The resonance frequency of the beam oscillator depends very much on the voltage state of the beam. If the bar is heated with a certain heating power, a certain pretension is set due to the corresponding thermal expansion. The pressure-dependent heat conduction of the gas, especially in the pressure range from 10 ~ 1 to 10 ^ PA, results in a change in the overtemperature and thus a change in the pretension. The effect directly affects a change in the resonance frequency of the bar. The U nteransprüche relate to advantageous embodiments of the invention. In particular, claim 4 is directed to the use of a known Si resonator with strain gauge full bridge circuit, which has proven to be particularly expedient for carrying out the method according to the invention.
Anhand der Figuren wird die Durchführung des erfindungsge¬ mäßen Verfahrens mit Hilfe eines derartigen an sich bekannten Resonators beispielhaft näher erläutert. Es zeigt: A Nhand the figures, the implementation of the method with the aid erfindungsge¬ MAESSEN is of such a per se known resonator explained in greater detail. It shows:
Figur 1 eine Aufsicht auf einen an sich bekannten Resonator,FIG. 1 shows a top view of a resonator known per se,
Figur 2 einen Schnitt längs der Linie II-II in Fig.l,FIG. 2 shows a section along the line II-II in FIG. 1,
Figur 3 einen Schnitt längs der Linie III-III in Fig.l,FIG. 3 shows a section along the line III-III in FIG. 1,
Figur 4 eine erste Ausführungsform einer Meßzelle mit Sockel zum Einbau in die Meßzelle,FIG. 4 shows a first embodiment of a measuring cell with a base for installation in the measuring cell,
Figur 5 ein unter Verwendung des Resonators gemäß Fig.l aufgebautes Sensorarray zum Einbau in die Meßzelle gemäß Fig.4,FIG. 5 shows a sensor array constructed using the resonator according to FIG. 1 for installation in the measuring cell according to FIG. 4,
Figur 6 eine andere Ausführungsform einer Meßzelle mit eingebautem Sensorarray und Sockel,FIG. 6 shows another embodiment of a measuring cell with a built-in sensor array and base,
Figur 7 eine Aufsicht auf den in Fig.6 gezeigten Sockel,FIG. 7 shows a top view of the base shown in FIG. 6,
Figur 8 eine graphische Darstellung der mit der Meßzelle gemäß den Figuren 1 bis 7 gemessenen Resonanzfre¬ quenzänderung als Funktion des Absolutdruckes,
Figur 9 eine graphische Darstellung der Amplitudenänderung als Funktion des Absolutdruckes undFIG. 8 shows a graphical representation of the change in resonance frequency measured with the measuring cell according to FIGS. 1 to 7 as a function of the absolute pressure, Figure 9 is a graphical representation of the amplitude change as a function of absolute pressure
Figur 10 das durch Auftragen von Resonanzfrequenzänderung gegen Amplitudenänderung mit Absolutdruck p und m als Parameter ermittelte Kennlinienfeld.FIG. 10 shows the characteristic field determined by plotting the change in resonance frequency against the change in amplitude with absolute pressure p and m as parameters.
Der in den Figuren 1 bis 3 dargestellte, an sich bekannte mechanische Resonator ist in H.Bartuch u.a., "Resonante Silizium-Sensoren mit elektrothermischer Anregung und DMS in Metalldünnfilmtechnologie", 6.Internationale Fachmesse mit Kongress für Sensorik & Systemtechnik, Nürnberg, Tagungsband 2 (1993), S.17-24, beschrieben. Dieser in den Figuren 1 bis 3 allgemein mit 10 bezeichnete Resonator weist beispielsweise einen 50 μm dicken und 1 mm breiten Siliziumbalken 12 als Biegeschwinger auf, der von einem beispielsweise etwa 380 μm dicken und damit vergleichsweise starren Silizium-Rahmen 14 umgeben ist. Damit der Balken 12 frei schwingen kann, sind zwischen dem Balken 12 und dem Rahmen 14 beidseitig V-förmige Längsschlitze 16 vorgesehen. An den Enden des Balkens 12 sind die zur thermischen Anregung notwendigen Mikroheizwiderstände 18 plaziert, während in Balkenmitte und in Nähe der Balkenen¬ den DMS-Widerstände 20 in geeigneter Vollbrückenschaltung derart angeordnet sind, daß eine möglichst große Brückenver¬ stimmung bei Anregung erreicht wird. Zur Stromzuführung sind auf dem Rahmen Anschlußpads angebracht. Da dieser Si-Resona- tor 10 und seine Wirkungsweise dem Fachmann bekannt ist, müssen sie hier nicht näher erläutert werden.The known mechanical resonator shown in FIGS. 1 to 3 is in H. Bartuch et al., "Resonant silicon sensors with electrothermal excitation and DM S in metal thin film technology", 6th international trade fair with congress for sensor technology & system technology, Nuremberg, conference proceedings 2 (1993), pp. 17-24. This resonator, generally designated 10 in FIGS. 1 to 3, has, for example, a 50 μm thick and 1 mm wide silicon beam 12 as a bending oscillator, which is surrounded by a, for example, approximately 380 μm thick and thus comparatively rigid silicon frame 14. So that the beam 12 can swing freely, V-shaped longitudinal slots 16 are provided on both sides between the beam 12 and the frame 14. At the ends of the bar 12, the micro-heating resistors 18 necessary for thermal excitation are placed, while in the middle of the bar and in the vicinity of the bar ends, the strain-gauge resistors 20 are arranged in a suitable full-bridge circuit in such a way that the greatest possible bridge detuning is achieved when the excitation occurs. Connection pads are attached to the frame for power supply. Since this Si resonator 10 and its mode of operation are known to the person skilled in the art, they need not be explained in more detail here.
Unter Nutzung des in den Figuren 1 bis 3 dargestellten mikro¬ mechanisch hergestellten Si-Resonators mit DMS-Vollbrücke zur Umwandlung der mechanischen Schwingungen in eine elektrische Signalspannung läßt sich ein geeignetes Meßelement gemäß den
Figuren 4 bis 7 dadurch erhalten, daß einerseits der Resona¬ tor 10 in eine rohrförmige Meßzelle 24 (Fig.4) bzw. 26 (Fig. 6) eingebaut und so betrieben wird, daß durch entsprechende elektronische Ansteuerung die DMS-Widerstände 20 gleichzeitig als Heizelemente zur Erzeugung einer ausreichend hohen Über¬ temperatur (z.b. 10 K) des Resonatorbalkens 12 genutzt wer¬ den, und daß andererseits die V-förmig ausgebildeten Schlitze 16, die den Balken 12 vom Rahmen 14 trennen, eine Breite in der Größenordnung der mittleren freien Weglänge der Gasmole¬ küle, d.h. bei einigen μm bis einigen 10 μm, besitzen. Da die DMS-Widerstände 20 zu einer Vollbrücke verschaltet sind und eine hinreichend große Brückenspeisespannung anliegt, läßt sich über die Brückendiagonale eine zur mechanischen Schwin¬ gung direkt proportionale alternierende elektrische Spannung abgreifen, die bezüglich Frequenz und Amplitude durch eine nicht dargestellte, dem im Besitz der Erfindungslehre stehen¬ den Fachmann jedoch ohne weiteres zur Verfügung stehende Nachfolgeelektronik ausgewertet werden kann. Eine Anzahl von Resonatoren 10 wird gemäß Fig.5 bzw. Fig.6 in ein sogenanntes Sensorarray 28 zusammengefaßt, das in die Meßzelle 24 zusam¬ men mit einem die elektrischen Durchführungen 30 haltenden Sockel 32 eingebaut werden kann.Using the micro-mechanically produced Si resonator with strain gauge full bridge shown in FIGS. 1 to 3 for converting the mechanical vibrations into an electrical signal voltage, a suitable measuring element according to the Figures 4 to 7 obtained by the fact that on the one hand the gate Resona¬ 1 0 24 (Fig.4) or 26 is installed (Fig. 6) and operated in a tubular measurement cell, that at the same time by appropriate electronic control of the strain gauge resistors 20 be used as heating elements for generating a sufficiently high excess temperature (eg 10 K) of the resonator beam 12, and that on the other hand the V-shaped slots 1 6 , which separate the beam 12 from the frame 14, have a width of the order of magnitude have an average free path length of the gas molecules, ie a few μm to a few 10 μm. Since the DM S resistors 20 are connected to form a full bridge and there is a sufficiently large bridge supply voltage, an alternating electrical voltage which is directly proportional to the mechanical oscillation can be tapped via the bridge diagonal, and the frequency and amplitude of an alternating electrical voltage which is not shown can be picked up by the owner However, the successor electronics available to the person skilled in the art can be evaluated according to the invention. A number of resonators 10 is combined according to FIG. 5 or FIG. 6 into a so-called sensor array 28, which can be installed in the measuring cell 24 together with a base 32 holding the electrical feedthroughs 30.
Die Figuren 4 und 5 einerseits sowie die Figuren 6 und 7 andererseits zeigen zwei mögliche Ausführungsformen der Meßzelle 24 bzw. 26 mit Einbauten.Figures 4 and 5 on the one hand and Figures 6 and 7 on the other hand show two possible embodiments of the measuring cell 24 and 26 with internals.
Die einmalige Ermittlung des für eine bestimmte konstruktive Resonator- und Meßzellenausführung typischen A-f-p -m- Kennlinienfeldes erfolgt nun dadurch, daß die Meßzelle 24 bzw. 26 an einen mit verschiedenen Gasarten befüllbaren Rezipienten angeflanscht wird, der mit einer Meßmöglichkeit zur Absolutmessung ausgestattet sein muß. Für verschiedene Gasarten wird die Änderung der Resonanzfrequenz (Fig.8)
bzw. Amplitudenänderung (Fig.9) als Funktion des Druckes aufgenommen. Durch Auftragen der ermittelten Frequenz- und Amplitudenwerte mit pa und m als Parameter ergibt sich das zu ermittelnde Kennlinienfeld, das in Fig.10 dargestellt ist.The one-off determination of the Afp -m characteristic field typical for a specific design of resonator and measuring cell is now carried out by flange-mounting the measuring cell 24 or 26 to a recipient which can be filled with different types of gas and which must be equipped with a measuring facility for absolute measurement. For different types of gas, the change in the resonance frequency (Fig. 8) or amplitude change (Fig. 9) as a function of pressure. Applying the determined frequency and amplitude values with p a and m as parameters results in the characteristic field to be determined, which is shown in FIG. 10.
Unter Nutzung des so ermittelten Kennlinienfeldes gemäß Fig.10 kann nun jederzeit in einem unbekannten Gas oder Gasgemisch durch Messung des aktuellen f,A-Wertpaares mit einem dem Kennlienienfeld entsprechenden Meßelement 24 bzw. 26 der zu messende Absolutdruck als Schnittpunkt mit einer Isobaren ermittelt werden. Zusätzlich erhält man bei Messun¬ gen im Bereich >101Pa eine Angabe über die mittlere Massenzahl m des jeweiligen Gases bzw. Gasgemisches.10, the absolute pressure to be measured can be determined as an intersection with an isobar at any time in an unknown gas or gas mixture by measuring the current f, A value pair with a measuring element 24 or 26 corresponding to the characteristic field. In addition, measurements in the range> 10 1 Pa give an indication of the average mass number m of the respective gas or gas mixture.
Die Messgenauigkeit des Absolutdrucks pa und der mittle¬ ren Massenzahl m hängt bei ausschließlich graphischer Vor¬ gehensweise entscheidend von der Anzahl der in die Ausgangs¬ messungen einbezogenen Gasarten bzw. Gasgemische ab. Bei Anwendung geeigneter Interpolationsverfahren (z.B. Tsche- byschew-Approximation) läßt sich der Parametrisierungsabstand für pa und m praktisch beliebig klein halten, so daß die Genauigkeit der zu ermittelnden Werte nur noch vom Fehler der Approximationskoeffizienten abhängt. Diese Ermittlung kann in einer für einen Fachmann auf diesem Gebiet geläufigen Weise mit Hilfe einer geeigneten Nachfolgeelektronik durchgeführt werden.
The measuring accuracy of the absolute pressure p a and the average mass number m depends exclusively on the graphical procedure decisively on the number of gas types or gas mixtures included in the initial measurements. When using suitable interpolation methods (eg Tschbyschew approximation), the parameterization distance for p a and m can be kept practically arbitrarily small, so that the accuracy of the values to be determined only depends on the error of the approximation coefficients. This determination can be carried out in a manner familiar to a person skilled in the art with the aid of suitable follow-up electronics.
Claims
1. Verfahren zur Absolutdruckmessung in einem gasverdünnten Raum, bei welchem die Resonanzfrequenz und die Schwin¬ gungsamplitude bei der Resonanzfrequenz eines mechani¬ schen Resonators gemessen und zur Bestimmung des Abso¬ lutdruckes ausgewertet werden, dadurch gekennzeichnet, daß der Resonator bezüglich der Temperatur des gasver¬ dünnten Raumes auf Übertemperatur gebracht wird, daß in Abhängigkeit von einem veränderlichen Absolutdruck (pa) als erstem Parameter und von der veränderlichen mittleren Massenzahl (m) von nacheinander im Raum be¬ findlichen Gasen als zweitem Parameter ein Kennlinien¬ feld der gemessenen Resonanzfrequenzen (f) und Schwin¬ gungsamplituden (A) ermittelt wird und daß daraus eine gasartunabhängige .Zuordnung von jeweils aktuell gemes¬ senen Werten der Resonanzfrequenz (f) und der Schwin¬ gungsamplitude (A) zum jeweils in dem gasverdünnten Raum herrschenden Absolutdruck (pa) ermittelt wird.1. A method for measuring absolute pressure in a gas-diluted room, in which the resonance frequency and the oscillation amplitude at the resonance frequency of a mechanical resonator are measured and evaluated to determine the absolute pressure, characterized in that the resonator is related to the temperature of the gas ver is brought to excess temperature in a thin room, so that, depending on a variable absolute pressure (p a ) as the first parameter and the variable mean mass number (m) of gases in the room one after the other as a second parameter, a characteristic field of the measured resonance frequencies (f ) and vibration amplitudes (A) is determined and that a gas-independent assignment of the currently measured values of the resonance frequency (f) and the vibration amplitude (A) to the absolute pressure (p a ) prevailing in the gas-diluted space is determined becomes.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Kennlinienfeld (A-f-pa~m) mathematisch beschrie¬ ben und/oder graphisch dargestellt wird.2. The method according to claim 1, characterized in that the characteristic field (Afp a ~ m) mathematically described and / or is graphically represented.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich¬ net, daß das Kennlinienfeld (A-f-pa~m) zur Ermitt¬ lung des jeweiligen aktuellen Absolutdruckes (pa) auf elektronischem Wege interpolatorisch ausgewerted wird. 3. The method according to claim 1 or 2, characterized gekennzeich¬ net that the characteristic field (Afp a ~ m) for the determination of the respective current absolute pressure (p a ) is interpolated electronically evaluated.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19535651.9 | 1995-09-26 | ||
DE1995135651 DE19535651A1 (en) | 1995-09-26 | 1995-09-26 | Method and device for measuring absolute pressure in gas-diluted rooms |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997012216A1 true WO1997012216A1 (en) | 1997-04-03 |
Family
ID=7773145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1996/004134 WO1997012216A1 (en) | 1995-09-26 | 1996-09-21 | Vacuum absolute pressure measurement with resonator to excess temperature |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE19535651A1 (en) |
WO (1) | WO1997012216A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012103942A1 (en) * | 2011-02-02 | 2012-08-09 | Epcos Ag | Sensor arrangement |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101384434B (en) * | 2005-04-21 | 2013-03-20 | 柯尼格及包尔公开股份有限公司 | Printing groups comprising at least two cooperating cylinders and radially movable bearing units |
EP2309241B1 (en) * | 2009-10-07 | 2016-11-30 | ams international AG | MEMS pressure sensor |
CN104568289A (en) * | 2013-10-23 | 2015-04-29 | 北京临近空间飞行器系统工程研究所 | Pressure generation method based on silicon resonant type sensor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0406460A1 (en) * | 1989-07-04 | 1991-01-09 | Leybold Aktiengesellschaft | Method for measuring pressure |
EP0347144B1 (en) * | 1988-06-13 | 1993-09-01 | Seiko Electronic Components Ltd. | Vacuum gauge |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4869097A (en) * | 1988-03-23 | 1989-09-26 | Rockwell International Corporation | Sonic gas pressure gauge |
DE4300893A1 (en) * | 1993-01-15 | 1994-07-21 | Bosch Gmbh Robert | Press. sensor for ultra-high vacuum pressure container |
-
1995
- 1995-09-26 DE DE1995135651 patent/DE19535651A1/en not_active Ceased
-
1996
- 1996-09-21 WO PCT/EP1996/004134 patent/WO1997012216A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0347144B1 (en) * | 1988-06-13 | 1993-09-01 | Seiko Electronic Components Ltd. | Vacuum gauge |
EP0406460A1 (en) * | 1989-07-04 | 1991-01-09 | Leybold Aktiengesellschaft | Method for measuring pressure |
Non-Patent Citations (1)
Title |
---|
H.BARTUCH ET AL.: "Resonante Silizium-Sensoren mit elektrothermischer Anregung und DMS in Metalldünnfilmtechnologie", TAGUNGSBAND 2, 6. INTERNATIONALE FACHMESSE MIT KONGRESS FÜR SENSORIK UND SYSTEMTECHNIK, 1993, NÜRNBERG (DE), pages 17 - 24, XP002020825 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012103942A1 (en) * | 2011-02-02 | 2012-08-09 | Epcos Ag | Sensor arrangement |
Also Published As
Publication number | Publication date |
---|---|
DE19535651A1 (en) | 1997-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69413069T2 (en) | COMPENSATION FOR SENSOR WITH RESONANT SWINGING INTEGRATED MICROBALK | |
DE2505461C2 (en) | Measuring transducer for determining a measured variable deforming a substrate | |
EP0261435B1 (en) | Mass flow meter according to the coriolis principle | |
DE69803147T2 (en) | Pirani, in which only the resistance sensor element can be heated | |
EP0379841B1 (en) | Gas pressure measuring apparatus | |
EP1922809B1 (en) | Device comprising a piezoacoustic resonator element and its use for outputting a signal depending on a resonant frequency | |
CH651667A5 (en) | QUARTZ RESONATOR POWER CONVERTER. | |
DE69411035T2 (en) | MEASURING THE QUANTITY OF GAS IN A CONTAINER | |
DE102014115566A1 (en) | Measuring device and method for determining a corrected mass flow and uses of the measuring device | |
DE2052356B2 (en) | Quartz resonator pressure transducer | |
DE2900382A1 (en) | VOLTAGE METER PRESSURE TRANSDUCER DEVICE | |
DE2119802A1 (en) | Densitometer and flow rate monitoring device and associated procedure | |
DE2805526A1 (en) | APPARATUS AND METHOD FOR HEIGHT MEASUREMENT | |
WO2015172974A1 (en) | Method for operating a measuring device and measuring device | |
DE102018101923A1 (en) | Method for detecting deposit formation in a measuring tube and measuring device for carrying out the method | |
AT394784B (en) | DEVICE FOR DETERMINING THE DENSITY OF LIQUIDS AND GAS FROM THE PERIOD OF A VIBRATOR FILLED WITH A PREPARATION | |
DE69018453T2 (en) | PIEZOELECTRIC DIFFERENTIAL PRESSURE SENSOR FOR A SWIRL FLOW METER. | |
DE69627970T2 (en) | Pressure sensor with rectangular layers and vertical transducer | |
DE1773491C3 (en) | Pressure sensitive device with an elastic membrane | |
EP0219642A2 (en) | Humidity compensation of an air pressure measuring device | |
WO1997012216A1 (en) | Vacuum absolute pressure measurement with resonator to excess temperature | |
DE69505383T2 (en) | USE OF A FLOW METER AS A MICROPHONE AND SYSTEM WITH SUCH A MICROPHONE | |
DE102016125243A1 (en) | Vibronic sensor with temperature compensation | |
US3448607A (en) | Strain gauge temperature compensation system | |
DE4444831A1 (en) | Pressure sensor for i.c. engine combustion pressure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |