[go: up one dir, main page]

WO1997004140A1 - Procedimiento hidrometalurgico para la recuperacion de cobre de materiales metalicos de caracter oxidado - Google Patents

Procedimiento hidrometalurgico para la recuperacion de cobre de materiales metalicos de caracter oxidado Download PDF

Info

Publication number
WO1997004140A1
WO1997004140A1 PCT/ES1996/000147 ES9600147W WO9704140A1 WO 1997004140 A1 WO1997004140 A1 WO 1997004140A1 ES 9600147 W ES9600147 W ES 9600147W WO 9704140 A1 WO9704140 A1 WO 9704140A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
leaching
solution
recovery
extraction
Prior art date
Application number
PCT/ES1996/000147
Other languages
English (en)
French (fr)
Inventor
Francisco José ALGUACIL PRIEGO
Luis Magne Ortega
Aurora Gomez Coedo
Patricio Navarro Donoso
Mª Teresa DORADO LOPEZ
Jaime Simpson Alvarez
Original Assignee
Consejo Superior Investigaciones Cientificas (Csic)
Universidad De Santiago De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES9501420A external-priority patent/ES2114444B1/es
Priority claimed from ES9501858A external-priority patent/ES2114452B1/es
Priority claimed from ES9600941A external-priority patent/ES2123417B1/es
Application filed by Consejo Superior Investigaciones Cientificas (Csic), Universidad De Santiago De Chile filed Critical Consejo Superior Investigaciones Cientificas (Csic)
Publication of WO1997004140A1 publication Critical patent/WO1997004140A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0078Leaching or slurrying with ammoniacal solutions, e.g. ammonium hydroxide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention falls within the sectors of chemical technology, material technology and metallurgical technology.
  • a possible route for the benefit of these metallurgical wastes consists of a hydrometallurgical treatment thereof.
  • aqueous solutions containing ammonium as a leaching agent with a high selectivity with respect to the copper present in these metallic materials.
  • the process object of the present invention patent follows this path and consists in subjecting these metallurgical residues to a treatment that includes several essential steps. Although a part of these stages, considered in isolation, are known, when properly joined they constitute a new process, allowing the separation and recovery of the copper contained in these materials.
  • the present invention describes a process for the recovery of copper and possibly other metals of interest, from oxidized metallurgical residues, such as copper smelting powders, by leaching with aqueous solutions of ammonium ion (which is supplied to the system as ammonium hydroxide, ammonium carbonate and / or ammonium chloride), which results in the formation of the corresponding copper ammonia complexes and separation of this metal from the fertile solution obtained by a stage of solvent extraction stage with type extraction agents acid (with or without the ability to form chelate compounds). In this extraction stage the acidity generated in the metal extraction process is neutralized by the ammonia released in the reaction itself and the ammonium ion solution is regenerated. The copper that has passed into the organic phase is re-extracted from it using the sulfuric acid obtained in the electrolysis of the metal.
  • ammonium ion which is supplied to the system as ammonium hydroxide, ammonium carbonate and / or ammonium chloride
  • the hydrometallurgical treatment consists of a set of stages that together form a closed circuit.
  • solubilization of the copper contained in the metallurgical residue is achieved, in the form of ammoniacal complexes.
  • the treatment of the fertile solution is carried out, recovering the copper dissolved and the leaching solution regenerated, so the circuit is closed
  • the copper is separated from the fertile solution by solvent extraction.
  • acid-type reactive extraction agents are used as extraction agents.
  • the copper extraction reaction would be:
  • the neutralizer is the ammonia of the copper ammonia complex itself, formed according to the reactions [2] and [3].
  • the leaching agent is regenerated in the extraction reaction [S] so that it can be used again.
  • HR represents the acid extraction agent, also in reaction [S] and to facilitate adjustment thereof the reaction has been written as if the predominant copper ammonia complex was the
  • the leaching stage (stage I) of the metallurgical waste (S 1) can be carried out in a single stage at temperatures between 15 and 100 ° C, preferably 25 ° C, atmospheric pressure or a pressure lower than S atmospheres, preferably atmospheric pressure, and with a residence time between half an hour and four hours, preferably one hour.
  • Leaching is carried out with an aqueous solution of ammonium ion (DI) (which is supplied to the system as ammonium hydroxide, ammonium carbonate and / or ammonium chloride) and preferably containing a concentration of the attack reagent between 1 and 260 grams thereof per 1000 cm 3 of solution.
  • DI ammonium ion
  • the pulp ratio or the concentration of the leaching agent in the attack solution must be adequate to ensure the formation of at least the diaminopropy (II) complex and thus not have an ammonia deficit to neutralize the protons produced in the process of metal extraction (equation [5]). On the other hand, this situation can also be avoided if sulfates are precipitated before the extraction operation, since this precipitation produces ammonia as shown in the reaction [6].
  • Iron which is usually the most important impurity, when attacked immediately passes to the solid residue. If it is present as iron (II), it dissolves very partially to form the Fe (NH3) n2 + ammoniacal complexes, although they also tend to decompose to form insoluble iron (III) compounds and pass to the solid residue.
  • the treatment of the leaching solution for the separation and recovery of copper, removal of impurities and regeneration of the attack ammonia solution is carried out in a series of successive stages, in which conventional techniques such as extraction with solvents
  • the order and use of these stages is not essential and can be varied both as to adapt to the nature, composition and laws of the material to be treated.
  • the present invention process is characterized in that it uses ammonia in some of these stages, facilitating the separation of copper and other impurities by neutralizing the acid that is generated in any of these stages.
  • stages II, III, IV and V represent one of the possible sequences of separation and recovery of copper, removal of impurities and regeneration of the attack solution.
  • This sequence corresponds to one of the preferred variants for the type of starting material considered in this illustrated description of the process.
  • the solution obtained in the leaching stage is treated to remove the sulfates thereof, recover the copper, remove other possible impurities and regenerate the leaching solution.
  • stage II The sulfate removal stage (stage II) is done by precipitating as
  • CaSCy2H 2 0 S6 by the addition of calcium oxide (II), calcium hydroxide (II) or other precipitating agent (D3) of this anion.
  • This stage also compensates for the possible ammonia deficit that may exist in the process and regenerate the leaching solution. From this stage an aqueous solution (D4) would be obtained which would be carried out to a solvent extraction operation.
  • the solution (D4) resulting from the previous stage (stage II) is treated in a solvent extraction circuit using acid-like extraction agents.
  • an acid concentration equivalent to that of the extracted metal is generated, the neutralization of this acid by the ammonia of the metal complex completely displaces the extraction equilibrium, which favors the reaction.
  • the copper extraction stage (stage III) can be carried out preferably using acidic extraction agents such as oximes (for example the commercial products LIX 860, Acorga PT5050 and MOC-45), oxines (for example the commercial product Kelex 100 ), B-diketones (for example the commercial product LIX
  • acidic extraction agents such as oximes (for example the commercial products LIX 860, Acorga PT5050 and MOC-45), oxines (for example the commercial product Kelex 100 ), B-diketones (for example the commercial product LIX
  • alkylphosphoric acids for example the commercial product DP-8R
  • alkylphosphonic acids such as the commercial product PC-88A
  • alkylphosphinic acids for example the commercial product Cyanex 272
  • mono and dithioalkyl phosphic acids such as commercial products Cyanex 302 and Cyanex 301
  • LIX is a registered trademark of Henkel Corp.
  • Acorga is a registered trademark of ICI
  • MOC is a registered trademark of Allied Signal
  • Kelex is a registered trademark of Sherex
  • Cyanex is a registered trademark of American Cyanamid, and DP-8R and PC-88A are registered trade products of Daihachi Chemical.
  • the extraction of copper with these extraction agents is carried out at a temperature between 15 and 45 ° C, a residence time between 5 and 20 minutes and dissolving the extraction agent in an aliphatic and / or aromatic organic diluent, for example the n-dean.
  • the organic phase charged with copper would pass to the re-extraction stage (stage IV) where the copper would be recovered using an acid solution, preferably return electrolyte, although another re-extraction technique could be used.
  • the regenerated organic phase corresponds to (D7), the organic phase charged with copper to (D6), the acid re-extraction solution to (D8) and the charged aqueous solution that goes to recovery of the metal by electrolysis to (D9).
  • stage V The refining (D5) obtained from the extraction operation, practically free of copper, would be taken to a stage (stage V) where the impurities would be removed and / or other metals of interest would be recovered and the leaching solution (DI) would be regenerated.
  • stage V The number of these stages and their sequence is not essential and would be adapted to the composition of the solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Procedimiento hidrometalúrgico para la recuperación de cobre de materiales metálicos de caracter oxidado mediante una lixiviación con una disolución acuosa que contiene iones amonio (que se suministra al sistema como hidróxido amónico, carbonato amónico y/o cloruro amónico), que permite la formación de los complejos amoniacales de cobre (II) y separación de este metal de la disolución fértil que se obtiene mediante extracción con disolventes (con agentes de extracción ácidos), regenerándose la disolución de lixiviación por neutralización del ácido producido en la extracción del cobre con el amoníaco del complejo metálico.

Description

Titulo
PROCEDIMIENTO HIDROMETALÚRGICO PARA LA RECUPERACIÓN DE COBRE DE MATERIALES METÁLICOS DE CARÁCTER OXIDADO
Sector de la técnica
La presente invención se encuadra en los sectores de tecnología química, tecnología de materiales y tecnología metalúrgica.
Estado de la técnica La naturaleza de las operaciones de obtención de cobre por métodos pirometalúrgicos da lugar a la obtención de ciertos productos secundarios, que normalmente son considerados como residuos, y que como los polvos de fundición se recogen a la salida de los gases de los hornos (reverbero, convertidor o "flash").
Estos polvos se consideran materiales metalúrgicos ya que están fundamentalmente constituidos por materiales metálicos oxidados (óxidos, sulfatos, etc.) en los que el cobre es el elemento metálico mayoritario y como tales se suelen beneficiar y/o recircular en los mismos procesos de fundición. Sin embargo, el alto contenido en cobre de estos materiales (20-30% y en algunos casos hasta un 70%) junto con la presencia de otros elementos, unos considerados como valiosos otros como tóxicos, hace que esta situación, almacenamiento o reciclado al proceso de fundición, no sea deseable y ya se tienda en muchos casos hasta a su penalización por las cada vez más restrictivas regulaciones medio ambientales.
Dadas estas características, una posible vía para el beneficio de estos residuos metalúrgicos consiste en un tratamiento hidrometalúrgico de los mismos. En particular empleando disoluciones acuosas que contengan ¡on amonio como agente de lixiviación con una alta selectividad respecto al cobre presente en estos materiales metálicos. El procedimiento objeto de la presente patente de invención sigue esta vía y consiste en someter a estos residuos metalúrgicos a un tratamiento que incluya varias etapas esenciales. A pesar de que una parte de estas etapas, consideradas aisladamente, son conocidas, al unirse adecuadamente constituyen un proceso nuevo, permitiendo la separación y recuperación del cobre contenido en estos materiales. La presente invención reivindica, de una forma particular, la utilización de las disoluciones acuosas de ion amonio, como medio lixiviante del cobre en estos materiales metálicos, por la facilidad con que este agente de lixiviación puede ser regenerado.
Descripción de la invención
La presente invención describe un procedimiento para la recuperación de cobre y eventualmente de otros metales de interés, a partir de residuos metalúrgicos oxidados, como los polvos de fundiςión de cobre, mediante una lixiviación con disoluciones acuosas de ion amonio (que se suministra al sistema como hidróxido amónico, carbonato amónico y/o cloruro amónico), que da lugar a la formación de los correspondientes complejos amoniacales de cobre y separación de este metal de la disolución fértil obtenida mediante una etapa de etapa de extracción con disolventes con agentes de extracción de tipo ácido (que tengan capacidad o no de formar compuestos tipo quelato). En esta etapa de extracción la acidez generada en el proceso de extracción del metal, se neutraliza por el amoníaco liberado en la propia reacción y se regenera la disolución de ion amonio. El cobre que ha pasado a la fase orgánica se reextrae de la misma aprovechando el ácido sulfúrico que se obtiene en la electrólisis del metal.
El tratamiento hidrometalúrgico está constituido por un conjunto de etapas que unidas forman un circuito cerrado. Con el primer bloque se consigue la solubilización del cobre contenido en el residuo metalúrgico, en forma de complejos amoniacales. En el segundo bloque se realiza el tratamiento de la disolución fértil, recuperándose el cobre disuelto y regenerándose la disolución de lixiviación, por lo que se cierra el circuito
Descripción detallada de la invención En la presente invención se aprovecha, no solo el efecto lixiviante de los compuestos amónicos, sino también la propiedad del catión amonio de disociarse y dar los protones necesarios para la lixiviación de las especies cupríferas oxidadas, especialmente los óxidos, produciendo a la vez amoníaco, que compleja al cobre:
NH/ - NH3 + ht [1]
Este hecho hace que al lixiviar el material metálico o residuo metalúrgico a beneficiar tengan lugar unas reacciones como:
CuS04 + 2NH/ → Cu (NHf2 + SO2^ + 2hT [2]
CuO + 2NH/ → Cu(NHf2 + H20 [3]
En las reacciones [2] y [3] y para simplificar el ajuste de la estequiometría se ha escrito la correspondiente reacción como si solo se formara el complejo de diamincobre, cuando en la práctica se pueden formar los complejos de formula general Cu(NH3)n 2\ donde n puede tomar el valor de 1 a 6 (aunque en la práctica habitual es muy difícil la formación de un complejo con n mayor de 4).
Una vez que se consigue la solubiiización del cobre del material metálico y después de los tratamientos convencionales de filtración, etc., y alguno específico que se expondrá adelante, el cobre se separa de la disolución fértil mediante extracción con disolventes. En esta etapa se emplean como agentes de extracción reactivos de tipo ácido
(que formen o no compuestos de tipo quelato), presentando en este caso la particularidad de que esta operación no necesita de la adición de un agente neutralizante externo al sistema, ya que esta operación la lleva a cabo el amoníaco unido al metal.
En el método convencional de extracción, la reacción de extracción de cobre sería:
CUj* + 2HRorg = CuR20rg + 2Hac+ [4]
en el método propuesto en esta patente de invención la reacción sería:
CU(NHf2ac + 2HRorg -CuR2org + 2NH3ac + 2Ha/ [5]
Mientras que con el procedimiento convencional se hace necesario añadir un neutralizante que suministre los iones OH- necesarios para neutralizar los protones producidos en la reacción, en este proceso el neutralizante es el amoníaco del propio complejo amoniacal de cobre, formado según las reacciones [2] y [3]. El agente de lixiviación se regenera en la reacción de extracción [S] para poder ser utilizado nuevamente. En las reacciones [4] y [5], HR representa al agente de extracción ácido, asimismo en la reacción [S] y para facilitar el ajuste de la misma se ha escrito la reacción como si el complejo amoniacal de cobre predominante fuera el
Cu(NH3)Σ 2+
'3/2
Una ventaja adicional obtenida con este proceso es que debida al pH neutro-alcalino de la disolución, el hierro y otra serie de los metales contenidos en el material de partida quedan en el residuo insoluole. El ion sulfato que no afecta desfavorablemente a ninguna de las etapas de lixiviación o extracción con disolventes, se puede eliminar en alguna etapa del proceso para evitar su posible acumulación, esta eliminación se consigue fácilmente mediante el empleo de óxido o hidróxido de calcio:
Cu2 + SO/' + 2NH40H + Ca(OH)2 → CaSO/2H20 + Cu(NHJ2 2+ + 20hT [6]
Se describe a continuación el procedimiento objeto de la presente invención, haciendo referencia a la figura única, que es un diagrama de flujo simplificado del mismo.
La etapa de lixiviación (etapa I) del residuo metalúrgico (S 1) puede realizarse en una sola etapa a temperaturas comprendidas entre 15 y 100°C, preferentemente 25°C, presión atmosférica o una presión inferior a S atmósferas, preferentemente presión atmosférica, y con un tiempo de residencia comprendido entre media hora y cuatro horas, preferiblemente una hora. La lixiviación se lleva a cabo con una disolución acuosa de ion amonio (DI) (que se suministra al sistema como hidróxido amónico, carbonato amónico y/o cloruro amónico) y que contenga preferentemente una concentración del reactivo de ataque comprendida entre 1 y 260 gramos del mismo por 1000 cm3 de disolución.
La relación de pulpa o la concentración del agente de lixiviación en la disolución de ataque debe ser la adecuada para asegurar la formación de al menos el complejo de diamincobre (II) y así no tener déficit de amoníaco para neutralizar los protones producidos en el proceso de extracción del metal (ecuación [5]). Por otro lado esta situación se puede también obviar si se precipitan los sulfatos antes de la operación de extracción, puesto que esta precipitación produce amoníaco según se muestra en la reacción [6].
Como resultado de esta operación de lixiviación se obtiene una disolución
(D2), que fundamentalmente contiene cobre, y un residuo (Rl). Tras una separación sólido-líquido, la disolución de lixiviación cargada pasa a una serie de etapas donde se recupera el cobre y a la vez se regenera la disolución de ataque, que queda en condiciones de ser empleada en otra operación de lixiviación.
Al llevar a cabo la lixiviación con disoluciones acuosas de ion amonio, debido a la naturaleza de estas, se obtienen disoluciones muy puras. Esta pureza se refiere a elementos como el hierro, cuya solubilización no es deseable ya que su presencia puede complicar el tratamiento posterior de la disolución de lixiviación. Dada la presencia importante de este y otros elementos en los materiales metalúrgicos que se desean tratar, esta característica del procedimiento presenta una gran ventaja.
El hierro, que suele ser la impureza más importante, al ser atacado pasa inmediatamente al residuo sólido. Si está presente como hierro (II), se disuelve muy parcialmente para formar los complejos amoniacales Fe(NH3)n2+, aunque rápidamente estos también tienden a descomponerse para formar compuestos insoluoles de hierro (III) y pasando al residuo sólido.
El tratamiento de la disolución de lixiviación para la separación y recuperación del cobre, eliminación de las impurezas y regeneración de la disolución amoniacal de ataque, se lleva a cabo en una serie de etapas sucesivas, en las que se emplean técnicas convencionales como la extracción con disolventes. El orden y empleo de estas etapas no es esencial y se puede variar tanto uno como otro, para adaptarse a la naturaleza, composición y leyes del material a tratar. El presente procedimiento de invención se caracteriza porque utiliza amoníaco en alguna de estas etapas, facilitándose la separación de cobre y de otras impurezas al neutralizar el ácido que se genera en alguna de estas etapas. En el diagrama de flujo que se da en la figura única, las etapas II, III, IV y V representan una de las posibles secuencias de separación y recuperación del cobre, eliminación de impurezas y regeneración de la disolución de ataque. Esta secuencia corresponde a una de las variantes preferidas para el tipo de material de partida considerado en esta descripción ilustrada del procedimiento. La disolución obtenida en la etapa de lixiviación se trata para eliminar los sulfatos de la misma, recuperar el cobre, eliminar otra posibles impurezas y regenerar la disolución de lixiviación.
La etapa de eliminación de los sulfatos (etapa II), se hace precipitando como
CaSCy2H20 (S6) mediante la adición de óxido de calcio (II), hidróxido de calcio (II) u otro agente precipitante (D3) de este anión. Esta etapa permite compensar además el posible déficit de amoníaco que pudiera existir en el proceso y regenerar la disolución de lixiviación. De esta etapa se obtendría o una disolución acuosa (D4) que se llevaría a una operación de extracción con disolventes.
La disolución (D4) resultante de la etapa anterior (etapa II) pasa a ser tratada en un circuito de extracción con disolventes empleando agentes de extracción de tipo ácido. En la reacción de extracción se genera una concentración de ácido equivalente a la del metal extraído, la neutralización de este ácido por el amoníaco del complejo metálico desplaza completamente el equilibrio de extracción con lo que se favorece la reacción.
La etapa de extracción de cobre (etapa III) se puede llevar a cabo empleando preferentemente agentes de extracción ácidos tales como oximas (por ejemplo los productos comerciales LIX 860, Acorga PT5050 y MOC-45), oxinas (por ejemplo el producto comercial Kelex 100), B-dicetonas (por ejemplo el producto comercial LIX
54), ácidos alquilfosfóricos (por ejemplo el producto comercial DP-8R), ácidos alquilfosfónicos (como el producto comercial PC-88A), ácidos alquilfosfínicos (por ejemplo el producto comercial Cyanex 272), ácidos mono y ditioalquilfosf ínicos (como los productos comerciales Cyanex 302 y Cyanex 301 ), etc. LIX es una marca registrada por Henkel Corp., Acorga es una marca registrada por ICI, MOC es una marca registrada por Allied Signal, Kelex es una marca registrada por Sherex,
Cyanex es una marca registrada por American Cyanamid, y DP-8R y PC-88A son productos comerciales registrados por Daihachi Chemical. La extracción de cobre con estos agentes de extracción se lleva a cabo a una temperatura comprendida entre 15 y 45°C, un tiempo de residencia comprendido entre 5 y 20 minutos y disolviendo el agente de extracción en un diluyente orgánico alifático y/o aromático, por ejemplo el n-decano. La fase orgánica cargada con cobre pasaría a la etapa de reextracción (etapa IV) donde se recuperaría el cobre empleando una disolución acida, preferentemente electrólito de retorno, aunque se podría emplear otra técnica de reextracción. En el diagrama de flujo de la figura única, la fase orgánica regenerada corresponde a (D7), la fase orgánica cargada con cobre a (D6), la disolución acida de reextracción a (D8) y la disolución acuosa cargada que va a la recuperación del metal por electrólisis a (D9).
El refinado (D5) obtenido de la operación de extracción, prácticamente exento de cobre, se llevaría a una etapa (etapa V) donde se eliminarían las impurezas y/o recuperarían otros metales de interés y se regeneraría la disolución de lixiviación (DI). El número de estas etapas y la secuencia de las mismas no es esencial y se adaptaría a la composición de la disolución.
Ejemplo π°l
Se partió de un residuo metalúrgico (polvo de fundición de cobre) que presentaba la composición, en cuanto a los elementos metálicos más representativos, que se muestra en la Tabla 1.
TABLA 1
Figure imgf000010_0001
10 gramos de este material se lixiviaron con 1000 cm3 de una disolución de hidróxido amónico (244 g/l de NH3). La pulpa formada se agitó en un reactor a 25°C y presión atmosférica durante dos horas. Se separó por filtración un residuo y una disolución cuya composición se muestra en la Tabla 2.
TABLA 2
Figure imgf000011_0001
De la disolución obtenida se tomaron 50 cm3 y se llevaron a un reactor termostatizado a 20°C, al que se le añadieron 50 cm3 de una disolución orgánica de
LIX 860 al 10% v/v en n-decano. Esta mezcla se agitó durante diez minutos, dejando a continuación separar las dos fases. En la Tabla 3 se dan las composiciones de las fases acuosas y orgánicas obtenidas.
TABLA 3
Figure imgf000011_0002
40 cm3 de la fase orgánica cargada con cobre se llevaron a un reactor termostatizado a 20°C y se añadieron 40 cm3 de una disolución acuosa que contenía 190 g/l de ácido sulfúrico. La mezcla se agitó durante cinco minutos, dejando separar las fases. La composición de estas fases se muestra en la Tabla 4.
TABLA 4
Figure imgf000012_0001
Ejemplo n 2
Se partió del residuo metalúrgico cuya composición se muestra en la Tabla 1. 10 gramos del mismo se lixiviaron con 1000 cm3 de una disolución acuosa que contenía 65 g/l de carbonato amónico. La pulpa formada se agitó en un reactor a 20°C y presión atmosférica durante una hora. De esta operación se obtuvo un residuo y una disolución cuya composición se muestra en la Tabla 5.
TABLA 5
Figure imgf000012_0002
De esta disolución se tomaron 40 cm3 y se llevaron a un reactor termostatizado a 20°C, poniéndose en contacto con 40 cm3 de una fase orgánica de LIX 54 al 10% v/v en queroseno. La mezcla se agitó durante diez minutos, dejando a continuación que se separasen las fases. Como resultado de esta operación se obtuvo un refinado que contenía, entre otros elementos metálicos, 0,02 g/l de cobre y pH de 8,6 y una fase orgánica cargada con 1 ,96 g/l de este metal.
30 cm3 de la fase orgánica cargada con cobre se llevaron a un reactor termostatizado a 20°C y se adicionaron 30 cm3 de una disolución acuosa que contenía 170 g/l de ácido sulfúrico, la mezcla se agitó durante diez minutos, dejando separar las fases. Como consecuencia de esta operación se obtuvo una fase acuosa con 1 ,96 g/l de cobre y una fase orgánica exenta de este metal.
Ejemplo n°3
10 gramos del material metálico de partida y cuya composición se muestra en la Tabla 1 , se lixiviaron en un reactor a 45°C con 1000 cm3 de una disolución de cloruro amónico, que contenía 260 g/l de esta sal, durante cuatro horas. Una vez finalizada esta operación, se filtró la pulpa, obteniéndose un residuo y una disolución cuya composición se muestra en la Tabla 6.
TABLA 6
Figure imgf000013_0001
40 cm3 de esta disolución acuosa se llevaron a un reactor termostatizado a 45°C y se pusieron en contacto con 40 cm3 de una disolución orgánica de Cyanex 302 al 5% v/v en n-decano- El tiempo de operación fue de ocho minutos. Una vez separadas las fases se obtuvo un refinado cuya composición se muestra en la Tabla 7 y una fase orgánica que contenía 2,12 g/l de cobre. TABLA 7
Figure imgf000014_0001

Claims

REIVINDICACIONES
1. PROCEDIMIENTO HIDROMETALÚRGICO PARA LA RECUPERACIÓN DE COBRE DE MATERIALES METÁLICOS DE CARÁCTER OXIDADO, caracterizado por la lixiviación de estos con disoluciones acuosas de ion amonio (suministrado al sistema como hidróxido amónico, carbonato amónico y/o cloruro amónico), que permite formar los correspondientes complejos amoniacales de cobre (II). De la disolución se separa y recupera el cobre por procedimientos convencionales, esencialmente extracción con disolventes (con agentes de extracción de tipo ácido), se neutraliza con amoníaco el ácido producido en la extracción de cobre, y se regenera a la vez la disolución de lixiviación.
2. Procedimiento según la reivindicación 1 que se caracteriza porque el material a tratar puede ser una mezcla de especies oxidadas de cobre (óxidos, sulfatos), aunque se encuentren impurificadas por otros elementos metálicos o no metálicos y/o especies químicas no oxidadas (sulfuras).
3. Procedimiento según las reivindicaciones 1 y 2 caracterizado porque la lixiviación se realiza entre 15 y 100°C, presión inferior a 5 atmósferas y empleando como agente de lixiviación una disolución acuosa de ion amonio, estando comprendida la concentración del agente de ataque amoniacal en la misma entre 1 y 260 g/l.
4. Procedimiento según las reivindicaciones 1 , 2, y 3 caracterizado porque la separación y recuperación de cobre de la disolución de lixiviación se lleva a cabo mediante extracción con disolventes (empleando agentes de extracción de tipo ácido).
5. Procedimiento según las reivindicaciones 1 , 2, 3 y 4 caracterizado porque en el tratamiento de la disolución obtenida en la lixiviación para la separación y recuperación del cobre disuelto se emplea amoníaco para neutralizar el ácido que se genera en la separación de este metal.
6. Procedimiento según las reivindicaciones 1 , 2, 3, 4, y 5 que se caracteriza porque permite la inclusión de etapas adicionales y/o intermedias, encaminadas a la recuperación del cobre, a la recuperación de otras especies metálicas presentes en el material de partida y a la regeneración de la disolución de lixiviación.
PCT/ES1996/000147 1995-07-14 1996-07-12 Procedimiento hidrometalurgico para la recuperacion de cobre de materiales metalicos de caracter oxidado WO1997004140A1 (es)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
ES9501420A ES2114444B1 (es) 1995-07-14 1995-07-14 Procedimiento hidrometalurgico para la recuperacion de cobre de residuos metalurgicos oxidados.
ESP9501420 1995-07-14
ES9501858A ES2114452B1 (es) 1995-09-26 1995-09-26 Procedimiento para la recuperacion de cobre de materiales metalicos con base oxidos-sulfatos.
ESP9501858 1995-09-26
ESP9600941 1996-04-25
ES9600941A ES2123417B1 (es) 1996-04-25 1996-04-25 Procedimiento hidrometalurgico para la recuperacion de cobre de minerales sulfurados.

Publications (1)

Publication Number Publication Date
WO1997004140A1 true WO1997004140A1 (es) 1997-02-06

Family

ID=27240529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1996/000147 WO1997004140A1 (es) 1995-07-14 1996-07-12 Procedimiento hidrometalurgico para la recuperacion de cobre de materiales metalicos de caracter oxidado

Country Status (1)

Country Link
WO (1) WO1997004140A1 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015713A1 (en) * 1991-03-05 1992-09-17 Environchip Technologies Ltd. Process for recovery of metal
EP0524782A2 (en) * 1991-07-19 1993-01-27 Minera Escondida Limitada Treatment of copper sulfide concentrates
WO1993004208A1 (en) * 1991-08-14 1993-03-04 Henkel Corporation Copper recovery process
EP0551155A1 (en) * 1992-01-10 1993-07-14 B.U.S. ENGITEC SERVIZI AMBIENTALI S.r.l. Process for recovering zinc and lead from flue dusts from electrical steel works and for recycling said purified metals to the furnace, and installation for implementing said process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015713A1 (en) * 1991-03-05 1992-09-17 Environchip Technologies Ltd. Process for recovery of metal
EP0524782A2 (en) * 1991-07-19 1993-01-27 Minera Escondida Limitada Treatment of copper sulfide concentrates
WO1993004208A1 (en) * 1991-08-14 1993-03-04 Henkel Corporation Copper recovery process
EP0551155A1 (en) * 1992-01-10 1993-07-14 B.U.S. ENGITEC SERVIZI AMBIENTALI S.r.l. Process for recovering zinc and lead from flue dusts from electrical steel works and for recycling said purified metals to the furnace, and installation for implementing said process

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MENA A.: "Leaching of Chrysocolla with ammonia-ammonium carbonate solutions", METALLURGICAL AND MATERIALS TRANSACTIONS B: PROCESS METALLURGY AN D MATERIALS PROCESSING SCIENCE, vol. 16b, no. 2, 1 March 1985 (1985-03-01), MATERIALS INFORMATION SOCIETY US, pages 441 - 448, XP002015487 *
OUDENNE P. D.: "Leaching kinetics of malachite in ammonium carbonate solutions", METALLURGICAL AND MATERIALS TRANSACTIONS B: PROCESS METALLURGY AN D MATERIALS PROCESSING SCIENCE, vol. 14b, no. 1, 1 March 1983 (1983-03-01), MATERIALS INFORMATION SOCIETY US, pages 33 - 40, XP002015486 *

Similar Documents

Publication Publication Date Title
AU757360B2 (en) Recovery of nickel and cobalt from ore
JP4267698B2 (ja) 金属価の回収
US10174400B2 (en) Method for recovering metals
US4008076A (en) Method for processing manganese nodules and recovering the values contained therein
RU2135610C1 (ru) Способ гидрометаллургического превращения сульфида цинка в сульфат из руд и концентратов, содержащих сульфид цинка
US4500498A (en) Ammonium chloride-ammonium hydroxide strip for the recovery of anhydrous zinc chloride
EP1805335B1 (en) Process for preparing nickel loaded organic extractant solution
GB2426758A (en) Extractants for palladium and process for separation and recovery of palladium
US4189461A (en) Metal leaching from concentrates using nitrogen dioxide in acids
WO2024108267A1 (en) Process for the extraction of manganese
WO1997004140A1 (es) Procedimiento hidrometalurgico para la recuperacion de cobre de materiales metalicos de caracter oxidado
US4053552A (en) Solvent extraction of zinc from sulfite-bisulfite solution
AU631902B2 (en) Method for the recovery of zinc, copper and lead of oxidized and/or sulfurized ores and materials
US4631176A (en) Recovery of anhydrous zinc chloride
AU2022306695B2 (en) "process for producing high purity aluminium materials"
ES2211316B1 (es) Procedimiento hidrometalurgico para la disolucion y separacion de molibdeno y otros metales de concentrados de molibdenita.
CA2245036A1 (en) Hydrometallurigical process for recovery of zinc
OA21426A (en) Process for producing high purity aluminium materials.
GB2122592A (en) Solvent extraction of cuprous ions from aqueous solutions
IE45094B1 (en) Liquid ion exchange treatment of zinc values

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase