WO1996004029A1 - Systeme d'irrigation pour prevenir l'hypothermie - Google Patents
Systeme d'irrigation pour prevenir l'hypothermie Download PDFInfo
- Publication number
- WO1996004029A1 WO1996004029A1 PCT/US1994/014985 US9414985W WO9604029A1 WO 1996004029 A1 WO1996004029 A1 WO 1996004029A1 US 9414985 W US9414985 W US 9414985W WO 9604029 A1 WO9604029 A1 WO 9604029A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reservoir
- pouch
- carrier
- fluid
- cavity
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M3/00—Medical syringes, e.g. enemata; Irrigators
- A61M3/02—Enemata; Irrigators
- A61M3/0233—Enemata; Irrigators characterised by liquid supply means, e.g. from pressurised reservoirs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M3/00—Medical syringes, e.g. enemata; Irrigators
- A61M3/02—Enemata; Irrigators
- A61M3/0233—Enemata; Irrigators characterised by liquid supply means, e.g. from pressurised reservoirs
- A61M3/0237—Enemata; Irrigators characterised by liquid supply means, e.g. from pressurised reservoirs the pressure being generated in the reservoir, e.g. by gas generating tablets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/145—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
- A61M5/148—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons flexible, e.g. independent bags
- A61M5/1483—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons flexible, e.g. independent bags using flexible bags externally pressurised by fluid pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3379—Masses, volumes, levels of fluids in reservoirs, flow rates
- A61M2205/3386—Low level detectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M3/00—Medical syringes, e.g. enemata; Irrigators
- A61M3/02—Enemata; Irrigators
- A61M3/0202—Enemata; Irrigators with electronic control means or interfaces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M3/00—Medical syringes, e.g. enemata; Irrigators
- A61M3/02—Enemata; Irrigators
- A61M3/0204—Physical characteristics of the irrigation fluid, e.g. conductivity or turbidity
- A61M3/0208—Physical characteristics of the irrigation fluid, e.g. conductivity or turbidity before use
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M3/00—Medical syringes, e.g. enemata; Irrigators
- A61M3/02—Enemata; Irrigators
- A61M3/0204—Physical characteristics of the irrigation fluid, e.g. conductivity or turbidity
- A61M3/022—Volume; Flow rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M3/00—Medical syringes, e.g. enemata; Irrigators
- A61M3/02—Enemata; Irrigators
- A61M3/0233—Enemata; Irrigators characterised by liquid supply means, e.g. from pressurised reservoirs
- A61M3/0245—Containers therefor, e.g. with heating means or with storage means for cannula
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
- A61M5/16831—Monitoring, detecting, signalling or eliminating infusion flow anomalies
- A61M5/1684—Monitoring, detecting, signalling or eliminating infusion flow anomalies by detecting the amount of infusate remaining, e.g. signalling end of infusion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/44—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for cooling or heating the devices or media
- A61M5/445—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for cooling or heating the devices or media the media being heated in the reservoir, e.g. warming bloodbags
Definitions
- This invention generally relates to the field of irrigation delivery systems, and, more particularly, to an improved irrigation delivery system that heats the irrigation fluid, provides the irrigation fluid under higher pressures, and prevents contamination of the sterile irrigation fluid.
- Irrigation of a surgical or operative site accomplishes three goals. First, flushing the site with fluid cleans the area of blood and tissue providing a surgeon with an improved view. Secondly, the fluid functions as a medium for removal of blood and debris during aspiration of the operative site. Thirdly, pressurized irrigant is used to gently separate anatomical structures for accessing adjacent structures. High pressure irrigant is desired for use in laser surgery, however, well known systems cannot provide sufficient pressure for that use.
- Irrigation delivery systems typically include measurement and control instruments to adjust flow rates, a reservoir for the sterile irrigation fluid, a pump or other flow producing means, a flexible sterile conduit, and an operative instrument for discharging fluid to an operative site.
- Well known irrigation systems include gravity systems, pressurized gas systems, various mechanical pump designs, and pressure vessel compression systems. The gravity systems usually suspend the irrigation fluid at an elevated height to produce fluid flow. A problem associated with gravity systems is that, typically, these systems cannot achieve high flow rates.
- Pressurized gas systems pump gas into a sterile fluid container and force the fluid out of the container, through a conduit and into an operative instrument for delivery to the operative site.
- a problem with gas systems is that the gas contacts the sterile fluid and may introduce contaminants into the fluid.
- Another problem with these systems is cross-flow contamination. Cross-flow contamination occurs when contaminated fluid at the operative site backflows into the sterile conduit.
- Mechanical pumps include complex pneumatic, systolic, and peristaltic pumps as well as disposable sterile pumps. Pumps are generally undesirable because they are not self contained, operate at high noise levels, and contaminate the sterile irrigation fluid.
- a pressure vessel system utilizes a rigid housing for holding a flexible fluid bag. Flow is achieved by pressurizing the area within the housing with either gas or fluid such that the bag is compressed. Problems associated with these systems are a small irrigant capacity and contamination at the interfaces between the housing and the tubing connected to the housing. In addition, this type of system is often undesirable because it utilizes a hospital's gas supply line which limits the system's mobility and makes the gas supply line unavailable for other uses.
- the irrigation system of this invention meets the above-stated objectives and is particularly designed for reducing the risk of patient hypothermia and preventing irrigation fluid contamination.
- the present invention is adapted to provide improved, adjustable flow rates for use during laser surgery which requires higher fluid pressure to create a fluid film barrier to control laser penetration depth.
- the irrigation system is self contained and provides heated irrigant while eliminating contamination of the sterile system.
- the system utilizes an air actuated pouch to compress a flexible fluid reservoir. Heating panels with embedded thermistors are located within the pouch to maintain the temperature of the preheated fluid reservoir.
- the pouch contains an inflatable air bladder that compresses the reservoir and discharges fluid from the reservoir when the bladder is inflated. The fluid is discharged through a tube and a nozzle to an operative site.
- a support bag surrounds the reservoir allowing the reservoir to be quickly inserted into the pouch so that the surgical procedure is not interrupted when a new reservoir is required. In addition, the support bag prevents the reservoir from being pinched during inflation of the pouch.
- the pouch is connected to a rigid housing which contains a pump and a control system.
- the rigid housing has heat and pressure adjustment controls and a display for giving pressure and temperature information.
- the system operates at reduced noise levels, below about 40dBA, due to the positioning of the pump within the housing.
- By employing a pump the system operates independently of the hospital gas lines; thus, making the gas lines available for other uses.
- Another advantage of the present invention is that it is lightweight and can be attached to an intravenous ("IV") pole where it is not underfoot and user adjustments can be easily made.
- IV intravenous
- the control system utilizes a microcontroller, a pump, a pressure sensor, and a solenoid valve to regulate fluid pressure.
- the control system reads and displays the pressure and temperature. Positive pressure is maintained on the fluid for preventing cross-flow contamination of the system.
- FIG. 1 is a perspective view of the irrigation system attached to an IV pole.
- FIG. 2 is a perspective view of the support bag.
- FIG. 3 is a sectional view of the pouch taken along line 3-3 of FIG. 1.
- FIG. 4 is a plan view of a laid out air bladder.
- FIG. 5 is a perspective view of the operative instrument.
- FIG. 6 is a close up view of a disengaged locking piercing pin and receiver system.
- FIG. 6 A is a close up view of the locking piercing pin and receiver system of FIG. 6 in the engaged position.
- FIG. 7 is a schematic diagram illustrating the electrical connections.
- FIG. 8 is a a perspective view of an alternative embodiment of the pouch.
- FIG. 9 is a cross sectional view of the pouch of FIG. 8 taken along line 9-9.
- FIG. 10 is a perspective view of a bag carrier of the alternative embodiment of the pouch, the bag carrier containing a fluid reservoir and having its door in the closed position.
- FIG. 11 is a perspective view of the bag carrier of FIG. 10 with its door in the open position.
- FIG. 12 is a perspective view of the front of a bag support of the alternative embodiment of the pouch.
- FIG. 13 is a elevational view of the back of the bag support shown in FIG. 12.
- FIG. 14 is an elevational view of the assembled pouch of the alternative embodiment of the present invention.
- FIG. 1 illustrates a surgical irrigation system (10) that reduces the risk of patient hypothermia and prevents fluid contamination during surgery.
- the irrigation system is lightweight and self contained so that it is quiet, hangs from a standard TV pole (82), and operates independently of hospital gas lines (not shown).
- Irrigation system (10) comprises a control system (20) and an air actuated pouch (30).
- Air actuated pouch (30) is particularly designed for use as part of an irrigation system, but could be used in other applications requiring pressurized fluid.
- irrigation fluid (76) is contained in a flexible fluid reservoir (32).
- the reservoir is a standard three liter or a one liter bag of preheated, sterile irrigation fluid. However, three liter bags are more convenient because less frequent bag changing is required.
- Reservoir (32) further comprises a receiver (100) portion of a standard stick fitting (34) for discharging fluid from the bag without introducing contaminants into the fluid.
- a piercing pin (96) attached to a tube (52) is inserted into receiver (100) for discharging the fluid.
- a locking piercing pin and receiver system is illustrated in FIG. 6 and FIG. 6A and discussed in detail below.
- Reservoir (32) is sterilized and packaged so as to maintain sterility until the fluid is discharged to an operative site.
- Reservoir (32) fits within a support bag (36) so that reservoir (32) can be easily and quickly inserted into pouch (30) and to prevent pinching of reservoir (32) during inflation.
- the support bag (36) is sized so that it closely corresponds to the size of the reservoir (32) so that adequate pressure is applied to the entire reservoir.
- An opening (38) in the bottom of support bag (36) is aligned with receiver (100).
- the support bag (36) has a rigid ring for constraining the fluid reservoir in two directions, along two axes, so that fluid is forced out of the reservoir and the reservoir cannot escape the pressure forces exerted upon it.
- the support bag (36) is flexible along its third axis for compressing the reservoir and has a fastener, preferably a hook and loop type, for securely containing the reservoir.
- Pouch (30) has an inside cavity (51) for containing support bag (36), an interior surface (48), a mouth (49), at least one air bladder (42) for compressing reservoir (32), at least one flexible heating panel (40) for maintaining the temperature of the preheated irrigation fluid, a receptacle (47) for aligning with stick fitting (34) and support bag opening (38), a cover flap (44) for sealing reservoir (32) within the pouch, and fastening means (39) on cover flap (44) and pouch (30) for securely closing pouch (30).
- Pouch (30) contains at least one air bladder (42) secured to pouch interior surface (48) of pouch inside cavity (51). Although various air bladder designs are possible, the preferred embodiment of the air bladder is shown in FIG. 4.
- Air bladder (42) has four chambers (42A-D). As chambers (42A-D) are inflated, reservoir (32) is compressed such that fluid is pressurized and discharged through stick fitting (34). The number of chambers (42A-D) are based on the strength of the seams of the bladder (42), and one skilled in the art may readily determine the number of chambers required.
- Suitable air bladders (42) are urethane film sheets that have nylon laminated to the urethane to provide strength and puncture resistance.
- the laminate is RF welded so that chambers (42A-D) are formed as shown in FIG. 4.
- the bladder (42) has an opening (60) for aligning with receiver (100) of fluid reservoir (32).
- Bladder (42) may be attached to pouch interior surface (48) by various means, however, a suitable method is by sewing the bladder (42) onto pouch interior surface (48).
- Chambers (42A-D) are connected by channels (43) such that they can be evenly and simultaneously inflated, and thus, provide even distribution of pressure on reservoir (32).
- Channels (43) are formed by RF welding portions of the laminate.
- Connector locations (58) are RF welded circles for connections of an air feed line (57) and an air sensor line (64) from the control system (20) to inflate bladder (42).
- FIG. 3 shows a single air bladder (42) having a front portion (61) and a back portion (62), suitable designs having two, four, six or more separate bladders are possible.
- Support bag (36) and pouch (30) can be made out of any inelastic fabric, however, reinforced nylon material provides easy and quick insertion of the support bag into the pouch for easy reservoir changing.
- Heating panels (40, 41) are disposed on bladder (42) such that one panel (40) is located on front portion (61) and the other panel (41) is located on back portion (62).
- heating panels (40, 41) may be attached to support bag (36) (not shown) or to pouch inside cavity (51) (not shown) if desired.
- a desirable temperature range of the heating panels (40, 41) is about 85° F to about 115° F.
- the fluid temperature is usually maintained at about 98 °F to about 100°F to reduce the risk of patient hypothermia.
- a suitable heating panel (40,41) is constructed of mylar film having thermistors (not shown) embedded in the panels for regulating the temperature of the heating panels. Heating panels (40, 41) may be attached to bladder (42) (or other structures) by various means, however, a suitable means is by sewing. Heating panels (40, 41) are connected to control system (20) by heater cable (66).
- a volume sensor is disposed upon the support bag (36) for sensing and indicating when the amount of fluid in the reservoir (32) has decreased below a certain level. Opposing parts of the sensor are located on opposing sides of the support bag (36) so that the distance between the sensor parts is measured through the compressed fluid. When the distance between the two sensor parts is below a predetermined threshold level, a warning is indicated on the monitor so that a new bag of fluid may be supplied.
- fastening means (39) is high strength hook and loop fastener strips that are disposed on cover flap (44) and pouch (30).
- irrigation system (10) further comprises an irrigation nozzle (55) for discharging irrigation fluid to an operative site (not shown), a flexible tube (52) having a piercing pin (96) at an end opposite nozzle (55) for connecting the nozzle to reservoir (32) by inserting the pin into receiver (100) and piercing the reservoir, and a vacuum line (74) for connecting to a hospital aspiration system.
- a preferred embodiment is shown in FIG. 6 and FIG. 6A that prevents piercing pin (96) from being pushed or knocked out of receiver (100).
- a locking piercing pin and receiver system (90) is employed to prevent tubing (52) from being pushed out of reservoir (32) by either pressure or reservoir movement during inflation, or by accidental movement of reservoir (32).
- Locking piercing pin and receiver system (90) comprises a locking receiver (92) attached to pouch (30) and a locking piercing pin (96) attached to tubing (52).
- Locking receiver (92) has a receiver plate (102) for attaching to pouch (30) and surrounding pouch receptacle (47). Locking receiver (92) extends from plate (102) surrounding stick fitting receiver (100).
- Locking piercing pin (96) is a standard stickfitting piercing pin, but has locking lugs (98) attached to tubing (52).
- a user grasps grip openings (94) which are located on locking receiver (92) and inserts piercing pin (96) into receiver (100).
- Locking lugs (98) should be aligned with locking lug openings (104) so that lugs (98) slip into openings (104) as piercing pin (96) inserts into receiver (100). Locking lugs (98) are then turned so that they are locked into opening (104) and piercing pin (96) can not be inadvertently removed from receiver (100).
- Control system (20) is located in a rigid housing (22) having handles (24) located on the housing for easy transport. As shown in FIG. 7, control system (20) is a microcontroller (53) which is electrically connected to a pump (54) for inflating the pouch, a pressure sensor (56) for monitoring pressure, a solenoid valve (59) for regulating pressure, thermistors in the heating panels (40, 41) for regulating temperature, a power supply (80), a display (78) for displaying temperature and pressure readings, and adjustment switches (80) for adjusting pressure and temperature.
- the system pressure is adjustable from about 0 mm Hg to about 800 mm Hg.
- a suitable pressure sensor is a Honeywell Micro Switch 180PC series solid state or a Motorola MPX5100 series piezoresistive transducer.
- a Medo pump is desirable because it is faster than other models and capable of working with simpler control systems.
- microcontroller (53) activates pump (54) and regulates solenoid valve (59) which allows air to be pumped through air feed line (57) extending from pump (54) to air bladder (42) in pouch (30).
- air feed line (57) extending from pump (54) to air bladder (42) in pouch (30).
- bladder (42) inflates, it compresses reservoir (32) and sterile irrigant (76) is discharged under pressure through stick fitting (34), into tube (52), and into nozzle (51) to be delivered to the operative site.
- An air sensor line (64) extends from pressure sensor (56) to air bladder (42) for monitoring pressure.
- Microcontroller (52) switches heating panels (40, 41) on and off through heater cable (66).
- FIG. 1 Various means of attaching pouch (30) to said control system (20) exist for suspending the unit from an I.V. pole; however, a suitable mechanism is shown in FIG. 1.
- Pouch (30) is inserted into take up reel (70). Take up wheel (68) is turned so that pouch (30) is secured around reel (70).
- Reel lock (72) is secured so that gravity will not cause pouch (30) to unwind from reel (70).
- FIGs. 8 - 14 An alternative and preferred embodiment of air activated pouch (30) is depicted in FIGs. 8 - 14.
- FIGs. 8 and 9 show the pouch (30) and a cross sectional view of pouch (30), respectively.
- the pouch (30) preferably is formed in a doughnut shape for containing a carrier bag (discussed and shown below) which has an inside cavity (discussed and shown below) for receiving a fluid reservoir (not shown) and a bag support (shown and discussed below).
- the pouch (30) has an (second) inflatable cavity (240) which houses a bladder (250) having a plurality of chambers, preferably two chambers (250a, 250b), as shown.
- the chambers (250a, 250b) are interconnected by an interconnecting channel (260) for evenly inflating the bladder (250).
- the interconnecting channel (260) has air lines (270a, 270b) that connect to the pump (not shown).
- pouch (30) has fastening means (360) disposed thereon for attach
- FIG. 10 illustrates the bag carrier (200) having an inside cavity (220) which is formed by a flexible wall and houses a fluid reservoir (32).
- the bag carrier (200) has a flexible flap or door (290), shown here in the closed position, and secured by, for example, hook and loop type fasteners (300).
- the bag carrier (200) is sized to correspond closely with the size of the fluid reservoir (32) used (generally either 1 liter or 3 liter).
- FIG. 11 shows the bag carrier (200) with its door (290) in the open position for loading or unloading a fluid reservoir (not shown).
- a reinforcing member (310) is attached to the carrier (200) for restraining movement of the fluid reservoir in two (indicated by arrows G and H) of the three mutually perpendicular directions.
- the reinforcing member (310) may be made of any suitably rigid material, however, a microwaveable material, such as a rigid plastic, is especially desirable so that the reservoir may be heated in a microwave oven prior to use.
- bag carrier (200) has a handle (320) for easy removal of the carrier from the pouch (30).
- FIGs. 12 and 13 show a bag support (330) which fits inside pouch (30) and into which the bag carrier (200) is insertable.
- the bag support (330) houses a sensory device (340a, 340b) and a heating panel (40) which are connected to a power source
- the sensory device (340) is comprised of two parts (340a and 340b) which are disposed on opposing walls of the bag support (330) for measuring the distance between the opposing walls of the carrier (200) in the third perpendicular direction (I on FIG. 11) for determining the fluid level in the reservoir and generating a signal when the amount of fluid drops below a predetermined level.
- An example of a suitable sensory device is a Reed switch which employs a magnet in one part of the device (e.g., 340a) and metal in the other part (e.g., 340b) so that when the two parts come within a predetermined proximity of each other a magnetic field is formed which generates a current that sends a signal. While many different types of sensory devices are suitable, this particular device is preferred because it measures the amount of fluid in the reservoir by measuring the distance between the two sensory device parts (340a, 340b) while the reinforcing member (310) and pressure keep substantially all of the fluid between the sensory device parts (340a, 340b) so that the reading is accurate.
- One part of the sensory device (340a) is disposed on one side of the bag support as shown in FIG.
- the bag support (330) has an opening (350) through which the fluid reservoir leads may extend.
- the bag support (330) has fasteners (360) which correspond to the fasteners (360) on the pouch (30) for securing the bag support (330) within and to the pouch (30).
- the bag support (330) and pouch (30) can be permanently attached or constructed from the same piece of material, however, having a separable bag support (330) provides easy access to the heating panel (40) and sensory device (340) for servicing and modification.
- FIG. 14 shows the pouch (30) fully assembled with the carrier (200) and the bag support (330) secured therein.
- the fasteners (360) are hook and loop type fasteners which connect to corresponding fasteners on the outside of the pouch (30).
- a pressure sensor line (390) and an air feed line (400) are shown for connecting the assembly to the main unit.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hematology (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Vascular Medicine (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU15559/95A AU1555995A (en) | 1994-08-05 | 1994-12-29 | Irrigation system for preventing hypothermia |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/111,149 US5368569A (en) | 1993-08-18 | 1993-08-18 | Irrigation system for preventing contamination and reducing the risk of patient hypothermia |
PCT/US1994/008843 WO1995005135A1 (fr) | 1993-08-18 | 1994-08-05 | Systeme d'irrigation destine a reduire l'hypothermie |
USPCT/US94/08843 | 1994-08-05 | ||
US9413926 | 1994-11-29 | ||
USPCT/US94/13926 | 1994-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996004029A1 true WO1996004029A1 (fr) | 1996-02-15 |
Family
ID=27377664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1994/014985 WO1996004029A1 (fr) | 1993-08-18 | 1994-12-29 | Systeme d'irrigation pour prevenir l'hypothermie |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1996004029A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10149377A1 (de) * | 2001-10-06 | 2003-04-17 | Horn Gmbh | Behältervorwärmvorrichtung |
WO2003039433A1 (fr) * | 2001-11-05 | 2003-05-15 | Keystone Product Developments Pty Ltd | Distributeur de liquide |
WO2006021880A2 (fr) * | 2004-08-27 | 2006-03-02 | Atul Kumar | Systeme de distension d'une cavite tissulaire a faible turbulence |
EP1726286A1 (fr) * | 2004-03-16 | 2006-11-29 | Kabushiki Kaisha Cycos | Poche sous pression et système de poche pression constante |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2118634A (en) * | 1982-04-22 | 1983-11-02 | Saul Leibinsohn | Apparatus for the induced infusion of a liquid from a flexible liquid bag |
US4613327A (en) * | 1984-01-26 | 1986-09-23 | Tegrarian Haig V | Apparatus for infusing blood and other related fluids into a patient's body |
EP0210424A2 (fr) * | 1985-07-31 | 1987-02-04 | TRANSMED Medizintechnik GmbH | Conteneur en matériau souple pour coussin de pression gonflable et récipient d'infusion/transfusion |
WO1988007384A1 (fr) * | 1987-03-30 | 1988-10-06 | Kanthal Medical Heating Ab | Appareil servant a chauffer et a melanger des liquides de transfusion ou de perfusion tels que notamment du sang |
US4857055A (en) * | 1986-04-15 | 1989-08-15 | Wang Paul Y | Compression device enabling flexible solution containers to produce constant delivery rate |
EP0351344A2 (fr) * | 1988-05-16 | 1990-01-17 | Pierre Antonetti | Moyen de pressurisation pour poches de perfusion |
-
1994
- 1994-12-29 WO PCT/US1994/014985 patent/WO1996004029A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2118634A (en) * | 1982-04-22 | 1983-11-02 | Saul Leibinsohn | Apparatus for the induced infusion of a liquid from a flexible liquid bag |
US4613327A (en) * | 1984-01-26 | 1986-09-23 | Tegrarian Haig V | Apparatus for infusing blood and other related fluids into a patient's body |
EP0210424A2 (fr) * | 1985-07-31 | 1987-02-04 | TRANSMED Medizintechnik GmbH | Conteneur en matériau souple pour coussin de pression gonflable et récipient d'infusion/transfusion |
US4857055A (en) * | 1986-04-15 | 1989-08-15 | Wang Paul Y | Compression device enabling flexible solution containers to produce constant delivery rate |
WO1988007384A1 (fr) * | 1987-03-30 | 1988-10-06 | Kanthal Medical Heating Ab | Appareil servant a chauffer et a melanger des liquides de transfusion ou de perfusion tels que notamment du sang |
EP0351344A2 (fr) * | 1988-05-16 | 1990-01-17 | Pierre Antonetti | Moyen de pressurisation pour poches de perfusion |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10149377A1 (de) * | 2001-10-06 | 2003-04-17 | Horn Gmbh | Behältervorwärmvorrichtung |
WO2003039433A1 (fr) * | 2001-11-05 | 2003-05-15 | Keystone Product Developments Pty Ltd | Distributeur de liquide |
AU2002340621B2 (en) * | 2001-11-05 | 2009-09-10 | Keystone Medical Pty Ltd | Liquid dispenser |
US8313475B2 (en) | 2001-11-05 | 2012-11-20 | Keystone Product Developments Pty Ltd | Liquid dispenser |
EP1726286A1 (fr) * | 2004-03-16 | 2006-11-29 | Kabushiki Kaisha Cycos | Poche sous pression et système de poche pression constante |
EP1726286A4 (fr) * | 2004-03-16 | 2007-11-21 | Cycos Kk | Poche sous pression et système de poche pression constante |
WO2006021880A2 (fr) * | 2004-08-27 | 2006-03-02 | Atul Kumar | Systeme de distension d'une cavite tissulaire a faible turbulence |
WO2006021880A3 (fr) * | 2004-08-27 | 2006-05-26 | Kumar Atul | Systeme de distension d'une cavite tissulaire a faible turbulence |
US8512283B2 (en) | 2004-08-27 | 2013-08-20 | Atul Kumar | Tissue cavity distending system with low turbulence |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5368569A (en) | Irrigation system for preventing contamination and reducing the risk of patient hypothermia | |
US5549672A (en) | Method and apparatus for filling mammary prostheses and tissue expanders | |
US20240173032A1 (en) | Occlusion catheter system for partial occlusion or full occlusion | |
US9119912B2 (en) | Method and apparatus for controlling pressurized infusion and temperature of infused liquids | |
US20220054747A1 (en) | Fluid infusion system | |
US4539005A (en) | Blood infusion apparatus and method | |
US5024668A (en) | Retrograde perfusion system, components and method | |
EP0959789B1 (fr) | Dispositif servant a arreter les hemorragies uterines | |
US5814009A (en) | Fluid management system and replaceable tubing assembly therefor | |
US8262610B2 (en) | Catheter fluid control system | |
EP1955681B1 (fr) | Appareil pour ajustement et détection d'une pression de bande gastrique | |
US5308335A (en) | Infusion pump, treatment fluid bag therefor, and method for the use thereof | |
US8313462B2 (en) | Method and apparatus for pressure infusion and temperature control of infused liquids | |
US5013303A (en) | Constant pressure infusion device | |
US5792173A (en) | Wound closure hemostasis device | |
EP1626764B1 (fr) | Systeme de distribution de fluide et procedes d'utilisation associes | |
US20030149360A1 (en) | Fluid manipulating system for theraphy apparatus | |
US20070191881A1 (en) | Tourniquet | |
JPH053319B2 (fr) | ||
WO2005025666A2 (fr) | Dispositif de drainage des plaies | |
CN111436996A (zh) | 一种动脉止血器及自动控制方法 | |
WO1996004029A1 (fr) | Systeme d'irrigation pour prevenir l'hypothermie | |
US5147310A (en) | Pressure infusion system | |
EP0673267A1 (fr) | Pompe et sachet de transfusion et leur procede d'utilisation | |
US7762982B1 (en) | Breast implant fill device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB GE HU JP KE KG KP KR KZ LK LT LU LV MD MG MN MW NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE MW SD SZ AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2196887 Country of ref document: CA |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase |