[go: up one dir, main page]

WO1996016116A1 - Biodegradable resin composition - Google Patents

Biodegradable resin composition Download PDF

Info

Publication number
WO1996016116A1
WO1996016116A1 PCT/JP1995/002342 JP9502342W WO9616116A1 WO 1996016116 A1 WO1996016116 A1 WO 1996016116A1 JP 9502342 W JP9502342 W JP 9502342W WO 9616116 A1 WO9616116 A1 WO 9616116A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
cellulose
esterified
acid
resin composition
Prior art date
Application number
PCT/JP1995/002342
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiko Kawakita
Ramani Narayan
Original Assignee
Evercorn, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evercorn, Inc. filed Critical Evercorn, Inc.
Publication of WO1996016116A1 publication Critical patent/WO1996016116A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • C08L3/06Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Definitions

  • the present invention relates to a biodegradable resin composition having water resistance.
  • starch-based biodegradable resin compositions have excellent biodegradability (starch has a slower biodegradable condition and a faster decomposition rate than cellulose), but has high water resistance. It was not enough, and this was one of the reasons that the applicable products (uses) were limited.
  • an object of the present invention is to provide a biodegradable resin composition capable of significantly improving the water resistance of a resin molded article while maintaining good starch biodegradability. I do.
  • the biodegradable resin composition of the present invention comprises an esterified starch, It is a characteristic requirement that it contains three components, ie, lulose and an ester-type plasticizer, as essential components. Brief description of the drawing>
  • Raw starch such as corn, corn, wheat, scallop, cassava, tapio, rice, legumes, kudzu peravi, lotus starch, etc.
  • a physically modified starch obtained by converting them into alpha ( ⁇ ) enzymatically modified starch such as enzymatic degradation, chemically modified starch obtained by acid treatment, hypochlorous acid treatment, etherification, etc. can be used.
  • high-amylose starch with an amylose content of 50% or more is used for final resin molded products and films (hereinafter referred to simply as “resin molded products”). . ), It can be suitably used because of its excellent strength.
  • esterified acid of the esterified starch the following various organic acids and inorganic acids can be suitably used.
  • Saturated fatty acids such as acetic acid, propionic acid, drank acid, valeric acid, cabronic acid, cabrylic acid, cabric acid, lauric acid, myristic acid, palmitic acid and stearic acid, and acrylic acid, crotonic acid, Unsaturated fatty acids such as tonic acid, oleic acid, erucic acid and sorbic acid 2 Aliphatic saturated and unsaturated dicarboxylic acids such as malonic acid, succinic acid, alkenyl succinic acid, maleic acid and fumaric acid.
  • Inorganic acids such as phosphoric acid, urea phosphoric acid, etc.
  • lower saturated fatty acids such as acetic acid and brobionic acid can be suitably used because of their excellent strength when formed into a final resin molded product.
  • Esterified starch has a degree of substitution (DS) of 0.4 or more (total substitution DS3)
  • those having a DS of 1.0 to 2.8 are used. If D S is less than 0.4, it is difficult to impart water resistance to the resin molded product, and the compatibility with other resins when blended is poor.
  • the starch is dissolved by heating in dimethyl sulfoxide and reacted with an acid anhydride in the presence of an alkali catalyst to obtain a desired esterified starch.
  • esterified acid of the esterified cellulose those used for the above-mentioned esterified starch can be used.
  • lower saturated fatty acids such as acetic acid, propionic acid, butyric acid, and their mixed acids are superior in strength to the final resin molded product as in the case of esterified starch. It can be suitably used.
  • esterified cellulose those having a DSO of 4 or more, preferably DS 1.0 to 2.8 are used. If the DS is less than 0.4, it is difficult to impart water resistance to the resin molded product.
  • ester-type plasticizer one or more of the following examples can be selected and used.
  • phthalic acid esters or polyhydric alcohol esters are preferred because of their particularly good miscibility with both esterified starch and esterified cellulose.
  • This ester-type plasticizer is used for plasticizing the resin composition at a relatively low temperature during molding, thereby making it difficult for the resin composition to deteriorate due to heat and providing good moldability. is there.
  • the reason why the ester type is used as the plasticizer is to ensure compatibility with both the esterified starch and the esterified cellulose.
  • Phthalates such as dimethyl phthalate, getyl phthalate, dibutyl phthalate, di-octyl phthalate, and ethyl phthalylethyl glycolate;
  • Aliphatic base esters such as butyl oleate, glyceryl monooleate, butyl adipate, di-n-hexyl adipate,
  • Polyhydric alcohol esters such as fatty acid mono-di-triglyceride such as triacetin, diacetyl glycerin, triglycol-nitroglycerin, and glycerin monostearate;
  • Xylate esters such as methyl diacetyl ricinolate and triethyl acetyl citrate
  • Phosphoric acid esters such as tributyl triphosphate and triphenyl phosphinate
  • (a) / (b) 40 to 60/80/20 (weight ratio), and (c) 30 to 100 parts by weight of (a) + (b). To 60 parts by weight.
  • esterified cellulose If the amount of esterified cellulose is too small, it is difficult to ensure water resistance of the resin molded product. If the amount of esterified cellulose is excessive, it is difficult to impart the excellent biodegradability of starch to the resin molded product.
  • the resin composition must be heated to a relatively high temperature in order to plasticize the resin during the molding process, which may cause thermal deterioration of the resin composition. It is difficult to secure the strength of the steel.
  • esterified starch knead esterified cellulose and ester-type plasticizer to prepare a master batch, and then knead with esterified starch. Is preferred.
  • a known kneading machine such as an oven roller, a nieg, and an extruder can be used.
  • the composition of the present invention may further contain, if necessary, a filler, a heat stabilizer, an antioxidant, a coloring agent, an antistatic agent, an ultraviolet absorber and the like.
  • the resin composition of the present invention may be used as a molding material for injection molding, extrusion molding, blow molding, vacuum molding, force render molding, foam molding, powder molding, etc., similarly to general-purpose thermoplastic resins. Can be.
  • Applicable products include packaging materials (films, sheets, bottles, boxes, can carriers), agricultural materials (agricultural films, binding tapes), and consumer materials (diaper backsheets, shopping bags, garbage). bag ), And kitchen materials (cups, trays, plates, knives, forks, and sbooons). Examples>
  • the esterified cellulose and the plasticizer were mixed according to the formulation shown in Table 1 using a kneader “Laboblast Mill Type C” (manufactured by Toyo Seiki Co., Ltd.) at 175 ° C and 50 rpm. Kneaded for 15 minutes. The kneaded material was formed into a sheet by heating at 170 ° C. and then cut into strips. The flake pellet and the esterified starch were kneaded for 15 minutes at a prescribed mixing ratio at 165 ° C. ⁇ 50 rpm using the above-mentioned lab blast mill, and then heated at 150 ° C. with a hot press. The sheet was lmm thick. This sheet was cut into a 5 x 5 cm mouth to prepare a test piece.
  • test specimen was immersed in distilled water for 24 hours in a constant temperature and constant temperature room at 23 ° C and 50% RH, and the weight was calculated according to the following equation based on the weight before and after water absorption.
  • Soluble component ratio (%) (M 1 -M 3) 100 / M 1 (6) Measurement results:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

A water-resistant biodegradable resin composition comprising an esterified starch (a) with a degree of substitution (DS) of 0.4 or above, an esterified cellulose (b) with a DS of 0.4 or above, and an ester plasticizer (c) as the essential ingredients. The composition can provide a molded resin with an improved water resistance while retaining the good biodegradability of the starch intact.

Description

明 細 書  Specification
生分解性樹脂組成物 ぐ背景技術 >  Background technology of biodegradable resin composition>
本発明は耐水性を有する生分解性樹脂組成物に関する。  The present invention relates to a biodegradable resin composition having water resistance.
廃棄されたブラスチックの多くは、 自然環境下で分解されずに残 存するため、 ブラスチック製品使用後の処理問題について、 近年、 社会的な関心が高まってきている。 そこで、 使用目的が達成された 後は、 速やかに土中、 水中で分解される生分解性ブラスチックが望 まれている。 こうした背景から、 再生産可能な天然資源であり、 し かも、 低コスト、 易生分解性である澱粉が注目され、 澱粉をベース にした生分解性ブラスチック (生分解性樹脂組成物) が提案されて いる。 (特開平 5— 3 2 8 2 4号公報等参照)  Many of the discarded plastics remain in the natural environment without being decomposed, and there has been increasing public interest in recent years regarding the problem of treatment after the use of plastic products. Therefore, biodegradable plastics that can be quickly decomposed in soil and water after the intended use has been achieved are desired. Against this background, low-cost, easily biodegradable starch, which is a renewable natural resource, has attracted attention, and a biodegradable plastic (biodegradable resin composition) based on starch has been proposed. It has been. (Refer to Japanese Patent Application Laid-Open No. Hei 5-32 284)
ところが、 これらの澱粉系の生分解性樹脂組成物は、 優れた生分 解性 (澱粉はセルロースに比して生分解可能条件が緩やかで分解速 度も早い。 ) を有するものの、 耐水性が十分とは言えず、 その適用 製品 (使用用途) が限定される一因となっていた。  However, these starch-based biodegradable resin compositions have excellent biodegradability (starch has a slower biodegradable condition and a faster decomposition rate than cellulose), but has high water resistance. It was not enough, and this was one of the reasons that the applicable products (uses) were limited.
また、 澱粉をエステル化することにより、 耐水性が改善できるこ とが (" STARCH : Chemi stry and Technol ogy , Vol 12, p389〜391 ( 1 967 ) j に報告されているが、 それでも、 まだ実用上充分な耐水性を 有しているとは言えなかった。 ぐ発明の開示 >  In addition, it is reported that the water resistance can be improved by esterifying starch ("STARCH: Chemistry and Technology, Vol 12, p389-391 (1967) j). The invention was not said to have sufficient water resistance.
本発明は、 上記にかんがみて、 良好な澱粉の生分解性を残存させ たままで、 樹脂成形品の耐水性を格段に向上させることが可能な生 分解性樹脂組成物を提供することを目的とする。  In view of the above, an object of the present invention is to provide a biodegradable resin composition capable of significantly improving the water resistance of a resin molded article while maintaining good starch biodegradability. I do.
本発明の生分解性樹脂組成物は、 エステル化澱粉、 エステル化セ ルロース、 及びエステル型可塑剤の三成分を必須成分として含むこ とを特徴的要件とする。 ぐ図面の簡単な説明 > The biodegradable resin composition of the present invention comprises an esterified starch, It is a characteristic requirement that it contains three components, ie, lulose and an ester-type plasticizer, as essential components. Brief description of the drawing>
第 1図  Fig. 1
A群の試験例におけるエステル化澱粉とエステル化セルロースの 混合比と吸水率との関係を示すグラフ図  Graph showing the relationship between the mixing ratio of esterified starch and esterified cellulose and the water absorption in the test examples of group A
第 2図  Fig. 2
同じくエステル化澱粉とエステル化セルロースの混合比と可溶性 成分率との関係を示すグラフ図  Similarly, a graph showing the relationship between the mixing ratio of esterified starch and esterified cellulose and the soluble component ratio.
第 3図  Fig. 3
B群の試験例におけるエステル化澱粉とエステル化セルロースの 混合比と吸水率の関係を示すグラフ図  Graph showing the relationship between the mixing ratio of esterified starch and esterified cellulose and the water absorption in the test examples of group B
第 4図  Fig. 4
同じくエステル化澱粉とエステル化セルロースの混合比と可溶性 成分率の関係を示すグラフ図  Similarly, a graph showing the relationship between the mixing ratio of esterified starch and esterified cellulose and the soluble component ratio.
<発明を実施するための最良の形態 > <Best mode for carrying out the invention>
以下、 本発明の形態について詳細に説明をする。  Hereinafter, embodiments of the present invention will be described in detail.
( 1 ) エステル化澱粉の原料となる澱粉としては、 トウモロコシ、 ノ、'レイショ · 力ンショ · コムギ ' サゴ ' キヤッサバ · タピオ力 · コ メ · マメ ' 、 クズ · ヮラビ ' ハス澱粉等の生澱粉、 さらに、 これら を、 アルファ一 ( α ) 化等した物理的変性澱粉、 酵素分解等の酵素 変性澱粉、 酸処理,次亜塩素酸処理、 エーテル化等した化学変性澱 粉等を使用することができる。  (1) Raw starch such as corn, corn, wheat, scallop, cassava, tapio, rice, legumes, kudzu peravi, lotus starch, etc. Further, a physically modified starch obtained by converting them into alpha (α), enzymatically modified starch such as enzymatic degradation, chemically modified starch obtained by acid treatment, hypochlorous acid treatment, etherification, etc. can be used. .
特に、 アミロース含量 5 0 %以上のハイァミローススターチが最 終的な樹脂成形品及びフィ ルム (以下、 単に 「樹脂成形品」 という 。 ) にしたときの強度が優れていることから、 好適に使用可能であ る。 In particular, high-amylose starch with an amylose content of 50% or more is used for final resin molded products and films (hereinafter referred to simply as “resin molded products”). . ), It can be suitably used because of its excellent strength.
エステル化澱粉のエステル化酸としては、 下記各種の有機酸 ·無 機酸を好適に使用可能である。  As the esterified acid of the esterified starch, the following various organic acids and inorganic acids can be suitably used.
①酢酸、 ブロピオン酸、 酩酸、 吉草酸、 カブロン酸、 カブリル 酸、 カブリ ン酸、 ラウリ ン酸、 ミ リスチン酸、 パルミチン酸、 ステ アリン酸等の飽和脂肪酸、 及び、 アクリル酸、 クロ トン酸、 イ ソク 口 トン酸、 ォレイン酸、 エル力酸、 ソルビン酸、 等の不飽和脂肪酸 ②マロン酸、 コハク酸、 アルケニルコハク酸、 マレイ ン酸、 フ マル酸等の脂肪族飽和 ·不飽和ジカルボン酸。  ① Saturated fatty acids such as acetic acid, propionic acid, drank acid, valeric acid, cabronic acid, cabrylic acid, cabric acid, lauric acid, myristic acid, palmitic acid and stearic acid, and acrylic acid, crotonic acid, Unsaturated fatty acids such as tonic acid, oleic acid, erucic acid and sorbic acid ② Aliphatic saturated and unsaturated dicarboxylic acids such as malonic acid, succinic acid, alkenyl succinic acid, maleic acid and fumaric acid.
③リ ン酸、 尿素リン酸、 等の無機酸。  ③ Inorganic acids such as phosphoric acid, urea phosphoric acid, etc.
これらの内で、 酢酸、 ブロビオン酸等の低級飽和脂肪酸が、 最終 的な樹脂成形品にしたときの強度が優れているため好適に使用可能 である。  Among these, lower saturated fatty acids such as acetic acid and brobionic acid can be suitably used because of their excellent strength when formed into a final resin molded product.
エステル化澱粉は、 置換度 ( D S ) 0. 4以上 (全置換 D S 3 ) Esterified starch has a degree of substitution (DS) of 0.4 or more (total substitution DS3)
、 好ましくは D S 1 . 0〜2. 8のものを使用する。 D S 0. 4未 満では、 樹脂成形品に耐水性を付与し難く、 また、 他の樹脂とブレ ン ドしたときの混和性 (Compatibility)が悪い。 Preferably, those having a DS of 1.0 to 2.8 are used. If D S is less than 0.4, it is difficult to impart water resistance to the resin molded product, and the compatibility with other resins when blended is poor.
エステル化澱粉の製造は、 例えば、 澱粉をジメチルスルホキシド 中で加熱溶解させ、 アルカリ触媒存在下、 無水酸と反応させ所望の エステル化澱粉を得ることができる。  In the production of the esterified starch, for example, the starch is dissolved by heating in dimethyl sulfoxide and reacted with an acid anhydride in the presence of an alkali catalyst to obtain a desired esterified starch.
(2) エステル化セルロースのエステル化酸としては、 上記エステ ル化澱粉に使用したものを使用できる。 これらの内で、 酢酸、 プロ ピオン酸、 酪酸及びそれらの混合酸等の低級飽和脂肪酸が、 エステ ル化澱粉の場合と同様、 最終的な樹脂成形品にしたときの強度が優 れているため好適に使用可能である。 エステル化セルロースは、 D S O . 4以上、 好ましく は D S 1 . 0〜 2 . 8のものを使用する。 D S 0 . 4未満では、 樹脂成形品に 耐水性を付与し難い。 (2) As the esterified acid of the esterified cellulose, those used for the above-mentioned esterified starch can be used. Of these, lower saturated fatty acids such as acetic acid, propionic acid, butyric acid, and their mixed acids are superior in strength to the final resin molded product as in the case of esterified starch. It can be suitably used. As the esterified cellulose, those having a DSO of 4 or more, preferably DS 1.0 to 2.8 are used. If the DS is less than 0.4, it is difficult to impart water resistance to the resin molded product.
(3) エステル型可塑剤としては、 下記例示のもののうちから、 1 種または 2種以上を選択して使用可能である。 特に、 フタル酸エス テル又は多価アルコールエステルが、 エステル化澱粉及びエステル 化セルロースの双方への混和性が特に優れているため望ましい。  (3) As the ester-type plasticizer, one or more of the following examples can be selected and used. In particular, phthalic acid esters or polyhydric alcohol esters are preferred because of their particularly good miscibility with both esterified starch and esterified cellulose.
このエステル型可塑剤は、 成形加工するに際して、 相対的に低い 温度で本樹脂組成物を可塑化させ、 樹脂組成物の熱劣化を発生し難 く するとともに良好な成形加工性を付与するためである。 可塑剤と してエステル型を使用するのは、 エステル化澱粉 · エステル化セル ロース両者との混和性を担保するためである。  This ester-type plasticizer is used for plasticizing the resin composition at a relatively low temperature during molding, thereby making it difficult for the resin composition to deteriorate due to heat and providing good moldability. is there. The reason why the ester type is used as the plasticizer is to ensure compatibility with both the esterified starch and the esterified cellulose.
①フタル酸ジメチル、 フタル酸ジェチル、 フタル酸ジブチル、 フタル酸ジ才クチル、 ェチルフタ リルェチルグリ コレート等のフタ ル酸エステル、  ① Phthalates such as dimethyl phthalate, getyl phthalate, dibutyl phthalate, di-octyl phthalate, and ethyl phthalylethyl glycolate;
②ォレイ ン酸ブチル、 グリセリ ンモノォレイ ン酸エステル、 ァ ジピン酸プチル、 アジピン酸ジ · n · へキシル等の脂肪族塩基酸ェ ステル、  ② Aliphatic base esters such as butyl oleate, glyceryl monooleate, butyl adipate, di-n-hexyl adipate,
③卜 リアセチン、 ジァセチルグリセリ ン、 卜 リブロビ才ニルグ リセリ ン、 グリセリ ンモノステアレー 卜などの脂肪酸モノ · ジ · 卜 リグリセリ ド、 スクロース才クタアセテート、 ジエチレングリ コー ルジベンゾエート等の多価アルコールエステル、  (3) Polyhydric alcohol esters such as fatty acid mono-di-triglyceride such as triacetin, diacetyl glycerin, triglycol-nitroglycerin, and glycerin monostearate;
④ァセチルリシノール酸メチル、 ァセチルクェン酸卜 リエチル 等の才キシ酸エステル、  Xylate esters such as methyl diacetyl ricinolate and triethyl acetyl citrate;
⑤リ ン酸卜 リブチル、 リ ン酸卜 リフエニル等のリ ン酸エステル Phosphoric acid esters such as tributyl triphosphate and triphenyl phosphinate
⑥エポキシ化大豆油、 エポキシ化ヒマシ油、 アルキルエポキシ ステアレート等のエポキシ系エステル (4) 上記三成分、 エステル化澱粉(a) とエステル化セルロース(b ) 及びエステル型可塑剤(c) の組成比は、 通常、 (a) ノ(b) = 1 0 / 9 0〜 9 5 / 5 (重量比) で、 かつ、 (a) + (b) 1 0 0重量部に 対して(c) 5〜; 1 0 0重量部とする。 好ましくは、 (a) / (b) = 4 0ノ 6 0〜 8 0 / 2 0 (重量比) で、 かつ、 (a) + (b) 1 0 0重量 部に対して(c) 3 0〜 6 0重量部とする。 エ ポ キ シ Epoxy esters such as epoxidized soybean oil, epoxidized castor oil, and alkyl epoxy stearate (4) The composition ratio of the above three components, esterified starch (a), esterified cellulose (b) and ester type plasticizer (c) is usually (a) no (b) = 10/90 to 9 5/5 (weight ratio) and (c) 5 to 100 parts by weight with respect to (a) + (b) 100 parts by weight. Preferably, (a) / (b) = 40 to 60/80/20 (weight ratio), and (c) 30 to 100 parts by weight of (a) + (b). To 60 parts by weight.
エステル化セルロースが過少では樹脂成形品に耐水性を確保し難 く 、 エステル化セルロースが過多では、 澱粉の持つ優れた生分解性 を樹脂成形品に付与し難い。  If the amount of esterified cellulose is too small, it is difficult to ensure water resistance of the resin molded product. If the amount of esterified cellulose is excessive, it is difficult to impart the excellent biodegradability of starch to the resin molded product.
また、 可塑剤が過少では、 成形加工に際して、 樹脂組成物を可塑 化するために相対的に高温にする必要があり、 樹脂組成物の熱劣化 を招くおそれがあり、 過多となると、 樹脂成形品の強度を確保し難 くなる。  If the amount of the plasticizer is too small, the resin composition must be heated to a relatively high temperature in order to plasticize the resin during the molding process, which may cause thermal deterioration of the resin composition. It is difficult to secure the strength of the steel.
上記三成分 (エステル化澱粉とエステル化セルロース及び可塑剤 ) のブレン ド方法は、 予め、 エステル化セルロースとエステル型可 塑剤を混練しマスターバッチを作っておいた後、 エステル化澱粉と 混練するのが好ましい。  The blending method of the above three components (esterified starch, esterified cellulose, and plasticizer) is as follows: knead esterified cellulose and ester-type plasticizer to prepare a master batch, and then knead with esterified starch. Is preferred.
混練方法は、 オーブンローラ、 ニーグ、 押出機、 など既知の混練 機が使用できる。 本発明の組成物には、 そのほか必要に応じて、 充 填剤、 熱安定剤、 抗酸化剤、 着色剤、 帯電防止剤、 紫外線吸収剤等 を配合することができる。  As a kneading method, a known kneading machine such as an oven roller, a nieg, and an extruder can be used. The composition of the present invention may further contain, if necessary, a filler, a heat stabilizer, an antioxidant, a coloring agent, an antistatic agent, an ultraviolet absorber and the like.
また、 本発明の樹脂組成物は、 汎用の熱可塑性樹脂と同様に、 射 出成形 ·押出成形 · 吹込成形 ·真空成形 · 力レンダー成形 · 発泡成 形 · 粉末成形等の成形材料として使用することができる。  Further, the resin composition of the present invention may be used as a molding material for injection molding, extrusion molding, blow molding, vacuum molding, force render molding, foam molding, powder molding, etc., similarly to general-purpose thermoplastic resins. Can be.
そして、 適用製品として、 包装用資材 (フィルム、 シート、 ボ卜 ル、 ボックス、 缶キャ リア) 、 農業用資材 (農業用フィルム、 結束 テープ) 、 民生用資材 (おむつのバックシート、 買い物袋、 ゴミ袋 ) 、 台所用資材 (カップ、 卜 レイ、 皿、 ナイフ、 フォーク、 スブー ン) 等、 種々のものへの展開が可能である。 ぐ実施例 > Applicable products include packaging materials (films, sheets, bottles, boxes, can carriers), agricultural materials (agricultural films, binding tapes), and consumer materials (diaper backsheets, shopping bags, garbage). bag ), And kitchen materials (cups, trays, plates, knives, forks, and sbooons). Examples>
以下、 本発明の効果を確認するために行った試験例について説明 する。  Hereinafter, test examples performed to confirm the effects of the present invention will be described.
(1) エステル化澱粉は下記のようにして調製した。  (1) Esterified starch was prepared as follows.
①酢酸澱粉 :  ① Starch acetate:
1 Lフラスコ中に、 ハイアミロースコーンスターチ (アミロー ス含量 70 %、 水分 1 %) 75 g , ジメチ レスルホキシド 5 00 m 1 を添加し、 80°Cで加熱撹拌し澱粉を溶解させた。 ついで、 炭酸 水素ナ ト リ ゥム 85 と、 予めジメチルスルホキシド 60 m Lに溶 解させたジメチルァミノ ピリジン 4. 1 gを加えた。 そこへ、 無水 酢酸 1 04 gを滴下漏斗によ り 1時間かけて添加した。 滴下中、 液 温を 4 5 °Cに保ち、 さらにこのまま 1 5分間維持したのち、 反応液 を水 2. 5 L中に撹拌しながら投入した。 固形物は濾過し、 再度、 水 2. 5 L中に投入し、 洗浄した。 同様の操作を計 5回行い、 最終 的に固形物は 60eC、 24時間熱風乾燥を行い、 D S 2. 1の酢酸 澱粉を得た。 収率は 95 %であった。 75 g of high amylose corn starch (amylose content 70%, moisture 1%) and dimethylsulfoxide 500 ml were added to a 1 L flask, and the mixture was heated and stirred at 80 ° C. to dissolve the starch. Then, sodium hydrogen carbonate 85 and 4.1 g of dimethylaminopyridine previously dissolved in 60 mL of dimethyl sulfoxide were added. Thereto, 104 g of acetic anhydride was added by a dropping funnel over 1 hour. During the dropwise addition, the liquid temperature was kept at 45 ° C., and further kept for 15 minutes, and then the reaction solution was poured into 2.5 L of water with stirring. The solid was filtered, poured again into 2.5 L of water and washed. The same operation was performed a total of five times, and the solid was finally dried with hot air at 60 eC for 24 hours to obtain a DS 2.1 starch acetate. The yield was 95%.
②ブロピオン酸澱粉  ②Bropionic acid starch
上記酢酸澱粉の製法において、 無水酢酸の代わりに、 無水プロ ピオン酸 1 0 1 gを使用して、 D S 1 . 6のプロピオン酸澱粉を得 た。 収率は 95 %であった。  In the above method for producing acetic acid starch, DS 1.6 propionic acid starch was obtained by using 101 g of propionic anhydride instead of acetic anhydride. The yield was 95%.
(2) エステル化セルロースは、 「アセテートフレークス」 帝人 ( 株) 製酢酸セルロース ( D S 2. 5 ) を使用した。  (2) As the esterified cellulose, "Acetate Flakes" cellulose acetate (DS2.5) manufactured by Teijin Limited was used.
(3) 可塑剤は、 卜 リアセチン (T A) またはフタル酸ジェチル ( D E P ) (いずれも片山化学 (株) 製) を使用した。 (4) ブレンド及び試験片の調製 (3) Triacetin (TA) or getyl phthalate (DEP) (both manufactured by Katayama Chemical Co., Ltd.) was used as the plasticizer. (4) Preparation of blends and test pieces
まずエステル化セルロースと可塑剤を表 1 に示した配合処方に従 つて、 混練機 「ラボブラスト ミル C型」 (東洋精機 (株) 製) を用 いで'、 1 75 °C 50 r p mの条件で 1 5分間混練した。 混練物は 、 l 7 0°Cの熱ブレスでシートにした後、 細片状に切断した。 この 細片^ペレツ 卜とエステル化澱粉を所定の配合で再度上記ラボブラ ストミルを用いて、 1 6 5°C x 5 0 r pmの条件で 1 5分間混練し 、 1 50 °Cの熱ブレスで厚さ l mmのシート とした。 このシー トを 5 x 5 c m口に切り取り、 試験片とした。  First, the esterified cellulose and the plasticizer were mixed according to the formulation shown in Table 1 using a kneader “Laboblast Mill Type C” (manufactured by Toyo Seiki Co., Ltd.) at 175 ° C and 50 rpm. Kneaded for 15 minutes. The kneaded material was formed into a sheet by heating at 170 ° C. and then cut into strips. The flake pellet and the esterified starch were kneaded for 15 minutes at a prescribed mixing ratio at 165 ° C. × 50 rpm using the above-mentioned lab blast mill, and then heated at 150 ° C. with a hot press. The sheet was lmm thick. This sheet was cut into a 5 x 5 cm mouth to prepare a test piece.
(5) 吸水率並びに可溶性成分率の測定  (5) Measurement of water absorption and soluble components
①吸収率は、 J I S K 72 09に準じて測定した。  (1) The absorption rate was measured in accordance with JIS K 7209.
2 3°C、 50 % R Hの恒温恒室室内で試験片を蒸留水中に 2 4 時間浸せきさせ、 吸水前後の重量により下式に従って算出した。  The test specimen was immersed in distilled water for 24 hours in a constant temperature and constant temperature room at 23 ° C and 50% RH, and the weight was calculated according to the following equation based on the weight before and after water absorption.
吸水率 (%) = ( 2 - M 3 ) X I 00ノ M l  Water absorption (%) = (2-M 3) X I 00 no M l
M 1 吸水前乾燥後の質量  M 1 Weight after drying before water absorption
M 2 吸水後の質量  M 2 Mass after water absorption
M 3 吸水後再乾燥させた時の質量  M 3 Weight when re-dried after absorbing water
②可溶性成分率は、 下式により算出した。  (2) The soluble component ratio was calculated by the following equation.
可溶性成分率 (%) = (M 1 -M 3 ) 1 00/M 1 (6) 測定結果 :  Soluble component ratio (%) = (M 1 -M 3) 100 / M 1 (6) Measurement results:
試験結果を表 1 に示すとともに、 理解を容易にするために、 図 1 〜4に、 三成分の組み合わせが同一で組成のみ異なる A · B群に分 けてグラフ表示する。  The test results are shown in Table 1, and for ease of understanding, the graphs are shown in Figs. 1 to 4 separately for groups A and B, which have the same combination of three components but differ only in composition.
これらの試験結果から、 エステル化澱粉及びエステル化セルロー スのそれぞれ単独の吸水率並びに可溶性成分率から求められる算術 平均値 (点線で表示) に比して、 両者のブレンド物は、 吸水率並び に可溶性成分率が明らかに低く、 耐水性が相乗的に改善されている とが分かる Based on these test results, compared to the arithmetic average value (indicated by the dotted line) obtained from the water absorption of each of esterified starch and esterified cellulose alone and the soluble component ratio, the blends of both showed a higher water absorption and Clearly low soluble content, synergistically improved water resistance Understand
(単位:部) (Unit: parts)
Figure imgf000010_0001
Figure imgf000010_0001

Claims

請求の範囲 The scope of the claims
1 . 置換度 ( D S ) 0. 4以上のエステル化澱粉(a) 、 D S 0. 4以上のエステル化セルロース(b) 、 及び、 エステル型可塑剤(c) の三成分を必須成分として含むことを特徴とする生分解性樹脂組成 物。 1. Degree of substitution (DS) Esterified starch (a) with 0.4 or more, esterified cellulose (b) with DS 0.4 or more, and ester-type plasticizer (c) must be included as essential components. A biodegradable resin composition characterized by the following.
2. 請求項 1において、 前記三成分の組成が、 (a) / (b) = 1 0 ノ 90〜 95ノ5 (重量比) で、 (a) + (b) 1 0 0重量部に対して (c) 5〜 1 00重量部が配合されてなることを特徴とする生分解性 樹脂組成物  2. The composition according to claim 1, wherein the composition of the three components is (a) / (b) = 10 to 90 to 95/5 (weight ratio), and (a) + (b) to 100 parts by weight. (C) a biodegradable resin composition characterized by comprising 5 to 100 parts by weight.
3. 請求項 1において、 前記エステル化澱粉が D S 1. 0〜2. 8の酢酸澱粉及びノ又はプロピオン酸澱粉であり、  3. The method according to claim 1, wherein the esterified starch is a DS acetate of 1.0 to 2.8 and a starch of no or propionate,
前記エステル化セルロースが D S 1 . 0〜2. 8である酢酸セル ロース及び Z又はプロビオン酸セルロース及びノ又は酩酸セルロー スであり、  The esterified cellulose is cellulose acetate and Z having a DS of 1.0 to 2.8, or cellulose cellulose propionate and cellulose acetate or drip acid cellulose,
前記エステル型可塑剤が、 フタル酸エステルまたは多価アルコー ルエステルであることを特徴とする生分解性組成物。  A biodegradable composition, wherein the ester-type plasticizer is a phthalic acid ester or a polyhydric alcohol ester.
4. 請求項 2において、 前記エステル化澱粉が D S 1 . 0〜2. 8の酢酸澱粉及びノ又はプロピオン酸澱粉であり、  4. The method according to claim 2, wherein the esterified starch is a starch acetate and a starch having a DS of 1.0 to 2.8.
前記エステル化セルロースが D S 1. 0〜2. 8である酢酸セル ロース及びノ又はプロピオン酸セルロース及びノ又は酩酸セルロー スであり、  The esterified cellulose is DS cellulose having a DS of 1.0 to 2.8, and cellulose acetate and cellulose acetate or cellulose propionate, and cellulose acetate sugar and cellulose acid salt.
前記エステル型可塑剤が、 フタル酸エステルまたは多価アルコー ルエステルであることを特徴とする生分解性樹脂組成物。  A biodegradable resin composition, wherein the ester-type plasticizer is a phthalic acid ester or a polyhydric alcohol ester.
5. 請求項 1〜4のいずれかにおいて、 前記エステル化澱粉がァ ミロース分 5 0 %以上のハイァミローススターチから調製されたも のであることを特徴とする生分解性樹脂組成物。  5. The biodegradable resin composition according to any one of claims 1 to 4, wherein the esterified starch is prepared from high amylose starch having an amylose content of 50% or more.
PCT/JP1995/002342 1994-11-22 1995-11-16 Biodegradable resin composition WO1996016116A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP28830294A JPH08143710A (en) 1994-11-22 1994-11-22 Biodegradable resin composition
JP6/288302 1994-11-22

Publications (1)

Publication Number Publication Date
WO1996016116A1 true WO1996016116A1 (en) 1996-05-30

Family

ID=17728416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002342 WO1996016116A1 (en) 1994-11-22 1995-11-16 Biodegradable resin composition

Country Status (2)

Country Link
JP (1) JPH08143710A (en)
WO (1) WO1996016116A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19706642A1 (en) * 1997-02-20 1998-08-27 Apack Verpackungen Gmbh Production of biodegradable, moisture-impermeable article
US5912177A (en) * 1994-06-29 1999-06-15 Common Services Agency Stem cell immobilization
EP1113022A1 (en) * 2000-01-02 2001-07-04 Japan Corn Starch Co., Ltd. Biodegradable block for models
WO2002024753A3 (en) * 2000-09-25 2002-06-20 Univ Nebraska Water resistant expanded polysaccharide based compositions and processes for making the same
US6833097B2 (en) 2000-01-03 2004-12-21 Japan Corn Starch Co. Ltd. Biodegradable block for models
CN109715721A (en) * 2016-12-15 2019-05-03 富士施乐株式会社 Resin combination and resin-formed body

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4291699B2 (en) * 2002-02-21 2009-07-08 日世株式会社 Biodegradable molding
JP4610187B2 (en) * 2003-12-26 2011-01-12 ダイセル化学工業株式会社 Cellulose ester resin composition
JP2007002142A (en) * 2005-06-24 2007-01-11 Tokyo Univ Of Agriculture & Technology Biodegradable plastic and biodegradable plastic product obtained from the plastic
JP4618649B2 (en) * 2006-11-28 2011-01-26 リケンテクノス株式会社 Acetylcellulose resin composition
JP6701346B2 (en) * 2015-12-22 2020-05-27 ロディア・アツェトウ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングRhodia Acetow GmbH Novel cellulose acetate-containing plasticizing composition
JP6573006B2 (en) * 2018-07-06 2019-09-11 富士ゼロックス株式会社 Resin composition and resin molded body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207047A (en) * 1991-11-14 1994-07-26 Ivan Tomka Biodegradable molding material or polymer blend having high water resistance, its production, and molding material or extruded article
JPH06329832A (en) * 1993-04-28 1994-11-29 Hoechst Celanese Corp Polymer blend comprising cellulose acetate and starch acetate and used for producing fiber, film, and plastic material and its production
JPH07102114A (en) * 1993-10-04 1995-04-18 Teijin Ltd Biodegradable composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207047A (en) * 1991-11-14 1994-07-26 Ivan Tomka Biodegradable molding material or polymer blend having high water resistance, its production, and molding material or extruded article
JPH06329832A (en) * 1993-04-28 1994-11-29 Hoechst Celanese Corp Polymer blend comprising cellulose acetate and starch acetate and used for producing fiber, film, and plastic material and its production
JPH07102114A (en) * 1993-10-04 1995-04-18 Teijin Ltd Biodegradable composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912177A (en) * 1994-06-29 1999-06-15 Common Services Agency Stem cell immobilization
DE19706642A1 (en) * 1997-02-20 1998-08-27 Apack Verpackungen Gmbh Production of biodegradable, moisture-impermeable article
EP1113022A1 (en) * 2000-01-02 2001-07-04 Japan Corn Starch Co., Ltd. Biodegradable block for models
JP2001192401A (en) * 2000-01-02 2001-07-17 Nippon Koonsutaac Kk Biodegradable block material for model
US6833097B2 (en) 2000-01-03 2004-12-21 Japan Corn Starch Co. Ltd. Biodegradable block for models
WO2002024753A3 (en) * 2000-09-25 2002-06-20 Univ Nebraska Water resistant expanded polysaccharide based compositions and processes for making the same
CN109715721A (en) * 2016-12-15 2019-05-03 富士施乐株式会社 Resin combination and resin-formed body
US11174373B2 (en) 2016-12-15 2021-11-16 Fujifilm Business Innovation Corp. Resin composition and resin molded body

Also Published As

Publication number Publication date
JPH08143710A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
JP4782284B2 (en) Biodegradable polymer
CN1300247C (en) Easter group polyester composition and flexible product
HUT54397A (en) Polymere-based mixture composition contaiing destructurated starch
AU681603B2 (en) Starch ester blends with linear polyesters
EP2432830B1 (en) Bioplastics
CN1212263A (en) composite resin composition
TW200831601A (en) Masterbatch and polymer composition
WO1996016116A1 (en) Biodegradable resin composition
EP1939248A1 (en) Water soluble biodegradable material
JP2002505342A (en) Composition comprising starch and / or modified starch and plasticizer
EP1939247A1 (en) A water soluble biodegradable material
JP3933315B2 (en) Composite resin composition
JP2766247B2 (en) Water and moisture resistant starch products
JP2740824B2 (en) Polymer composition containing esterified starch
JP3078478B2 (en) Composition for biodegradable molded article and method for producing biodegradable molded article
JP3372648B2 (en) Method for producing molded article of thermoplastic cellulose derivative composition having biodegradability
JP3367750B2 (en) Thermoplastic cellulose derivative composition and method for producing the same
JP2951720B2 (en) Resin composition
JP3748829B2 (en) Aromatic / aliphatic polyester copolymer composition and flexible molded article
US20030159788A1 (en) Novel reaction product of starches and aromatic acids and/or aromatic anhydrides
WO1997031979A1 (en) Biodegradable polyester compositions with natural polymers and articles thereof
JPH04202544A (en) Resin composition
JPH04202543A (en) Resin composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase