[go: up one dir, main page]

WO1996010000A1 - Gas-generating agent, process for producing the agent, and equipment for producing pelletized gas-generating agent - Google Patents

Gas-generating agent, process for producing the agent, and equipment for producing pelletized gas-generating agent Download PDF

Info

Publication number
WO1996010000A1
WO1996010000A1 PCT/JP1995/001925 JP9501925W WO9610000A1 WO 1996010000 A1 WO1996010000 A1 WO 1996010000A1 JP 9501925 W JP9501925 W JP 9501925W WO 9610000 A1 WO9610000 A1 WO 9610000A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas generating
group
compound
generating agent
reaction product
Prior art date
Application number
PCT/JP1995/001925
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Ito
Eishi Sato
Ryo Minoguchi
Minoru Yokoshima
Original Assignee
Sensor Technology Co., Ltd.
Nippon Kayaku Kabushiki-Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sensor Technology Co., Ltd., Nippon Kayaku Kabushiki-Kaisha filed Critical Sensor Technology Co., Ltd.
Publication of WO1996010000A1 publication Critical patent/WO1996010000A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids

Definitions

  • the present invention relates to a gas generating agent used in an inflator for an air bag of a vehicle, or a gas generating agent for projectile propulsion, and a method for producing the same.
  • the present invention relates to the formability and combustion stability, and also to the adjustment of the combustion characteristics.
  • the present invention relates to a gas generating agent which can be easily and safely carried out, a method for producing the gas generating agent, and a method for manufacturing and concealing a gas generating agent pellet.
  • sodium azide * As a gas generator for inflators, those based on sodium azide * are also typical. This sodium azide is currently used all over the world because of its moderate impact ignitability, combustion speed ⁇ and gas generation amount, but on the other hand, it is a highly toxic and dangerous substance ⁇ . There is a question that an explosion accident occurred during the manufacturing process. Therefore, as a gas generating agent in place of sodium azide, a solid pellet composed of a gold salt of a hydrogen-free bitetrazole compound and a specific oxidizing agent (Japanese Patent Publication No. 616-15656). JP-B-64-61557) and a solid composition containing a transition protein of aminoinoazole and an oxidizing agent
  • polyptadiene is used as a propellant such that it comprises a binder having a hydroxyl group-terminated polybutadiene prepolymer as a main component, an oxidizing agent and a specific binder in the binder. Used as a binder
  • a projectile propellant gas generator using a material having caking properties such as the above-mentioned polyptadene or aliphatic polyester
  • a material having caking properties such as the above-mentioned polyptadene or aliphatic polyester
  • the present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide a gas generating agent which is excellent in moldability, and whose characteristics can be easily and safely adjusted. And to provide a method for fabricating the same.
  • another object of the present invention is to provide an apparatus for producing a gas generant pellet which can more safely form a gas generant produced by the gas generant production method into a pellet or the like. Disclosure of the invention
  • the gas generating agent of the present invention which solves the above KRjH is ammonia or a compound having ammonia or a compound having ⁇ -NH a group j or ⁇ -NH- in the structural formula
  • amines j an organic compound having “one CHO group” or an organic compound capable of forming “one CHO group” in the formula (hereinafter, referred to as “j”). In the present invention, both of these are referred to simply as
  • the reaction product obtained by reacting with aldehydes has not only the property K as a gas generating component, but also the oxidizing agent and other components added to the gas generating agent. It is based on the new discovery that even binders that bind to agents are extremely useful.
  • a secondary reaction product obtained by reacting a reaction product obtained by reacting the amides with the aldehydes and a compound having a 1 OH group in the formula is provided.
  • a reaction product obtained by reacting a compound having the formula (I) with an N-alkoxy compound has characteristics similar to those of a reaction product obtained by reacting the amines and the aldehydes. It was made with a focus on
  • the present invention provides a gas generating agent comprising a gas generating component and an oxidizing agent, wherein the gas generating component comprises at least one of the following reaction products: is there.
  • an organic compound is also an organic compound having an CH0 group in the structural formulas, which may occur an CHO group Reaction product obtained
  • Such a gas generating agent can be suitable for being used as a gas generating agent for an inflator for an airbag or a gas generating agent for projectile propulsion for the following reasons.
  • the compound is selected, and the reaction product obtained by the reaction with the aldehydes described below produces a slurry with an appropriate viscosity due to the efficiency of the oxidizing agent described later, and the gas generating agent pellets It is preferable to use a material S which can be easily formed into a shape.
  • aldehyde such for use in the present invention, that have the Amin such aforementioned “one: H 2 group” or react with "one NH- j, equipped with a result and caking property and combustion agent This is for generating a reaction product, and can own an aldehyde group (one CHO group) as a functional group or generate a “one CHO group”.
  • the reaction products of the above (1) to (d) are usually viscous substances containing water. However, if the product is dried at a temperature to remove water, the condensation reaction proceeds and hardens.
  • the oxidizing agent described below is added to the viscous material, the oxidizing agent is included in the hardened material of the box, so that the oxidizing agent serves as a filler, and the molded gas generating agent Has high strength and is hardly powdered.
  • Aminotetrazole for example, 5-aminotetrazole
  • bitetrazole for example, 5,5-B1H-tetrazole
  • melamine triazole (for example, 5-year-old 1,2,4-to-1) Lyazole) or these golds (Group 1) are liable to react with aldehydes in an aqueous solution to form a solid reaction product.
  • One or more types selected from the first group and selected from the second group because they easily react with aldehydes to produce liquid reaction products It preferred to use species or two or more thereof.
  • a solid reaction product and a liquid reaction product are simultaneously obtained by the reaction with the aldehydes, and as a result, the slurry in which the solid reaction product is uniformly distributed in the liquid reaction product is obtained. Is obtained. Further, if the reaction product slurry is mixed with an oxidizing agent, a slurry containing water and having an appropriate viscosity is formed. However, since this slurry is a slurry containing water, it is safe to handle. In addition, this mixture slurry can be processed into a gas generating agent having a desired shape by various molding methods as it is, and the degree of freedom of combustion adjustment by shape control is increased.
  • amines used as a gas generating agent suitable for a bag inflator include those selected from the first group, mainly composed of aminotetrazole or azodicarbonamide, and appropriately mixed with the second group, or Or from the second group, with triaminoguanidine nitrate as the main component, and appropriately mixing the first group, or the first group of aminotetrazole or It is particularly preferable to appropriately mix azodicarbonamide and the second group of triaminoguanidine nitrate.
  • the azodicarbonamide of the first group does not easily react with the aldehydes, it is preferable to supplement with the amides which easily react with the aldehydes of the second group.
  • the second group triaminoguanidine nitrate, reacts easily with aldehydes, but the viscosity of the oxidizing agent tends to be insufficient, so it is difficult to react with the first group aldehydes. It is preferable to supplement this.
  • a pH adjuster is added as necessary, and any known PH adjuster can be used.
  • Examples of the compound having one NH 3 group or one NH— in the structural formula described in the above (a), (c) or (d) include monoethanolamine, human'T3 xyamine, and formamide.
  • C. Carbonamide, azodicarbonamide, hydrazodicarbamide, aminomonopropanol, azobisformamide, semicarbazide, acetate semicarbazone, hydrazine, formylhydrazine, formamidine, monoethylhyd.
  • the compound K or give as the specific examples of compounds that chromatic in ⁇ formula an NH a group or one NH- according to (c) or omega, these things N- main switch
  • the N-methylated substance is further subjected to N-methylolation treatment, the N-methylol compound described in the above (c) is obtained.
  • organic compound having one CH 0 group in the structural formula described in () include formaldehyde, acetate aldehyde, propyl aldehyde, n-butyl aldehyde, n-butyl aldehyde, and n —One or more species selected from the group consisting of forceprodaldehyde, acrolein, crotonaldehyde, and glyoxal.
  • organic compound capable of forming one CH 0 group described in the above (a) include formamide, paraformaldehyde, triodisan, hexamethylenetetramine, tetraxane, metaaldehyde, and azo.
  • the compound having a 10 H group in the formula shown in the above (h) is a compound having a 1 O H group sugar-linked to carbon (C) or nitrogen (N).
  • Such a compound having an OH group bonded to carbon (C) or nitrogen (N) include methanol, ethanol. Monoethanolamine, aminobanol, diethanolamine. One or more species selected from the group consisting of, for example, sheep hydrazine, human beef, ethylaminoethanolamine, hydroquinamine, and xylurea hydrate. Formamide dosim, formaldehyde beef shim.
  • the specific composition of the gas generating agent of the present invention is as follows. Including a generating component and 50 to 8% by weight of an oxidizing agent, 10 to 40% of a gas generating component, 50 to 80% by weight of an oxidizing agent, and 1 to 10% by weight And a combustion catalyst component.
  • the gas generating agent basically consists of a gas generating component and its oxidizing agent, and the content ratio of these components varies theoretically depending on the type of the gas generating agent and the type of the oxidizing agent.
  • the above-mentioned gas generating component of the present invention generally, mixing of 10 to 40% by weight of the gas generating component and 50 to 80% by weight of the oxidizing agent is carried out at a pace. Become. If the gas generating component is less than 10% by weight, the gas generation rate is poor, and if it is more than 40% by weight, incomplete combustion tends to occur. If the content S of the oxidizing agent is less than 50% by weight, incomplete combustion of the gas generating component tends to occur.
  • the most suitable range for the content ratio of the gas generating component and the oxidizing agent according to the specified substance is selected from the above range.
  • the oxidizing agent used in the present invention is one which is usually mixed in the gas generating component obtained as the above-mentioned reaction product.
  • an oxidizing agent is added to and mixed with the reaction product, and then the condensation reaction product is heated and condensed and cured, so that the oxidizing agent and the combustion agent are uniformly dispersed and brought into close contact. become.
  • it has excellent heat aging resistance, but it has a long ignition time
  • oxidizing agents such as nitric acid and chlorate, which have characteristics, the ignition characteristics can be significantly improved.
  • oxidizing agent 1a or 2 or more kinds of nitric acid.
  • pre-nitric acid * include sodium nitrate, potassium nitrate.
  • Chlorates, chlorites, bromates, perbromate clay, iodate clay, and iodic clay are examples of the above-mentioned acid salt.
  • oxohalogenate compounds include sodium hydrochloride, rhodium oxalate, sodium oxalate, rhodium chlorate, ammonium chloride, ammonium chlorate, and bromate.
  • Lithium, perbromate lime, iodate lime, and periodic lime are examples of the above-mentioned oxohalogenate compounds.
  • gold examples include manganese dioxide, iron oxide, zinc dioxide, potassium peroxide, potassium permanganate, barium peroxide, and molybdenum trioxide.
  • combustion catalyst one or two selected from zirconium, hafnium, molybdenum, tungsten, manganese, iron, nickel, chromium, titanium, or an oxide or sulfide, carbon, phosphorus, or sulfur alone The above is usable.
  • the present invention includes a step of reacting the above compound in an aqueous solution to obtain a slurry of the above-mentioned) to ⁇ reaction product having an appropriate viscosity, and a step of drying or heating the slurry to solidify the slurry. It is a thing.
  • the reaction for obtaining the reaction product of any of the above-mentioned) to (d) in an aqueous solution is an addition / condensation reaction in which the compounds contain water and repeat addition and condensation.
  • the water is removed by drying or heating, condensation curing
  • the viscosity of the slurry which is considered to produce advanced resin such as ffl amino resin, differs depending on the type of compound, PH, and water content. Can be adjusted.
  • the reaction for obtaining such a reaction product proceeds relatively easily, and there are countless combinations of compounds from which the reaction product can be obtained, and a gas having a desired component is generated. The possible combinations can be arbitrarily selected, and can be combined as a desired gas generator for inflator or a gas generator for propelling a flying object.
  • the oxidizing agent uniformly divided in the beret-shaped gas generating agent and the combustion agent, which is the reaction product come into close contact with each other.
  • the heat conduction of each component particle ⁇ ⁇ ⁇ is improved.
  • the ignitability of the gas generating agent is greatly improved, so that conventional gas generating agents such as nitrate and chlorite clay have excellent heat aging resistance but poor ignitability ( Even if the oxidizing agent is used as the oxidizing agent, in the present invention, the gas generating agent can be excellent in both heat aging resistance and ignition performance.
  • the method for producing a gas generating agent of the present invention will be described in more detail.
  • the production method of the present invention can be roughly divided into the following two types.
  • 2-2 a step of drying the slurry and pulverizing the slurry to form a powder.
  • the first method will be described by taking, as an example, a case in which an amine that produces the reaction product of the above (a) is reacted with an aldehyde.
  • the ratio (molar ratio) of amines and aldehydes in this reaction affects the basic physical properties of the reaction product and the physical properties resulting from the concept of polymerization reaction.
  • the amines: aldehydes 1: preferably in the range of 0.5 to 1.5.
  • the amount of water used is preferably S, which gives an aldehyde concentration of 10 to 50%.
  • the reaction is exothermic, but if the reaction is exothermic, the reaction mixture is allowed to react while cooling, if necessary, so that the reaction solution does not boil.If the reaction is less exothermic, the reaction does not boil to promote the reaction.
  • the reaction is carried out while heating to a moderate degree, and the slurry having the appropriate fluidity required in the next process is converted.
  • the slurry concentration 118 is adjusted by removing water after the reaction, and a method of removing water by decompression in principle is adopted.
  • a condensation reaction of a reaction product described below proceeds, and at this stage, a window for suppressing the condensation reaction is used. Therefore, it is preferable to avoid a stinging heating.
  • the oxidizing agent in the step of adding and mixing the oxidizing agent of 1-2 to form a slurry for molding raw material, the oxidizing agent is added to the reaction product slurry having an appropriate viscosity as described above. A slurry is formed.
  • the specified viscosity is a viscosity suitable for the molding method used in the following step 1-3.
  • the combustion agent is a slurry containing water
  • a molding method for general polymer materials such as extrusion while maintaining safety while being an explosive composition. Extrusion into a rod, cutting into a predetermined shape, forming into a sheet, such as a rubber sheet, and cutting into a pellet, or punching from this sheet It is molded into a desired shape by an arbitrary molding method such as a method.
  • the drying and solidifying step 1-4 is a step of removing water and condensing and curing the reaction product.
  • the degree of condensation by drying is natural drying. It can be adjusted by a combination of low-temperature heat drying of 50 or less and high-temperature heat drying of 9 Ot or more.
  • the condensation reaction is stable at 90 ° C or more high-temperature heating. And proceed. Therefore, this drying and solidification step is preferably performed under heating of 9 D 1C or more.
  • the work of adding and mixing the oxidizing agent to the combustion product which is a reaction product, is performed in the concept of a water slurry, so it is an extremely safe operation without explosion risk and uniform. A good mixture can be obtained.
  • the slurry viscosity of this homogeneous mixture can be adjusted by adjusting the amount of water, addition of oxidizing agent S, etc., and is adjusted to a viscosity appropriate for the next molding step. It can be supplied to a molding machine to form a pellet of a desired shape. Therefore, the choice of the pellet shape is free, and the degree of freedom in adjusting the combustion speed of the gas generating agent is increased.
  • the first method directly molds from the slurry of the gas generating composition containing the reaction product and the oxidizing agent, which is the gas generating component, while the second method forms the reaction generating as the gas generating component.
  • the product slurry or the slurry of the gas generating composition to which the oxidizing agent necessary for the reaction product slurry is added is first dried to form a powder, which is then press-formed by tableting or the like. It is a method to do.
  • the fine powder can be easily obtained by hot air drying while spraying the slurry by a spray dryer method.
  • the drying ffl degree needs to be a temperature at which the condensation reaction of the reaction product does not easily proceed, and differs depending on the raw material K and the reaction system. Preferably it is 80 or less. Further, when a plate-shaped or lump-shaped dried product is obtained by another drying method, ii, it is necessary to appropriately pulverize the dried product to form a powder.
  • this powdery composition is molded into a predetermined shape by a pressure molding method.
  • the reaction product which is a gas generating component, is polymerized with a certain degree of flexibility and caking properties, and is in a powder form in such a manner as to contain oxidizing particles. It is extremely low or non-ignitable in all cases of impact intensity, friction port intensity, and aerobic sensitivity. Therefore, unlike the conventional pressure molding process, there is no problem in terms of safety.
  • the powder particles have an appropriate caking property, the concept of compaction is easily maintained even after pressure molding, and the shape and density of the compact are uniform due to a synergistic effect with condensation hardening by heating in the next step. As a result, it is possible to obtain a gas generating agent having a high strength of the compact and a stable burning rate.
  • the oxidizing agent powder is added to the powder obtained in the step 2 ⁇ 3, and the surface of the reaction product powder is added to the powdered oxidizing agent in the step 2 ⁇ 3.
  • this oxidizing agent prevents the raw material powder from adhering to the bistone.
  • the following heat-condensation step 2—4 is a step of heating and compacting and compacting the reaction product, which differs depending on the raw material K and the shape of the reaction product.
  • the ripening is performed at a temperature of at least C, preferably at 100 and at a high temperature of at least.
  • the drying operation, the crushing operation and the pressure molding operation under this concept basically ensure safety o
  • the gas generating agent manufactured by the above-mentioned method has a structure in which the oxidizing agent is uniformly dispersed and taken into the resin cured and condensed in the compaction process after molding, the oxidizing agent is used.
  • the particles act as fillers as a reinforcing material in the resin molded article, and the beret strength after molding becomes remarkably large.
  • the crushing strength of the tablet-formed pellets with a diameter of 7 mm and a thickness of 5 mm before the condensation hardening treatment is around 6 kgf, but after the condensation hardening treatment, it is as large as 22 to 30 kgf. I do. Therefore, the degree of powdering of the compact is reduced to a negligible level.
  • the cured polymer material 0 As a pellet with the concept of uniformly dispersing the oxidizing agent in the broadening agent is obtained, its shape and density become constant, and a gas generating agent whose viscosity and burning rate are stable can be obtained. Become. In addition, since the combusting agent and the oxidizing agent are in close contact in the pellet, the thermal conductivity of the rain is extremely good. As a result, conventionally, the heat aging resistance is excellent, but the flammability is poor.
  • the above (a) to! An oxidizing agent is added to any of the reaction products of d) and mixed to form a slurry having a predetermined viscosity, and this slurry is poured into a flexible non-gold-molded mold having a predetermined shape to obtain a slurry.
  • the slurry is a water slurry containing water as described above, the safety at the time of molding is improved, and at the same time, the risk of forming a gas generating agent, which is a kind of explosive, is always dangerous. It is now possible to use the "heating" process, which had been described as “the process”, thereby shortening the solidification time and increasing productivity.
  • a mold is formed on a rotatable annular belt such as an airless belt, and a slurry is injected with a brittle belt. It is reasonable to take out the molded product that has been solidified by heating and to heat and solidify it during that time.
  • annular belt-shaped molding frame formed of a non-metallic material having flexibility and having a plurality of recesses on its surface nodes to be a gas generating agent molding die, and a drive for rotating the frame.
  • the molding frame includes a flat plate, and a plurality of non-metallic (R) members that are erected in the shape of a K flat plate and have flexibility.
  • the inside of this ffi body becomes a concave part of the molding die, and at least one portion of the peripheral wall ffi of the tongue body has a slit in the axial direction and in a direction orthogonal to the frame body moving direction. Then, the body is erected by fitting into a shallow recess provided in a flat plate of the molding frame.
  • the concave portion serving as a molding die may be formed by forming the molding frame itself from a non-metallic material having flexibility and forming a concave portion serving as a molding die in a surface node thereof. Good.
  • a cut-out is provided in at least a part of the frame base material portion between the tongue and dent in the axial direction, or a rear surface of the molding frame is orthogonal to the traveling direction of the frame. It is desirable that a groove be formed in the direction.
  • the gas generating agent S compound is formed from a water slurry state, so that the gas which has been regarded as the most dangerous The safety of the molding process of the generator can be greatly improved.
  • the shape of the mold is not limited to the conventional elliptical tablet shape, but the selection of the shape is widened and the combustibility is considered. It is possible to select the optimal gas generating agent shape that has been obtained.
  • a concave node serving as a molding die is formed on the surface of the molding frame. Injection, heating and solidification of the slurry-like gas generating agent composition injected, and R solidification of the molded body by sexually deforming the molding die, so that the gas is continuously discharged. It is easy to mold and generate the generator, and the productivity is dramatically improved.
  • the mold since the mold is made of a flexible material, it can be easily extracted from the mold only by elastically deforming it, and no special tool for extraction is required and the gas generating agent is used. There is no breakage during removal of the molded body, and the product yield is improved.
  • the mold is made of a flexible non-gold JS material, and the molded article can be extracted only by its elastic deformation, so that the friction between the molded article and the mold is reduced.
  • the molded article can be extracted only by its elastic deformation, so that the friction between the molded article and the mold is reduced.
  • there is no spark at the time of removal which is a major problem in the conventional method, and safety is dramatically improved.
  • the structure of the model is a combination of a flat plate and a plurality of cylinders erected in the form of a flat plate, or a flat plate having a shallow dent and a ⁇ body fitted to the dent.
  • various applications are possible, such as forming a cut in the body in the axial direction to facilitate the property deformation of the mold when removing the molded product.
  • the applicable range is wide such that the form can be adopted.
  • silicone rubber polybutadiene, polychlorinated bure, polyisoprene, butyr rubber, isobutylene, and ⁇ Since it is possible to use one or more of krill rubber, ketirosulfonidani polyethylene, ethylene propylene, fluorine rubber, and urethane rubber or a mixture thereof, molding of a mold can be performed easily and at low cost.
  • the method and the apparatus for producing a gas generating agent according to the present invention firstly consider the danger of ignition caused by the molding technique when the gas generating agent is tableted from a powdery raw material mixture. Second, it solves the problem of danger of ignition and the problem of low productivity caused by the mold during propellant molding, and provides an extremely safe and productive technology.
  • the company provides production technology for highly efficient gas generating agents. Simple sharps of the drawing
  • FIG. 1 is a typical example of a graph showing characteristics obtained in a one-liter tank test
  • FIG. 2 is a cross-sectional view showing an example of a configuration of a gas generating agent forming apparatus according to the present invention
  • Fig. 3 is a top view of the device IB of Fig. 2
  • Figs. 4 (a) and 4 (b) show the procedure of the method for manufacturing a gas generating agent according to the present invention.
  • Fig. 40 (a) is a side view
  • Fig. 4 (b) is a side view
  • Fig. 5 is a schematic view of a gas generating agent molding apparatus S according to the present invention.
  • FIG. 6 is a perspective view showing another embodiment of the injection mechanism of the present invention.
  • FIG. 6 is a perspective view showing another embodiment of the molding frame of the molding apparatus B for the gas generating agent according to the present invention.
  • FIG. 7 is a perspective view showing another embodiment of the molding frame of the gas generating agent molding apparatus according to the present invention
  • FIGS. 8 (a) and 8 (b) show the present invention.
  • the configuration of such a gas generating agent forming apparatus Fig. 8 (a) is a top view
  • Fig. 8 (b) is a lateral view
  • Figs. 9 (a) and 9 ( b) is H showing still another embodiment of the molding frame of the gas generating agent molding apparatus according to the present invention, wherein FIG. 9 (a) is a top view
  • FIG. 9 (b) is a lateral surface.
  • the properties of the converted gas generating agent were evaluated by a one-liter tank test.
  • This one-liter tank test has a pressure sensor attached to a stainless steel container with an inner volume of 1 ') and the igniter can be attached freely.
  • Put the prototype gas generant pellet in this container ignite it with the igniter, measure the ignition time from when the ignition current of the igniter flows until the pressure is generated, and measure the generated pressure.
  • the igniter was used 0. 6 fir entering the DD NP (Jiazojutorofu Nord) ignition Ball + B / KNO a (Bo n down mortar stones).
  • FIG. 1 (1) A typical example of a graph showing the characteristics obtained by this one-liter tank test is shown in Fig. 1 (1).
  • t in the case of the gas generator for inflator t is about 1 Oms
  • ⁇ 1 ⁇ and t-P »a « are within a predetermined range, and it is necessary to have an appropriate combustion rate.
  • This reaction product is thought to be a type of amino resin formed by the addition condensation reaction of an amino group (one NH A ) and an aldehyde group (one CH 0).
  • the product of the reaction with the salt is water-soluble, but that of 5-ATZ is not water-soluble. Therefore, it is a slurry-like reaction product in which both are mixed.
  • This slurry one like reaction product chlorate force Riumu powder (KC] 0 a) 1 72.
  • the ignition time t is less than 1 Oms, and t-Pmax and Pmax are also within appropriate ranges, and the gas generating agent for the inflator for airbags.
  • the gas generating agent for the inflator for airbags was a good value.
  • C 0 ⁇ in the product gas is any even less than 1% 0., was not in an amount sufficient to provide Q S beta
  • This liquid reaction product was mixed with 13.7 g of clay as an oxidizing agent, mixed, and the resulting viscous slurry was dropped on a polyethylene sheet using a syringe. It was dried for 24 hours in the same manner as in Example 1 to obtain a hemispherical gas generant pellet with a diameter of about 7 mm.
  • potassium chlorate 27.8 was added and mixed as an oxidizing agent to form a viscous slurry, which was extruded using a syringe and cut to a length of 5 to 1 Omm to carry out the condensation reaction. It was air-dried without advancing, and a short string-shaped gas generant having a diameter of about 4 mm and a length of 5 to 1 Omm was obtained.
  • TAGN 12.5 ⁇ (0.075 mole) and 5 ⁇ 2.1 ⁇ (0.025 mole) were mixed with 0.8 g of magnesium carbonate for silk shaping, and 4 g of water was added thereto.
  • 11.4 g of the above formalin solution (37% product) was gradually added and mixed with stirring, and the mixture was reacted at room temperature for about 1 hour to produce a transparent syrup-like reaction. Thing was obtained.
  • 27 g of chlorinated acid powder) as an oxidizing agent was added to and kneaded with the resulting reaction product in the form of a syringe, and the obtained slurry-like composition was injected into a syringe in the same manner as in Example 12.
  • TAGN l O g (0.06 mol) and 5-ATZ 3.4 ⁇ (0.04 mol) are mixed with 0.8 g of magnesium carbonate for inversion and mixed with 4 g of water. And then kneaded to form a base by mixing with S. Then, while gradually adding 11.4 g of the formalin solution (37% product), the mixture was stirred by ft and allowed to react at room temperature for about 1 hour. A clear, sipping reaction product was obtained. To this reaction product, 26.7 g of potassium chlorate powder as an oxidizing agent was added and kneaded, and the obtained slurry composition was dropped on a polyethylene sheet using a syringe in the same manner as in Example 15.
  • H-drying was performed to obtain a hemispherical gas generating pellet with a diameter of about 7 mm in which the condensation reaction was advanced.
  • ti 10 Oms
  • t-Pmax. 47.2 ms
  • Pmax 60.05 atm., which was a good value as a gas generator for inflators.
  • TAGN 4.2 ⁇ (0.025 mol) and 5 ⁇ 6.4 ⁇ (0.075 mol) are mixed with 0.4 g of magnesium oxide for ⁇ adjustment, and 4 g of water is added thereto.
  • 11.4 g of the above formalin solution (37% product) was gradually added, mixed with stirring, and allowed to react at room temperature for about 1 hour. A slurry-like reaction product was obtained. To this reaction product, 2 &.
  • TAGN 3.3 g and ADCA 9.3 S are mixed with 0.4 g of magnesium oxide for pH adjustment, and 4 g of water is added to the mixed mixture to form a base. After that, the former ⁇ -formalin solution (37% product) 8. The mixture was mixed slowly while adding lg slowly, and allowed to react at room temperature for about 1 hour while cooling with water. Thing was obtained. To this reaction product, 20.5 r / min of acid lime powder as an oxidizing agent was added and kneaded. The mixture was extruded from a syringe in the same manner as in Example 13 and cut into a length of about 7 mm.
  • Example 11 In Example 11, a chloric acid power was used in place of the lithium chlorate.
  • the beret 20 s prepared using 13.5 g was heated at 110 ° C. for 48 hours to be completely condensed and cured.
  • This slurry-like composition was extruded onto a polyethylene sheet to form a 1 mm-thick plate-like body, which was dried and solidified in a 50% moisture oven at 24 hours.
  • the plate-like solid is roughly crushed and further crushed in a mortar to obtain a powder having a particle size of 1 mm or less.
  • a pellet of 6, 7, 8 mm in diameter and 5 mm in thickness is used. Each 150 g was produced.
  • the pellets were subjected to a condensation hardening reaction at X 24 hours in 107 in a high-temperature furnace to obtain a gas generating agent.
  • the crushing strength of this gas generant pellet was extremely high at 20 to 30 kgf. Incidentally, the crushing strength before the condensation reaction was 5-6 kgf.
  • each ignition time t is within 1 Dms
  • t-Pmax and Pmax were also within the range of conductivity, and were good values as gas generating agents for inflators for airbags.
  • the C 0 degree in the generated gas was 0.1% or less in each case, which was not an amount sufficient to satisfy the question S.
  • the reaction product obtained by reacting under the same conditions as in Example 15 was compacted and dried at room temperature to form a solid mass, which was sufficiently crushed and ground in a mortar.
  • Nitrate Ca Li um powder as an oxidizing agent to the powder material (KNO s) 3 1 1. 4 g (3. 0 8 mole "and Guhani periodate mosquito Li um (KC 1 0 4> 38. 3 g (0 .28 mol) were added to each of them, and the mixture was kneaded in 2D pieces, and using a punching machine, 150 g each of 6.7, 8 mm mxj 5 mm diameter berets were produced.
  • Kt at ignition is within 1 Oms
  • P-x and P-x are also within appropriate ranges, and are good gas generators for air flakes. Value.
  • the C 0 concentration in the generated gas was 0.1% or less in each case, and was not S which was a problem. 00
  • TAGN 66.8 g (0.40 mol) and 5-ATZ 102.0 g (1.20 mol) were mixed with 37.9 g (0.27 mol) of beef samethylene tetramine. After adding 70 g of water thereto, the mixture was heated to 9 D1C and reacted for 30 minutes to obtain a clear liquid viscous reaction product (a kind of amino resin).
  • the mixture was then closed and mixed for 20 minutes to form a viscous slurry.
  • the slurry-like composition was extruded onto a polyethylene sheet to form a 1 mm rhinoceros plate, Next, the plate-like solid was roughly crushed and crushed in a mortar to obtain a powder having a particle size of 1 mm or less.
  • 8mmX 5mm thick berets were removed for 150s each.
  • the pellets were subjected to a condensation hardening reaction at 107 tx for 24 hours in a high-temperature furnace to obtain a gas generating agent, and the crushing strength of the gas generating agent pellet was extremely high at 20 to 30 kgf. Incidentally, the crushing strength before the binding reaction was 5-6 kgf.
  • a thermal shock wiping test was performed (at +90, a test was performed in which 200 cycles were repeated in a period of 1.1 to 14 hours. The weight change after the test was 0, and crushing was performed. The strength was 21 ksf, and there was almost no change. Similarly, a heat aging test in which the temperature was kept at 120 for 100 hours showed that the weight change was 10.3%. However, there was no change in appearance.
  • the numbers in the above-mentioned conditions indicate the state of the environmental test, where 1 is the initial state, 2 is after the thermal shock test, and 3 is after the heat aging test.
  • a 37.38 formalin solution 13.88 previously adjusted to pH 8.0 with sodium hydroxide was heated to 90.
  • a 10% aqueous solution of 50% urea was gradually added to the mixture, and the mixture was stirred at 9 Ot for 30 minutes.
  • 7.8 g of ethanol was added, and further, phosphoric acid was added to obtain pH 5.5.
  • the mixture was further heated at 90 ° C. for 1 hour to obtain a slightly viscous liquid.
  • the ignition time t was within 1 Oms, and t-Pmax and Pmax were also within appropriate ranges.
  • FIG. 2 is a lateral view BI showing the configuration of an embodiment of an apparatus for carrying out the method for producing a gas generating agent according to the present invention
  • FIG. 3 is a top view of the embodiment
  • FIG. 4 (d) is a schematic diagram for explaining the steps of the method for producing a gas generating agent of the present invention.
  • reference numeral 1 denotes a molding device g for a gas generating agent, which is a belt-shaped molding frame 4A to 4A, which is rotated, an IB driving mechanism 2, and slurry injection. »Composition 3
  • the drive mechanism 2 includes rotations ⁇ 8 A and 8 B rotatably supported between the front support columns 6 A and 6 B and the rear support columns 7 A and 7 B fixed on the ground 5, respectively.
  • the rotating shaft 8B has a shaft 9a that engages via a gear 9A
  • the main body 9B has a rotating device S9 (motor) fixed to the rear support column 7B.
  • the cylindrical members 11 and 12 serving as a deformation function of the drive mechanism 2 are externally fitted and fixed along the axial direction, respectively.
  • This The outer peripheral surface 1 1a, 1 2a of the cylindrical member 1 1.12 is formed in a shape in which the convex 13A and the concave 13B are continuous along the circumferential direction.
  • a plurality of molding frames 4A to 4L are detachably fixed on the surface 15a of the annular belt 15 in the direction of the circulation movement.
  • the molding frames 4A to 4L are made of silicone rubber, polybutene rubber, polybutylene chloride, butyl chloride, polyisoprene, nitrile rubber, isobutylene, acrylamide rubber, styrene sulfonated polyethylene, ethylene propylene rubber, It is made of one or more of fluororubber and urethane rubber or a mixture thereof, and is a non-gold flexible material having no adhesiveness with the gas generating composition ⁇ . It is formed in a flat plate shape having the same width as 5 and a predetermined thickness.
  • a concave part 16 serving as a circular cross-sectional forming die having a predetermined diameter d and a depth h is provided in the direction of the circular belt 15 and the direction of circulation movement.
  • the diameter d and the depth h of the recess 16 are determined by the shape of the gas generating agent (tablet). The shape can be changed as appropriate.
  • the slurry-like gas generating composition P is injected into each of the recesses 16 of the molding frames 4A to 4L on the side of the rotating shaft 8A, which is the side of rotation of the belt 15 of rotation.
  • the slurry injection mechanism 3 is provided, and the rotating shaft 8B, which is the end-of-rotation side, is located on the rotating shaft 8B side.
  • An inclined shooter 17 is thrown.
  • a cushioning material 18 (rubber or the like) is attached to the surface of the shutter 17 facing the cylindrical member 12, and extends to the upper part of the product hopper 19. Injecting the slurry into the structure »No.
  • nozzle 3 for injecting the slurry-like gas generating composition P into each of the recesses 16 of the molding frames 4 A to 4.
  • a moving device 3B that can move in multiple axes directions (vertical direction A, left and right direction B, front and rear direction C in FIGS. 2 and 3). It is connected to a slurry gas generating tank (not shown) via C.
  • the nozzle 3A is provided with means (not shown) for controlling the injection S of the slurry to be injected into the recess 16 of the molding frames 4A to 4L (the diameter d of the recess 16 and the depth thereof). (The one that changes and controls the injection S based on the h and the tablet shape of the gas generating agent).
  • a heating method is employed in the drying and solidifying step of the gas generating agent composition P, so that the rotating shafts 8A and 8BK A heater 20 is provided, and while each of the molding frames 4A to 4L moves linearly between the rotating shafts 8A and 8B, each of the frames 4A to 4 is approximately 50 to 120.
  • the hot air or hot air is blown out, whereby the slurry fibrous gas generating composition fiPP injected into each recess 16 is heated and dried to be solidified.
  • the apparatus 1 for forming a gas generating agent in the present embodiment has the above-described configuration. Next, a method for forming a gas generating agent using the apparatus S 1 will be described. , Figures 2, 3, 4 (a) to 4 (b)
  • moving and hiding 3B of the slurry injection mechanism 3 is moved in the multi-axial direction, and the respective recesses 16 of the molding frame 4A on the annular belt 15 on the rotation start side are formed.
  • An injection step of injecting a predetermined S slurry P from the nozzle 3A is performed within the state shown in the twentieth and third EIs.
  • the motor 9 is driven to move the annular belt 15 to the molded product shutter 17 side, and the molding frame 4A is linearly moved so as to retreat from the nozzle 3A.
  • a molding frame 4B associated with A is positioned so as to face the nozzle 3A, and a predetermined amount of slurry P is injected from the nozzle 3A into each recess 16 of the molding frame 4B.
  • the slurry P is sequentially injected into the respective concave portions 16 of the forming frames 4C to 4L by the nozzle 3A.
  • the molding frames 4A, 4B.- are sequentially linearly moved to the molded product shutter 17 side, and the molding frames 4A, 4B.
  • the slurry-like gas generating composition P injected into each of the recesses 16 of FIG. 6 reaches the heater 20 of Shimoguro, where hot air or hot air of about 50 to 120 described above is blown.
  • the water in the slurry is evaporated and the gas generating agent is solidified to form a gas generating agent tablet Q having a predetermined shape.
  • a condensation reaction proceeds in this heating step, and a strong solid gas generating agent is generated.
  • each of the recesses 16 of the molding frame 4A formed of a flexible non-metallic material has an opening 16a.
  • the elliptical shape is larger in the direction of circulating movement of the S-shaped belt 15 and smaller in the direction perpendicular to this direction.
  • the gas deformation agent which is a molded product While being deformed elastically so as to reduce the diameter of the bottom 16b side, the gas deformation agent which is a molded product is separated from each hollow 16 by this elastic deformation, Due to the pressing force acting to push the gas generating agent Q out of each recess 16 by reducing the bottom 16 b side of the recess 16, the gas generating agent Q, which is a molded product, is placed in each recess 16. It jumps out of the box, falls on the scooter 17, and is collected in the molded article hobber 18 while rolling on the scouter 17. As described above, in the process of rotating each of the forming frames 4A to 4L along the circumference of the cylindrical member 12 together with the annular belt 15, each of the forming frames 4A to 4L is rotated. By elastically deforming the hollow 16 formed on the surface of L, a sampling step of extracting the gas generating agent Q as a molded product from each ⁇ ® 16 is performed.
  • the molding frame 4A on which the above-described extraction process is completed, is returned to its original shape (circular cross-section) in each of the concave portions 16 and the other molding frames 4C,
  • the slurry is circulated back to the position S facing the nozzle 3 A of the slurry injection mechanism 3 on the rotating glaze 8 A side, and from above (1)
  • the gas generating agent Q is formed through the above-described injection step, heating solidification step, and extraction step. Also, after the molding frame 4B to 4 is subjected to the extraction process in which the gas generating agent Q, which is a molded product, is extracted from each of the concave portions 16, the annular belt 15 sequentially rotates the rotating shaft side 8A. The slurry is circulated back to the position B facing the nozzle 3A of the slurry injection mechanism 3, and the above (
  • the gas generating agent Q is formed through the above-described injection step, heating solidification step, and extraction step sequentially.
  • the forming frame 4 having the forming die formed by the large number of concave portions 16 made of non-metal having flexibility The gas generating agent Q can be mass-produced by sequentially repeating A to 4 L in the order of the injection step, the heating solidification step, and the extraction step. Also, in order to extract the gas generating agent Q from the molded article formed in each of the concave molds 16, it is only necessary to elastically deform the concave mold 16 formed of this flexible material. Since it can be easily extracted, the gas generating agent Q, which is a molded product, is not chipped or cracked, and the yield of molded products can be improved. Since the friction between the agent Q and the concave portion 16 can be reduced, there is no danger of ignition and the safety at the time of molding the gas generating agent can be greatly improved.
  • a heater is arranged at the upper part of the transfer of the molding frames 4A to 4L.
  • the heater is arranged SB.
  • this is another similar ripening and drying system, for example, a tunnel. It goes without saying that a method in which a wireless compare moves in the mold heating port or a far-infrared bran heating method can be adopted.
  • the nozzle 3A of the slurry injection mechanism 3 is shown as a single nozzle, but is not limited to this, as shown in FIG.
  • the number of the nozzles 3A corresponding to the number of dents 16 (10 in this embodiment) formed in one row of the molding frames 4A to 4L is set to each dent. It may be thrown to correspond to 16 ⁇
  • the moving mechanism 2 is configured to circulate and deform the forming frames 4A to 4L by the configuration of the annular belt 15, the cylindrical members 11 and 12 and the motor 9.
  • the present invention is not limited to this, and any configuration may be used as long as it effectively circulates and deforms the molding frames 4A to 4L, and the same effects as in the present embodiment can be obtained.
  • the structure of the concave portion 16 serving as a molding die formed in each of the molding frames 4A to 4 is not limited to that of the present embodiment, and is shown in FIG. 6 to FIG. Such a structure may be used.
  • the following shows the structure of the molding frame 4 A to 4 Modifications will be described with reference to FIGS. 6 to 9.
  • the molding frame itself is formed of a material made of non-gold (5) having flexibility, and the molding die 16 is directly drilled into the glare frames 4A to 4L. It is formed, and »The base portion 16 A of the dents 16, 1 in contact is cut in the axial direction along the peripheral wall 16 c of the dent 16 and extends to this bottom 16 b. At least one line 25 is thrown into the base material of each recess in the row direction of the recess (the width direction of the frame). Are provided at two places in the frame width direction).
  • each of the recesses 16 having a circular cross section at the boundary of the break line 25 is deformed into a chair shape so as to increase the diameter d. This makes it easier to extract the gas generating agent Q formed in each of the recesses 16.
  • the molding frame itself is formed of a non-gold JS material having flexibility, and a hollow 16 serving as a molding die is directly drilled in the truss frame 4A to 4L.
  • a substantially V-shaped groove having a predetermined depth is provided in a direction orthogonal to the circulation movement direction of the » 30 is thrown.
  • each of the concave portions 16 having a circular cross section at the boundary of the groove 30 is deformed into a circular shape so as to increase its diameter d. Then, it is easier to remove the formed gas generating agent Q.
  • the molding frames 4A to 4L are composed of a flat plate 35 and a frame 36 having flexibility.
  • this frame 36 for example, seven cylindrical bodies 37 are integrated in one row (circular movement direction of the annular belt 15) in units of two rows (the width direction of the annular belt 15).
  • Each of the cylinders 37 has its peripheral surface joined by an adhesive such as silicon or the like, and an end surface portion of the joined side (so that a part of the end surface is projected on the flat plate 35). Contact The flat plate 35 and the cylindrical body 37 form a hollow 16 as a forming die.
  • the molding frames 4A to 4L are formed by forming shallow recesses 42 on the surface of a flexible flat plate 35.
  • the cylindrical body 40 is fitted into the inside of the tube 42 and raised, thereby forming a hollow 16 serving as a molding die.
  • each cylindrical body 40 is cut in the axial direction to form at least one force line at a breaking line 41 force ⁇ orthogonal to the circulating movement direction of the annular belt 15.
  • the gas generating agent Q molded in each hollow 16 is deformed by the elastic deformation of the molding frames 4 A to 4 L so that the cylindrical body 40 is surrounded by the peripheral wall 41 A at the breaking line 41.
  • the gas generating agent Q can be easily extracted since the gas generating agent Q can be spread and deformed so as to be divided into two parts.
  • the shapes of the dents 16 serving as the molding dies formed on the molding frames 4A to 4L in the molding apparatus S1 of the gas generating agent of the present example are all circular oval.
  • the shape of the concave portion 16 serving as a molding die is not limited to this, and the cross section of the concave portion 16 may be various shapes such as a rectangular shape or an elliptical shape, and the bottom shape of the K portion may also be changed.
  • the tokuburo 16 may be either integral with or separate from the molding die. Needless to say, a great effect can be obtained.
  • the recess 16 may be integral with or separate from the molding dies 4A to 4L. Further, the S-shaped belt 15 and the molding dies 4A to 4L may be integrally formed. Needless to say, it may be a structure that can be replaced according to the application. With any of these structures, the same effect as in the above embodiment can be obtained.
  • the gas generating agent mixture is formed from a water slurry state, and thus has been regarded as the most dangerous in the past. This greatly improves the safety of the gas generating agent forming process.
  • the molding shape is not limited to the conventional ridge-shaped tablet shape.
  • a concave portion serving as a molding die is formed on a surface node of the molding frame, and the slurry-like gas generating component is moved while moving the molding frame.
  • the concave portion heat-solidify the injected slurry-like gas generating composition, and remove the molded solid that has been solidified by elastically deforming the molding die.
  • the gas generating agent can be easily formed and self-K can be easily formed, and the productivity can be dramatically improved.
  • the molding die is formed of a flexible material, it can be easily extracted from the mold only by elastically deforming it, so that a special jig for extraction is not required, and the gas generating agent molded body is not required. There is no damage when extracting Product yield also improves.
  • the mold section is formed of a non-metallic material having flexibility, and the molded article can be extracted only by its elastic deformation, so that there is almost no friction between the molded article and the mold portion.
  • the generation of sparks at the time of removal which was a major problem with the conventional method, is eliminated, and safety is dramatically improved.
  • the mold is made of a flexible non-gold JS material and has an axial cut in its peripheral wall, it is extremely easy to remove the molded product due to its elastic deformation.
  • a combination of a plate with a flat plate and a plurality of rods erected in the form of a flat plate, or a flat plate having a shallow recess with a rod that is fitted in a triangular shape or Various applications are possible, such as forming a cut in these cylinders in the axial direction to facilitate the elastic deformation of the mold when removing the molded product. It has the advantage that it can be adopted.
  • silicone rubber polybutadiene, buried clay, polyisoprene, nitrile rubber, isobutylene, acrylamide rubber, chlorosulfonated polyethylene, ethylene propylene rubber, and fluorine rubber are used as flexible materials for mold parts. Since one or more urethane rubbers or a mixture thereof can be used, molding of a mold can be performed easily and at low cost. Productivity availability
  • the present invention relates to a gas generating agent which is excellent in moldability and combustion stability, and whose combustion characteristics can be easily and safely adjusted, and a method for producing the same. It is most suitable as a gas generating agent to be used or a gas generating agent for projectile propulsion, and a production method thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Air Bags (AREA)

Abstract

A gas-generating agent that is excellent in formability and combustion stability, has readily regulable properties, and can be produced safely. The agent comprises a gas-generating component and an oxidizing agent, and the gas-generating component comprises at least one of the following reaction products (a) through (d): (a) a reaction product formed between ammonia, its salt or a compound having an NH2 or NH group in its structure and an organic compound that has a CHO group in its structure or that can yield a CHO group; (b) a secondary reaction product formed between the reaction product (a) and a compound having an OH group in its structure; (c) a reaction product formed between a compound having an NH2 or NH group in its structure and an N-methylol compound; and (d) a reaction product formed between a compound having an NH2 or NH group in its structure and an N-alkoxy compound.

Description

明 細 害 ガス発生剤及びその製造方法並びにガス発生剤べレツ トの製造装置 技術分野  Field of the Invention Gas generating agent, method for producing the same, and apparatus for producing gas generating agent pellets
本発明は、 車両のエアバッグ用インフレータに用いられるガス発生剤 、 又は飛翔体推進用ガス発生剤及びその製造方法に係り、 特に成形性と 燃焼安定性に «れ、 その燃焼特性の ra整も容易且つ安全に行なう亊がで きるガス発生剤及びその製造方法並びにガス発生剤べレッ トの製造装匿 に関するものである。 背景技術  The present invention relates to a gas generating agent used in an inflator for an air bag of a vehicle, or a gas generating agent for projectile propulsion, and a method for producing the same. Particularly, the present invention relates to the formability and combustion stability, and also to the adjustment of the combustion characteristics. The present invention relates to a gas generating agent which can be easily and safely carried out, a method for producing the gas generating agent, and a method for manufacturing and concealing a gas generating agent pellet. Background art
先ず、 インフレータ用ガス発生剤としては、 アジ化ナトリウムを基剤 とするものが *も代表的なものである。 このアジ化ナトリゥムは、 適度 の衝撃着火性、 燃焼速 κ及びガス発生量を有する事から、 現在世界中で 使用されているが、 反面、 毒性及び危唉性の高い物 κであり、 世界各地 の製造工程中において、 爆発事故が発生しているという問 がある。 そ こで、 アジ化ナト リウムに代わるガス発生剤として、 水素を含まないビ テトラゾール化合物の金厲塩と特定の酸化剤とからなる固体ペレツ ト ( 特公昭 6 4 - 6 1 5 6号公報ゃ特公昭 6 4 - 6 1 5 7号公報) 及びアミ ノアラゾールの遷移金 維体と酸化剤とをさむ固体組成物 (特開平 5— First, as a gas generator for inflators, those based on sodium azide * are also typical. This sodium azide is currently used all over the world because of its moderate impact ignitability, combustion speed κ and gas generation amount, but on the other hand, it is a highly toxic and dangerous substance κ. There is a question that an explosion accident occurred during the manufacturing process. Therefore, as a gas generating agent in place of sodium azide, a solid pellet composed of a gold salt of a hydrogen-free bitetrazole compound and a specific oxidizing agent (Japanese Patent Publication No. 616-15656). JP-B-64-61557) and a solid composition containing a transition protein of aminoinoazole and an oxidizing agent
2 1 3 6 8 7号公耜) の様にテトラゾール類を用いるものの他、 ァゾジ カルポンァミ ドとォキソハロゲン酸塩と必要に応じて用いられる燃焼睏 節触媒からなる固体組成物 (特開平 6— 3 2 6 8 9号公報ゃ特開平 6—In addition to those using tetrazoles as in the case of No. 2 13 6 87, a solid composition comprising azodicarbonamide, an oxohalogenate and, if necessary, a combustible catalyst (JP-A-6-32) 6 8 9
3 2 6 9 0号公報) の様にァゾジカルボンアミ ドを用いるものが提案さ れている。 又、 飛翔体推進用のガス発生剤としては、 両末端水酸基ポリブタジェ ンプレポリマーを主成分とする粘結剤と酸化剤と粘結剤中の特定の結合 剤とから成る様にポリプタジェンを推進薬且つ粘結剤として用いるものA method using azodicarbonamide has been proposed as disclosed in Japanese Patent Application Publication No. 32690/1990. In addition, as a gas generating agent for propelling a projectile, polyptadiene is used as a propellant such that it comprises a binder having a hydroxyl group-terminated polybutadiene prepolymer as a main component, an oxidizing agent and a specific binder in the binder. Used as a binder
(特公平 6— 3 3 2 1 5号公耜) の他、 特定の端末水酸基脂肪族ポリェ 一テルを推逸薬且つ粘結剤として用いるもの (特公平 4一 7 5 8 7 8号 公報) 等が提案されている。 In addition to (Japanese Patent Publication No. 6-333215), a specific terminal hydroxyl-aliphatic polyester is used as a propellant and a binder (Japanese Patent Publication No. 47-175878). Etc. have been proposed.
上述したテトラゾール類ゃァゾジカルボンァミ ドの様に窒素含有量の 高い化合物と酸化剤とを混合したィンフレータ用ガス発生剤は、 全て固 体状であるので、 ガス発生剤として使用するにあたっては、 製造工程に おいて打錠してベレツ トにする必要がある。 この打錠工程は、 火薬組成 物に力を加えて加圧成形する工程であるから、 最も爆発する危険性を孕 んだ作業であり、 安全性の観点から、 選択できる打錠径と酸化剤の種類 に制約があり、 その IIS果、 燃焼速度と着火性の賙整が困難であると共に 得られたベレツ トは壊れ易く、 燃焼速度が変化し易い ίいう問超点があ る。  Since all gas generators for inflators in which a compound having a high nitrogen content, such as the above-mentioned tetrazole diazodicarbonamide, and an oxidizing agent are mixed, they are all in a solid state. However, in the manufacturing process, it is necessary to make tablets by tableting. Since this tableting process is a process of applying pressure to the explosive composition and applying pressure, it is an operation involving the greatest risk of explosion. From the viewpoint of safety, the tableting diameter and oxidizing agent that can be selected are selected. There is a limitation on the type of the fuel, and it is difficult to adjust the burning rate and the ignitability, and the obtained velvet is fragile and the burning rate is easily changed.
一方、 上述したポリプタジェンや脂肪族ポリヱ一テルのように粘結性 を有する材料を用いる飛翔体推進用ガス発生剤では、 適度の粘度とする 為には、 その含有率に上限及び下限があり、 ガス組成の調節範囲に制限 が生じると共に、 重合状想に変化を生じ易いという問題点がある。 本発明は、 従来の技術の有する上記の様な問題点に «みてなされたも のであって、 その目的とするところは、 成形性に優れ、 特性の調整が容 易且つ安全にできるガス発生剤及びその K造方法を提供することにある 。 加えて、 前記ガス発生剤製造方法により製造されるガス発生剤をより 安全にペレツ ト状等に成形することのできるガス発生剤べレツ トの製造 装置を提供することにある。 発明の開示 On the other hand, in a projectile propellant gas generator using a material having caking properties, such as the above-mentioned polyptadene or aliphatic polyester, there is an upper limit and a lower limit to the content in order to obtain an appropriate viscosity. There is a problem that the adjustment range of the gas composition is restricted and the polymerization concept is easily changed. The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide a gas generating agent which is excellent in moldability, and whose characteristics can be easily and safely adjusted. And to provide a method for fabricating the same. In addition, another object of the present invention is to provide an apparatus for producing a gas generant pellet which can more safely form a gas generant produced by the gas generant production method into a pellet or the like. Disclosure of the invention
上 KRjHを解決する本発明のガス発生剤は、 アンモニア若しくはその 堪又は構造式中に Γ一 NHa基 j若しくは Γ一 NH—」 を有する化合物The gas generating agent of the present invention which solves the above KRjH is ammonia or a compound having ammonia or a compound having Γ-NH a group j or Γ-NH- in the structural formula
(以下本発明では、 これらを »称して便宜的に 「ァミン類 j と路称する ) と桷迪式中に 「一 CHO基」 を有する有機化合物又は Γ一 CHO基」 を生じ得る有機化合物 (以下本発明では、 これら両方を «&称して、 単に(Hereinafter, in the present invention, these are referred to as “amines j” for convenience) and an organic compound having “one CHO group” or an organic compound capable of forming “one CHO group” in the formula (hereinafter, referred to as “j”). In the present invention, both of these are referred to simply as
「アルデヒ ド類」 と略称する) とを反応させて得られた反応生成物が、 ガス発生成分としての性 Kを有するのみならず、 酸化剤その他のガス発 生剤に添加する成分をガス発生剤と結合させる粘結剤と ^ても極めて有 用であるという新たな発見に基づいてなされたものである。 The reaction product obtained by reacting with aldehydes has not only the property K as a gas generating component, but also the oxidizing agent and other components added to the gas generating agent. It is based on the new discovery that even binders that bind to agents are extremely useful.
加えて、 前記ア ミ ン類と前記アルデヒ ド類とを反応させて得られた反 応生成物に構迪式中に一 OH基を有する化合物を反応させて得られた二 次反応生成物や、 構造式中に一 NHa基又は一 NH—を有する化合物と N—メチ 0—ル化合物とを反応させて得られた反応生成物、 また、 構造 式中に一 NHa基又は一 NH—を有する化合物と N—アルコキシ化合物 とを反応させて得られた反応生成物が、 前記ア ミ ン類と前記アルデヒ ド 類とを反応させて得られた反応生成物と同様な特撖を有することにも着 目してなされたものである。 In addition, a secondary reaction product obtained by reacting a reaction product obtained by reacting the amides with the aldehydes and a compound having a 1 OH group in the formula is provided. , a compound having an NH a group or one NH- in the structural formula and N- methylcarbamoyl 0 - the reaction product obtained by reacting a Le compound, one in the structural formula NH a group or one NH- A reaction product obtained by reacting a compound having the formula (I) with an N-alkoxy compound has characteristics similar to those of a reaction product obtained by reacting the amines and the aldehydes. It was made with a focus on
従って、 本発明は、 ガス発生成分と酸化剤とを含むガス発生剤であつ て、 前記ガス発生成分が、 次の )〜 のいずれかの反応生成物の 1種以 上からなるガス発生剤である。  Accordingly, the present invention provides a gas generating agent comprising a gas generating component and an oxidizing agent, wherein the gas generating component comprises at least one of the following reaction products: is there.
(a) アンモユア若しくはその塩又は構迪式中に一 NHa 基若しくは一 NH—を有する化合物と、 構造式中に一 CH0基を有する有機化合物又 は一 CHO基を生じ得る有機化合物とを反応させて得られた反応生成物 (a) Anmoyua or reaction with a compound having an NH a group or single NH- in its salt or構迪formula, an organic compound is also an organic compound having an CH0 group in the structural formulas, which may occur an CHO group Reaction product obtained
(b) 上記 (a)で得られた反応生成物と、 構造式中に一 0H基を有する化 合物とを反応させて得られた二次反応生成物。 (b) The reaction product obtained in (a) above and a compound having a 10H group in the structural formula Secondary reaction product obtained by reacting the compound with the compound.
(C) 構造式中に一 NHa 基又は一 NH—を有する化合物と、 N—メチ n—ル化合物とを反応させて得られた反応生成物。 (C) a compound having an NH a group or one NH- in the structural formula and the reaction product obtained by reacting a N- methylcarbamoyl n- Le compounds.
(d) 構造式中に一 NHa 基又は一 NH—を有する化合物と、 N—アル コキシ化合物とを反応させて得られた反応生成物。 (d) compounds in the structural formula with an NH a group or one NH- and the reaction product obtained by reacting N- alkoxy compound.
そして、 このようなガス発生剤は、 後述のような理由からエアバッグ 用インフレータのガス発生剤又は飛翔体推進用ガス発生剤として用いら れるのに適したものとすることが可能である。  Such a gas generating agent can be suitable for being used as a gas generating agent for an inflator for an airbag or a gas generating agent for projectile propulsion for the following reasons.
ここで、 上述したアミ ン類は、 燃焼素剤の意味を有するものであり、 アルデヒ ド類の持つ 「一 CHO基 j と反応する Γ一 NHa 基 j 又は 「一 NH-J を必須とし、 これらの官能基を有するものならば ¾どの化合物 が使用可能であるが、 エアバッグ用ィンフレータのガス発生剤としては 、 璽素ガスを多量に発生し、 炭酸ガスと水蒸気の発生量が少ない様な化 合物が選定され、 また次に述べるアルデヒ ド類との反応で得られる反応 生成物が、 後述する酸化剤との ffi合により適度の粘度のスラリ一を生成 し、 ガス発生剤べレツ トに成形し易くなる様な物 Sが好ましい。 Here, Amin's mentioned above are those having the meaning of combustion Motozai, an essential one NH a group j or "an NH-J gamma reacts with" one CHO group j having the aldehyde compound, Any compound can be used as long as it has these functional groups. However, as a gas generating agent for an inflator for an airbag, a large amount of oxygen gas is generated and a small amount of carbon dioxide gas and water vapor is generated. The compound is selected, and the reaction product obtained by the reaction with the aldehydes described below produces a slurry with an appropriate viscosity due to the efficiency of the oxidizing agent described later, and the gas generating agent pellets It is preferable to use a material S which can be easily formed into a shape.
次に、 本発明で使用するアルデヒ ド類は、 前述のアミ ン類が持ってい る 「一: H2 基」 又は 「一 NH— j と反応して、 燃焼剤となり且つ粘結 性を具備した反応生成物を生成する為のものであり、 アルデヒ ド基 (一 CHO基) を自ら官能基として保有するか又は 「一 CHO基」 を生じ得 るものである。 Then, aldehyde such for use in the present invention, that have the Amin such aforementioned "one: H 2 group" or react with "one NH- j, equipped with a result and caking property and combustion agent This is for generating a reaction product, and can own an aldehyde group (one CHO group) as a functional group or generate a “one CHO group”.
上記 )〜 (d)の反応生成物は、 通常、 水分を含んだ粘稠物であるが、 髙 温下で乾燥させて水分を除く と縮合反応が進み、 硬化する。 この粘獨物 中に次に述べる酸化剤を加えると、 この箱合硬化物の中に、 酸化剤が包 含されるので、 この酸化剤はフィ ラーの役割を果たし、 成形されたガス 発生剤の強度は大きく、 粉化し難くなる。 ところで、 上記アミ ン類の内、 ァゾジカルボンアミ ド, テトラゾールThe reaction products of the above (1) to (d) are usually viscous substances containing water. However, if the product is dried at a temperature to remove water, the condensation reaction proceeds and hardens. When the oxidizing agent described below is added to the viscous material, the oxidizing agent is included in the hardened material of the box, so that the oxidizing agent serves as a filler, and the molded gas generating agent Has high strength and is hardly powdered. By the way, among the above-mentioned amines, azodicarbonamide, tetrazole
. アミノテ トラゾール (例えば、 5—アミノテトラゾール) , ビテトラ ゾール (例えば、 5、 5—ビー 1 H—テトラゾール) , メ ラ ミ ン, ト リ ァゾール (例えば、 5一才キソー 1、 2、 4一ト リァゾール) 、 又はこ れらの金 «¾等 (第 1群) は水溶液中でアルデヒ ド類と反応して固体状 の反応生成物を生成し易く、 トリアミノグァ二ジンナイ トレート, グァ 二ジン, 硝酸グァュジン, 炭酸グァュジン, ジシアンジアミ ド, へヰサ メチレンテ トラ ミ ン, ビウレッ ト, ヒ ドラジン, カルボヒ ドラジド, 蔡 酸ジヒ ドラジド, ヒドラジン埴酸塩, 尿素或いはこれら 金厲塩等 (第 2群) は水溶液中でアルデヒド類と反応して液体状の反応生成物を生成 し易いため、 第 1群から谌ばれた一種又は二種以上と第 2群から選ばれ た一種又は二種以上の組み合わせを用いるのが好ましい。 Aminotetrazole (for example, 5-aminotetrazole), bitetrazole (for example, 5,5-B1H-tetrazole), melamine, triazole (for example, 5-year-old 1,2,4-to-1) Lyazole) or these golds (Group 1) are liable to react with aldehydes in an aqueous solution to form a solid reaction product. Triaminoguanidine nitrate, guanidine, guanidine nitrate , Guanidine carbonate, dicyandiamid, hesa methylenetetramamine, biuret, hydrazine, carbohydrazide, citrate dihydrazide, hydrazine salt, urea or their salts (Group 2) in aqueous solution One or more types selected from the first group and selected from the second group because they easily react with aldehydes to produce liquid reaction products It preferred to use species or two or more thereof.
即ち、 アルデヒ ド類との反応により、 固体状反応生成物と液体状反応 生成物が同時に得られ、 その 果、 液体状反応生成物中に固体状反応生 成物が均一に分敢したスラリ一が得られる。 更にこの反応生成物スラリ 一に酸化剤を混合分 »させると、 水分を含有した適度の粘度のスラ リー が形成されるが、 このものは水分含有のスラリーであるため、 その取扱 いは安全であり、 加えてこの混合物スラ リ一をそのまま種々の成形法に よつて所望形状のガス発生剤に加工でき、 形状制御による燃焼調整の自 由度が增加する。 又、 使用可能なアミ ン類が種々存在する事から、 例え ば燃焼ガス中に窒素ガスを多く含む等ガス組成翻整の自由度も高くなる 。 上述した観点からヱアバッグ用ィンフレータに適したガス発生剤に 使用するアミ ン類としては、 第 1群からアミノテトラゾール或いはァゾ ジカルボンアミ ドを主成分として選定し適宜第 2群を混合するもの、 或 いは第 2群からト リアミノグァニジンナイ トレートを主成分として退定 し適宜第 1群を混合するもの、 又は第 1群のアミノテトラゾール或いは ァゾジカルボンアミ ドと第 2群のト リアミ ノ グァュジンナイ ト レー トを 適宜混合するもの等が特に好ましい。 第 1群のァゾジカルボンア ミ ドは アルデヒ ド類と反応しにくいため、 第 2群のアルデヒ ド類と反応し易い ァミ ン類で補う亊が好ましい。 第 2群のト リアミ ノ グァニジンナイ ト レ ートはアルデヒ ド類と容易に反応するが、 酸化剤混合時の粘度が不足し 易いので、 第 1群のアルデヒ ド類と反応し難いアミ ン類で、 これを補う 事が好ましい。 That is, a solid reaction product and a liquid reaction product are simultaneously obtained by the reaction with the aldehydes, and as a result, the slurry in which the solid reaction product is uniformly distributed in the liquid reaction product is obtained. Is obtained. Further, if the reaction product slurry is mixed with an oxidizing agent, a slurry containing water and having an appropriate viscosity is formed. However, since this slurry is a slurry containing water, it is safe to handle. In addition, this mixture slurry can be processed into a gas generating agent having a desired shape by various molding methods as it is, and the degree of freedom of combustion adjustment by shape control is increased. In addition, since there are various amines that can be used, the degree of freedom in adjusting the gas composition is high, for example, when the combustion gas contains a large amount of nitrogen gas. From the above-mentioned viewpoints, amines used as a gas generating agent suitable for a bag inflator include those selected from the first group, mainly composed of aminotetrazole or azodicarbonamide, and appropriately mixed with the second group, or Or from the second group, with triaminoguanidine nitrate as the main component, and appropriately mixing the first group, or the first group of aminotetrazole or It is particularly preferable to appropriately mix azodicarbonamide and the second group of triaminoguanidine nitrate. Since the azodicarbonamide of the first group does not easily react with the aldehydes, it is preferable to supplement with the amides which easily react with the aldehydes of the second group. The second group, triaminoguanidine nitrate, reacts easily with aldehydes, but the viscosity of the oxidizing agent tends to be insufficient, so it is difficult to react with the first group aldehydes. It is preferable to supplement this.
又、 アミ ン類とアルデヒ ド類との反応は、 必要に応じて' P H SI整剤が 添加されるが、 この P HSI整剤としては、 公知の任意のものが使用でき る 0  For the reaction between amines and aldehydes, a pH adjuster is added as necessary, and any known PH adjuster can be used.
次に上述の (a)〜 の反応生成物を得ることのできる化合物を以下に示 す。  Next, compounds capable of obtaining the above reaction products (a) to (a) are shown below.
上述の (a), (c)又は (d)に記載の構造式中に一 N H 3 基又は一 N H—を有 する化合物としては、 モノエタノールァミ ン, ヒ ト' T3キシァミ ン, ホル ムアミ ド. 齚酸アミ ド. カルボンアミ ド, ァゾジカルボンアミ ド, ヒ ド ラゾジカルボアミ ド, ァミ ノモノプロパノ ール, ァゾビスホルムアミ ド , セミカルバジド, アセ ト ンセミカルバゾン, ヒ ドラジン, ホルミルヒ ドラジン, ホルムアミ ジン, モノェチルヒ ドラジン, 力ルポヒ ドラジド , シアナミ ド, ジシアンジァミ ト', アミ ノテ トラゾール, グァニジン, ァミ ノグァニジン, ト リ アミ ノ グァュジンナイ ト レー ト, ニ ト グァュ ジン, ァゾジグァュジン. ビグァュド, «酸ジヒ ドラジド, ピウレツ ト . 尿素, モノ ヒ ドロ牛シ尿素, チォ尿素, メ ラ ミ ン. ジエタノールアミ ン, モノ ェチルァミ ノモノエタノールァミ ン, へ牛サメチレンテ トラ ミ ン. ト リァゾール, テ トラゾール. ビテ ト ラゾール或いはこれらの塩か らなる群より選ばれた 1種以上があげられる。 Examples of the compound having one NH 3 group or one NH— in the structural formula described in the above (a), (c) or (d) include monoethanolamine, human'T3 xyamine, and formamide. C. Carbonamide, azodicarbonamide, hydrazodicarbamide, aminomonopropanol, azobisformamide, semicarbazide, acetate semicarbazone, hydrazine, formylhydrazine, formamidine, monoethylhyd. Drazin, Colepohydrazide, Cianamid, Dicyandiamide ', Aminotetrazol, Guanidine, Aminoguanidine, Triamino Guzine Nitrate, Nito Guzin, Hazo Di Guzin, Big Guid , Monohydro beef siurea, thiourea, melamin. Ruami down, mono Echiruami Roh monoethanolamine § Mi emissions, cattle Samechirente tiger Mi emissions. Door Riazoru, Te Torazoru. The Activity door Razoru or one or more selected from the salts thereof or Ranaru group, and the like to.
これらの物質を N—メチロール化処理すると、 上述の (a), (c)又は (d)に 記載の搆造式中に一: N H—を有する化合物となる。 When these substances are treated with N-methylol, the above (a), (c) or (d) It is a compound having one: NH— in the described formula.
前述の (a), (c)又は ωに記載の構迫式中に一 N H a基又は一 N H—を有 する化合物の具体例としてあげた前記物 K又は、 これらの物 を N—メ チ n—ル化処理した物質に、 更に N—メチ o—ル化処理すると、 上述の (c)に記載の N—メチ o—ル化合物となる。 The foregoing (a), the compound K or give as the specific examples of compounds that chromatic in構迫formula an NH a group or one NH- according to (c) or omega, these things N- main switch When the N-methylated substance is further subjected to N-methylolation treatment, the N-methylol compound described in the above (c) is obtained.
前述の (a), (c)又は (d)に記載の構造式中に一 N H a 基又は一 N H—を有 する化合物の具体例としてあげた前記物質を N—アルコキシ化処理する と、 上述の id)に記載の N—アルコキシ化合物となる。 The foregoing (a), when treated N- alkoxylated said substance raised as an example of a structure compound to chromatic an NH a group or one NH- in formula described in (c) or (d), above And N-alkoxy compounds described in (id).
上述の ( に記載の構造式中に一 C H 0基を有する有機 合物の具体例 としては、 ホルムアルデヒ ド, ァセ トアルデヒ ド, プロ ビオンアルデヒ ド, n—ブチルアルデヒ ド, n—ヴア レルアルデヒ ド, n—力プロ ンァ ルデヒ ド, ァクロレイ ン, クロ ト ンアルデヒ ド, グリオキザールからな る群より選ばれた 1種以上があげられる。  Specific examples of the organic compound having one CH 0 group in the structural formula described in () include formaldehyde, acetate aldehyde, propyl aldehyde, n-butyl aldehyde, n-butyl aldehyde, and n —One or more species selected from the group consisting of forceprodaldehyde, acrolein, crotonaldehyde, and glyoxal.
上述の (a)に記載の一 C H 0基を生じ得る有機化合物の具体例としては 、 ホルムアミ ド, パラホルムアルデヒ ド, ト リオヰサン, へキサメチレ ンテ トラ ミ ン, テ トラ才キサン, メタアルデヒ ド, ァゾビスホルムアミ ドからなる群より選ばれた 1種以上があげられる。  Specific examples of the organic compound capable of forming one CH 0 group described in the above (a) include formamide, paraformaldehyde, triodisan, hexamethylenetetramine, tetraxane, metaaldehyde, and azo. One or more selected from the group consisting of bisformamide.
上述の (h)に記載の構迪式中に一 0 H基を有する化合物は、 炭素 ( C ) 又は室素 (N ) に糖合した一 O H基を有するものである。  The compound having a 10 H group in the formula shown in the above (h) is a compound having a 1 O H group sugar-linked to carbon (C) or nitrogen (N).
このような炭素 (C ) 又は室素 ( N ) に桔合した一 O H基を有する化 合物の具体例としては、 メ タノール, エタノール. モノエタノールアミ ン, アミ ノブ cパノール, ジエタノールァミ ン, ヒ ト'口牛シェチルヒ ド ラジン, ェチルアミ ノエタノールァミ ン, ヒ ドロキンルァミ ン, ヒ ド口 キシル尿素. ホルムアミ ドヰシム, ホルムアルド牛シ厶からなる群より 選ばれた 1種以上があげられる。  Specific examples of such a compound having an OH group bonded to carbon (C) or nitrogen (N) include methanol, ethanol. Monoethanolamine, aminobanol, diethanolamine. One or more species selected from the group consisting of, for example, sheep hydrazine, human beef, ethylaminoethanolamine, hydroquinamine, and xylurea hydrate. Formamide dosim, formaldehyde beef shim.
本発明のガス発生剤の具体的組成としては、 1 0〜4 0重邋%のガス 発生成分と、 5 0〜 8 D重量%の酸化剤とを含むもの、 1 0〜4 0 %のガス発生成分と、 5 0〜 8 0重量%の酸化剤と、 1〜 1 0重董%の 燃焼触媒成分とを含むもの等が挙げられる。 The specific composition of the gas generating agent of the present invention is as follows. Including a generating component and 50 to 8% by weight of an oxidizing agent, 10 to 40% of a gas generating component, 50 to 80% by weight of an oxidizing agent, and 1 to 10% by weight And a combustion catalyst component.
ガス発生剤は、 基本的にはガス発生成分とその酸化剤とからなり、 こ れらの含有比率はガス発生剤の種類や酸化剤の種類によって理狳的に異 なる。 しかしながら、 上記した本発明のガス発生成分を使用する埸合に は、 一般的に 1 0〜 4 0重量%のガス発生成分と、 5 0〜8 0重量%の 酸化剤との混合がペースとなる。 ガス発生成分が 1 0重量%より少ない とガス発生率が悪く、 4 0重量%より多いと不完全燃焼となりやすい。 また、 酸化剤の含有 Sが 5 0重量%より少ないとガス発生成分の不完全 燃焼が生じやすく、 8 0 SS96より多いとガス発生成分の点火 Sが少な くなり、 ガス発生量が少なくなる。 従って、 ガス発生成分と酸化剤の含 有比率は、 上記の範囲内で、 特定された物質に応じた最通な範囲が選定 The gas generating agent basically consists of a gas generating component and its oxidizing agent, and the content ratio of these components varies theoretically depending on the type of the gas generating agent and the type of the oxidizing agent. However, when the above-mentioned gas generating component of the present invention is used, generally, mixing of 10 to 40% by weight of the gas generating component and 50 to 80% by weight of the oxidizing agent is carried out at a pace. Become. If the gas generating component is less than 10% by weight, the gas generation rate is poor, and if it is more than 40% by weight, incomplete combustion tends to occur. If the content S of the oxidizing agent is less than 50% by weight, incomplete combustion of the gas generating component tends to occur. If the content S is more than 80 SS96, the ignition S of the gas generating component decreases and the amount of gas generated decreases. Therefore, the most suitable range for the content ratio of the gas generating component and the oxidizing agent according to the specified substance is selected from the above range.
5れ《> o 5re <<> o
また、 硝酸埴を主成分とする酸化剤を使用したときは発熱 Sが少ない 為に反応が完 せず、 未燃焼物が残り易い。 しかし、 燃焼触媒成分を含 むと、 この燃 SStt媒成分が、 反応を完結させて、 未燃烷物を残さないと いう効果がある。 このように、 酸化剤の成分によっては、 燃烷触媒が使 用される場合があるが、 この埸合の燃焼触媒の添加 gは、 ガス発生 Sを 阻害しない範囲で添加されるので、 一般に 1〜 1 0重量.90の範囲で添加 される β  In addition, when an oxidizing agent containing nitric acid clay as a main component is used, the reaction is not completed due to a small amount of exothermic S, and unburned matter tends to remain. However, when the combustion catalyst component is included, there is an effect that the combustion SStt medium component completes the reaction and does not leave unburned substances. As described above, depending on the components of the oxidizing agent, a combustion catalyst may be used. In this case, the addition of the combustion catalyst g is performed within a range that does not inhibit the gas generation S. ~ 10 weight β added in the range of 90
本発明で使用する酸化剤は、 通常前述の反応生成物として得られたガ ス発生成分中に浪合されるものである。 本発明においては、 前記反応生 成物に、 酸化剤を添加混合した後、 垓反応生成物を加熱して縮合硬化さ せるので、 酸化剤と燃焼剤を均一に分散させ且つ緊密に接触させる事に なる。 その轴果、 耐熱老化性には優れているが、 着火時間が長いという 特性を有している硝酸 ¾や 塩素酸塩といった酸化剤であっても、 その 着火特性を大幅に改善することが可能になる。 The oxidizing agent used in the present invention is one which is usually mixed in the gas generating component obtained as the above-mentioned reaction product. In the present invention, an oxidizing agent is added to and mixed with the reaction product, and then the condensation reaction product is heated and condensed and cured, so that the oxidizing agent and the combustion agent are uniformly dispersed and brought into close contact. become. As a result, it has excellent heat aging resistance, but it has a long ignition time Even with oxidizing agents such as nitric acid and chlorate, which have characteristics, the ignition characteristics can be significantly improved.
前記酸化剤としては、 硝酸埴. ォキソハ !□ゲン酸塩, 金厲酸化物から sばれた 1 a又は 2種以上が使用可能である。  As the oxidizing agent, 1a or 2 or more kinds of nitric acid.
前 E硝酸 *の具体例としては、 确酸ナト リウム, 销酸カ リウム. 硝酸 、'リウム, 硝酸アンモニゥム, 确酸ス トロンチウムが挙げられる。 前記ォヰソハ t!ゲン酸塩としては、 塩素酸塩, 遇塩素酸塩, 臭素酸塩 . 過臭素酸埴, 沃素酸埴, 遇沃素酸埴が举げられる。  Specific examples of pre-nitric acid * include sodium nitrate, potassium nitrate. Nitric acid, 'ium, ammonium nitrate, and strontium nitrate. Chlorates, chlorites, bromates, perbromate clay, iodate clay, and iodic clay are examples of the above-mentioned acid salt.
更に、 前記ォキソハロゲン酸塩である各化合物の具体例としては、 塩 亲酸ナト リウム, 堪素酸力 リゥム、 ¾¾素酸ナト リウム, 遇塩素酸力 リ ゥム, 通塩素酸アンモユウム、 臭素酸力 リウム、 過臭素酸力 リゥム、 沃 素酸力リゥム、 通沃素酸力リウムが挙げられる。  Further, specific examples of the above-mentioned oxohalogenate compounds include sodium hydrochloride, rhodium oxalate, sodium oxalate, rhodium chlorate, ammonium chloride, ammonium chlorate, and bromate. Lithium, perbromate lime, iodate lime, and periodic lime.
前記金 is酸化物の具体例としては、 二酸化マンガン, 酸化鉄, 二酸化 亜鉛, 通酸化カ リウム, 通マンガン酸カ リウム, 過酸化バリウム. 三酸 化モリブデンが举げられる。  Specific examples of the gold is oxide include manganese dioxide, iron oxide, zinc dioxide, potassium peroxide, potassium permanganate, barium peroxide, and molybdenum trioxide.
前記燃焼 ¾媒としては、 ジルコニウム、 ハフニウム、 モリブデン、 タ ングステン、 マンガン、 鉄、 ニッケル、 クロム、 チタンの単体又は酸化 物若しくは硫化物、 炭素、 りん、 硫黄の単体から選ばれた 1種又は 2種 以上が使用可能である。  As the combustion catalyst, one or two selected from zirconium, hafnium, molybdenum, tungsten, manganese, iron, nickel, chromium, titanium, or an oxide or sulfide, carbon, phosphorus, or sulfur alone The above is usable.
次に、 本発明のガス発生剤の製造方法を説明する。 本発明は、 上記の 化合物を水溶液中で反応させて、 適度の粘性を有する上述の )〜 ωの反 応生成物スラリ一を得る工程及び前記スラリ一を乾燥又は加熱して固化 する工程を含むものである。  Next, a method for producing the gas generating agent of the present invention will be described. The present invention includes a step of reacting the above compound in an aqueous solution to obtain a slurry of the above-mentioned) to ω reaction product having an appropriate viscosity, and a step of drying or heating the slurry to solidify the slurry. It is a thing.
上述の )〜 (d)のいずれかの反応生成物を水溶液中で得る反応は、 前記 化合物が互いに、 水分を含んで付加と縮合を繰り返す付加 ·縮合反応で あると考えられる。 その水分を乾燥又は加熱して除去すると縮合硬化が 進み高分子の樹脂、 所 fflアミノ榭脂の如きものが生成すると考えられる 前記スラ リーの粘度は、 化合物の種類、 P H及び水分含有量で異なる ので、 これらの条件を通択して粘性を睏整することが可能である。 この ような反応生成物を得るための反応は比皎的容易に進行するものであり 、 前記反応生成物を得ることのできる化合物の組合せは無数にあって、 所望の成分のガスを発生させることのできる組合せは任意に選択可能で あり、 所望のィンフレータ用ガス発生剤或いは飛翔体推進用ガス発生剤 として胡合できる。 It is considered that the reaction for obtaining the reaction product of any of the above-mentioned) to (d) in an aqueous solution is an addition / condensation reaction in which the compounds contain water and repeat addition and condensation. When the water is removed by drying or heating, condensation curing The viscosity of the slurry, which is considered to produce advanced resin such as ffl amino resin, differs depending on the type of compound, PH, and water content. Can be adjusted. The reaction for obtaining such a reaction product proceeds relatively easily, and there are countless combinations of compounds from which the reaction product can be obtained, and a gas having a desired component is generated. The possible combinations can be arbitrarily selected, and can be combined as a desired gas generator for inflator or a gas generator for propelling a flying object.
また、 前記のような縮合硬化が行われると、 ベレツ ト状に成形された ガス発生剤中において均一に分敢されている酸化剤と前記反応生成物で ある燃焼剤とが K密に接 »した状想になり、 各成分粒子 ¾の熱伝導が良 好になる。 その枯果、 ガス発生剤の着火性が大幅に向上するので、 确酸 塩や ¾塩素酸埴の如く、 従来のガス発生剤においては、 耐熱老化性には 優れているが着火性の悪い (着火時間が長い) 酸化剤とされているもの であっても、 本発明においては、 耐熱老化性, 着火性共に優れたガス発 生剤とすることができる。  In addition, when the above-mentioned condensation curing is performed, the oxidizing agent uniformly divided in the beret-shaped gas generating agent and the combustion agent, which is the reaction product, come into close contact with each other. As a result, the heat conduction of each component particle に な る is improved. As a result, the ignitability of the gas generating agent is greatly improved, so that conventional gas generating agents such as nitrate and chlorite clay have excellent heat aging resistance but poor ignitability ( Even if the oxidizing agent is used as the oxidizing agent, in the present invention, the gas generating agent can be excellent in both heat aging resistance and ignition performance.
更に詳しく本発明のガス発生剤製逸方法を述べる。 本発明の製造方法 は大きく下記の 2種類に大別することができる。  The method for producing a gas generating agent of the present invention will be described in more detail. The production method of the present invention can be roughly divided into the following two types.
〔第一方法〕  [First method]
1ー①:上記の化合物を水溶液中で反応させて、 通度の粘性を有する上 述の )〜 (d)の反応生成物スラリ一を得る工程。  1-①: a step of reacting the above compound in an aqueous solution to obtain a slurry of the above-mentioned reaction product having the above-mentioned) to (d) having a sufficient viscosity.
1ー②:得られた反応物中に、 窒素ガスを生成させるのに必要な酸化剤 を添加浪合して所定粘度のスラリ一とする工程。  1-②: A process of adding an oxidizing agent necessary for generating nitrogen gas to the obtained reactant and mixing the oxidizing agent into a slurry having a predetermined viscosity.
1ー③: このスラリ一を所望形状に成形する工程。  1-3: Step of forming this slurry into a desired shape.
1ー④: この成形体を乾燥固化させる工程。 [第二方法〕 1-④: The step of drying and solidifying this compact. [Second method]
2—①:上記の化合物を水溶液中で反応させて、 適度の粘性を有する上 述の )〜 ωの反応生成物スラ ')一を得る工程。  2-①: a step of reacting the above compound in an aqueous solution to obtain a reaction product slurry of the above-mentioned) to ω having an appropriate viscosity.
( 2—①' :得られた反応物中に、 必要な酸化剤の少なくとも一部 を添加混合したスラ リ一とする工程。 )  (2-① ': Step of adding and mixing at least a part of the necessary oxidizing agent into the obtained reaction product to form a slurry.)
2—②:前記スラ リ一を乾 «し、 通宜粉砕して粉体状とする工程。  2-②: a step of drying the slurry and pulverizing the slurry to form a powder.
2—③: この粉体に酸化剤を添加混合し、 打錠等により所定形状に加圧 成形する工程。  2--3: A process in which an oxidizing agent is added to and mixed with this powder, and pressed into a predetermined shape by tableting or the like.
2—④: この成形体を加熱して縮合硬化させる工程。  2—④: Step of heating and compacting this molded body.
次に前記各方法について説明する。  Next, each method will be described.
第 1方法を上記 (a)の反応生成物を生成するアミ ン類とアルデヒ ド類と を反応させる場合を例にとり K明する。  The first method will be described by taking, as an example, a case in which an amine that produces the reaction product of the above (a) is reacted with an aldehyde.
この反応におけるアミ ン類とアルデヒド類の割合 (モル比) は、 反応 生成物の基本的物性印ち重合反応形想に起因する睹物性に影響を与える ので、 この物性的観点と、 未反応残査の除去工程を省格する工程的観点 から、 アミン類:アルデヒ ド類 = 1 : 0 . 5〜1 . 5の範囲が好ましい 。 複数のアミン類を添加する場合には、 その種類による反応の進行度に パラツキが生じない様にする為に、 同時に添加する事が望ましい。 水の 使用量はアルデヒ ドの濃度が 1 0〜5 0 %になる Sが好ましい。 反応は 発熱反応であるが、 発熱の激しいものは反応液が沸騰しない程度に必要 に応じて適宜冷却しながら現合しつつ反応させ、 発熱が少ないものは反 応を促進させる為に沸膽しない程度に加温しながら反応させ、 次工程で 要求される適度の流動性を有したスラ リーを翻製する。 ここでスラ リー の濃度 118整は、 反応後の水分除去によって行われるが、 原則的に滅圧に より水分を除去する方法が採用される。 加熱蒸発法は、 後述する反応生 成物の縮合反応が進行するので、 この段階では縮合反応を抑制する窓眛 からも、 a刺な加熱は避ける方が好ましい。 The ratio (molar ratio) of amines and aldehydes in this reaction affects the basic physical properties of the reaction product and the physical properties resulting from the concept of polymerization reaction. From the viewpoint of reducing the inspection removal step, the amines: aldehydes = 1: preferably in the range of 0.5 to 1.5. When a plurality of amines are added, it is desirable to add them at the same time in order to prevent variation in the progress of the reaction depending on the type. The amount of water used is preferably S, which gives an aldehyde concentration of 10 to 50%. The reaction is exothermic, but if the reaction is exothermic, the reaction mixture is allowed to react while cooling, if necessary, so that the reaction solution does not boil.If the reaction is less exothermic, the reaction does not boil to promote the reaction. The reaction is carried out while heating to a moderate degree, and the slurry having the appropriate fluidity required in the next process is converted. Here, the slurry concentration 118 is adjusted by removing water after the reaction, and a method of removing water by decompression in principle is adopted. In the heating evaporation method, a condensation reaction of a reaction product described below proceeds, and at this stage, a window for suppressing the condensation reaction is used. Therefore, it is preferable to avoid a stinging heating.
第一方法の 1ー②の酸化剤を添加混合して成形原料用スラリーとする 工程では、 前述の適度の粘性を有する反応生成物スラリ一に、 酸化剤を 添加. 混合する事によって所定粘度のスラ リーが形成される。 ここで所 定粘度とは、 次の 1ー③工程で採用する成形法に適した粘度である。  In the first method, in the step of adding and mixing the oxidizing agent of 1-② to form a slurry for molding raw material, the oxidizing agent is added to the reaction product slurry having an appropriate viscosity as described above. A slurry is formed. Here, the specified viscosity is a viscosity suitable for the molding method used in the following step 1-3.
1ー③工程では、 燃焼剤は水分を含むスラ リ ーであるため、 火薬組成 物でありながら安全性を保持したまま、 押し出し等の一般の高分子材料 の成形法が適用可能であつて、 棒状に押し出し切断して所定形状のベレ ッ トにする方法, ゴ厶シ一ト成形の如くシート状に ール成形し切断し て所定形状のペレツ トにする方法或いはこのシートから打ち抜き成形す る方法等の任意の成形法によって所望形状に成形される。  In the process 1-3, since the combustion agent is a slurry containing water, it is possible to apply a molding method for general polymer materials such as extrusion while maintaining safety while being an explosive composition. Extrusion into a rod, cutting into a predetermined shape, forming into a sheet, such as a rubber sheet, and cutting into a pellet, or punching from this sheet It is molded into a desired shape by an arbitrary molding method such as a method.
次の 1ー④工程の乾燥固化工程は、 水分を除去して反応生成物を縮合 硬化させる工程である。 乾燥による縮合の程度は、 自然乾燥. 5 0で以 下の低温加熱乾燥, 9 O t以上の高温加熱乾燥の組み合わせによって調 整可能であり、 9 0 · C以上の高温加熱において縮合反応は安定して進 行 る。 従って、 この乾燥固化工程は、 9 D 1C以上の加熱下で行う事が 好ましい。  The drying and solidifying step 1-④ is a step of removing water and condensing and curing the reaction product. The degree of condensation by drying is natural drying. It can be adjusted by a combination of low-temperature heat drying of 50 or less and high-temperature heat drying of 9 Ot or more. The condensation reaction is stable at 90 ° C or more high-temperature heating. And proceed. Therefore, this drying and solidification step is preferably performed under heating of 9 D 1C or more.
上述の第一方法においては、 反応生成物である燃焼剤に酸化剤を添加 混合する作業は、 水スラ リーの状想で行われるので、 爆発の危険性のな い極めて安全な作業となり且つ均一な混合物を得る事ができる。 又、 こ の均一混合物のスラ リ ー粘度は、 水分量, 酸化剤の添加 S等によって翻 整可能であり、 次工程の成形工程に適当な粘性に睏節され、 そのまま押 出成形等の種々の成形機に供紿して、 所望の形状のペレツ トに成形でき る。 従ってペレツ ト形状の退択が自由となり、 ガス発生剤の燃焼速度の 調整の自由度も大きくなる。  In the first method described above, the work of adding and mixing the oxidizing agent to the combustion product, which is a reaction product, is performed in the concept of a water slurry, so it is an extremely safe operation without explosion risk and uniform. A good mixture can be obtained. The slurry viscosity of this homogeneous mixture can be adjusted by adjusting the amount of water, addition of oxidizing agent S, etc., and is adjusted to a viscosity appropriate for the next molding step. It can be supplied to a molding machine to form a pellet of a desired shape. Therefore, the choice of the pellet shape is free, and the degree of freedom in adjusting the combustion speed of the gas generating agent is increased.
更に特筆すべき事は、 従来の製造工程で、 爆発の危険性の最も高かつ た成形工程を水スラリ一の状想で行える事であり、 この «果成形工程の 安全性を飛躍的に向上させ得る効果がある。 More notable is the fact that conventional manufacturing processes have the highest Can be performed with the concept of a water slurry, which has the effect of dramatically improving the safety of the fruit forming process.
次に第二方法について説明する。 第二方法と第一方法との主な違いは Next, the second method will be described. The main difference between the second method and the first method is
、 2—②と③の工程、 即ち乾燥と成形工程にある。 第一方法は前述のガ ス発生成分である反応生成物と酸化剤とを含むガス発生剤組成物のスラ リ一から直接成形するのに対し、 第二方法はガス発生成分である反応生 成物スラリ一又は、 この反応生成物スラリ一に必要な酸化剤の一郎を添 加したガス発生剤組成物のスラリ一を先ず乾燥して粉体状となし、 これ を打錠等により加圧成形する方式である。 , 2—② and ③, ie, drying and molding. The first method directly molds from the slurry of the gas generating composition containing the reaction product and the oxidizing agent, which is the gas generating component, while the second method forms the reaction generating as the gas generating component. The product slurry or the slurry of the gas generating composition to which the oxidizing agent necessary for the reaction product slurry is added is first dried to form a powder, which is then press-formed by tableting or the like. It is a method to do.
前記 2—②のスラリ一を乾燥して粉体化する方法としては、 スプレー ドライヤ方式によりスラリ一を噴霧しながら熱風乾燥すれば、 容易に撖 細な粉体を得る事ができる。 尚、 この場合の乾燥 ffl度は、 反応生成物の 縮合反応が進行し難い温度である事が必要であり、 原料物 Kと反応系に よって異なるが、 一般的には 9 0 1:以下, 好ましくは 8 0で以下である 。 又、 他の ½燥方法により、 平板状或いは塊状の乾燥物が得られた場合 に ii、 これを適宜粉砕して粉体状とする必要がある。  As a method of drying the slurry of the above item 2 to powder, the fine powder can be easily obtained by hot air drying while spraying the slurry by a spray dryer method. In this case, the drying ffl degree needs to be a temperature at which the condensation reaction of the reaction product does not easily proceed, and differs depending on the raw material K and the reaction system. Preferably it is 80 or less. Further, when a plate-shaped or lump-shaped dried product is obtained by another drying method, ii, it is necessary to appropriately pulverize the dried product to form a powder.
次に 2—③の成形において、 この粉体状の組成物を、 加圧成形法によ り所定形状に成形する。 このとき、 ガス発生成分である反応生成物は、 或る程度の柔軟性と粘結性を有して高分子化し、 酸化剤粒子を内包する 様な形で粉体状になっているので、 衝撃慼度, 摩擦港度, 静¾気感度の いずれをとつても著しく低いか或いは不着火性である。 そのため、 従来 の加圧成形工程と異なり、 安全上全く問超がない。  Next, in the molding of 2-3, this powdery composition is molded into a predetermined shape by a pressure molding method. At this time, the reaction product, which is a gas generating component, is polymerized with a certain degree of flexibility and caking properties, and is in a powder form in such a manner as to contain oxidizing particles. It is extremely low or non-ignitable in all cases of impact intensity, friction port intensity, and aerobic sensitivity. Therefore, unlike the conventional pressure molding process, there is no problem in terms of safety.
更に、 粉体粒子が適度の粘結性を有する事から、 加圧成形後も圧密化 状想が維持され易く、 次工程の加熱による縮合硬化との相乗作用により 成形体の形状, 密度が均一となり、 その結果、 成形体強度の髙ぃ且つ燃 焼速度の安定したガス発生剤を得る事ができる。 一方、 粘桔性を有するため、 加圧成形時に成形用ビス トンに付著し易 いという 点があるが、 この点は必要とされる酸化剤を成形前に分割 添加する事により解消できる。 BPち、 2—②工程で得られた粉体に 2— ③工程で酸化剤を添加浪合して加圧成形する亊により、 前記反応生成物 の粉体の表面が添加された酸化剤粉末で被覆されるため、 この酸化剤が ビス トンへの原料粉体の付着を防止する。 尚、 2—③での酸化剤の添加 Sは、 2—②の工程の前、 即ち、 2—①' で必要な酸化剤の一部を添加 混合してスラ リーとなした塌合は、 その残量を適宜添加する。 Furthermore, since the powder particles have an appropriate caking property, the concept of compaction is easily maintained even after pressure molding, and the shape and density of the compact are uniform due to a synergistic effect with condensation hardening by heating in the next step. As a result, it is possible to obtain a gas generating agent having a high strength of the compact and a stable burning rate. On the other hand, because of its viscous properties, there is a point that it is easily added to the molding biston at the time of pressure molding, but this point can be solved by adding the necessary oxidizing agent separately before molding. BP, the oxidizing agent powder is added to the powder obtained in the step 2−3, and the surface of the reaction product powder is added to the powdered oxidizing agent in the step 2−3. Because of the coating, this oxidizing agent prevents the raw material powder from adhering to the bistone. The addition of the oxidizing agent S in 2−3 before the process in 2− 、, that is, when a part of the necessary oxidizing agent was added and mixed in 2−① ′ to form a slurry, The remaining amount is appropriately added.
次の 2—④工程の加熱縮合工程は、 成形体を加熱して 応生成物を縮 合硬化させる工程であり、 原料物 Kと反応生成物の形状によって異なる が、 一般的には 9 0 *C以上好ましくは 1 0 0で以上の高温に加熟して行 われる。  The following heat-condensation step 2—④ is a step of heating and compacting and compacting the reaction product, which differs depending on the raw material K and the shape of the reaction product. The ripening is performed at a temperature of at least C, preferably at 100 and at a high temperature of at least.
第二方法においては、 酸化剤を適宜混合したスラ リ一を乾燥して粉体 状になす工程があるが、 この段階での反応生成物は、 縮合前の "含水物 " であるので、 衝擊感度, 摩擦感度, 静¾気慼度等のいずれも著しく低 いか不着火性のものである。 従って、 この状想での乾燥作業, 粉砕作業 及び加圧成形作業は、 いずれも基本的に安全性が確保されていると言え る o  In the second method, there is a step of drying the slurry in which an oxidizing agent is appropriately mixed to form a powder, but the reaction product at this stage is a "hydrated substance" before condensation, Sensitivity, friction sensitivity, static air permeability, etc. are all extremely low or non-ignitable. Therefore, it can be said that the drying operation, the crushing operation and the pressure molding operation under this concept basically ensure safety o
上述のような ¾迪方法によって製造されたガス発生剤は、 成形後の縮 合化工程で縮合硬化した樹脂中に酸化剤が均一に分散して取り込まれた 構造となっているので、 酸化剤粒子があたかも樹脂成形体における補強 材としてのフィラーの如き役割を果たす事になり、 成形後のベレツ ト強 度は著しく大となる。 因みに打錠成形した直径 7 m m x厚さ 5 m mのべ レツ トの縮合硬化処理前の圧壊強度は、 6 k g f 前後であるが、 縮合硬 化処理後は、 2 2〜3 0 k g f 程度に增大する。 従って、 成形体の粉化 程度も無視し得る程度に小さくなる。 又、 硬化した高分子材料である燃 0 廣剤中に酸化剤が均一に分散した状想のペレツ トが得られるので、 その 形状及び密度が一定したものとなり、 その粘果、 燃焼速度の安定したガ ス発生剤が得られる事になる。 加えて燃焼剤と酸化剤とがペレツ ト中で 密に接触しているので、 雨者の熱伝導性は極めて良好となり、 その結果 、 従来は、 耐熱老化性は優れているが著火性は悪いとされている硝酸塩 や:!塩秦酸塩の如き酸化剤との組み合わせでも着火性は大幅に改善され るので、 これらの酸化剤を用いた耐熱老化性と着火性共に優れたガス発 生剤を得る事ができる。 Since the gas generating agent manufactured by the above-mentioned method has a structure in which the oxidizing agent is uniformly dispersed and taken into the resin cured and condensed in the compaction process after molding, the oxidizing agent is used. The particles act as fillers as a reinforcing material in the resin molded article, and the beret strength after molding becomes remarkably large. Incidentally, the crushing strength of the tablet-formed pellets with a diameter of 7 mm and a thickness of 5 mm before the condensation hardening treatment is around 6 kgf, but after the condensation hardening treatment, it is as large as 22 to 30 kgf. I do. Therefore, the degree of powdering of the compact is reduced to a negligible level. In addition, the cured polymer material 0 As a pellet with the concept of uniformly dispersing the oxidizing agent in the broadening agent is obtained, its shape and density become constant, and a gas generating agent whose viscosity and burning rate are stable can be obtained. Become. In addition, since the combusting agent and the oxidizing agent are in close contact in the pellet, the thermal conductivity of the rain is extremely good. As a result, conventionally, the heat aging resistance is excellent, but the flammability is poor. And nitrates that are: Even in combination with an oxidizing agent such as hydrochloride, the ignitability is greatly improved, so that a gas generating agent using these oxidizing agents and having both excellent heat aging resistance and ignitability can be obtained.
加えて、 上述のガス発生剤をより安全にペレツ ト状に]^形するに適し たガス発生剤の製造方法として、 上述の (a)〜! d)のいずれかの反応生成物 に酸化剤を添加混合して所定粘度のスラ リーとし、 このスラ リ一を柔软 性を有する非金展製の所定形状の成形型内に注入し、 統ぃてこれを加熱 固化させるガス発生剤の製造方法がある。  In addition, as a method of manufacturing a gas generating agent suitable for forming the above gas generating agent into a pellet more safely, the above (a) to! An oxidizing agent is added to any of the reaction products of d) and mixed to form a slurry having a predetermined viscosity, and this slurry is poured into a flexible non-gold-molded mold having a predetermined shape to obtain a slurry. There is a method for producing a gas generating agent by heating and solidifying this.
前記スラリ一は上述したように水分を含有した水スラリ一であるため 、 成形時の安全性を向上させると共に、 火薬の一種であるガス発生剤の 成形工程に、 従来から常鋤的に "危険" とされていた "加熱'' 工程を採 用する事を可能した。 それにより、 固化時間の短縮を図り、 生産性を高 めることができる。  Since the slurry is a water slurry containing water as described above, the safety at the time of molding is improved, and at the same time, the risk of forming a gas generating agent, which is a kind of explosive, is always dangerous. It is now possible to use the "heating" process, which had been described as "the process", thereby shortening the solidification time and increasing productivity.
上記ガス発生剤の製造方法を実施するには、 例えば、 無 ¾ベルト等の 回動自在な環状ベル ト上に成形型を形成し、 垓ベル トの一翊でスラリ一 を注入し、 他 ¾Sで固化した成形品を取り出す様になすと共に、 その間で 加熱固化させる様にすると合理的である。  In order to carry out the above-mentioned method for producing a gas generating agent, for example, a mold is formed on a rotatable annular belt such as an airless belt, and a slurry is injected with a brittle belt. It is reasonable to take out the molded product that has been solidified by heating and to heat and solidify it during that time.
即ち、 柔軟性を有する非金属製の材料で形成され且つガス発生剤成形 型となる複数の凹郎を表面節に有する環状ベル ト状の成形用枠体と、 該 枠体を回動させる駆動機構と、 前記枠体の一端部に設けられたスラ リ一 注入 «構と、 ¾凹部内のガス発生剤スラリ一を加熟固化する加熱機構と を有している成形装蒙が適している。 これは、 成形型を柔吹性を有する 非金 «材料で形成する事により、 金 R型に起因する火花の問題及び成形 品取り出し時の問 を解決する様にしたものである。 That is, an annular belt-shaped molding frame formed of a non-metallic material having flexibility and having a plurality of recesses on its surface nodes to be a gas generating agent molding die, and a drive for rotating the frame. A mechanism, a slurry injection mechanism provided at one end of the frame body, and a heating mechanism for ripening and solidifying the gas generating agent slurry in the recess. A molding device having is suitable. This is to solve the problem of spark caused by the metal mold R and the problem at the time of removing the molded product by forming the molding die from a non-metallic material having soft blowing properties.
前記成形用枠体は、 平板と、 K平板状に立設された柔軟性を有する非 金) R製の複数の简体とを備えている。 この ffi体内が成形型の凹部となり 、 垓简体の周壁 ffiの少なくとも一ヶ所が軸方向に且つ枠体進行方向と直 交する方向に切り裂き郎を有している。 そして、 前記简体は、 前記成形 用枠体の平板に設けられた浅い凹郎に嵌合されて立設している。  The molding frame includes a flat plate, and a plurality of non-metallic (R) members that are erected in the shape of a K flat plate and have flexibility. The inside of this ffi body becomes a concave part of the molding die, and at least one portion of the peripheral wall ffi of the tongue body has a slit in the axial direction and in a direction orthogonal to the frame body moving direction. Then, the body is erected by fitting into a shallow recess provided in a flat plate of the molding frame.
また、 成形型となる凹郎は、 前記成形用枠体自体を柔 性を有する非 金厲材料で形成し、 その表面節に成形型となる凹部を穿設することによ り形成してもよい。 この場合、 垓凹郎間の枠体基材部の少なくともーケ 所に、 その軸方向に切り裂き郎が設けられているか、 前記成形用枠体の 裏面に、 前記枠体の進行方向と直交する方向に溝が形成されていること ことが望ましい。  In addition, the concave portion serving as a molding die may be formed by forming the molding frame itself from a non-metallic material having flexibility and forming a concave portion serving as a molding die in a surface node thereof. Good. In this case, a cut-out is provided in at least a part of the frame base material portion between the tongue and dent in the axial direction, or a rear surface of the molding frame is orthogonal to the traveling direction of the frame. It is desirable that a groove be formed in the direction.
以上咩述した如く、 本発明のガス発生剤に係る製造方法並びに装 Bに よれば、 ガス発生剤 S合物は、 水スラリー状態から成形されるので、 従 来、 最も危険とされていたガス発生剤の成形工程の安全性を大幅に向上 させることができる。  As described above, according to the production method and Apparatus B of the gas generating agent of the present invention, the gas generating agent S compound is formed from a water slurry state, so that the gas which has been regarded as the most dangerous The safety of the molding process of the generator can be greatly improved.
又、 スラリー状態で成形型内に注入する方式を採用するので、 成形形 状についても従来の楕円状の錠剤形状に限定される事なく、 その形状の 退択の «が広がり、 燃焼性を考 Sした最適のガス発生剤形状を選択する 事が可能となる。  In addition, since the method of injecting the slurry into the mold is adopted, the shape of the mold is not limited to the conventional elliptical tablet shape, but the selection of the shape is widened and the combustibility is considered. It is possible to select the optimal gas generating agent shape that has been obtained.
又、 水スラリ一状想で成形を開始するので、 従来は危険とされて採用 され得なかった加熱方式が採用できるので、 固化速度の大幅な向上が達 成され、 従って、 移動コンベア方式の成形, 乾燥固化システムの採用が 可陡となり、 その結果、 設備スペースの小型化と連続生産が可能になり 、 生産性も飛踵的に向上する。 In addition, since the molding is started with the idea of a water slurry, a heating method that could not be adopted because it was conventionally dangerous can be adopted, and a large improvement in solidification speed is achieved. , It is possible to adopt a drying and solidification system, and as a result, it is possible to reduce the equipment space and achieve continuous production. , Productivity is also improved.
更に、 本発明の製造装置は、 成形型となる凹節が成形用枠体の表面部 に形成されており、 この成形用枠体を移動させつつ、 スラリー状ガス発 生成分の凹郎への注入と、 垓注入されたスラ リ一状ガス発生剤組成物の 加熱固化と、 R固化した成形体を、 前記成形型を 性変形させて取り出 す様になっているので、 連続的にガス発生剤の成形が行われ且つ自勳化 する事が容易となり、 その生産性は飛躍的に向上する。  Furthermore, in the manufacturing apparatus of the present invention, a concave node serving as a molding die is formed on the surface of the molding frame. Injection, heating and solidification of the slurry-like gas generating agent composition injected, and R solidification of the molded body by sexually deforming the molding die, so that the gas is continuously discharged. It is easy to mold and generate the generator, and the productivity is dramatically improved.
又、 成形型を柔钦性を有する材料で形成しているので、 これを弾性変 形させるだけで容易に型内から抜き取ることができ、 抜き取り用の特別 な ¾具も不要となり且つガス発生剤成形体の抜き取り時の破損もなく、 製品歩留りも向上する。  In addition, since the mold is made of a flexible material, it can be easily extracted from the mold only by elastically deforming it, and no special tool for extraction is required and the gas generating agent is used. There is no breakage during removal of the molded body, and the product yield is improved.
又、 型郎は、 柔軟性を有する非金 JS製材料で形成されており、 その弹 性変形のみで成形品の抜き取りが可能であるので、 成形品と型郎との摩 擦も%どなくなり、 従来法では大きな問題となっていた取り出し時の火 花発生が皆無となり、 安全性も飛躍的に向上する。  In addition, the mold is made of a flexible non-gold JS material, and the molded article can be extracted only by its elastic deformation, so that the friction between the molded article and the mold is reduced. However, there is no spark at the time of removal, which is a major problem in the conventional method, and safety is dramatically improved.
又、 型郎は、 柔軟性を有する非金厲製材料で形成され且つその周壁部 に軸方向の切り裂きを投けている場合には、 その弾性変形による成形品 の抜き取りが Sめて容易になる。  In addition, when a mold is made of a flexible non-metallic material and an axial cut is made on its peripheral wall, it is easy to remove a molded product due to its elastic deformation. Become.
又、 型郎の構造を、 平板とこの平板状に立設された複数の筒体との組 み合わせ又は浅い凹郎を有する平板と珐凹郎に嵌合立股した简体との組 み合わせ或いはこれらの简体に、 その軸方向に切り裂きを形成して成形 品取り出し時の成形型の »性変形を容易にする等の種々の応用が可能で あり、 製品の種類に応じて任窓の設備形態を採用する事ができる等の適 用範囲が広い。  In addition, the structure of the model is a combination of a flat plate and a plurality of cylinders erected in the form of a flat plate, or a flat plate having a shallow dent and a 简 body fitted to the dent. Alternatively, various applications are possible, such as forming a cut in the body in the axial direction to facilitate the property deformation of the mold when removing the molded product. The applicable range is wide such that the form can be adopted.
更に、 柔钦性を有する素材として、 シリコンゴム、 ポリブタジエン、 ポリ塩化ビュール、 ポリイソプレン、 ュト リルゴム、 イソプチレン、 ァ ク リルゴム、 ク tiロスルフォンィ匕ポリエチレン、 エチレンプロ ビレンゴ ム、 フッ素ゴム、 ウレタ ンゴムの一種以上又はその混合物からなるもの を使用できるので、 成形型の成形が容易且つ安価にできる。 Further, as a material having flexibility, silicone rubber, polybutadiene, polychlorinated bure, polyisoprene, butyr rubber, isobutylene, and α Since it is possible to use one or more of krill rubber, ketirosulfonidani polyethylene, ethylene propylene, fluorine rubber, and urethane rubber or a mixture thereof, molding of a mold can be performed easily and at low cost.
以上のように本発明に係るガス発生剤の製造方法並びにその装置は、 第一に粉末状原料混合物からガス発生剤を成錠する場合の成形技術に起 因する発火の危險性の問西を解決して安全なガス発生剤の製造技術を提 供し, 第二に推進薬成形時の金型に起因する発火の危険性の問題と低生 産性の問題を解決し、 極めて安全で且つ生産性の高いガス発生剤の生産 技術を提供している。 図面の簡単な鋭明  As described above, the method and the apparatus for producing a gas generating agent according to the present invention firstly consider the danger of ignition caused by the molding technique when the gas generating agent is tableted from a powdery raw material mixture. Second, it solves the problem of danger of ignition and the problem of low productivity caused by the mold during propellant molding, and provides an extremely safe and productive technology. The company provides production technology for highly efficient gas generating agents. Simple sharps of the drawing
第 1図は、 1 リッ トルタンクテストで得られる特性を示すグラフの典 型例であり、 第 2図は、 本発明に係るガス発生剤の成形装置の構成の実 施例をを示す横面 Ξであり、 第 3図は、 第 2図の装 IBの上面図であり、 第 4図 (a ) 及び第 4図 (b ) は、 本発明に係るガス発生剤の製迪方法 の手順を锐明するための概略図であって、 第 4 0 ( a ) は横面図、 第 4 図 (b ) は側面図であり、 第 5図は、 本発明に係るガス発生剤の成形装 Sの注入機構の他の実施例を示す斜視図であり、 第 6図は、 本発明に係 るガス発生剤の成形装 Bの成形用枠体の他の実施例を示す斜視図であり 、 第 7図は、 本発明に係るガス発生剤の成形装置の成形用枠体の他の実 施例を示す斜視図であり、 第 8図 (a ) 及び第 8図 (b ) は、 本発明に 係るガス発生剤成形装置の成形用枠体の他の実施例を示す図であって、 第 8図 (a ) は上面図、 第 8図 (b ) は横面図であり、 第 9図 (a ) 及 び第 9図 (b ) は、 本発明に係るガス発生剤成形装置の成形用枠体の更 に他の実施例を示す Hであって第 9 Ξ ( a ) は上面図、 第 9図 (b ) は 横面図である。 発明を実施するための最良の形想 FIG. 1 is a typical example of a graph showing characteristics obtained in a one-liter tank test, and FIG. 2 is a cross-sectional view showing an example of a configuration of a gas generating agent forming apparatus according to the present invention. Fig. 3 is a top view of the device IB of Fig. 2, and Figs. 4 (a) and 4 (b) show the procedure of the method for manufacturing a gas generating agent according to the present invention. Fig. 40 (a) is a side view, Fig. 4 (b) is a side view, and Fig. 5 is a schematic view of a gas generating agent molding apparatus S according to the present invention. FIG. 6 is a perspective view showing another embodiment of the injection mechanism of the present invention. FIG. 6 is a perspective view showing another embodiment of the molding frame of the molding apparatus B for the gas generating agent according to the present invention. FIG. 7 is a perspective view showing another embodiment of the molding frame of the gas generating agent molding apparatus according to the present invention, and FIGS. 8 (a) and 8 (b) show the present invention. The configuration of such a gas generating agent forming apparatus Fig. 8 (a) is a top view, Fig. 8 (b) is a lateral view, and Figs. 9 (a) and 9 ( b) is H showing still another embodiment of the molding frame of the gas generating agent molding apparatus according to the present invention, wherein FIG. 9 (a) is a top view, and FIG. 9 (b) is a lateral surface. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明であるガス発生剤の実施例を説明する。 尚、 翻合された ガス発生剤の特性は、 1 リッ トルタンクテストにより評価した。 この 1 リ ッ トルタンクテス トは、 内容積 1 ') ッ トルのステンレス製容器に、 圧 力センサを取り付け、 点火具も着朕自在に取り付けられる様にしたもの である。 この容器中に試作したガス発生剤ペレツ トを入れ、 点火具によ つて着火させ、 点火具の点火電流が流れてから圧力が発生するまでの着 火時間を測定すると共に、 発生圧力を測定する。 なお、 点火具は、 DD N P (ジァゾジュトロフ ノール) 点火玉 +B/KNOa (ボ nン碓石 ) の 0. 6 fir入りを用いた。 Hereinafter, examples of the gas generating agent of the present invention will be described. The properties of the converted gas generating agent were evaluated by a one-liter tank test. This one-liter tank test has a pressure sensor attached to a stainless steel container with an inner volume of 1 ') and the igniter can be attached freely. Put the prototype gas generant pellet in this container, ignite it with the igniter, measure the ignition time from when the ignition current of the igniter flows until the pressure is generated, and measure the generated pressure. . Incidentally, the igniter was used 0. 6 fir entering the DD NP (Jiazojutorofu Nord) ignition Ball + B / KNO a (Bo n down mortar stones).
又、 この 1 リ ッ トルタンクテス トで得られた特性を示すグラフの典型 例を第 1囪に示す。 は着火時 ¾であり、 Ρββ>( は ft高圧力であり、 t -P.. は «高圧力に至るまでの時閱を示している。 例えば、 ィンフ レータ用ガス発生剤の場合の t t は 1 Om s前後であって、 Ρ«β1<及び t - P»a«が所定範囲にあり、 適度の燃焼速度を有する必要がある。A typical example of a graph showing the characteristics obtained by this one-liter tank test is shown in Fig. 1 (1). Is the ignition time 、, Ρ ββ> ( is the ft high pressure, and t -P .. indicates the «time to high pressure 閱. For example, t in the case of the gas generator for inflator t is about 1 Oms, ββ1 < and t-P »a« are within a predetermined range, and it is necessary to have an appropriate combustion rate.
〔実施例一 1〕 (Example 1 1)
ト リアミノグァュジンナイ トレー ト (TAGN) 4 5. 1 g ( 0. 2 7モル) と 5一アミノテ トラゾール ( 5一 AT Z) 6 2. 1 g ( 0. 7 3モル) に P H翻整用の酸化マグネシウム 4. O sを混合し、 この混合 液を «拌しながらホルマリ ン液 ( 3 Ί96品) 8 1 gを添加した。 尚、 ホ ルマリン水溶液は、 発泡が生じない様に、 徐々に添加し、 且つ発泡を抑 える為に、 水冷しつつ反応を行わせた。 この反応を常温で約 1時間行わ せた処、 乳液状の粘稠な反応生成物が得られた。 この反応生成物は、 ァ ミノ基 (一 NH A ) とアルデヒ ド基 (一 C H 0) の付加縮合反応によつ て所謂アミノ樹脂の一種が生成したものと考えられるが、 TA GNとァ ルデヒ ドとの反応生成物は水溶性であるが、 5— AT Zのそれは非水溶 性であるので、 両者が混在したスラリ一状の反応生成物となっている。 このスラリ一状の反応生成物に、 酸化剤として塩素酸力リゥム粉末 (K C 】 0a ) 1 72. 5 gを添加混合して粘稠なスラ リーとなし、 このス ラリ一状組成物を、 注射器を用いてポリエチレンシート上に押し出して 、 巾約 5mm, 高さ約 5 mmの断面半円形の紐状体を形成した。 これを 7 0での恒温炉で 24時間乾燥して一郎縮合硬化した固形物となし、 こ れを長さ 1 5mm. 25mm, 35 mmの 3種類に切断してガス発生剤 とした。 このガス発生剤べレツ ト各 1 0 gを用いて上述した 1リッ トル タ ンクテス トを行った処、 表 1の如き結果を得た。 PH adjusted to 45.1 g (0.27 mol) of triaminoguanidine salt (TAGN) and 62.1 g (0.773 mol) of 5-aminotetrazole (5-1 ATZ) Magnesium oxide for use 4. Os was mixed, and 81 g of formalin solution (310-96 product) was added while stirring the mixed solution. The formalin aqueous solution was added gradually so as not to cause foaming, and the reaction was carried out while cooling with water in order to suppress foaming. When this reaction was carried out at room temperature for about 1 hour, an emulsion-like viscous reaction product was obtained. This reaction product is thought to be a type of amino resin formed by the addition condensation reaction of an amino group (one NH A ) and an aldehyde group (one CH 0). The product of the reaction with the salt is water-soluble, but that of 5-ATZ is not water-soluble. Therefore, it is a slurry-like reaction product in which both are mixed. This slurry one like reaction product, chlorate force Riumu powder (KC] 0 a) 1 72. 5 g of adding and mixing viscous slurries and without the oxidizing agent, the scan slurry one like composition A string was extruded onto a polyethylene sheet using a syringe to form a string having a width of about 5 mm and a height of about 5 mm and having a semicircular cross section. This was dried in a constant-temperature oven at 70 for 24 hours to obtain a solid that was condensation-cured by Ichiro. The solid was cut into three types, 15 mm in length, 25 mm and 35 mm, and used as a gas generating agent. When the above-described 1 liter tank test was performed using 10 g of each of the gas generating agent pellets, the results shown in Table 1 were obtained.
表 1に示されるように、 着火時間 t , はいずれも 1 Oms以内である と共に、 t一 P m a X. 及び P m a x . も適度の範囲内にあって、 エア バッグ用イ ンフレータのガス発生剤として良好な値であった。 尚、 生成 ガス中の C 0澳度はいずれも 0. 1%以下であり、 問 Sになる程の量で はなかった β As shown in Table 1, the ignition time t, is less than 1 Oms, and t-Pmax and Pmax are also within appropriate ranges, and the gas generating agent for the inflator for airbags. Was a good value. Incidentally, C 0澳度in the product gas is any even less than 1% 0., was not in an amount sufficient to provide Q S beta
〔表 1 : 1 リ ツ トルク ンクテス ト結果〕  [Table 1: 1-litre torque test results]
Figure imgf000022_0001
Figure imgf000022_0001
〔実施例一 2〕 (Example 1-2)
T AGN 8. 4 gに PH睏整用の炭酸カリウム 0. 7 gを混合粉砕し た後、 水 1 sを添加して混棟し、 P H 7〜8にある事を確 Sし、 統いて これに、 ホルマリ ン液 ( 37%品) 2. 1 gを、 実施例 1の場合と同様 に、 反応による発泡が生じない様に徐々に添加し、 援拌混合しながら常 温で約 3 0分反応させた処、 粘稠な液状の反応生成物が得られた。 この 反応生成物も所謂アミノ樹脂の一種が生成したものと考えられるが、 T AGNとアルデヒドとの反応生成物は水溶性であり、 固形物を含んだス ラリーとは異なっていた。 この液状の反応生成物に、 酸化剤として埴素 »カ リ ウム 1 3. 7 g添加 ffi合し、 得られた粘稠スラ リ一を、 注射器を 用いてポリエチレンシート上に滴下して実施例一 1と同様に 24時間乾 燥させて、 直径約 7 mmの半球状のガス発生剤ペレツ トを得た。 このべ レッ ト 1 0 gを用いて前記 1リッ トルタンクテストを行った処、 t , - 7. 6ms, t - P m a x . = 33. 6ms . P m a x . = 63. 3 2 a t m. であり、 生成ガス中の C 0濃度も 0. 1%以下であり、 インフ レータ用ガス発生剤として、 良好な値であった。 After mixing and crushing 0.7 g of potassium carbonate for adjusting pH to 8.4 g of T AGN, add 1 s of water and mix to make sure that it is at pH 7 to 8, and To this, 2.1 g of formalin solution (37% product) was gradually added in the same manner as in Example 1 so that foaming due to the reaction did not occur. After a minute reaction, a viscous liquid reaction product was obtained. It is thought that this reaction product was also generated by a kind of so-called amino resin. The reaction product of the AGN and the aldehyde was water-soluble and different from the slurry containing solids. This liquid reaction product was mixed with 13.7 g of clay as an oxidizing agent, mixed, and the resulting viscous slurry was dropped on a polyethylene sheet using a syringe. It was dried for 24 hours in the same manner as in Example 1 to obtain a hemispherical gas generant pellet with a diameter of about 7 mm. The above-mentioned one-liter tank test was conducted using 10 g of this belt at t, -7.6 ms, t-Pmax. = 33.6 ms.Pmax. = 63.32 atm. Yes, the C 0 concentration in the generated gas was 0.1% or less, which was a good value as a gas generator for inflators.
〔実施例一 3〕  (Example 1-3)
ァゾジカルボンアミ ド (ADCA) 1 1. 6 gと前記ホルマリ ン液 4 . 2 gとにアルカ リを添加して P H 6. 5〜 7. 5で授拌混合しながら 約 2時間、 常温で反応させた処、 スラ リー状の反応生成物が得られた。 この反応生成物も、 所謂ァミノ榭脂の一種と考えられるが、 ADC Aと アルデヒドとの反応生成物は非水溶性の固形物であり、 反応液中に分敉 じた撖钿なスラ リ一であった。 このスラ リ一中、 酸化剤として塩素酸力 リウム 27. 8 を添加混合して粘睏なスラ リーとなし、 これを注射器 を用いて押し出して長さ 5〜 1 Ommに切断して縮合反応を進行させる 事なく自然乾燥させ、 直径約 4mm, 長さ 5〜 1 Ommの短紐状のガス 発生剤を得た。 このガス発生剤 1 0 gを用いて、 前記 1リッ トルタンク テス トを行った処、 1 , - 8. 4ms. t - P m a X . = 4 3. 6ms , Pm a x. = 46. 57 a t m. であり、 生成ガス中の C 0濃度も 0 . 1¾以下であり、 イ ンフレータ用ガス発生剤として良好な値であった  Alkaline was added to 11.6 g of azodicarbonamide (ADCA) and 4.2 g of the formalin solution, and the mixture was stirred and mixed with PH 6.5 to 7.5 at room temperature for about 2 hours. After the reaction, a slurry-like reaction product was obtained. This reaction product is also considered to be a kind of so-called amino resin, but the reaction product of ADC A and aldehyde is a water-insoluble solid, and is a small slurry separated in the reaction solution. Met. In this slurry, potassium chlorate 27.8 was added and mixed as an oxidizing agent to form a viscous slurry, which was extruded using a syringe and cut to a length of 5 to 1 Omm to carry out the condensation reaction. It was air-dried without advancing, and a short string-shaped gas generant having a diameter of about 4 mm and a length of 5 to 1 Omm was obtained. Using the gas generating agent (10 g), the above-mentioned one-liter tank test was carried out, and the results were as follows: 1, -8.4 ms.t-Pmax. = 43.6 ms, Pmax. = 46.57 at m., and the C 0 concentration in the generated gas was 0.1% or less, which was a good value as a gas generator for inflators.
〔実施例一 4〕 (Example 1-4)
TAGN 1 6. 7 gと前記ホルマリ ン液 4. 2 gとをアルカ リ無添加 の状想 (P H 6. 5〜7. 5) で約 1時間、 常温で反応させた処、 透明 なシロ ップ状の反応生成物が得られた。 この反応生成物も、 所謂アミノ 樹脂の一種と考えられる。 この反応生成物に塩素酸カ リ ウム 2 7. 3 g を添加混合して粘翻なスラ リーとなし、 これを実施例一 2と同様に注射 器を用いてポリエチレンシー ト上に滴下して 2 4時間自然乾燥させ、 直 径約 8 mmの半球状のガス発生剤ペレツ トを得た。 このべレツ ト 1 0 g を用いて前記 1リ ッ トルタンクテス トを行った処、 t t = 9. 6m s. t - P m a x. = 46. 8ms, P m a x . = 6 1. 4 a t m. であ り、 生成ガス中の C 0濃度も 0. 396と、 ィ ンフレータ用ガス発生剤と して、 良好な値であった。 TAGN 1 6.7 g and 4.2 g of the formalin solution were added without alkali When the reaction was carried out at room temperature for about 1 hour under the above conditions (PH 6.5-7.5), a transparent syrup-like reaction product was obtained. This reaction product is also considered to be a kind of so-called amino resin. To this reaction product, 27.3 g of potassium chlorate was added and mixed to form a viscous slurry, which was dropped on a polyethylene sheet using a syringe similarly to Example 12. It was air-dried for 24 hours to obtain a hemispherical gas generating agent pellet having a diameter of about 8 mm. When the 1 liter tank test was performed using 10 g of this pellet, tt = 9.6 ms.t-Pmax. = 46.8 ms, Pmax. = 61.4 atm. The C 0 concentration in the produced gas was 0.396, which was a good value as a gas generator for inflators.
〔実施例一 5〕  (Example 1-5)
TAGN 1 2. 5 ε ( 0. 075モル) と 5一 ΑΤΖ 2. 1 ε ( 0. 0 25モル) に Ρ Η綢整用の炭酸マグネシウム 0. 8 gを混合し、 これ に水 4 gを添加して混練した後に、 前記ホルマリ ン液 (37%品) 1 1 . 4 gを徐々に添加しつつ攪拌混合し、 常温で約 1時間反応させた処、 透明なシロ ップ状の反応生成物が得られた。 このシ oップ状の反応生成 物に、 酸化剤として塩素酸力 ')ゥム粉末 27 gを添加混練し、 得られた スラ リ一状組成物を、 実施例一 2と同様に注射器を用いてポリェチレン シー ト上に滴下して、 Ί 0でで 24時間乾燥させ、 部分的に縮合反応の 進行した直径約 5 mmの半球状のガス発生剤ペレツ トを得た。 このペレ ッ ト 1 0 sを用いて前記 1リ ッ トルタ ンクテス トを行った処、 t , = 8 . 4ms, t - P m a x. = 32. 4m s, P m a x. = 70. 1 1 a t m. であり、 イ ンフレ一夕用ガス発生剤として良好な値であった。 TAGN 12.5 ε (0.075 mole) and 5 一 2.1 ε (0.025 mole) were mixed with 0.8 g of magnesium carbonate for silk shaping, and 4 g of water was added thereto. After the addition and kneading, 11.4 g of the above formalin solution (37% product) was gradually added and mixed with stirring, and the mixture was reacted at room temperature for about 1 hour to produce a transparent syrup-like reaction. Thing was obtained. 27 g of chlorinated acid powder) as an oxidizing agent was added to and kneaded with the resulting reaction product in the form of a syringe, and the obtained slurry-like composition was injected into a syringe in the same manner as in Example 12. Then, the mixture was dropped on polyethylene sheet and dried at Ί0 for 24 hours to obtain a hemispherical gas generant pellet having a diameter of about 5 mm in which a partial condensation reaction had progressed. When the one-liter tank test was performed using the pellet 10 s, t, = 8.4 ms, t-Pmax. = 32.4 ms, Pmax. = 70.11 atm., which was a good value as a gas generator for inflation.
〔実施例一 6〕 (Example 1-6)
TAGN l O g ( 0. 0 6モル) と 5一 AT Z 3. 4 ε ( 0. 04モ ル) に Ρ Η翻整用の炭酸マグネシウム 0. 8 gを混合し、 これに水 4 g を添加して S練してベースト状にした後に、 前記ホルマリ ン液 ( 37% 品) 1 1. 4 gを徐々に添加しつつ ft拌混合し、 常温で約 1時間反応さ せた処、 透明なシ nップ状の反応生成物が得られた。 この反応生成物に 、 酸化剤として塩素酸力リウム粉末 26. 7 gを添加混練し、 得られた スラ リー状組成物を、 実施例一 5と同様に注射器を用いてポリエチレン シート上に滴下して、 9 で 24時 1¾乾燥させ、 縮合反応の進んだ直 径約 5 mmの半球状のガス発生剤べレツ トを得た。 このペレッ ト 1 0 g を用いて前記 1リッ トルタンクテストを行った処、 t , = 8. 4ms, t - P m a . = 32. 8m s. Pma x. = 67. 31 a t m. であ り、 イ ンフレータ用ガス発生剤として良好な値であった。 TAGN l O g (0.06 mol) and 5-ATZ 3.4 ε (0.04 mol) are mixed with 0.8 g of magnesium carbonate for inversion and mixed with 4 g of water. And then kneaded to form a base by mixing with S. Then, while gradually adding 11.4 g of the formalin solution (37% product), the mixture was stirred by ft and allowed to react at room temperature for about 1 hour. A clear, sipping reaction product was obtained. To this reaction product, 26.7 g of potassium chlorate powder as an oxidizing agent was added and kneaded, and the obtained slurry composition was dropped on a polyethylene sheet using a syringe in the same manner as in Example 15. Then, the mixture was dried at 9 for 24 hours for 1 hour to obtain a hemispherical gas generant pellet having a diameter of about 5 mm in which the condensation reaction had progressed. Using the pellet of 10 g and performing the one-liter tank test, t, = 8.4 ms, t-Pma. = 32.8 ms pmax. = 67.31 atm. This was a good value as a gas generator for inflators.
〔実施例一 7〕  (Example 1-7)
TAGN 7. 5 g (0. 045モル) と 5一 ATZ 4. 7 e ( 0. 0 5 5モル) に P H睏螯用の炭酸マグネシウム 0. 8 sを混合し、 これに 水 4 sを添加し、 混練してペースト状にした後に、 前記ホルマリン液 ( 37%品) 1 1. 4 εを徐々に添加しつつ攪拌混合し、 常温で約 1時間 反応させた処、 透明なシ ηップ状の反応生成物が得られた。 この反応生 成物に、 酸化剤として埴素酸力リゥム粉末 26. 5 gを添加混棟し、 得 られたスラ 一状組成物を、 実施例一 5と同様に注射器を用いてポリェ チレンシ一ト上に滴下して、 90でで 24時間乾燥させ、 縮合反応の進 んだ直径約 7 mmの半球状のガス発生剤ペレツ トを得た。 このべレツ ト 1 0 gを用いて前記 1 リ "J トルタ ンクテストを行った処、 t , = 1 0. Oms. t一 Pma x. = 52. 8ms, Pma x. = 58. 92 a t m. であり、 イ ンフレータ用ガス発生剤として良好な値であった。  TAGN 7.5 g (0.045 mol) and 5-ATZ 4.7 e (0.055 mol) were mixed with 0.8 s of magnesium carbonate for PH 睏, and 4 s of water was added. After kneading to form a paste, the formalin solution (37% product) was stirred and mixed while adding 11.4 ε gradually, and allowed to react at room temperature for about 1 hour. A reaction product was obtained. To this reaction product, 26.5 g of citrate powder as an oxidizing agent was added and mixed, and the resulting slurry composition was mixed with a polyethylene syringe using a syringe in the same manner as in Example 15. The mixture was dried at 90 at 24 hours to obtain a hemispherical gas generant pellet having a diameter of about 7 mm in which the condensation reaction proceeded. Using the 10 g of this belt, the above-mentioned 1-torque tank test was performed, t, = 10 Oms.t-1 Pmax x = 52.8 ms, Pmax x = 58.92 at m. This was a good value as a gas generator for an inflator.
〔実施例一 8〕  (Example 1-8)
TAGN 5. 0 E (0. 03モル) と 5一 AT Z 6. 0 g ( 0. 07 モル) に P H翻整用の炭酸マグネシウム 0. 8 gを混合し、 これに水 4 sを添加して S練してペース ト状にした後に、 前記ホルマリ ン液 (37 ¾5品) 1 1. 4 gを徐々に添加しつつ «拌混合し、 常温で約 1時間反応 させた処、 粘 ¾なスラ リー状の反応生成物が得られた。 この反応生成物 に、 酸化剤として塩素酸カ リ ウム粉末 26. 2 gを添加混練し、 これを 実施例一 5と同様に注射器を用いてポリエチレンシート上に滴下して、 9 0 tで 24時 H乾燥させ、 縮合反応の進んだ直径約 7 mmの半球状の ガス発生剤ペレツ トを得た。 このべレツ ト 1 0 gを用いて前記 1リ ッ ト ルタ ンクテス トを行った処、 t i = 1 0. Om s, t - P m a x . = 4 7. 2ms, Pm a x. = 60. 05 a t m. であり、 イ ンフレータ用 ガス発生剤として良好な値であった。 TAGN 5.0 E (0.03 mol) and 5.0 g ATZ 6.0 g (0.07 mol) were mixed with 0.8 g of magnesium carbonate for PH adjustment, and water 4 After adding s and kneading into S to form a paste, the mixture was stirred and mixed while gradually adding 11.4 g of the above formalin solution (37.5 products), and reacted at room temperature for about 1 hour. Thus, a viscous slurry-like reaction product was obtained. To the reaction product, 26.2 g of potassium chlorate powder as an oxidizing agent was added and kneaded, and the mixture was dropped on a polyethylene sheet using a syringe in the same manner as in Example 15 to obtain 24 hours at 90 t. H-drying was performed to obtain a hemispherical gas generating pellet with a diameter of about 7 mm in which the condensation reaction was advanced. When the one-liter tank test was performed using 10 g of this pellet, ti = 10 Oms, t-Pmax. = 47.2 ms, Pmax = 60.05 atm., which was a good value as a gas generator for inflators.
〔実施例一 9〕  (Example 1-9)
TAGN 4. 2 ε ( 0. 0 25モル) と 5一 ΑΤΖ 6. 4 ε (0. 0 75モル) に Ρ Η睏整用の酸化マグネシウム 0. 4 gを混合し、 これに 水 4 gを添加して混練してベース ト状にした後に、 前記ホルマリ ン液 ( 37%品) 1 1. 4 gを徐々に添加しつつ «拌混合し、 常温で約 1時簡 反応させた処、 粘 «なスラ リー状の反応生成物が得られた。 この反応生 成物に、 酸化剤として塩素酸カ リウム粉末 2 &. l gを添加混練し、 こ れを実施例一 5と同様に注射器を用いてポリヱチレンシ一ト上に滴下し て、 90*Cで 24時間乾燥させ、 縮合反応の進んだ直径約 7 mmの半球 状のガス発生剤べレツ トを得た。 このべレツ ト 1 0 gを用いて前記 1 リ ッ トルタ ンクテス トを行った処、 t i - 8. 8ms, t - P m a x . = 53. 6ms. P m a x. = 58. 06 a t m. でありイ ンフレータ用 ガス発生剤として良好な値であった。  TAGN 4.2 ε (0.025 mol) and 5 一 6.4 ε (0.075 mol) are mixed with 0.4 g of magnesium oxide for 、 adjustment, and 4 g of water is added thereto. After adding and kneading to form a base, 11.4 g of the above formalin solution (37% product) was gradually added, mixed with stirring, and allowed to react at room temperature for about 1 hour. A slurry-like reaction product was obtained. To this reaction product, 2 &. Lg of potassium chlorate powder as an oxidizing agent was added and kneaded, and the mixture was dropped on a polyethylene sheet using a syringe in the same manner as in Example 15 to obtain 90 * C For 24 hours to obtain a hemispherical gas generant pellet having a diameter of about 7 mm in which the condensation reaction has progressed. When the one-liter tank test was performed using 10 g of this pellet, ti-8.8 ms, t-P max. = 53.6 ms.P max. = 58.06 at m. Yes It was a good value as a gas generator for inflators.
〔実施例一 1 0〕  (Example 10)
TAGN 3. 3 gと ADCA 9. 3 Sに P H綑整用の酸化マグネシ ゥム 0. 4 gを混合し、 これに水 4 gを添加して混棟してベース ト状に した後に、 前 εホルマリ ン液 ( 37%品) 8. l gを徐々に添加しつつ «抻混合し、 水冷しつつ常温で約 1時閱反応させた処、 粘 Wな茶掲色の 反応生成物が得られた。 この反応生成物に、 酸化剤として埴素酸力リゥ ム粉末 20. 5 «rを添加混練し、 これを実施例一 3と同様に注射器より 押し出して、 長さ約 7mmに切断し、 9 Otで 24時閱乾煉させて、 縮 合反応の進んだ直径 5mm X長さ 7 mmのガス発生剤べレツ トを得た。 このペレツ ト 1 0 gを用いて前記 1リ ッ トルタ ンクテス トを行った処、 t , = 8. 4ms, t - P m a . = 7 1. 6m s, Pma x. = 5 6 . 1 7 a t m. であり、 インフレ一夕用ガス発生剤として良好な値であ つた。 TAGN 3.3 g and ADCA 9.3 S are mixed with 0.4 g of magnesium oxide for pH adjustment, and 4 g of water is added to the mixed mixture to form a base. After that, the former ε-formalin solution (37% product) 8. The mixture was mixed slowly while adding lg slowly, and allowed to react at room temperature for about 1 hour while cooling with water. Thing was obtained. To this reaction product, 20.5 r / min of acid lime powder as an oxidizing agent was added and kneaded. The mixture was extruded from a syringe in the same manner as in Example 13 and cut into a length of about 7 mm. At 24 hours to obtain a gas generant pellet having a diameter of 5 mm and a length of 7 mm in which the condensation reaction had progressed. When the one-liter tank test was performed using 10 g of this pellet, t, = 8.4 ms, t-Pma. = 71.6 ms, Pmax. = 56.17 at m., which was a good value as a gas generator for inflation.
〔実施例一 1 1〕  (Example 1 1 1)
TAGN 5. 0 g (0. 03モル) と 5一 AT Z 6. 0 z (0. 0 7 モル) に P H翻整用の酸化マグネシウム 0. 4 gを混合し、 これに水 4 gを添加して混練してベースト状にした後、 前記ホルマリン液 (31% 品) 8. 1 gを徐々に添加しつつ授拌混合し、 水冷しつつ常温で約 1時 閱反応させた処、 粘稠な反応生成物が得られた。 この反応生成物に、 酸 化剤として硝酸力リウム粉末 6. 7 gと埴素酸力リウム粉末 1 8 gとを 添加混棟し、 これを実施例一 5と同様に注射器を用いてポリエチレンシ 一ト上に滴下して、 90でで 24時間乾燥させ、 縮台反応の進んだ直径 約 8 mmの半球状のガス発生剤べレツ トを得た。 このべレッ ト 1 0 gを 用いて前 K 1リ ッ トルタンクテス トを行った処、 t ! s S O. 4m s. t一 Pma x. = 9 1. 6ms, Pma x. = 5 1. 32 a t m. であ り、 着火時 Ifflが若干遅く圧力の立ち上がりも緵 «であって、 エアバッグ のィンフレ一タ用ガス発生剤としては問題があるが、 飛翔体用のガス発 生剤としては問翻のない値であった。  TAGN 5.0 g (0.03 mol) and 5-ATZ 6.0 z (0.07 mol) were mixed with 0.4 g of magnesium oxide for PH adjustment, and 4 g of water was added thereto. After mixing and kneading to form a base, 8.1 g of the formalin solution (31% product) was gradually added and mixed with stirring, and the mixture was allowed to react at room temperature for about 1 hour while cooling with water. Reaction product was obtained. To this reaction product were added 6.7 g of potassium nitrate powder and 18 g of potassium oxalate powder as oxidizing agents, and the mixture was mixed. The mixture was dropped on a plate and dried at 90 at 24 hours to obtain a hemispherical gas generant pellet having a diameter of about 8 mm in which the contraction reaction had progressed. Using 10 g of this Bellette for the previous K 1 little tank test, t! S S O. 4 ms.t- 1 Pma x. = 9 1.6 ms, Pma x. = 5 1.32 at m., the Iffl at ignition is slightly slower and the pressure rises slightly, which is a problem as a gas generator for airbag inflators, but a problem as a gas generator for flying objects. It was a value without transliteration.
〔実施例一 1 2〕 実施例一 1 1において、 坩素酸力 リウムの代わりに a塩素酸力 リ ゥム(Example 1 1 2) Example 11 In Example 11, a chloric acid power was used in place of the lithium chlorate.
1 3. 5 gを用いて製迪したべレツ ト 20 sを 1 1 0' Cで 48時間加 熱して完全に縮合硬化させた。 得られたペレツ ト 1 0 gを用いて前記 1 リ ッ トルタ ンクステトを行った処、 t ! - l l. 2ms, t - P m a x . = 5 1. 2ms, Pm a x. = 6 0. 77 a t m. であり、 実施例一 1 1のものより着火性が改善され、 ィンフレータ用ガス発生剤としても 使用可能な値となった。 The beret 20 s prepared using 13.5 g was heated at 110 ° C. for 48 hours to be completely condensed and cured. Using the obtained pellets (10 g) to perform the above-mentioned 1 liter tank state, t! -L l. 2 ms, t-P max. = 5 1.2 ms, Pmax. = 60.77 atm., the ignitability was improved as compared with that of Example 11 and the value could be used as a gas generator for inflators.
〔実施例一 1 3〕  (Example 1-13)
T AGN 4. 2 g (0. 02 5モル) と 5— ATZ 6. 4 g ( 0. 0 7 5モル) に P H81整用の酸化マグネシウム 0. 4 gを混合し、 これに ホルマリ ン液 ( 37%品) 8. 1 gを徐々に添加しつつ擅拌混合し、 常 温で 1 0分閱反応させ、 粘¾な反応生成物を得た。 この反応生成物に、 酸化剤として确酸ナト リ ウム 1 8. 8 gを添加 fB練し、 これをポリェチ レンシート上に滴下して 45でで 24時間乾燥させ完全に擗合硬化した 直径約 7 mmの半球状のベレツ トを得た。 このペレツ ト 1 O gを用いて 前記 1リ ッ トルタ ンクテス トを行った処、 t , = 53. 0ms, t - P ma x. = 262 m s , P m a x . = 44. 6 a t m. であり、 着火時 間が遅く圧力の立ち上がりも緩慢であって、 エアバッグ用ガス発生剤と しては不適当であつたが、 飛翔体推進用ガス発生剤としては使用可能な 値であった。  A mixture of 4.2 g (0.025 mol) of T AGN and 6.4 g (0.075 mol) of 5—ATZ with 0.4 g of magnesium oxide for adjusting PH81 was added to the formalin solution. (37% product) 8.1 g was gradually added and mixed with stirring for 10 minutes at room temperature to obtain a viscous reaction product. To this reaction product was added 18.8 g of sodium oxalate as an oxidizing agent, kneaded with fB, dropped on a polyethylene sheet, dried at 45 for 24 hours, and completely cured to a diameter of about 7 A hemispherical beret of mm was obtained. When the one-liter tank test was performed using 1 Pg of this pellet, t, = 53.0 ms, t-Pmax. = 262 ms, Pmax. = 44.6 atm. However, the ignition time was slow and the pressure rise was slow, making it unsuitable as a gas generating agent for airbags, but it was a value that could be used as a gas generating agent for projectiles.
〔実施例一 1 4〕  (Example 1-14)
実施例一 1 3で得られたベレツ ト 2 0 gを、 1 10' Cで 48時間加 熱して完全に縮合硬化させ、 得られたベレツ ト 1 0 gを用いて前記 1 、) ッ トルタンクステ トを行った処、 t i - l l. 2ms, t - P m a x . = 1 1 1. 6ms. P m a x. = 39. 4 7 a t m. であり、 実施例一 1 3より格段に着火性が改萑され、 エアバッグのイ ンフレータ用ガス発 生剤として良好な値となった。 20 g of the beret obtained in Example 13 was heated at 110 ° C. for 48 hours to be completely condensation-cured, and 10 g of the obtained beret was used for the above-mentioned 1) Ti-l l. 2 ms, t-P max. = 1 1 1.6 ms. P max. = 39.4 7 at m., Which is much more ignitable than Example 1-13. Revised, gas generation for airbag inflator It was a good value as a crude drug.
〔実施例一 1 5〕  (Example 1-15)
TAGN 66. 8 e (0. 40モル) と 5一 ATZ 1 02. 0 g ( 1 . 20モル) を混合し、 この S合液を攪拌しながらホルマリ ン液 (37 %品) 1 29. 8 gを添加した。 尚、 ホルマリ ン液は、 発泡が生じない 様に徐々に添加した。 この反応を 70でで 30分行わせた処、 乳液状の 粘稠な反応生成物 (アミノ樹 の一種) が得られた。 この反応生成物に 、 酸化剤として確酸カ リ ウム粉末 (ΚΝΟ, ) 31 1. ? (3. 08 モル) と過埴素酸カ リ ウム (KC 1 0, ) 38. 3 g (0. 28モル) を添加して 20分間混練して粘稠なスラ リーとした。 このスラ リー状組 成物を、 ポリエチレンシート上に押し出して、 厚さ 1mmの板状体とな し、 これを 50での但湿炉で 24時 ffi乾燥固化させた。 次にこの板状固 形物を粗破砕し更に乳鉢で粉砕して粒径 1 mm以下の粉体状とした後、 打錠機を用いて直径各 6, 7, 8mmx厚さ 5mmのべレッ トを各 1 5 0 g製造した。 このべレツ トを高温炉中で 1 07で X 24時閲縮合硬化 反応を行わせてガス発生剤とした。 このガス発生剤べレツ トの圧壊強度 は 20~ 30 k g f と極めて高い値であった。 因みに縮合反応前の圧壊 強度は 5〜 6 k g f であった。  TAGN 66.8 e (0.40 mol) and 5-ATZ 102.0 g (1.20 mol) were mixed, and the S mixture was stirred while formalin solution (37% product) 1 29.8 g was added. The formalin solution was gradually added so that foaming did not occur. When this reaction was carried out at 70 for 30 minutes, a viscous milky reaction product (a kind of amino tree) was obtained. To this reaction product, potassium oxalate powder (ΚΝΟ,) 31 1.? (3.08 mol) and potassium periodinate (KC10,) 38.3 g (0. Was added and kneaded for 20 minutes to form a viscous slurry. This slurry-like composition was extruded onto a polyethylene sheet to form a 1 mm-thick plate-like body, which was dried and solidified in a 50% moisture oven at 24 hours. Next, the plate-like solid is roughly crushed and further crushed in a mortar to obtain a powder having a particle size of 1 mm or less. Then, using a tableting machine, a pellet of 6, 7, 8 mm in diameter and 5 mm in thickness is used. Each 150 g was produced. The pellets were subjected to a condensation hardening reaction at X 24 hours in 107 in a high-temperature furnace to obtain a gas generating agent. The crushing strength of this gas generant pellet was extremely high at 20 to 30 kgf. Incidentally, the crushing strength before the condensation reaction was 5-6 kgf.
この 3種類のガス発生剤ペレツ ト各 1 0 gを用いて上述した 1 リ ッ ト ルタ ンクテス トを行った処、 表 2の如き結果を得た。  When the above-described one-liter tank test was performed using 10 g of each of these three types of gas generating agent pellets, the results shown in Table 2 were obtained.
〔表 2 : 1リ ツ トルタ ンクテス ト結果〕  [Table 2: Results of 1-litre tank test]
Figure imgf000029_0001
Figure imgf000029_0001
表 2に示されるように、 着火時間 t , はいずれも 1 Dms以内である と共に、 t一 Pma x. 及び Pma x. も通度の範囲内にあって、 エア バッグ用イ ンフレータのガス発生剤として良好な値であった。 尚、 生成 ガス中の C 0»度はいずれも 0. 1%以下であり、 問 Sになる程の量で はなかった。 As shown in Table 2, each ignition time t, is within 1 Dms At the same time, t-Pmax and Pmax were also within the range of conductivity, and were good values as gas generating agents for inflators for airbags. In addition, the C 0 degree in the generated gas was 0.1% or less in each case, which was not an amount sufficient to satisfy the question S.
〔実施例一 1 6〕  (Example 1-16)
実施例 1 5と同一条件で反応して得られた反応生成物を、 常温下で滅 圧乾燥して塊状固形物とし、 これを乳鉢で充分破砕粉碎した。 この粉状 物に酸化剤として硝酸カ リ ウム粉末 (KNOs ) 3 1 1. 4 g (3. 0 8モル》 と遇埴素酸カ リ ウム (KC 1 04 〉 38. 3 g (0. 28モル ) を夫々添加して 2 D分醐 S練し、 打腚機を用いて直径各 6. 7, 8m mxj?さ 5mmのべレツ トを各 1 50 g製造した。 このべレツ トを高温 炉中で 1 05で X 24時簡縮合硬化反応を行わせてガス発生剤とした。 このガス発生剤ペレツ トの圧壊強度は 20~ 30 k g f と極めて高い値 であった。 因みに縮合反応前の圧壊強度は 5〜 6 k g f であった。 この 3種類のガス発生剤べレツ ト各 1 0 gを用いて 1リッ トル夕ンク テストを行った処、 表 3の如き桔果を得た。 The reaction product obtained by reacting under the same conditions as in Example 15 was compacted and dried at room temperature to form a solid mass, which was sufficiently crushed and ground in a mortar. Nitrate Ca Li um powder as an oxidizing agent to the powder material (KNO s) 3 1 1. 4 g (3. 0 8 mole "and Guhani periodate mosquito Li um (KC 1 0 4> 38. 3 g (0 .28 mol) were added to each of them, and the mixture was kneaded in 2D pieces, and using a punching machine, 150 g each of 6.7, 8 mm mxj 5 mm diameter berets were produced. Was subjected to a simple condensation curing reaction in a high-temperature furnace at 105 for 24 hours to obtain a gas generating agent.The crushing strength of this gas generating agent pellet was an extremely high value of 20 to 30 kgf. The previous crushing strength was 5 to 6 kgf A 1 liter sunset test was performed using 10 g of each of these three types of gas generant pellets, and the results shown in Table 3 were obtained. .
〔表 3 : 1 リ ッ トルタンクテス ト結果〕  [Table 3: Results of one-liter tank test]
Figure imgf000030_0001
Figure imgf000030_0001
表 3に示されるように、 着火時 Kt , はいずれも 1 Oms以内である と共に、 t一 Pma x. 及び Pma x. も適度の範囲内にあって、 エア バッグ用ィンフレークのガス発生剤として良好な値であった。 尚、 生成 ガス中の C 0濃度はいずれも 0. 1%以下であり、 問題になる程の Sで はなかった。 00 As shown in Table 3, Kt at ignition is within 1 Oms, and P-x and P-x are also within appropriate ranges, and are good gas generators for air flakes. Value. In addition, the C 0 concentration in the generated gas was 0.1% or less in each case, and was not S which was a problem. 00
〔実施例一 1 7〕 (Example 17)
TAGN 6 6. 8 g ( 0. 40モル) と 5一 AT Z 1 0 2. 0 g ( 1 . 20モル) とへ牛サメチレンテ トラ ミ ン 37. 9 g (0. 2 7モル) を混合し、 これに水 7 0 gを添加した後、 9 D1Cに加熱して 30分間反 応を行った処、 透明な液体状の粘明な反応生成物 (ァミノ樹脂の一種〉 が得られた。 この反応生成物に、 酸化剤として硝酸カ リウム粉末 (KN 08 ) 31 1. 4 ε (3. 08モル) と適塩素酸力 リウム (KC 1 0« ) 38. 3 « (0. 28モル) を添加して 20分閉混棟して粘稠なスラ リーとした。 このスラリー状組成物を、 ポリエチレンシート上に押し出 して、 犀さ 1 mmの板状体となし、 これを 5 の恒温 で 24時間乾 燥固化させた。 次にこの板状固形物を粗破砕し更に乳鉢で粉砕して粒径 lmm以下の粉体状とした後、 打錠機を用いて直径各 6, 7, 8mmX 厚さ 5 mmのべレツ トを各 1 50 s製逸した。 このペレツ トを高温炉中 で 1 07tx 24時間縮合硬化反応を行わせてガス発生剤とした。 この ガス発生剤べレツ トの圧壞強度は 2 0〜30 k g f と極めて高い値であ つた。 因みに榷合反応前の圧壊強度は 5〜6 k g f であった。 TAGN 66.8 g (0.40 mol) and 5-ATZ 102.0 g (1.20 mol) were mixed with 37.9 g (0.27 mol) of beef samethylene tetramine. After adding 70 g of water thereto, the mixture was heated to 9 D1C and reacted for 30 minutes to obtain a clear liquid viscous reaction product (a kind of amino resin). to the reaction product, nitrate mosquito potassium powder as an oxidizing agent (KN 0 8) 31 1. 4 ε (3. 08 mol) and suitable chlorate force potassium (KC 1 0 «) 38. 3 « (0. 28 mol) The mixture was then closed and mixed for 20 minutes to form a viscous slurry.The slurry-like composition was extruded onto a polyethylene sheet to form a 1 mm rhinoceros plate, Next, the plate-like solid was roughly crushed and crushed in a mortar to obtain a powder having a particle size of 1 mm or less. , 8mmX 5mm thick berets were removed for 150s each. The pellets were subjected to a condensation hardening reaction at 107 tx for 24 hours in a high-temperature furnace to obtain a gas generating agent, and the crushing strength of the gas generating agent pellet was extremely high at 20 to 30 kgf. Incidentally, the crushing strength before the binding reaction was 5-6 kgf.
この 3種類のガス発生剤べレツ ト各 1 0 gを用いて上述した 1リ ッ ト ルタンクテストを行った処、 表 4の如き結果を得た。  When the above-described one-liter tank test was performed using 10 g of each of these three types of gas generating agent pellets, the results shown in Table 4 were obtained.
[表 4 : 1リ ツ トルタンクテス ト結果〕  [Table 4: 1 liter tank test results]
Figure imgf000031_0001
Figure imgf000031_0001
表 4に示されるように、 着火時 fflt ! はいずれも 1 Oms以内である と共に、 t— Pma x. 及び Pm a x. も適度の範囲内にあって、 エア バッグ用ィンフレークのガス発生剤として良好な値であった。 尚、 生成 ガス中の C 0通度はいずれも 0. 1%以下であり、 問通になる程の量で はなかった。 As shown in Table 4, at ignition fflt! Were within 1 Oms, and t-Pmax. And Pmax. Were also within appropriate ranges, which were good values as gas generating agents for air flakes for airbags. In addition, generate The CO transmission in the gas was less than 0.1% in each case, not enough to make an inquiry.
〔実施例一 1 8〕  (Example 18)
5-AT Z 85 g、 硝酸力 リ ウム 1 85 g、 酸化モリ ブデン 1 3. 5 g、 へ サメ トキシメチ Ώールメ ラ ミ ン 1 7 gに水 50 を加え、 良く 混練した後、 7 5tで 1 0時間かけて厚さ 5mmの板状に乾燥させた。 乾燥品は、 直径 1 mmの節目を通過する迄粉砕した後、 直径 7mtn、 高 さ 4. 7mm、 300 m g /粒で打錠した。 圧壞強度 20 k g f であつ た。 打錠品を 1 1 Otで 1 0時間乾燥したところ圧壊強度 2 2 k g f と 增加した。  5-AT Z 85 g, nitric acid 185 g, molybdenum oxide 13.5 g, shark ethoxymethyl melamine 17 g, add water 50, knead well, and then knead with 75 t It was dried into a plate having a thickness of 5 mm for 0 hours. The dried product was pulverized until it passed a 1 mm-diameter joint, and then tableted with a diameter of 7 mtn, a height of 4.7 mm, and 300 mg / particle. The crushing strength was 20 kgf. When the tablet was dried at 11 Ot for 10 hours, the crushing strength was increased to 22 kgf.
これをアルミ容器に封じた後、 熱衝擊拭験 (+ 9 0で〜一 4 を 1 . 1時間内に 200サイ クル操り返す試 を行った。 試験後の重量変 化は 0であり、 圧壊強度は 2 1 k s f であり殆ど変化がなかった。 同じ く 1 2 で 1 00時間保持する耐熱老化試験を行ったところ重量変化 は一 0. 3パーセントであった。 圧壊強度は 2 3 k g f で僅かに增加し たが、 外観上の変化は全く無かった。  After sealing this in an aluminum container, a thermal shock wiping test was performed (at +90, a test was performed in which 200 cycles were repeated in a period of 1.1 to 14 hours. The weight change after the test was 0, and crushing was performed. The strength was 21 ksf, and there was almost no change.Similarly, a heat aging test in which the temperature was kept at 120 for 100 hours showed that the weight change was 10.3%. However, there was no change in appearance.
〔比皎例一 1〕  [Example 1 of Kiko]
5— AT Z 85 g、 销酸カ リウム 1 42 gからなる混合物を直径 7 m m、 高さ 4. 7mm、 300 m g Z粒に打錠した。 圧壊強度は 1 9 k g f であった。 これをアルミ容器に封じた後、 熱衝擎試 K (+ 90-C〜一 40で、 1. 1時間、 2 00サイ クル) を行った。  5—A mixture consisting of 85 g of ATZ and 142 g of potassium nitrate was tableted into 300 mm Z granules having a diameter of 7 mm and a height of 4.7 mm. The crushing strength was 19 kgf. After sealing this in an aluminum container, a thermal shock test K (+ 90-C to 140, 1.1 hours, 200 cycles) was performed.
上記実施例 1 8及び比皎例 1におけるガス発生剤べレツ ト各 1 0 gを 用いて上述した 1リ ッ トルタンクテス トを行った処、 表 5の如き結果を 得た。 〔表 5 : 1 リ ッ トルタンクテス ト轱果〕 When the above-described 1 liter tank test was performed using 10 g of each of the gas generant pellets in Example 18 and Example 1 of Comparative Example, the results shown in Table 5 were obtained. [Table 5: Results of one-liter tank test]
Figure imgf000033_0001
上記状想檷の各数字は、 環境試眹の状態を示しており、. 1が初期、 2 が熱衝擊試験後、 3が耐熱老化轼驗後を示している。
Figure imgf000033_0001
The numbers in the above-mentioned conditions indicate the state of the environmental test, where 1 is the initial state, 2 is after the thermal shock test, and 3 is after the heat aging test.
表 5に示されるように、 本発明によるものは、 環境試 K後も燃焼特性 に変化は見られなかった。 着火時間 t , はいずれも 1 Oms以内である と共に、 t一 Pma X. 及び Pma X. も適度の範囲内にあって、 エア バッグ用ィンフレータのガス発生剤として良好な値であった。  As shown in Table 5, there was no change in the combustion characteristics of the device according to the present invention even after the environmental test K. The ignition times t, were all within 1 Oms, and t-Pma X. and Pma X. were also within appropriate ranges, and were good values as gas generating agents for inflators for airbags.
それに対し、 比校例 1では、 環境試 »後は粉化してしまいタンクテス トは不可能であった。  On the other hand, in Comparative Example 1, after the environmental test, it was powdered and tank testing was not possible.
[実施例一 1 9〕  [Example 1 1 9]
予め水酸化ナト リウムで P H 8. 0とした 37 ¾ホルマリン溶液 1 3 . 88:を 90でに加熱した。 このものに尿素 5 0%水溶液 1 0. O gを 徐々に加え、 9 Otで 30分間授拌した。 これにエタノール 7. 8 gを 加え、 更に、 リン酸を加えて P H 5. 5とした。 9 0でで更に 1時間加 熱してやや粘稱な液体を得た。  A 37.38 formalin solution 13.88: previously adjusted to pH 8.0 with sodium hydroxide was heated to 90. A 10% aqueous solution of 50% urea was gradually added to the mixture, and the mixture was stirred at 9 Ot for 30 minutes. To this, 7.8 g of ethanol was added, and further, phosphoric acid was added to obtain pH 5.5. The mixture was further heated at 90 ° C. for 1 hour to obtain a slightly viscous liquid.
この液体に硝酸カ リウム 75, 58Γと過堪素酸カ リウム 1 1. 8 gを 加えて、 1 0分間混練し、 粘稠なスラリーとした。 このものをポリェチ レンシ一ト上に押し出して厚さ 2 mmの板状とし、 Ί 0での恒温炉で 2 4時間乾燥した。 次に、 この板状の固形物を粉砕して粒径 1 mm以下の粉状とした後、 打錠機を用いて直 7 mm X厚さ 4mmのべレッ トとした。 このペレツ トを高温炉中で 1 20で X 1 0時間かけて縮合硬化反応を行いガス発生 剤とした。 ベレツ トの圧壊強度は縮合前が 1 3 k g f 、 縮合後が 1 8 k g f であった 6 このべレッ ト 1 0 gを用いて 1 リ ッ トル夕ンクテス トを 行ったところ以下の結果を得た。 To this liquid, 75,58Γ of potassium nitrate and 11.8 g of potassium persulfate were added and kneaded for 10 minutes to form a viscous slurry. This was extruded onto a polyethylene sheet to form a plate having a thickness of 2 mm, and dried in a constant temperature oven at 0 ° C for 24 hours. Next, the plate-like solid material was pulverized into a powder having a particle size of 1 mm or less, and then a tablet having a diameter of 7 mm and a thickness of 4 mm was formed using a tableting machine. This pellet was subjected to a condensation hardening reaction in a high-temperature furnace at 120 for X 10 hours to obtain a gas generating agent. The crushing strength of the beret was 13 kgf before condensation and 18 kgf after condensation.6 A 10 liter bevel was used to conduct a 1 liter sunset test, and the following results were obtained. .
〔表 6 : 1 リ ッ トルタンクテス ト結果〕
Figure imgf000034_0001
[Table 6: Results of one-liter tank test]
Figure imgf000034_0001
着火時間 t , は、 1 Om s以内であり、 t一 Pma x及び、 Pma x も適度の範囲内であった。  The ignition time t, was within 1 Oms, and t-Pmax and Pmax were also within appropriate ranges.
次に、 本発明に係るガス発生剤の製造方法並びにその装置について説 明する。  Next, a method and an apparatus for producing a gas generating agent according to the present invention will be described.
第 2図は本発明に係るガス発生剤の製造方法を実施する為の装置の一 実施例の構成を示す横面 BI、 第 3図は同実施例の上面図、 第 4図 (a) 〜第 4図 (d) は本発明のガス発生剤の製造方法の工程を锐明するため の概略図である。  FIG. 2 is a lateral view BI showing the configuration of an embodiment of an apparatus for carrying out the method for producing a gas generating agent according to the present invention, FIG. 3 is a top view of the embodiment, FIG. 4 (a) to FIG. FIG. 4 (d) is a schematic diagram for explaining the steps of the method for producing a gas generating agent of the present invention.
第 2図及び第 3図において、 1はガス発生剤の成形装 gであって、 無 皤ベル ト状の成形用枠体 4A〜4し、 これを回動させる IB動機構 2、 ス ラリー注入 »構 3とで構成されている。  In FIGS. 2 and 3, reference numeral 1 denotes a molding device g for a gas generating agent, which is a belt-shaped molding frame 4A to 4A, which is rotated, an IB driving mechanism 2, and slurry injection. »Composition 3
この駆動機構 2は、 地面 5上に固定された前方支持柱 6 A, 6 B間及 び後方支持柱 7 A, 7 B照にそれぞれ回転可能に軸支された回転轴 8 A , 8Bと、 この回転軸 8Bにギヤ 9 Aを介して ¾み合う軸 9 aを有し、 本体 9Bが後方支持柱 7Bに固定されている回転装 S9 (モータ) を有 し、 この回転轴 8A, 8Bには、 駆動機構 2の変形機能となる円柱郎材 1 1, 1 2がこの軸方向に亘つてそれぞれ外嵌して固定されている。 こ の円柱部材 1 1. 1 2の外周面 1 1 a, 1 2 aは、 この周方向に亘つて 凸郎 1 3Aと凹郎 1 3 Bとが連統する形状に形成されており、 凸郎 1 3 Aと凹 W l 3Bとは、 円柱郎材 1 1, 1 2の軸線方向に向かって一斓面 l i b. 1 2 bと他 0»面 1 1 c , 1 2 clSに股けられている。 そして、 この円柱部材 1 1, 1 2には、 この凸郎 1 3 A及び凹部 1 3 B形状に係 合する凸郎 1 4 Aと凹部 1 4 Bを有する、 駆動機構 2の循瑷«能となる 環状ベル ト 1 5が張架されている。 これにより、 モータ 9を駆動すると 、 この軸 9 aを介して回転軸 8 Bが回転するとともに、 円柱郎材 1 1. 1 2を介して環状ベル ト 1 5が回転軸 8 A, 8 BKを循環するように回 転される。 尚、 回転軸 8 Aと 8 Bとの簡痛は、 スラ リ一状ガス発生剤組 成物 Pに含まれる水分を除去し、 且つガス発生剤を加熱固化するのに十 分な簡¾とされている。 The drive mechanism 2 includes rotations 轴 8 A and 8 B rotatably supported between the front support columns 6 A and 6 B and the rear support columns 7 A and 7 B fixed on the ground 5, respectively. The rotating shaft 8B has a shaft 9a that engages via a gear 9A, and the main body 9B has a rotating device S9 (motor) fixed to the rear support column 7B. The cylindrical members 11 and 12 serving as a deformation function of the drive mechanism 2 are externally fitted and fixed along the axial direction, respectively. This The outer peripheral surface 1 1a, 1 2a of the cylindrical member 1 1.12 is formed in a shape in which the convex 13A and the concave 13B are continuous along the circumferential direction. 13 A and concave W l 3B are crawled along the axial direction of columnar material 11, 1 2 by li b. 1 2 b and other 0 »surface 1 1 c, 1 2 clS ing. The cylindrical members 11 and 12 have a convex 14 A and a concave 14 B associated with the convex 13 A and concave 13 B shapes, respectively. An annular belt 15 is stretched. Thus, when the motor 9 is driven, the rotating shaft 8B is rotated via the shaft 9a, and the annular belt 15 is connected to the rotating shafts 8A, 8BK via the columnar material 11.1.2. Rotated to circulate. In addition, the simplicity of the rotating shafts 8A and 8B is sufficiently simple to remove the water contained in the slurry-like gas generating composition P and to heat and solidify the gas generating agent. Have been.
そして、 環状ベルト 1 5の表面 1 5 a上には、 この循環移動方向に亘 つて複数の成形用枠体 4 A〜 4 Lが取外し可能に固定されている。 この 成形用枠体 4 A〜 4 Lは、 シ、)コ ンゴム、 ポリブ夕ジェン、 塩化ビュー ル、 ポリイソプレン、 二ト リルゴ厶、 ィソブチレン、 アタ リルゴム、 ク tj ϋスルフォン化ポリエチレン、 エチレンプロピレンゴム、 フッ素ゴム 、 ウレタンゴムの一種以上又はその混合物で製造され、 且つガス発生剤 組成物 Ρとは接着性を有さず、 しかも柔軟性を有する非金 )5製の材料で 、 »状ペル ト 1 5と同幅で所定厚さを有する平板形状に形成されている 。 又、 成形用枠体 4 A〜4 Lには、 所定直径 d及び深さ hを有する断面 円形状の成形型となる凹郎 1 6が、 環状ベル ト 1 5の帼方向と循環移動 方向とに N列 · n行 (N - 1, 2. · · · · , N、 n = 1, 2, 3, · · · · , nの任意の数値である。 但し、 本実施例では、 1 0列 ' 6行の 1 0 6= 6 0個だけ形成されている。 ) に亘つて形成されている。 尚 、 凹部 1 6の直径 dと深さ hは、 成形品であるガス発生剤の形状 (錠剤 形状) によって適宜変更され得るものである。 A plurality of molding frames 4A to 4L are detachably fixed on the surface 15a of the annular belt 15 in the direction of the circulation movement. The molding frames 4A to 4L are made of silicone rubber, polybutene rubber, polybutylene chloride, butyl chloride, polyisoprene, nitrile rubber, isobutylene, acrylamide rubber, styrene sulfonated polyethylene, ethylene propylene rubber, It is made of one or more of fluororubber and urethane rubber or a mixture thereof, and is a non-gold flexible material having no adhesiveness with the gas generating composition Ρ. It is formed in a flat plate shape having the same width as 5 and a predetermined thickness. Also, in the forming frames 4A to 4L, a concave part 16 serving as a circular cross-sectional forming die having a predetermined diameter d and a depth h is provided in the direction of the circular belt 15 and the direction of circulation movement. , N columns · n rows (N-1, 2. · · ·, N, n = 1, 2, 3, · · ·, n, where n is an arbitrary numerical value. Only 10 6 = 60 in column 6 are formed.)). The diameter d and the depth h of the recess 16 are determined by the shape of the gas generating agent (tablet). The shape can be changed as appropriate.
又、 ¾状ベルト 1 5の回転始翊側である回転軸 8 A側には、 スラ リー 状ガス発生剤組成物 Pを成形用枠体 4 A〜 4 Lの各凹郎 1 6内に注入す るスラリ一注入機構 3が設けら、 回転終蛾側となる回転軸 8 B側には、 円柱郎材 1 2の下郎から回転紬 8 Aの反対側に、 且つ地面 5側に向かつ て傾斜して延びるシュータ一 1 7が投けられている。 このシユーター 1 7には、 その円柱部材 1 2に対向する面に緩衝材 1 8 (ゴム等) が貼ら れており、 製品ホッパー 1 9の上部にまで延びている。 このスラリ一注 入 »構3は、 スラリ一状ガス発生剤組成物 Pを成形用枠体 4 A〜 4しの 各凹郎 1 6内に注入するためのノズル 3 Aと、 このノズル 3 Aを多軸方 向 (第 2図及び第 3図における上下方向 A、 左右方向 B、 前後方向 C ) に、 夫々移勖可能とする移動装置 3 Bとからなり、 このノズル 3 Aは配 管 3 Cを介してスラ リー状ガス発生剤タ ンク (図示せず) に接続されて いる。 また、 このノズル 3 Aには、 図示しない手段により、 成形用枠体 4 A〜4 Lの凹郎 1 6内に注入されるスラリーの注入 Sを制御する手段 (凹部 1 6の直径 d , 深さ h及びガス発生剤の錠剤形状に基づいてその 注入 Sを変勖制御するもの) が設けられている。  In addition, the slurry-like gas generating composition P is injected into each of the recesses 16 of the molding frames 4A to 4L on the side of the rotating shaft 8A, which is the side of rotation of the belt 15 of rotation. The slurry injection mechanism 3 is provided, and the rotating shaft 8B, which is the end-of-rotation side, is located on the rotating shaft 8B side. An inclined shooter 17 is thrown. A cushioning material 18 (rubber or the like) is attached to the surface of the shutter 17 facing the cylindrical member 12, and extends to the upper part of the product hopper 19. Injecting the slurry into the structure »No. 3 comprises a nozzle 3 A for injecting the slurry-like gas generating composition P into each of the recesses 16 of the molding frames 4 A to 4. And a moving device 3B that can move in multiple axes directions (vertical direction A, left and right direction B, front and rear direction C in FIGS. 2 and 3). It is connected to a slurry gas generating tank (not shown) via C. The nozzle 3A is provided with means (not shown) for controlling the injection S of the slurry to be injected into the recess 16 of the molding frames 4A to 4L (the diameter d of the recess 16 and the depth thereof). (The one that changes and controls the injection S based on the h and the tablet shape of the gas generating agent).
更に、 本実施例におけるガス発生剤の成形装 S 1においては、 ガス発 生剤組成物 Pの乾燥固化工程に加熱方式を採用しており、 この為に、 回 転軸 8 Aと 8 B Kに加熱器 2 0を設け、 各成形用枠体 4 A〜 4 Lが回転 軸 8 Aと 8 B間を直線移動する間に、 各枠体 4 A ~ 4しに 5 0〜 1 2 0 で程度の温風又は熱風を吹きつける様にしており、 これによつて各凹部 1 6に注入されたスラリ一状ガス発生剤組成 fiP Pを加熱乾燥して固化さ せる様にしている。  Further, in the gas generating agent molding apparatus S1 in this embodiment, a heating method is employed in the drying and solidifying step of the gas generating agent composition P, so that the rotating shafts 8A and 8BK A heater 20 is provided, and while each of the molding frames 4A to 4L moves linearly between the rotating shafts 8A and 8B, each of the frames 4A to 4 is approximately 50 to 120. The hot air or hot air is blown out, whereby the slurry fibrous gas generating composition fiPP injected into each recess 16 is heated and dried to be solidified.
本実施例におけるガス発生剤の成形装置 1は、 以上の如き構成を備え ており、 次に、 この装 S 1を用いてガス発生剤を成形する方法について 、 第 2図、 第 3図、 第 4図 (a) から第 4図 (b) に基づいて锐明する The apparatus 1 for forming a gas generating agent in the present embodiment has the above-described configuration. Next, a method for forming a gas generating agent using the apparatus S 1 will be described. , Figures 2, 3, 4 (a) to 4 (b)
(1) まず、 スラ リー注入機構 3の移動装匿 3 Bを多軸方向に移動さ せて、 回動始 ¾側の環状ベルト 1 5上にある成形用枠体 4 Aの各凹部 1 6 (第 20及び第 3EIに示す状態) 内に、 ノズル 3 Aから所定 Sのスラ リー Pを注入する注入工程が行われる。 そして、 モータ 9を駆動して、 環状ベルト 15を成形品シユーター 17側に移動させて、 成形用枠体 4 Aをノズル 3 Aから退避するように直線移勖させると共に、 この成形用 枰体 4 Aに ¾統する成形用枠体 4 Bをノズル 3 Aに対向するように位匿 させて、 この成形枠体 4 Bの各凹部 16内に、 ノズル 3Aから所定量の スラリー Pを注入する。 以下、 同様にして、 順次、 ノズル 3 Aにより成 形用枠体 4 C〜 4 Lの各凹部 16内にスラリー Pを注入する。 (1) First, moving and hiding 3B of the slurry injection mechanism 3 is moved in the multi-axial direction, and the respective recesses 16 of the molding frame 4A on the annular belt 15 on the rotation start side are formed. An injection step of injecting a predetermined S slurry P from the nozzle 3A is performed within the state shown in the twentieth and third EIs. Then, the motor 9 is driven to move the annular belt 15 to the molded product shutter 17 side, and the molding frame 4A is linearly moved so as to retreat from the nozzle 3A. A molding frame 4B associated with A is positioned so as to face the nozzle 3A, and a predetermined amount of slurry P is injected from the nozzle 3A into each recess 16 of the molding frame 4B. Hereinafter, similarly, the slurry P is sequentially injected into the respective concave portions 16 of the forming frames 4C to 4L by the nozzle 3A.
(2) この注入工程が行われている翻に、 成型用枠体 4 A, 4B. - · は、 逐次、 成形品シユーター 17側に直線移動され、 成形用枠体 4 A, 4B. · · ' の各凹部 1 6内に注入されたスラ リー状ガス発生剤組成物 Pは、 加熱器 20の下郎に至り、 ここで前述した 50〜 1 20で程度の 温風又は熱風が吹きつけられてスラ リ一中の水分は蒸発され、 ガス発生 剤は固化し、 所定形状のガス発生剤錠剤 Qが形成される。 特に前述した 反応硬化型ガス発生剤の場合には、 この加熱工程で縮合反応が進行して 強固な固体状のガス発生剤が生成される。  (2) While this injection step is being performed, the molding frames 4A, 4B.- are sequentially linearly moved to the molded product shutter 17 side, and the molding frames 4A, 4B. The slurry-like gas generating composition P injected into each of the recesses 16 of FIG. 6 reaches the heater 20 of Shimoguro, where hot air or hot air of about 50 to 120 described above is blown. The water in the slurry is evaporated and the gas generating agent is solidified to form a gas generating agent tablet Q having a predetermined shape. In particular, in the case of the above-described reaction-curable gas generating agent, a condensation reaction proceeds in this heating step, and a strong solid gas generating agent is generated.
(3) 更に、 成型用枠体 4 Aが直線移動されると、 この成型用枠体 4A が、 回転軸 8 Bを中心として、 »状ペルト 1 5とともに円柱郎材 1 2の 円周上に沿って回転移動される。 これにより、 柔钦性を有する非金厲材 料で形成されている成形用枠体 4 Aの各凹郎 16は、 第 4図 (a) 及び 第 40 (b) に示す様に、 開口 1 6 a側の径を拡大 (S状ベルト 15の 循環移動方向に大きく、 これに直交する方向に小さく広がる楕円形状と なる。 ) しつつ、 且つこの底 1 6 b側の径を縮小とする様に弾性変形さ れるので、 この弾性変形により成形品であるガス発生剤が各凹郎 1 6内 から剝がれて、 各凹部 1 6の底 1 6 b側が縮小となることによりガス発 生剤 Qを各凹部 1 6内から押し出すように作用する押圧力により、 成形 品であるガス発生剤 Qが各凹郎 1 6内から飛び出して、 シユーター 1 7 上に落下し、 このシユーター 1 7を転がりながら成形品ホッバー 1 8内 に収集される。 この様に、 各成形用枠体 4 A ~ 4 Lが環状ベルト 1 5と 共に、 円柱郎材 1 2の円周上に沿って回転移動する過程において、 各成 形用枠体 4 A〜 4 Lの表面郎に形成された凹郎 1 6を弾性変形させるこ とにより、 各 ω® 1 6内から成形品であるガス発生剤 Qを抜き取る抜取 工程が行われる。 (3) Further, when the molding frame 4A is moved linearly, the molding frame 4A moves along with the »pelt 15 around the rotation axis 8B on the circumference of the columnar material 1 2. It is rotated along. As a result, as shown in FIGS. 4 (a) and 40 (b), each of the recesses 16 of the molding frame 4A formed of a flexible non-metallic material has an opening 16a. (The elliptical shape is larger in the direction of circulating movement of the S-shaped belt 15 and smaller in the direction perpendicular to this direction.) Become. ) While being deformed elastically so as to reduce the diameter of the bottom 16b side, the gas deformation agent which is a molded product is separated from each hollow 16 by this elastic deformation, Due to the pressing force acting to push the gas generating agent Q out of each recess 16 by reducing the bottom 16 b side of the recess 16, the gas generating agent Q, which is a molded product, is placed in each recess 16. It jumps out of the box, falls on the scooter 17, and is collected in the molded article hobber 18 while rolling on the scouter 17. As described above, in the process of rotating each of the forming frames 4A to 4L along the circumference of the cylindrical member 12 together with the annular belt 15, each of the forming frames 4A to 4L is rotated. By elastically deforming the hollow 16 formed on the surface of L, a sampling step of extracting the gas generating agent Q as a molded product from each ω® 16 is performed.
( 4 ) その後、 上記抜取工程が完了した成形用枠体 4 Aは、 各凹部 1 6 が元の形状 (断面円形状) に戻され、 環状ベルト 1 5により他の成形用 枠体 4 C , · · · · と対向する状想で、 回転釉 8 A側のスラリ一注入扱 構 3のノズル 3 Aに対向する位 Sまで循 ¾して戻され、 上記 ( 1 ) から (4) After that, the molding frame 4A, on which the above-described extraction process is completed, is returned to its original shape (circular cross-section) in each of the concave portions 16 and the other molding frames 4C, In the opposite situation, the slurry is circulated back to the position S facing the nozzle 3 A of the slurry injection mechanism 3 on the rotating glaze 8 A side, and from above (1)
( 3 ) 記載と同様にして、 順次、 上記注入工程一加熱固化工程一抜取ェ 程を経て、 ガス発生剤 Qを成形するものである。 又、 成形用枠体 4 B〜 4しも、 成形品であるガス発生剤 Qが各凹部 1 6から抜き取る抜取工程 が行われた後には、 順次、 環状ベルト 1 5により回転軸側 8 Aのスラ リ 一注入機構 3のノズル 3 Aに対向する位 Bまで循環して戻され、 上記 ((3) In the same manner as described, the gas generating agent Q is formed through the above-described injection step, heating solidification step, and extraction step. Also, after the molding frame 4B to 4 is subjected to the extraction process in which the gas generating agent Q, which is a molded product, is extracted from each of the concave portions 16, the annular belt 15 sequentially rotates the rotating shaft side 8A. The slurry is circulated back to the position B facing the nozzle 3A of the slurry injection mechanism 3, and the above (
1 ) から (3 ) 記載と同様にして、 順次、 上記注入工程一加熱固化工程 一抜取工程を経て、 ガス発生剤 Qを成形するものである。 In the same manner as described in 1) to (3), the gas generating agent Q is formed through the above-described injection step, heating solidification step, and extraction step sequentially.
この様に、 本実施例のガス発生剤の製造方法及びその装 gによれば、 柔軟性を有する非金 ¾製の多数の凹部 1 6で形成された成形型を備えた 成形用枠体 4 A〜 4 Lを、 注入工程一加熱固化工程一抜取工程の順に、 順次繰り返すことにより、 ガス発生剤 Qを大量生産することができる。 又、 成形型である各凹郎 1 6内で成形された成形品のガス発生剤 Qを 抜き取るには、 この柔钦性を有する素材で形成された凹郎 1 6を弾性変 形させるだけで、 容易に抜き取ることができるので、 この抜き取りに朦 して、 成形品であるガス発生剤 Qが欠けたり、 割れたりすることがなく なり、 成形品歩留りを向上させることができると共に、 このガス発生剤 Qと凹部 1 6との摩擦も滅少させることができるので、 発火の危険性も 無く、 ガス発生剤の成型時における安全性を大幅に向上させることがで さる。 As described above, according to the method of manufacturing the gas generating agent of the present embodiment and the apparatus for forming the same, the forming frame 4 having the forming die formed by the large number of concave portions 16 made of non-metal having flexibility. The gas generating agent Q can be mass-produced by sequentially repeating A to 4 L in the order of the injection step, the heating solidification step, and the extraction step. Also, in order to extract the gas generating agent Q from the molded article formed in each of the concave molds 16, it is only necessary to elastically deform the concave mold 16 formed of this flexible material. Since it can be easily extracted, the gas generating agent Q, which is a molded product, is not chipped or cracked, and the yield of molded products can be improved. Since the friction between the agent Q and the concave portion 16 can be reduced, there is no danger of ignition and the safety at the time of molding the gas generating agent can be greatly improved.
尚、 本実施例においては、 成形用枠体 4 A〜 4 Lの移勖上部に加熱器 が配 SBされた構造であるが、 これは他の同様な加熟乾燥器の方式、 例え ばトンネル型加熱港内を無斓コンペアが移動する様な方式或いは遠赤外 糠加熱方式等が採用できる事はいうまでもない。  In the present embodiment, a heater is arranged at the upper part of the transfer of the molding frames 4A to 4L. The heater is arranged SB. However, this is another similar ripening and drying system, for example, a tunnel. It goes without saying that a method in which a wireless compare moves in the mold heating port or a far-infrared bran heating method can be adopted.
また、 本実施例におけるガス発生剤の成形装 fiにおいては、 スラ リー 注入機構 3のノズル 3 Aが一本のものを示したが、 これに限定されるも のでなく、 第 5図に示すように、 成形用枠体 4 A〜 4 Lの一列に形成さ れている凹郎 1 6の個数分だけの本数 (本実施例では 1 0本) に相当す るノズル 3 Aを、 各凹郎 1 6に対応する様に投けたものであってもよい ο  In addition, in the molding apparatus fi of the gas generating agent in this embodiment, the nozzle 3A of the slurry injection mechanism 3 is shown as a single nozzle, but is not limited to this, as shown in FIG. In addition, the number of the nozzles 3A corresponding to the number of dents 16 (10 in this embodiment) formed in one row of the molding frames 4A to 4L is set to each dent. It may be thrown to correspond to 16 ο
また、 本実施例においては、 動機構 2は、 環状ベル ト 1 5 , 円柱部 材 1 1 , 1 2 , モータ 9等の構成により、 成形用枠体 4 A〜 4 Lを循環 , 変形させる様にしたが、 これに限定されるものでなく、 有効に成形用 枠体 4 A〜4 Lを循環, 変形させる構成であればよく、 本実施例と同様 な効果を得ることができる。  In this embodiment, the moving mechanism 2 is configured to circulate and deform the forming frames 4A to 4L by the configuration of the annular belt 15, the cylindrical members 11 and 12 and the motor 9. However, the present invention is not limited to this, and any configuration may be used as long as it effectively circulates and deforms the molding frames 4A to 4L, and the same effects as in the present embodiment can be obtained.
更に、 各成形用枠体 4 A〜 4しに形成される成形型となる凹部 1 6の 構造は、 本実施例のものに限定されるものでなく、 第 6図〜第 9図に示 す様な構造のものであってもよい。 以下に成形用枠体 4 A〜 4しの構造 の変形例を第 6図〜第 9図に基づいて眹明する。 Further, the structure of the concave portion 16 serving as a molding die formed in each of the molding frames 4A to 4 is not limited to that of the present embodiment, and is shown in FIG. 6 to FIG. Such a structure may be used. The following shows the structure of the molding frame 4 A to 4 Modifications will be described with reference to FIGS. 6 to 9.
第 6 Eは、 成形用枠体自体を柔软性を有する非金) 5製の材料で形成し 、 成形型となる凹郎 1 6を、 眩枠体 4 A〜 4 Lに直接穿設して形成され たものであって、 »接する凹郎 1 6 , 1 の基材部 1 6 Aには、 その 凹部 1 6の周壁 1 6 cを軸方向に切り裂いて、 この底 1 6 bまで延びる 破断敏 2 5が、 各凹部の基材郎にその凹部の行方向 (枠体の幅方向) に 少なくとも 1以上投けられている (第 6図では 1つの凹部 1 6に対して 破断線 2 5が、 枠体幅方向に 2個所設けられている) ものである。 これ により、 成形用枠体 4 A〜 4 Lを弾性変形させると、 この破断線 2 5を 境にして断面円形状の各凹部 1 6が、 その直径 dを拡大する様に椅円形 状に変形させることができ、 この各凹部 1 6内で成形されたガス発生剤 Qの抜き取りが、 より容易になる。  No. 6E, the molding frame itself is formed of a material made of non-gold (5) having flexibility, and the molding die 16 is directly drilled into the glare frames 4A to 4L. It is formed, and »The base portion 16 A of the dents 16, 1 in contact is cut in the axial direction along the peripheral wall 16 c of the dent 16 and extends to this bottom 16 b. At least one line 25 is thrown into the base material of each recess in the row direction of the recess (the width direction of the frame). Are provided at two places in the frame width direction). As a result, when the molding frames 4A to 4L are elastically deformed, each of the recesses 16 having a circular cross section at the boundary of the break line 25 is deformed into a chair shape so as to increase the diameter d. This makes it easier to extract the gas generating agent Q formed in each of the recesses 16.
第 7 EIも、 成形用枠体自体を柔钦性を有する非金 JS製の材料で形成し 、 成形型となる凹郎 1 6を、 垓枠体 4 A〜 4 Lに直接穿設して形成した 場合の例であって、 凹郎 1 6が開口する側と反対側のそれぞれに、 »状 ペル ト 1 5の循環移動方向と直交する方向に、 所定深さの略 V字状の溝 3 0が投けられているものである。 これにより、 成形用枠体 4 A〜 4 L を弾性変形させると、 この溝 3 0を境にして断面円形状の各凹郎 1 6が 、 その直径 dを拡大するように桷円形状に変形し、 成形されたガス発生 剤 Qの抜き取りを、 より一酾容易にするものである。  In the seventh EI, the molding frame itself is formed of a non-gold JS material having flexibility, and a hollow 16 serving as a molding die is directly drilled in the truss frame 4A to 4L. This is an example of a case in which a substantially V-shaped groove having a predetermined depth is provided in a direction orthogonal to the circulation movement direction of the » 30 is thrown. As a result, when the molding frames 4A to 4L are elastically deformed, each of the concave portions 16 having a circular cross section at the boundary of the groove 30 is deformed into a circular shape so as to increase its diameter d. Then, it is easier to remove the formed gas generating agent Q.
第 8図 (a ) 及び第 8図 (b ) では、 成形用枠体 4 A〜 4 Lは柔钦性 を有する平板 3 5と枠郎 3 6とで構成されている。 この枠郎 3 6は、 例 えば、 1列 (環状ベル ト 1 5の循環移動方向) に 7個の円筒体 3 7が 2 列 (環状ベル ト 1 5の幅方向) 単位で一体化されたもので、 各円简体 3 7は相互の周面がシリコン等の接着剤で結合されていると共に、 この結 合された側の端面部分 (端面の一部分が平板 3 5上に立投するように接 着して、 この平板 3 5と円筒体 3 7とで成形型となる凹郎 1 6を形成し ている。 又、 各円筒体 3 7の周壁郎 3 7 Aの少なくとも一郎は、 この軸 方向に切り裂かれており、 環状ベル ト 1 5の循環移動方向に直交する破 断線 3 8が形成されている。 これにより、 成形用枠体 4 A〜4 Lを弹性 変形させると、 この破断線 3 8を境にして円简体 3 7の周壁 3 7八カ< 2 分割されるように広がり、 ガス発生剤 Qの拔凹郎からの抜き取りが容易 になる。 In FIGS. 8 (a) and 8 (b), the molding frames 4A to 4L are composed of a flat plate 35 and a frame 36 having flexibility. In this frame 36, for example, seven cylindrical bodies 37 are integrated in one row (circular movement direction of the annular belt 15) in units of two rows (the width direction of the annular belt 15). Each of the cylinders 37 has its peripheral surface joined by an adhesive such as silicon or the like, and an end surface portion of the joined side (so that a part of the end surface is projected on the flat plate 35). Contact The flat plate 35 and the cylindrical body 37 form a hollow 16 as a forming die. Further, at least Ichiro of the peripheral wall 37 A of each cylindrical body 37 is cut in this axial direction, and a breaking line 38 orthogonal to the circulation movement direction of the annular belt 15 is formed. As a result, when the molding frames 4A to 4L are elastically deformed, they expand so that the peripheral wall 37 of the circular body 37 is divided into two parts by the break line 38, and the gas generating agent Q It is easy to extract from the drawer.
第 9図 (a ) 及び第 9図 (b ) では、 成型用枠体 4 A〜4 Lは、 柔钦 性を有する平板 3 5の表面部に、 浅い凹郎 4 2を形成し、 この凹部 4 2 内に円筒体 4 0が嵌合して立股され、 これによつて成形型となる凹郎 1 6が形成されている。 又、 各円筒体 4 0には、 その軸方向に切り裂いて 、 環状ベル ト 1 5の循環移動方向に直交する破断線 4 1力 <、 少なくとも 1力所形成されている。 これにより各凹郎 1 6内で成型されたガス発生 剤 Qを、 成型用枠体 4 A〜4 Lの弾性変形により、 円筒体 4 0がその破 断線 4 1を境にして周壁 4 1 Aが 2分割されるように広がり変形させる ことができるので、 ガス発生剤 Qの抜き取りが容易となる。  In FIGS. 9 (a) and 9 (b), the molding frames 4A to 4L are formed by forming shallow recesses 42 on the surface of a flexible flat plate 35. The cylindrical body 40 is fitted into the inside of the tube 42 and raised, thereby forming a hollow 16 serving as a molding die. Further, each cylindrical body 40 is cut in the axial direction to form at least one force line at a breaking line 41 force <orthogonal to the circulating movement direction of the annular belt 15. As a result, the gas generating agent Q molded in each hollow 16 is deformed by the elastic deformation of the molding frames 4 A to 4 L so that the cylindrical body 40 is surrounded by the peripheral wall 41 A at the breaking line 41. The gas generating agent Q can be easily extracted since the gas generating agent Q can be spread and deformed so as to be divided into two parts.
尚、 本実施例のガス発生剤の成型装 S 1における成型用枠体 4 A〜 4 Lに形成されている成形型となる凹郎 1 6の形状は全て円简形のものを 示しているが、 成形型となる凹部 1 6の形状はこれに限定されるもので なく、 凹部 1 6の断面を矩形或いは楕円形状等の種々の形状としたもの でもよく、 又、 K 部の底面形状も、 平面ではなく下に凸の曲面でもよ く、 更に、 垓凹郎 1 6も成形用型体と一体のものでも別体のものでもよ く、 いずれの構造であっても上記実施例と同様な効果を得ることができ る事はいうまでもない。  In addition, the shapes of the dents 16 serving as the molding dies formed on the molding frames 4A to 4L in the molding apparatus S1 of the gas generating agent of the present example are all circular oval. However, the shape of the concave portion 16 serving as a molding die is not limited to this, and the cross section of the concave portion 16 may be various shapes such as a rectangular shape or an elliptical shape, and the bottom shape of the K portion may also be changed. However, instead of being a flat surface, it may be a curved surface that is downwardly convex, and furthermore, the tokuburo 16 may be either integral with or separate from the molding die. Needless to say, a great effect can be obtained.
又、 該凹部 1 6も成形用型体 4 A〜 4 Lと一体のものでも別体のもの でもよく、 更に S状ベル ト 1 5と成形用型体 4 A〜 4しとを一体に構成 したものでもよく、 しかも用途に応じて取り替え自在な構 ¾にしてもよ い事はいうまでもない。 これらのいずれの構造であっても、 上記実施例 と同棣な効果を得ることができる。 Also, the recess 16 may be integral with or separate from the molding dies 4A to 4L. Further, the S-shaped belt 15 and the molding dies 4A to 4L may be integrally formed. Needless to say, it may be a structure that can be replaced according to the application. With any of these structures, the same effect as in the above embodiment can be obtained.
以上詳述した如く、 本発明のガス発生剤をべレツ ト状にする製造方法 並びに装置によれば、 ガス発生剤混合物は、 水スラ リー状態から成形さ れるので、 従来、 最も危険とされていたガス発生剤の成形工程の安全性 を大幅に向上させることができる。  As described above in detail, according to the production method and apparatus of the present invention in which the gas generating agent is pelletized, the gas generating agent mixture is formed from a water slurry state, and thus has been regarded as the most dangerous in the past. This greatly improves the safety of the gas generating agent forming process.
又、 スラ リ一状態で成形型内に注入する方式を採用するので、 成形形 状についても従来の棟円状の錠剤形状に限定される事なく、 その形状の In addition, since a method is used in which the slurry is injected into the molding die in a single state, the molding shape is not limited to the conventional ridge-shaped tablet shape.
S択の幗が広がり、 燃焼性を考慮した最適のガス発生剤形状を 31択する 事が可能となる。 The choice of S is widened, and it is possible to select the optimal gas generating agent shape considering flammability.
又、 水スラ リー状想で成形を開始するので、 従来は危険とされて採用 され得なかった加熱方式が採用できるので、 固化速度の大幅な向上が達 成され、 従って、 移動コンベア方式の成形. 乾燥固化システムの採用が 可能となり、 その桔果、 設備スペースの小型化と連統生産が可能になり 、 生産性も飛 的に向上する。  In addition, since the molding is started with the idea of a water slurry, a heating method which could not be adopted because it was conventionally dangerous can be adopted, so that the solidification speed is greatly improved, and therefore, the moving conveyor method is employed. The adoption of a drying and solidifying system is possible, and as a result, the equipment space can be reduced in size and continuous production can be achieved, and productivity can be dramatically improved.
更に、 本発明のガス発生剤に係わる成形装 Bは、 成形型となる凹部が 成形用枠体の表面節に形成されており、 この成形用枠体を移動させつつ 、 スラリ一状ガス発生成分の凹部への注入と、 該注入されたスラリ一状 ガス発生剤組成物の加熱固化と、 垓固化した成形体を、 前記成形型を弾 性変形させて取り出す様になっているので、 連続的にガス発生剤の成形 が行われ且つ自 K化する事が容易となり、 その生産性は飛躍的に向上す る。  Further, in the molding apparatus B relating to the gas generating agent of the present invention, a concave portion serving as a molding die is formed on a surface node of the molding frame, and the slurry-like gas generating component is moved while moving the molding frame. Into the concave portion, heat-solidify the injected slurry-like gas generating composition, and remove the molded solid that has been solidified by elastically deforming the molding die. In addition, the gas generating agent can be easily formed and self-K can be easily formed, and the productivity can be dramatically improved.
又、 成形型を柔軟性を有する材料で形成しているので、 これを弾性変 形させるだけで容易に型内から抜き取ることができ、 抜き取り用の特別 な冶具も不要となり且つガス発生剤成形体の抜き取り時の破損もなく、 製品歩留りも向上する。 In addition, since the molding die is formed of a flexible material, it can be easily extracted from the mold only by elastically deforming it, so that a special jig for extraction is not required, and the gas generating agent molded body is not required. There is no damage when extracting Product yield also improves.
又、 型節は、 柔钦性を有する非金属製材料で形成されており、 その弹 性変形のみで成形品の抜き取りが可能であるので、 成形品と型部との摩 擦も殆どなくなり、 従来法では大きな問題となっていた取り出し時の火 花発生が省無となり、 安全性も飛躍的に向上する。  In addition, the mold section is formed of a non-metallic material having flexibility, and the molded article can be extracted only by its elastic deformation, so that there is almost no friction between the molded article and the mold portion. The generation of sparks at the time of removal, which was a major problem with the conventional method, is eliminated, and safety is dramatically improved.
又、 型郎は、 柔钦性を有する非金 JS製材料で形成され且つその周壁部 に軸方向の切り裂きを設けている場合には、 その弾性変形による成形品 の抜き取りが極めて容易になる。  In addition, if the mold is made of a flexible non-gold JS material and has an axial cut in its peripheral wall, it is extremely easy to remove the molded product due to its elastic deformation.
又、 型節の構迪を、 平板とこの平板状に立設された複数の简体との組 み合わせ又は浅い凹部を有する平板と垓凹抑に嵌合立股した简体との組 み合わせ或いはこれらの筒体に、 その軸方向に切り裂きを形成して成形 品取り出し時の成形型の弾性変形を容易にする等の種々の応用が可能で あり、 製品の種類に応じて任意の設備形態を採用する事ができる等の利 点がある。  In addition, a combination of a plate with a flat plate and a plurality of rods erected in the form of a flat plate, or a flat plate having a shallow recess with a rod that is fitted in a triangular shape, or Various applications are possible, such as forming a cut in these cylinders in the axial direction to facilitate the elastic deformation of the mold when removing the molded product. It has the advantage that it can be adopted.
更に、 型部用の柔軟性を有する素材として、 シリ コ ンゴム、 ポリブタ ジェン、 埴化ビュール、 ポリ イ ソプレン、 二ト リルゴム、 イ ソプチレン 、 アタ リルゴム、 クロロスルフォン化ポリエチレン、 エチレンプロ ビレ ンゴム、 フッ素ゴム、 ウレタ ンゴムの一種以上又はその混合物からなる ものを使用できるので、 成形型の成形が容易且つ安価にできる。 産集上の利用可能性  In addition, silicone rubber, polybutadiene, buried clay, polyisoprene, nitrile rubber, isobutylene, acrylamide rubber, chlorosulfonated polyethylene, ethylene propylene rubber, and fluorine rubber are used as flexible materials for mold parts. Since one or more urethane rubbers or a mixture thereof can be used, molding of a mold can be performed easily and at low cost. Productivity availability
以上のように本発明は、 成形性と燃焼安定性に優れ、 その燃焼特性の 調整も容易且つ安全に行なう事ができるガス発生剤とその製造方法であ り、 車両のエアバッグ用イ ンフレータに用いられるガス発生剤、 又は飛 翔体推進用ガス発生剤及びそれらの製造方法として最適である。  INDUSTRIAL APPLICABILITY As described above, the present invention relates to a gas generating agent which is excellent in moldability and combustion stability, and whose combustion characteristics can be easily and safely adjusted, and a method for producing the same. It is most suitable as a gas generating agent to be used or a gas generating agent for projectile propulsion, and a production method thereof.

Claims

腈 求 の 範 囲 Scope of request
1. ガス発生成分と酸化剤とを含むガス発生剤であって、 前記ガス発生 成分が、 次の )〜 (d)のいずれかの反応生成物の 1種以上からなるもので あるガス発生剤。  1. A gas generating agent containing a gas generating component and an oxidizing agent, wherein the gas generating component is at least one of the following reaction products of (1) to (d): .
(a) アンモニア若しくはその 又は構造式中に一 NHa 基若しく は一 NH—を有する化合物と、 構造式中に一 CHO基を有する有機化合物又 は一 C H 0基を生じ得る有機化合物とを反応させて得られた反応生成物 o (a) with ammonia or a compound having an NH- one NH a Motowaka properly during the or structural formula, an organic compound is also an organic compound having one CHO group in the structural formulas, which may occur an CH 0 groups Reaction product obtained by reaction o
(W 上記 (a)で得られた反応生成物と、 構造式中に一 OH基を有する化 合物とを反応させて得られた二次反応生成物。  (W A secondary reaction product obtained by reacting the reaction product obtained in the above (a) with a compound having a mono-OH group in the structural formula.
(c) 構造式中に一 NHa 基又は一 NH—を有する化合物と、 N—メチ o—ル化合物とを反応させて得られた反応生成物。 (c) a compound having an NH a group or one NH- in the structural formula and the reaction product obtained by reacting a N- methylcarbamoyl o- le compound.
(d) 構造式中に一: NHa 基又は一 NH—を有する化合物と、 N—アル コ+シ化合物とを反応させて得られた反応生成物。 (d) A reaction product obtained by reacting a compound having one NH a group or one NH— in the structural formula with an N-alkoxy compound.
2. 前記請求項 1の (a), (c)又は (d)に記載の構造式中に一 NHa 基又は一 NH—を有する化合物が、 モノェタノールァミ ン, ヒ ドロヰシァミ ン, ホルムアミ ド, 齚酸アミ ド, カルボンアミ ド, ァゾジカルボンアミ ド, ヒ ドラゾジカルボアミ ド, ァミ ノモノプロパノール, ァゾビスホルムァ ミ ド, セミカルバジド, アセ ト ンセ ミ カルバゾン. ヒ ドラジン. ホルミ ノレヒ ドラジン, ホルムアミ ジン, モノェチルヒ ドラジン. カルボヒ ドラ ジド, シアナミ ド, ジシアンジアミ ド, アミ ノテ トラゾール, グァニジ ン. アミ ノグァュジン. ト リアミ ノ グァ二ジンナイ ト レー ト, ニ ト oグ ァュジン, ァゾジグァニジン. ビグァュ K, 蓚酸ジヒ ドラジ ド. ビウレ ッ ト, 尿素, モノ ヒ ドロキン尿素. チォ尿素, メ ラ ミ ン, ジェタノ ール ァミ ン, モノ ェチルァミ ノモノ エタノールァミ ン, へキサメチレンテ ト ラ ミ ン, ト リ ァゾール, テ トラゾール, ビテ トラゾ一ル或いはこれらの 塩からなる群より aばれた 1種以上である «求項 1に記載のガス発生剤 o 2. The of claim 1 (a), the compounds in the structural formula with an NH a group or one NH- according to (c) or (d), mono E pentanol § Mi emissions, human Dorowishiami down, Horumuami Amide, carboxylic acid amide, carboxamide, azodicarbonamide, hydrazodicarbamide, aminomonopropanol, azobisformamide, semicarbazide, acetonsemicarbazone. Hydrazine. Forminolehydrazine, formamidine Carbohydrazide, Cyanamide, Dicyandiamide, Aminothetrazole, Guanidine. Aminogudine. Triaminonoguanidine nitrate, Nitogazin, Hazodiguanidin. Biuret, urea, monohydrokine urea. Thiourea, melamine, gel Roh Lumpur § Mi emissions, mono Echiruami Nomono Etanoruami down, to Kisamechirente door La Mi emissions, door Li Azoru, Te Torazoru, the Activity Torazo Ichiru or of these At least one kind selected from the group consisting of salts;
3 . »求項 1の (a ) に記載の構造式中に一 N H a 基一又は、 一 N H— を有する化合物が、 ァゾジカルボンアミ ド, テ トラゾール, アミノテ ト ラゾール, ビテ トラゾール, トリァゾール, メラミ ン、 又はこれらの金 属塩等からなる群から選ばれた 1種又は 2種以上と、 3. The compound having one NH a group or one NH— in the structural formula according to claim 1 (a) is azodicarbonamide, tetrazole, aminotetrazole, bitetrazole, triazole, One or two or more selected from the group consisting of melamine or metal salts thereof;
グァ-ジン, ト リアミノグァ-ジンナイ トレート, 销酸グァュジン , 炭酸グァニジン, ジシアンジアミ ド, へキサメチレンテトラ ミ ン, ビ ウレッ ト, ヒ ドラジン, カルボヒ ドラジト' . 蓚酸ジヒ ドラジド, ヒ ドラ ジン堪酸塩, 尿素、 或いはこれらの金厲埴等からなる群から選ばれた一 種又は二種以上との組み合わせである铺求項 1に記載のガス発生剤。  Guadine, triaminoguanidine nitrate, guanidine diacid, guanidine carbonate, dicyandiamide, hexamethylenetetramine, biuret, hydrazine, carbohydrazide. 2. The gas generating agent according to claim 1, wherein the gas generating agent is a combination of at least one selected from the group consisting of gold and clay.
4 . 前記請求項 1の (a), (c)又は (d)に記載の構造式中に一 N H—を有する 化合物が、 請求項 2に記載の物 Kを N—メチロール化処理して得られる ものである腈求項 1に記載のガス発生剤。  4. The compound having one NH— in the structural formula according to claim 1 (a), (c) or (d) is obtained by subjecting the product K according to claim 2 to N-methylol treatment. The gas generating agent according to claim 1, which is a gas generating agent.
5 . 前記請求項 1の (a)に記載の搛造式中に一 C H 0基を有する有機化合 物が、 ホルムアルデヒ ド, ァセ トアルデヒ ド, ブ σピオンアルデヒ ド, η—ブチルアルデヒ ド, η—ヴア レルアルデヒ ド, η—力ブロンアルデ ヒ ド, ァクロレイン, ク η トンアルデヒ ド, グリオヰザールからなる群 より選ばれた 1種以上である猜求項 1に記載のガス発生剤。  5. The organic compound having one CH 0 group in the structural formula according to claim 1 is a formaldehyde, an acetoaldehyde, a σ-pionaldehyde, an η-butyl aldehyde, an η-butyl aldehyde. The gas generating agent according to claim 1, which is at least one member selected from the group consisting of viraldehyde, η-bronaldehyde, acrolein, quenth aldehyde, and glyozal.
6 . 前記 S求項 1の (a)に記載の一 C H O基を生じ得る有機化合物が、 ホ ルムアミ ド. パラホルムアルデヒ ド. ト リオキサン, へキサメチレンテ トラミ ン, テトラオ牛サン, メタアルデヒ ド, ァゾビスホルムアミ ドか らなる群より選ばれた 1種以上である S求項 1に記載のガス発生剤。  6. The organic compound capable of forming one CHO group according to item (a) of the above-mentioned S claim 1 is formamide, paraformaldehyde. Trioxane, hexamethylenete tramine, tetraooxansan, metaaldehyde, azobis. The gas generating agent according to claim 1, which is at least one member selected from the group consisting of formamide.
7 . 前記請求項 1の (b)に記截の構迪式中に一 O H基を有する化合物が、 炭素 ( C ) 又は室素 (N ) に賴合した一 O H基を有するものである請求 項 1に記載のガス発生剤。 7. The compound having a single OH group in the formula shown in claim 1 (b) is a compound having a single OH group combined with carbon (C) or nitrogen (N). Item 7. The gas generating agent according to item 1.
8 . 前記炭素 ( C ) 又は S素 ( N ) に結合した一 O H基を有する化合物 が、 メ タノール, ェタノ ール, モノエタノールァミ ン, ァミ ノプロバノ ール, ジエタノールァミ ン, ヒ ド口キシェチルヒ ドラジン, ェチルアミ ノ エタ ノ ールァミ ン, ヒ ドロキシルァミ ン, ヒ ドロキシル尿素, ホルム アミ ド年シム, ホルムアルドキシムからなる群より選ばれた 1種以上で ある請求項 7に記載のガス発生剤。 8. The compound having a mono-OH group bonded to carbon (C) or sulfur (N) is selected from the group consisting of methanol, ethanol, monoethanolamine, aminopropanol, diethanolamine, and hydride. 8. The gas generating agent according to claim 7, wherein the gas generating agent is at least one selected from the group consisting of oral kissil hydrazine, ethylaminoethanol, hydroxylamin, hydroxyylurea, formamide, annual sim, and formaldoxime.
9 . 前記 K求項 1の (c)に記載の N—メチロール化合物が、 請求項 2又は 4に記載の物 Kを N—メチ o—ル化処理して得られたものである請求項 1に記載のガス発生剤。  9. The N-methylol compound according to (c) of the claim 1 is obtained by subjecting the product K according to claim 2 or 4 to an N-methylolation treatment. The gas generating agent according to the above.
1 0 . 前記 S求項 1の (d)に記載の N—アルコ年シ化合物が、 猜求項 2に 記載の物質を N—アルコヰシ化処理して得られたものである铕求項 1に 記載のガス発生剤。  10. The claim 1 wherein the N-alkoxy compound described in (d) of the S claim 1 is obtained by subjecting the substance described in the claim 2 to N-alcoholization. The gas generating agent as described.
1 1 . 前記ガス発生剤が、 1 0〜4 0重量%のガス発生成分と、 5 0〜 8 0重量%の酸化剤とを含むものである S求項 1乃至 1 0項のいずれか に記載のガス発生剤。  11. The gas generator according to any one of claims 1 to 10, wherein the gas generating agent contains 10 to 40% by weight of a gas generating component and 50 to 80% by weight of an oxidizing agent. Gas generating agent.
1 2 . 前記ガス発生剤が、 1 0〜 4 0重邐 のガス発生成分と、 5 0〜 8 0重量%の酸化剤と、 1〜 1 0重董¾の燃烷触媒成分とを含むもので ある »求項 1乃至 1 0項のいずれかに記載のガス発生剤。  12. The gas generating agent contains 10 to 40% by weight of a gas generating component, 50 to 80% by weight of an oxidizing agent, and 1 to 10% by weight of a fuel catalyst component. The gas generating agent according to any one of claims 1 to 10.
1 3 . 前記酸化剤が、 硝酸塩, ォキソハ Dゲン酸塩. 金厲酸化物からな る群から選ばれた 1種又は 2種以上である請求項 1 1又は 1 2項のいず れかに記載のガス発生剤。  13. The method according to claim 11, wherein the oxidizing agent is at least one member selected from the group consisting of nitrates, oxohasgen D-genates, and gold oxides. The gas generating agent as described.
1 4 . 前記硝酸塩が、 硝酸ナ ト リ ウム, 硝酸カ リ ウム. 硝酸バリ ウム, 销酸アンモユウム, 硝酸スト oンチウムからなる群から選ばれた 1種又 は 2種以上である請求項 1 3に記載のガス発生剤。  14. The method according to claim 13, wherein the nitrate is at least one member selected from the group consisting of sodium nitrate, potassium nitrate, barium nitrate, ammonium nitrate, and sodium nitrate. The gas generating agent according to the above.
1 5 . 前記ォキソハ口ゲン酸塩が、 塩素酸塩, 過塩素酸塩, 臭素酸塩, 遇臭素酸塩, 沃素酸塩, 過沃素酸塩からなる群から選ばれた 1種又は 2 種以上である請求項 1 3に記 »のガス発生剤。 15. The oxalate salt is one or two selected from the group consisting of chlorate, perchlorate, bromate, bromate, iodate, and periodate. 14. The gas generating agent according to claim 13, which is at least one species.
1 6 . 前記ォ牛ソハ pゲン酸 ¾が、 tt [素酸ナ ト リウム, 埴素酸カ リウム 、 過塩素酸ナ ト リウム, 通埴亲酸力 リウム, 遇壙素酸アンモユウ厶、 具 素酸力 リゥム、 遇臭素酸力 リウム、 沃素酸力 リ ゥム、 通沃素酸力 リゥム からなる群から ¾ばれた 1種又は 2種以上である請求項 1 3に記載のガ ス発生剤。  16 6. The above-mentioned ox-sodium p-genate is tt [sodium citrate, potassium oxalate, sodium perchlorate, potassium perchlorate, ammonium nitrate, element 14. The gas generating agent according to claim 13, wherein the gas generating agent is at least one member selected from the group consisting of acid lime, potassium bromate, iodate lime, and iodate lime.
1 7 . 前記金) S酸化物が、 二酸化マンガン, 酸化鉄, 二酸化亜鉛, 過酸 化カ リウム, ¾マンガン酸カ リウム. 通酸化バリウム, 三酸化モリブデ ンからなる群から選ばれた 1種又は 2種以上である請求 1 3に記載の ガス発生剤。  17. The gold) S oxide is one selected from the group consisting of manganese dioxide, iron oxide, zinc dioxide, potassium peroxide, and potassium manganate. Barium oxide and molybdenum trioxide 14. The gas generating agent according to claim 13, which is at least two types.
1 8. 前記燃焼触媒が、 ジルコニウム、 ハフニウム、 モリブデン、 タン ダステン、 マンガン、 鉄、 ニッケル、 ク nム、 チタンの単体又は酸化物 若しくは硫化物、 炭素、 りん、 硫黄の単体からなる群から illばれた 1種 又は 2種以上である請求項 1 2に記載のガス発生剤。  1 8. The combustion catalyst is an element selected from the group consisting of zirconium, hafnium, molybdenum, tantalum, manganese, iron, nickel, kum, titanium and oxides or sulfides, carbon, phosphorus, and sulfur. 13. The gas generating agent according to claim 12, wherein the gas generating agent is at least one kind.
1 9 . ガス発生成分と酸化剤とを含むガス発生剤の製造方法であって、 前記ガス発生成分が、 次の (a)〜! d)のいずれかの反応生成物の 1種以上か らなるものであり、 この反応生成物中に酸化剤を添加混合して所定粘度 のスラリーとなし、 このスラリ一を所望形状に成形して乾燥固化するガ ス発生剤の製造方法。  1 9. A method for producing a gas generating agent comprising a gas generating component and an oxidizing agent, wherein the gas generating component has the following (a) to! d) comprising one or more of the reaction products, and adding an oxidizing agent to the reaction product to form a slurry having a predetermined viscosity; forming the slurry into a desired shape; A method for producing a dry-solidified gas generating agent.
(a) アンモユア若しくはその塩又は構迪式中に一 N H 3基若しくは一 N H—を有する化合物と、 構造式中に一 C H 0基を有する有機化合物又 は一 C H O基を生じ得る有機化合物とを反応させて得られた反応生成物 (a) Ammourea or a salt thereof, a compound having one NH 3 group or one NH— in the structural formula, and an organic compound having one CH 0 group or one capable of generating a CHO group in the structural formula Reaction product obtained by reaction
(b) 上記 (a)で得られた反応生成物と、 構造式中に一 0 H基を有する化 合物とを反応させて得られた二次反応生成物。 (b) A secondary reaction product obtained by reacting the reaction product obtained in the above (a) with a compound having a 10 H group in the structural formula.
(C) 構造式中に一 N H a基又は一 N H—を有する化合物と、 N—メチ ロール化合物とを反応させて得られた反応生成物。 (C) a structural compound having an NH a group or one NH- in formula, N- methylcarbamoyl A reaction product obtained by reacting with a roll compound.
(ci) 構造式中に一 NHa基又は一 NH—を有する化合物と、 N—アル コキシ化合物とを反応させて得られた反応生成物。 (ci) compound in the structural formula with an NH a group or one NH- and the reaction product obtained by reacting N- alkoxy compound.
20. ガス発生成分と酸化剤とを含むガス発生剤の製造方法であって、 前記ガス発生成分が、 次の )〜 W)のいずれかの反応生成物の 1種以上か らなるものであり、 この反応生成物中に酸化剤を添加混合して所定粘度 のスラリーとなし、 このスラ リーを乾燥固化して粉粒体となし、 しかる 後に、 この粉粒体を所望形状に加圧成形するガス発生剤の製造方法。 20. A method for producing a gas generating agent comprising a gas generating component and an oxidizing agent, wherein the gas generating component comprises at least one of the following reaction products (1) to (W). An oxidizing agent is added to the reaction product and mixed to form a slurry having a predetermined viscosity, and the slurry is dried and solidified to form a powder, and then, the powder is pressed into a desired shape. A method for producing a gas generating agent.
(a) アンモニア若しくはその塩又は棟造式中に一 ΝΗ»基若しくは一 NH—を有する化合物と、 構造式中に一 C HO基を有する有機化合物又 は一 C HO基を生じ得る有概化合物とを反応させて得られた反応生成物 o  (a) Ammonia or a salt thereof or a compound having a hydroxyl group or 1 NH- in a building formula, and an organic compound having a 1 CHO group or a general compound capable of generating a 1 CHO group in a structural formula Reaction product obtained by reacting
(U 上記 )で得られた反応生成物と、 構造式中に一 OH基を有する化 合物とを反応させて得られた二次反応生成物。  (U) A secondary reaction product obtained by reacting the reaction product obtained in (1) with a compound having a mono-OH group in the structural formula.
(c) 構造式中に一 NH2基又は一 NH—を有する化合物と、 N—メチ n—ル化合物とを反応させて得られた反応生成物。 (c) A reaction product obtained by reacting a compound having one NH 2 group or one NH— in the structural formula with an N-methyl compound.
(d) 構透式中に一 NHa基又は一 NH—を有する化合物と、 N—アル コキシ化合物とを反応させて得られた反応生成物。 (d) A reaction product obtained by reacting a compound having one NH a group or one NH— in the structural formula with an N-alkoxy compound.
2 1. 前記所望形状に成形された成形体を、 9 0"C以上の温度で加熱処 理する事により、 前記反応生成物を縮合硬化させてなる請求項 1 9又は 20のいずれかに記載のガス発生剤の製造方法。  21. The reaction product according to claim 19, wherein the reaction product is condensation-cured by subjecting the molded product formed into the desired shape to a heat treatment at a temperature of 90 "C or more. Production method of gas generating agent.
22. ガス発生成分と酸化剤とを含むガス発生剤の製造方法であって、 前記ガス発生成分が、 次の )〜 (d)のいずれかの反応生成物の 1種以上か らなるものであり、 この反応生成物中に酸化剤を添加混合して所定粘度 のスラ リーとなし、 このスラ リーを柔軟性を有する非金 IS製成形型内に 注入し、 統ぃてこれを加熱固化させるガス発生剤の製造方法。 (a) アンモユア若しくはその塩又は構迪式中に一 N H a 基若しくは一 N H—を有する化合物と、 構造式中に一 C H O基を有する有機化合物又 は一 C H O基を生じ得る有機化合物とを反応させて得られた反応生成物 22. A method for producing a gas generating agent comprising a gas generating component and an oxidizing agent, wherein the gas generating component comprises at least one of the following reaction products (1) to (d). Yes, an oxidizing agent is added to this reaction product and mixed to form a slurry having a predetermined viscosity, and this slurry is poured into a flexible non-gold IS mold and then solidified by heating. A method for producing a gas generating agent. (a) Anmoyua or reaction with a compound having an NH a group or single NH- in its salt or構迪formula, an organic compound is also an organic compound having one CHO group in the structural formulas, which may occur an CHO group Reaction product obtained
(b) 上記 (a)で得られた反応生成物と、 構造式中に一 0 H基を有する化 合物とを反応させて得られた二次反応生成物。 (b) A secondary reaction product obtained by reacting the reaction product obtained in the above (a) with a compound having a 10 H group in the structural formula.
(c) 構造式中に一 N H a基又は一 N H—を有する化合物と、 N—メチ o—ル化合物とを反応させて得られた反応生成物。 (c) a compound having an NH a group or one NH- in the structural formula and the reaction product obtained by reacting a N- methylcarbamoyl o- le compound.
(d) 構造式中に一 N H a 基又は一 N H—を有する化合物と、 N—アル コキシ化合物とを反応させて得られた反応生成物。 (d) compounds in the structural formula with an NH a group or one NH- and the reaction product obtained by reacting N- alkoxy compound.
2 3. 前記スラリーを、 回動自在の »状ベルト上に設けられた前記成形 型内に、 その環状ベルトの一«郎で注入する工程と、 お環状ベルトを回 動させつつ成形型内の組成物を加熱して固化させる加熱固化工程と、 該 環状ベルトの他 5»部で纹固化したガス発生剤べレツ トを取り出す工程と を有してなる瞎求項 2 2に記載のガス発生剤の製造方法。  2 3. A step of injecting the slurry into the molding die provided on a rotatable »-shaped belt by means of an annular belt, and rotating the annular belt into the molding die. The gas generation according to claim 22, comprising: a heating and solidifying step of heating and solidifying the composition; and a step of removing a gas generating agent pellet solidified in another part of the annular belt. Method of manufacturing the agent.
2 4. ガス発生成分と酸化剤とを含むガス発生剤組成物のスラリ一を所 定形状に成形するガス発生剤べレツ トの製造装 Bであって、  2 4. A device B for producing a gas generant bevel for forming a slurry of a gas generant composition containing a gas generant component and an oxidant into a predetermined shape,
表面節に、 柔軟性を有する宑金 R製の材料で形成され且つ成形型とな る複数の凹郎(16)を有し且つ環状ベルト状に構成された成形用枠体 UA) 〜( )と、  Molding frame body UA)-() which has a plurality of hollows (16) formed of a material made of gold R having flexibility and serving as a molding die on a surface node, and is formed in an annular belt shape. When,
tt枠体を回動させる駆動機構 (2) と、  tt a drive mechanism (2) for rotating the frame,
K枠体の一鳜郎に設 fiされ且つ前記凹部 Q6〉内にガス発生剤組成物ス ラリ一を注入する注入機構(3) と、  An injection mechanism (3) installed in Ichirou of the K frame and injecting the gas generating composition slurry into the concave portion Q6>;
垓凹郎內のガス発生剤組成物スラ リ一を加熱固化する加熱银構(20〉と を有してなるガス発生剤べレツ トの製造装! 8。  7. A gas generator pellet manufacturing equipment that has a heating system (20) that heats and solidifies the gas generator composition slurry of Tokubo Nero!
2 5. 前記成形用枠体(4 〜(4し〉は、 平板(35)と垓平板上に立設された 柔軟性を有する非金属製の複数の «体(37〉とで前記凹部(16〉が形成され 、 該简体(37)の周 郎(37A) の少なくとも 1ケ所が軸方向に且つ枠体進 行方向と直行する方向に切り裂き郎(38)を有してなる請求項.2 4に記載 のガス発生剤べレツ トの製迪装魔。 2 5. The molding frame (4 to (4) is set up on a flat plate (35) and a flat plate The concave portion (16) is formed by a plurality of flexible non-metal bodies (37), and at least one of the ridges (37A) of the body (37) moves in the axial direction and in the frame body. 26. The device for producing a gas generant beret according to claim 24, further comprising a slitter (38) in a direction perpendicular to the direction.
2 6 . 前記平板(35)に浅い凹郎(42〉が投けられており、 該 Dfl郎内に、 そ の周壁郎の少なくとも 1ケ所が軸方向に且つ枠体進行方向と直行する方 向に切り裂き部(41)を有し且つ柔軟性を有する非金属製の简体(40)を嵌 合して立設してなる眛求項 2 4に記載のガス発生剤ペレツ トの製造装置 26. A shallow concave (42) is cast on the flat plate (35), and at least one portion of the peripheral wall is directed in the axial direction and at right angles to the direction in which the frame advances in the Dfl. Item 24. A gas generating agent pellet manufacturing apparatus according to Item 24, wherein the gas generating agent pellet is formed by fitting a flexible non-metallic body (40) having a cut-off portion (41) on the surface thereof.
0 0
2 7. 前記成形用枠体(4 〜(4し〉が、 柔軟性を有する非金 JS材料で構成 されており、 その表面郎に穿設された成形型となる凹部(16)を形成し、 K凹郎間の枠体基材郎(16A) の少なくとも 1ケ所に、 その軸方向に切り 裂き部(25〉が設けられている請求項 2 4に記載のガス発生剤べレツ トの 裂造装置。  2 7. The molding frame (4 to (4)) is made of a flexible non-gold JS material, and forms a concave part (16) which is formed in the surface thereof and becomes a molding die. 25. The crack of the gas generating agent beret according to claim 24, wherein a cut portion (25>) is provided in at least one position of the frame base material between the K-Kuro and the axial direction thereof. Manufacturing equipment.
2 8 . 前記成形用枠体(4A)〜(4いが、 柔軟性を有する非金属材料で構成 され、 その表面部には前記凹郎(16)が形成されており、 その裏面には、 は枠体の進行方向と直行する方向に溝(30〉が形成されている稱求項 2 4 に記載のガス発生剤ペレツ トの製造装 S。 28. The molding frames (4A) to (4) are made of a flexible non-metallic material, and the concave portion (16) is formed on the surface thereof, 24. The apparatus S for producing a gas generating agent pellet according to claim 24, wherein a groove (30>) is formed in a direction perpendicular to a traveling direction of the frame.
要 約 書 Summary Form
本発明の目的は、 成形性と燃焼安定性に優れ、 特性睏整が容易で且つ 製造工程が安全なガス発生剤及びその製 fi方法並びにガス発生剤べレツ 卜の製造装 Bの提供にある。  An object of the present invention is to provide a gas generating agent which is excellent in moldability and combustion stability, whose characteristics are easy to adjust, and whose manufacturing process is safe, a fi method for manufacturing the same, and a device B for manufacturing a gas generating agent belt. .
本発明は、 ガス発生成分と酸化剤とを含むガス発生剤であって、 前記 ガス発生成分が、 次の )〜 (djのいずれかの反応生成物の 1種以上からな るガス発生剤及びその製造方法並びにガス発生剤ペレツ トの製造装匿で ある。  The present invention relates to a gas generating agent comprising a gas generating component and an oxidizing agent, wherein the gas generating component comprises at least one of the following reaction products (1) to (dj): The production method and the production and production of the gas generant pellets are hidden.
(a) アンモユア若しくはその埴又は構造式中に一 NH2.基若しくは一 NH—を有する化合物と、 構迪式中に一 CHO基を有する有機化合物又 は一 CHO基を生じ得る有极化合物とを反応させて得られた反応生成物 (a) Ammourea or its clay or a compound having one NH 2. group or one NH— in the structural formula, an organic compound having one CHO group in the structural formula or an organic compound capable of generating one CHO group Reaction product obtained by reacting
(b) 上記 (a)で得られた反応生成物と、 構造式中に一 OH基を有する化 合物とを反応させて得られた二次反応生成物。 (b) A secondary reaction product obtained by reacting the reaction product obtained in (a) with a compound having a mono-OH group in the structural formula.
(c) 構造式中に一 NHa基又は一 NH—を有する化合物と、 N—メチ ロール化合物とを反応させて得られた反応生成物。 (c) a compound in the structural formula with an NH a group or one NH-, reaction product obtained by reacting N- methylol compounds.
(d) 構造式中に一 NHa基又は一 NH—を有する化合物と、 N—アル コキシ化合物とを反応させて得られた反応生成物。 (d) compounds in the structural formula with an NH a group or one NH- and the reaction product obtained by reacting N- alkoxy compound.
PCT/JP1995/001925 1994-09-28 1995-09-25 Gas-generating agent, process for producing the agent, and equipment for producing pelletized gas-generating agent WO1996010000A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP25926794 1994-09-28
JP6/259267 1994-09-28
JP31251894 1994-11-21
JP6/312518 1994-11-21
JP9979895 1995-03-31
JP7/99798 1995-03-31

Publications (1)

Publication Number Publication Date
WO1996010000A1 true WO1996010000A1 (en) 1996-04-04

Family

ID=27309049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001925 WO1996010000A1 (en) 1994-09-28 1995-09-25 Gas-generating agent, process for producing the agent, and equipment for producing pelletized gas-generating agent

Country Status (2)

Country Link
TW (1) TW302352B (en)
WO (1) WO1996010000A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137814A (en) * 2007-12-10 2009-06-25 Daicel Chem Ind Ltd Method for producing gas generating agent molded body
JP2013012448A (en) * 2011-06-30 2013-01-17 Toshiba Corp Nonaqueous electrolyte secondary battery
CN116067237A (en) * 2023-03-02 2023-05-05 北京理工大学 Underwater supercavitation projectile

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228490A (en) * 1990-06-19 1992-08-18 Nippon Oil & Fats Co Ltd Gas producing agent composition
JPH04231396A (en) * 1990-08-06 1992-08-20 Morton Internatl Inc Gas-generating agent based on azide with improved heat and firing stability and method and apparatus for preparation thereof
JPH04265289A (en) * 1990-10-23 1992-09-21 Automot Syst Lab Inc Igniting composition for inflator gas generator
JPH06239683A (en) * 1993-02-15 1994-08-30 Daicel Chem Ind Ltd Gas generating agent for air bag
JPH07223889A (en) * 1994-02-15 1995-08-22 Nippon Koki Kk Method for formulating gas producing agent and reservation and transportation thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228490A (en) * 1990-06-19 1992-08-18 Nippon Oil & Fats Co Ltd Gas producing agent composition
JPH04231396A (en) * 1990-08-06 1992-08-20 Morton Internatl Inc Gas-generating agent based on azide with improved heat and firing stability and method and apparatus for preparation thereof
JPH04265289A (en) * 1990-10-23 1992-09-21 Automot Syst Lab Inc Igniting composition for inflator gas generator
JPH06239683A (en) * 1993-02-15 1994-08-30 Daicel Chem Ind Ltd Gas generating agent for air bag
JPH07223889A (en) * 1994-02-15 1995-08-22 Nippon Koki Kk Method for formulating gas producing agent and reservation and transportation thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137814A (en) * 2007-12-10 2009-06-25 Daicel Chem Ind Ltd Method for producing gas generating agent molded body
JP2013012448A (en) * 2011-06-30 2013-01-17 Toshiba Corp Nonaqueous electrolyte secondary battery
CN116067237A (en) * 2023-03-02 2023-05-05 北京理工大学 Underwater supercavitation projectile

Also Published As

Publication number Publication date
TW302352B (en) 1997-04-11

Similar Documents

Publication Publication Date Title
CN100348557C (en) Gas generant for air bag
CN100376515C (en) A kind of gas generating composition and preparation method thereof
KR100411997B1 (en) Low Residual Azide-Glass Gas Generator Compositions
US5883330A (en) Azodicarbonamide containing gas generating composition
US20090308509A1 (en) Rapid Gas Generating Pyrotechnical Composition and Method for Obtaining Same
CN1183758A (en) Gas-generating mixtures
JP2003504293A (en) Gas generating composition
EP1279655B1 (en) Method for producing gas generating agent
JP3848257B2 (en) Propellant for gas generant
EP1851182B1 (en) Ammonium nitrate granule and method for the preperation of the same
JP2002187790A (en) Gas generating agent composition and gas generator using the same
CZ20014668A3 (en) Gas-producing composition
JP4498927B2 (en) GAS GENERATOR, MANUFACTURING METHOD THEREOF, AND GAS GENERATOR FOR AIRBAG
JP2000103691A (en) Gas generating composition
WO2001004074A1 (en) Automatically ignitable enhancer agent composition
JP2003535003A (en) Gas generating composition containing silicone coating
WO1996010000A1 (en) Gas-generating agent, process for producing the agent, and equipment for producing pelletized gas-generating agent
JPS63141991A (en) Lactone reduced product
WO1999057083A1 (en) Enhancer composition for inflator
CN100441550C (en) Gas Generating Agents for Air Bags
JP2018154539A (en) Gas generating agent composition
JP2015086095A (en) Gas generating agent composition
WO2001047811A2 (en) Phase stabilized ammonium nitrate and method of making the same
JP2952408B2 (en) Fireworks composition and method for producing the same
US20060042730A1 (en) Gas generating composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase