[go: up one dir, main page]

WO1995035615A1 - Detecteur synchrone et procede de synchronisation pour un recepteur numerique de telecommunications - Google Patents

Detecteur synchrone et procede de synchronisation pour un recepteur numerique de telecommunications Download PDF

Info

Publication number
WO1995035615A1
WO1995035615A1 PCT/JP1995/001229 JP9501229W WO9535615A1 WO 1995035615 A1 WO1995035615 A1 WO 1995035615A1 JP 9501229 W JP9501229 W JP 9501229W WO 9535615 A1 WO9535615 A1 WO 9535615A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer function
pilot signal
signal
information symbol
estimating
Prior art date
Application number
PCT/JP1995/001229
Other languages
English (en)
French (fr)
Inventor
Akihiro Higashi
Fumiyuki Adachi
Koji Ohno
Mamoru Sawahashi
Original Assignee
Ntt Mobile Communications Network Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Mobile Communications Network Inc. filed Critical Ntt Mobile Communications Network Inc.
Priority to US08/553,464 priority Critical patent/US5692015A/en
Priority to JP07522826A priority patent/JP3118548B2/ja
Priority to EP95922721A priority patent/EP0715440B1/en
Priority to DE69533156T priority patent/DE69533156T2/de
Publication of WO1995035615A1 publication Critical patent/WO1995035615A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0236Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols using estimation of the other symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0232Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/08Speed or phase control by synchronisation signals the synchronisation signals recurring cyclically

Definitions

  • the present invention relates to a synchronous detector and a synchronous method for demodulating a code in a receiver used for digital mobile communication and the like.
  • Conventional technology
  • the synchronous detection method that detects by local oscillation synchronized with the carrier frequency on the transmitting side shows excellent characteristics even under Gaussian noise.
  • the synchronous detection method has the smallest received signal power to noise power ratio for satisfying a certain error rate.
  • the transfer function of the propagation path fluctuates greatly with time as the transceiver of the mobile station moves, so the absolute phase of the transmitted carrier wave required for synchronous detection can be obtained at the receiving side. Therefore, it is necessary to estimate the transfer function of the propagation path at high speed. ⁇
  • an interpolation synchronous detection method As a method of performing synchronous detection by estimating the transfer function of the propagation path at high speed, an interpolation synchronous detection method is known. For example, Seiichi Sampei, "Phaseing distortion compensation method of 16 QAM for land communication", IEICE B-II Vol. J72- B-II PP. 7-15 January 1989 or its revised version. S. S ampei et al, “Rayleigh Fading Compensation for QAM in Land Mobile Radio ommunications", It IE Transactions on Vehicular Technology, VOL. 42, No. 2, MAY 1993 .
  • Figure 1 shows an example of the configuration of a signal used in this type of interpolation synchronous detection.
  • the transmitting side periodically inserts the pilot signal P known to each other on the transmitting side and the receiving side into the transmission signal and transmits.
  • the pilot signal P one or more known symbols are used.
  • One frame is composed of one pilot signal P and an information symbol group (information signal) D sandwiched between two consecutive pilot signals P.
  • Fig. 2 shows the configuration of a conventional receiver.
  • the radio wave received by antenna 1 is band-limited by BPF (bandpass filter) 2 to the extent that the desired received signal is not distorted.
  • the band-limited received signal is adjusted to an appropriate level by an AGC (automatic gain control circuit) 3, and an AFC (automatic frequency adjustment circuit) 4 is used to roughly set the offset frequency between the carrier and the local oscillation signal. Adjusted.
  • BPF 2 is inserted to ensure the normal operation of AGC 3 and AFC 4.
  • orthogonal quasi-synchronous detection is performed by the orthogonal quasi-synchronous detection circuit 5 using the local signal from the local oscillator 6 having the same frequency as the carrier of the received signal.
  • the output of the quadrature quasi-synchronous detection circuit 5 is supplied to an internal compensation unit 9 via an LPF (mouth-to-pass filter) 7 and an AZD converter 8.
  • LPF 7 is provided to suppress out-of-band noise and interference from adjacent channels.
  • the interpolation compensator 9 estimates the transfer function of the propagation path for each information symbol using a pilot signal, and compensates each information symbol by interpolation using the estimated transfer function. .
  • the compensated signal is determined by the determination unit 10. By compensating each information symbol with the estimated transfer function, absolute phase detection becomes possible.
  • interpolation method two-order interpolation using two pilot signals ⁇ and second-order interpolation using three pilot signals are generally used. If the received signal contains noise, the more the number of symbols per pilot signal, the more accurately the transfer function can be estimated. The estimation error is reduced. To estimate the transfer function of each information symbol from the transfer function estimated by the pilot signal, first-order or first-order Gaussian interpolation may be used.
  • the transfer function of each information symbol can be estimated by simple linear interpolation. Since the interpolation error increases as the function changes faster, the insertion period of the pilot signal must be shortened. However, if the insertion period is shortened, the number of symbols of the pilot signal increases, and the transmission efficiency decreases. On the other hand, if the insertion period is reduced while keeping the transmission efficiency constant, the number of symbols per pilot signal decreases, and the estimation error of the transfer function increases.
  • the conventional interpolation-type synchronous detection has the disadvantage that the transmission efficiency is reduced when dealing with the high-speed fluctuation of the transfer function of the propagation path. Disclosure of the invention
  • the present invention provides a digital communication receiver capable of accurately estimating the transfer function of a propagation path without increasing the number of symbols per one pilot signal and improving the characteristics of absolute synchronous detection. It is intended to provide a synchronous detection device and a synchronous detection method for use.
  • a synchronous detection device that estimates for each information symbol constituting the information signal, corrects the information symbol with the estimated transfer function, and determines the corrected information symbol to perform synchronous detection.
  • a reception signal memory for storing the reception signal;
  • Pilot signal generating means for generating the known pilot signal; the known pilot signal supplied from the pilot signal generating means; and a pyroelectric memory stored in the reception signal memory.
  • Transfer function estimating means for estimating the transfer function by
  • Interpolation means for obtaining a transfer function for each information symbol by interpolation using a plurality of transfer functions estimated by the transfer function estimating means;
  • Compensating means for compensating the information symbols stored in the reception memory by the transfer function obtained by the interpolation means
  • Judging means for judging the information symbol compensated by the compensating means; and, among judgment values outputted from the judging means, at least a certain number of information symbols adjacent to the pilot signal, and a pseudo pilot signal.
  • Pseudo pilot signal storage means for storing
  • the transfer function estimating means uses the pseudo pilot signal and the corresponding information symbol in the received signal memory to transmit the transmission path of the propagation path for each information symbol corresponding to the pseudo pilot signal.
  • a synchronous detection device for a digital communication receiver characterized by re-estimating a function is provided.
  • the transfer function estimating means further comprises:
  • a transfer function of a propagation path through which a received signal, which is a signal obtained by alternately repeating a known pilot signal and an information signal at a constant cycle passes.
  • a synchronous detection method for a digital communication receiver comprising:
  • the synchronous detection method for a digital communication receiver further comprises:
  • Estimating a fusing frequency from the pilot signal and storing a relationship between a forgetting factor and an estimation error of a ⁇ - ⁇ function using the fading frequency as a parameter.
  • a transfer function of a propagation path through which a received signal, which is obtained by alternately repeating a known pilot signal and an information signal at a constant cycle passes, based on the pilot signal.
  • a synchronous detection device that estimates for each information symbol constituting the information signal, corrects the information symbol with the estimated transfer function, and determines the corrected information symbol to perform synchronous detection.
  • the synchronous detection device includes:
  • a reception signal memory for storing the reception signal
  • a pilot signal generating means for generating the known pilot signal; the known pilot signal supplied from the pilot signal generating means; and a pilot stored in the reception signal memory.
  • Transfer function estimating means for estimating the transfer function using
  • Interpolation means for obtaining a transfer function for each information symbol by interpolation using a plurality of transfer functions estimated by the transfer function estimating means;
  • Compensating means for compensating the information symbols stored in the reception memory by the transfer function obtained by the interpolation means
  • Judging means for judging the information symbol compensated by the compensating means, and at least a certain number of information symbols adjacent to the pilot signal among the judgment values output from the judging means, Pseudo pilot signal storage means for storing as a pilot signal,
  • the transfer function estimating means uses the pseudo pilot signal and the corresponding information symbol in the received signal memory to transmit the propagation path for each information symbol corresponding to the pseudo pilot signal.
  • a digital communication receiver characterized by re-estimating the transfer function.
  • the transfer function estimating means further comprises: Means for estimating a fading frequency from the pilot signal; and means for storing a relationship between a forgetting factor and an estimation error of the transfer function using the fading frequency as a parameter.
  • FIG. 1 is a diagram illustrating a configuration example of a signal used in interpolation type synchronous detection.
  • FIG. 2 is a block diagram showing a configuration up to a detection stage of a conventional receiver.
  • FIG. 3 is a block diagram showing a first embodiment of the synchronous detection device according to the present invention.
  • FIG. 4 is a diagram showing a configuration example of a signal used in the synchronous detection of the present invention.
  • FIG. 5 is a graph showing the average bit error rate in the present invention in comparison with a conventional example.
  • FIG. 6 is a block diagram showing a second embodiment of the synchronous detection device according to the present invention.
  • FIG. 7 is a graph showing the fluctuation of the estimation error due to the forgetting factor.
  • FIG. 3 is a block diagram showing one embodiment of the synchronous detection device according to the present invention.
  • This synchronous detection device corresponds to the combination of the conventional interpolation compensation unit 9 and the judgment unit 10 shown in FIG.
  • the received signal quasi-synchronous detected by the quadrature quasi-synchronous detection circuit 5 in FIG. 2 passes through the LPF 7 and the A / D converter 8 and passes through the synchronous M path 2 2 of the synchronous detection device in FIG. And the received signal memory 23.
  • the synchronization circuit 22 reproduces the clock timing of each symbol, reproduces the frame timing that is the repetition period of the pilot signal, and generates a symbol synchronization signal and a frame synchronization signal. These symbol synchronization signal and frame synchronization signal are supplied to each section of the synchronous detection device as shown by the broken line in FIG.
  • the received signal memory 23 has a capacity equal to or greater than the total number of symbols of the two pilot signals and the coasting symbol group between them, and stores the baseband digital data supplied from the A / D converter 8. I do.
  • the reception signal memory 23 reads out two adjacent pilot signals using the frame synchronization signal, and supplies the two adjacent pilot signals to the transfer function estimator 24.
  • the transfer function estimator 24 uses the correct pilot symbol of the known pattern supplied from the pilot signal generator 25 to calculate between the pilot symbol and the pilot symbol included in the received signal. Estimate the transfer function of the propagation path. By performing this operation every time an pilot symbol is received, the transfer function of the propagation path can be estimated in real time. A feature of the present invention is that the force in the method for estimating the transfer function is described in detail later.
  • the estimated transfer function is supplied to the interpolation unit 26.
  • the interpolation unit 26 performs linear interpolation or quadratic interpolation using the estimated adjacent transfer functions, and estimates the transfer function at each information symbol timing between the pilot signals. I do. That is, the interpolation unit 26 generates one estimated transfer function per information symbol and supplies them to the compensation unit 28.
  • the compensating unit 28 compensates for each information symbol using the estimated transfer function.
  • the compensated information symbols are supplied to the decision unit 29.
  • the decision unit 29 performs absolute synchronous detection on each information symbol, and outputs the result. Part of this determination result is stored in the determination value memory 27. For example, [ ⁇ 14 When the information symbol group is obtained as the judgment result, the judgment value memory 27 stores the pilot signal P! Information symbol group A consisting of L q symbols adjacent to!
  • the transfer function estimating unit 24 converts the information symbol groups A k and B k (the numbers of symbols are each L q ) supplied from the decision value memory 27 into a new pilot signal (pattern force known).
  • the transfer function of the information symbol groups A k and B k is estimated. That is, the pseudo pilot signal supplied from the determination value memory 27 is regarded as a correct pilot signal, and the transfer function of each symbol of the coasting symbol groups A k and B k is estimated.
  • the transfer function is estimated in the following procedure, as in the case of the normal pilot signal P k .
  • each symbol of the received signal is r (n)
  • the estimated transfer function for each symbol is Z '(n)
  • Z' (n) is obtained by solving the following equation.
  • ⁇ ( ⁇ ) ⁇ ( ⁇ -1) ⁇ '( ⁇ -1) + u (n) r * (n) (3)
  • s is an exponentially varying weight for each symbol.
  • This forgetting factor is a factor for reducing the influence from the past and improving the followability. For example, the symbol prior to the symbol currently being processed is multiplied by ⁇ ( ⁇ 1.0), and the symbol two before is multiplied by 2 , so that the past weight is reduced.
  • the estimated value Z '(n) of the transfer function is given by the following equation.
  • ⁇ '( ⁇ ) ⁇ ⁇ ( ⁇ -1) ⁇ ' ( ⁇ -1) + u (n) r * (n) ⁇
  • a feature of the present invention is that a predetermined number of information symbols adjacent to a pilot signal are used as pseudo pilot signals, and a transfer function for each of these information symbols is estimated.
  • the estimated transfer function is supplied to the interpolation unit 26.
  • the interpolation section 26 Using Gaussian interpolation, the transfer function of each symbol of the information symbol group Di is obtained using the following equation.
  • Z ' k and Z' k + 1 are the estimated values of the transfer functions obtained from the k-th and k + 1-th pilot signals and the pseudo pilot signals, respectively, and z ' k + m / i is This is the estimated value of the transfer function of the m-th information symbol in L d information symbols between pilot signals.
  • the present invention can perform absolute phase detection in order to compensate for the change in the transfer function in this way.
  • each unit in FIG. 3 can be constituted by a digital circuit or a microprocessor such as a signal processor.
  • a signal processor such as a signal processor.
  • the signal delay due to this processing can be extremely reduced.
  • Fig. 5 is a graph showing the average bit error rate when the synchronous detection device according to the present invention is used, in comparison with the conventional device, in which the horizontal axis represents the number of symbols per one pilot signal, and the vertical axis represents the vertical axis. Is the average bit error rate.
  • Receive E b ZN. The energy per bit to noise spectral density is assumed to be 6 dB, and the jj force of a general road is assumed. Therefore, the insertion period of the pilot signal is independent of the bit error rate. It is.
  • the dashed line indicates the theoretical limit
  • the open square indicates the result of conventional interpolation synchronous detection using only the pilot signal
  • the closed circle indicates the-part of the information symbol used as a pseudo pilot.
  • the result of interpolation synchronous detection according to the present invention I have.
  • a symbol number L q 1 0 information symbols used in the pseudo pilot signals.
  • the number of symbols per pilot signal can be reduced to less than 1/2 of the conventional number. If the transmission efficiency is fixed and the number of symbols per pilot is 12, pilot signals can be inserted at a period of 1/2. Therefore, even if the transfer function of the propagation path fluctuates at twice the speed, it has become possible to realize a synchronous detector that can follow the fluctuation.
  • the present invention can cope with high-speed fluctuation of the transfer function of the propagation path by inserting a pilot signal having a small number of symbols in a short period.
  • FIG. 6 is a block diagram showing a configuration of a main part of a second embodiment of the synchronous detection device according to the present invention.
  • the feature of this embodiment is that the forgetting coefficient ⁇ in the above equation (3) is automatically switched according to the fusing frequency.
  • f D T is a graph showing the estimation error of the forgetting factor versus transfer function.
  • f D T is the product of the maximum Doppler frequency f ⁇ (H z) and the length of one information symbol T (seconds), and corresponds to the fusing frequency standardized by the length of one information symbol.
  • i 'D T when i 'D T is changed also changes the forgetting factor scan for the estimation error to a minimum. For example, fading early les window, that is, as f D T is large, it is necessary to reduce the forgetting factor.
  • the following methods are conceivable as methods for setting the forgetting factor.
  • This embodiment is different from the first embodiment in the configuration of the transfer function estimator 24.
  • the transfer function estimator 24 of the second embodiment is different from that of the first embodiment shown in FIG. Are different in that.
  • a block having the same function as that of the transfer function estimator 24 in FIG. 3 is defined as a transfer function calculator 24a.
  • the fading frequency estimator 24b estimates the phase difference between the pilot signals at both ends of the information signal, and estimates the fading frequency from the estimated phase difference.
  • a forgetting coefficient-estimation error storage unit 24 c corresponding to the graph of the forgetting coefficient versus the estimation error as shown in FIG. 7 is provided.
  • the fading frequency estimated by the fading frequency estimating unit 24b is input to the storage unit 24c, and a forgetting coefficient that minimizes the estimation error is obtained.
  • the transfer function estimating unit 24 estimates the transfer function by substituting the forgetting factor into the equation (2)-(4). '

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

明 細 書 ディジタル通信受信機用同期検波装置および同期方法 背景技術
産業上の利用分野
本発明は、 ディジタル移動通信などに使用される受信機において、 符号 を復調するための同期検波装置および同期方法に関する。 従来の技術
ディジタル信号の検波方法と しては、 信号の変調方式に応じて様々な方 式がある。 これらの中で、 送信側の搬送波周波数に同期した局部発振によつ て検波を行う同期検波方式は、 ガウス雑音下でもつとも優れた特性を示す。 すなわち、 同期検波方式は、 一定の誤り率を満たすための受信信号電力対 雑音電力比が最も小さい。 しかしながら、 ディ ジタル移動通信などでは、 移動局の送受信機の移動にともない、 伝搬路の伝達関数が時間と ともに大 き く変動するため、 同期検波に必要な送信搬送波の絶対位相を受信側で得 るためには、 伝搬路の伝達関数を高速に推定する必要がある。 ·
伝搬路の伝達関数を高速に推定して同期検波を行う方法と して、 内挿同 期検波方式が知られている。 たとえば、 三瓶政一、 「陸上通信用 1 6 Q A Mのフヱージングひずみ補償方式」 、 信学論 B -II Vol. J72- B-II PP. 7- 15 1989年 1月、 または、 その改訂版である S . S ampei et al, " Rayleigh Fading Compensation for QAM in Land Mobile Radio し ommun ications " , I t£E Transactions on Vehicular Technology, VOL. 42, N o. 2, MAY 1993に|¾ 3ヽ されている。 図 1 は、 この種の内挿同期検波で使用する信号の構成例を示す。 送信側 は、 送信側と受信側で互いに既知のパイロッ ト信号 Pを、 送信信号に周期 的に挿入して送信する。 パイ 口 ッ ト信号 Pと しては、 1以上の既知のシン ボルを用いる。 1つのパイ ロ ッ ト信号 Pと、 連続する 2つのパイ ロ ッ ト信 号 Pに挟まれた情報シンボル群 (情報信号) Dとで 1 フ レームを構成する。 図 2は、 従来の受信機の構成を示す。 アンテナ 1で受信された電波は、 目的の受信信号がひずまない程度に、 B P F (バン ドパス ' フィ ルタ) 2 で帯域制限される。 帯域制限された受信信号は、 AG C (自動利得制御回 路) 3で適正なレベルにされ、 AF C (自動周波数調整回路) 4で、 搬送 波と局部発振信号とのオフセッ ト周波数を大まかに調整される。 ここで、 B P F 2は、 AG C 3や AF C 4の正常動作を確保するために挿入されて レ る。
次に、 受信信号の搬送波と同一の周波数をもつ、 ローカル発振器 6から のローカル信号を用いて、 直交準同期検波回路 5で直交準同期検波する。 直交準同期検波回路 5の出力は、 L P F (口一パス ' フィ ルタ) 7および AZD変換器 8を介して、 内揷補償部 9に供給される。 L P F 7は、 帯域 外の雑音や隣接チヤネルからの干渉を抑えるために設けられている。 内挿 補償部 9は、 パイ ロッ ト信号を用いて、 伝搬路の伝達関数を各情報シンポ ルごとに推定し、 推定した伝達関数を用いて、 内挿法によって、 各情報シ ンボルを補償する。 補償された信号は、 判定部 1 0で判定される。 推定伝 達関数によつて各情報シンボルを補償することによって、 絶対位相検波が 可能となる。 なお、 内挿法と しては、 2つのパイ ロッ ト信^を用いる -次 補間と、 3つのパイ ロッ ト信号を用いる二次補間とが、 一般に使用される。 受信信号に雑音が含まれている場合、 一つのパイ ロッ ト信号当たりのシ ンボル数が多いほど、 伝達関数を正確に推定するこ とができ、 伝達関数の 推定誤差が小さくなる。 パイロッ ト信号によつて推定した伝達関数から、 情報シンボルの各伝達関数を推定するには、 一次または一-次のガウス補間 を用いればよい。
上述した従来の装置では、 伝搬路の伝達関数の変動が、 パイロッ ト信号 の挿入周期よ り も十分に緩やかな場合は、 単純な一次補間で各情報シンポ ルの伝達関数を推定できるものの、 伝達関数の変動が高速になるにつれて、 補間誤差が大き く なるため、 パイ口ッ ト信号の挿入周期を小さ く しなけれ ばならない。 しかしながら、 揷入周期を小さ くすると、 パイロッ ト信号の シンボル数が増えるために、 伝送効率が低下する。 一方、 伝送効率を一定 に保ちながら揷入周期を小さ くすると、 1パイ ロッ ト信号当たりのシンポ ル数が減って、 伝達関数の推定誤差が大き くなる。
このように、 従来の内挿型同期検波では、 伝搬路の伝達関数の高速な変 動に対処しょう とすると、 伝送効率が低下してしまう という欠点があつた。 発明の開示
そこで本発明は、 1パイ口ッ ト信号当たり のシンボル数を増やすことな く、 伝搬路の伝達関数を高精度に推定し、 絶対同期検波の特性を向上させ ることのできる、 ディジタル通信受信機用同期検波装置および同期検波方 法を提供することを目的とする。
第 1 に、 本発明によれば、 既知のパイロッ ト信号と情報信号とが一定の 周期で交互に繰り返されてなる受信信号が通ってきた伝搬路の伝達関数を、 前記パイロッ ト信号に基づいて、 前記情報信号を構成する各情報シンボル ごとに推定し、 推定された伝達関数によって前記情報シンボルを補正し、 補正後の情報シンボルを判定するこ とによつて同期検波を行う同期検波装 置において、 前記受信信号を記憶する受信信号メモリ と、
前記既知のパイ 口ッ ト信号を発生するパイ口ッ ト信号発生手段と、 前記パイロッ ト信号発生手段から供給された前記既知のパイ ロッ ト信号 と、 前記受信信号メモリ に記憶しているパイ ロ ッ ト信号とによって、 前記 伝達関数を推定する伝達関数推定手段と、
前記伝達関数推定手段で推定した伝達関数を複数個用いた補間処理によつ て、 前記情報シンボルごとの伝達関数を求める内挿手段と、
前記内挿手段で求めた伝達関数によって、 前記受信メモリに記憶された 情報シンボルを補償する補償手段と、
該補償手段によって補償された情報シンボルを判定する判定手段と、 該判定手段から出力された判定値のうち、 少なく とも前記パイロッ ト信 号に隣接する一定数の情報シンボルを、 疑似パイロッ ト信号と して記憶す る疑似パイロッ ト信号記憶手段とを具備し、
前記伝達関数推定手段は、 前記疑似パイロッ ト信号と、 これに対応する 前記受信信号メモリ中の情報シンボルとを用いて、 前記疑似パイロッ ト信 号に対応する前記情報シンボルごとに前記伝搬路の伝達関数を再度推定す ることを特徴とするディジタル通信受信機用同期検波装置が提供される。 前記伝達関数推定手段は、 さ らに、
前記パイロッ ト信号からフ ージング周波数を推定する手段と、 前記フエージング周波数をパラメ 一タ と して、 忘却係数と前記伝達関数 の推定誤差との関係を記憶する手段と
を具備し、 前記推定誤差を最小にする忘却係数を選択する よ う にしても よい。
第 2に、 本発明によれば、 既知のパイ ロッ ト信号と情報信号とが一定の 周期で交互に繰り返されてなる受信信号が通ってきた伝搬路の伝達関数を、 前記パイロッ ト信号に基づいて、 前記情報信号を構成する各情報シンボル ごとに推定し、 推定された伝達関数によつて前記情報シンボルを補正し、 補正後の情報シンボルを判定するこ とによつて同期検波を行う同期検波方 法において、
前記受信信号を記憶する過程と、
前記既知のパイ口ッ ト信号を発生する過程と、
前記既知のパイ ロッ ト信号と、 前記記憶された受信信号中のパイロッ ト 信号とによって、 前記伝達関数を推定する過程と、
前記推定した伝達関数を複数個用いた補間処理によって、 前記情報シン ボルごとの伝達関数を求める過程と、
前記求めた伝達関数によって、 前記情報シンボルを補償する過程と、 前記補償された情報シンボルを判定する過程と、
前記判定する過程で得た判定値のうち、 少なく とも前記パイ 口ッ ト信号 に隣接する一定数の情報シンボルを、 疑似パイ ロッ ト信号と して記憶する 過程と、
前記疑似パイロッ ト信号と、 これに対応する情報シンボルとを用いて、 前記疑似パイ口ッ ト信号に対応する前記情報シンボルごとに前記伝搬路の 伝達関数を再度推定する過程と
を具備することを特徴とするディジタル通信受信機用同期検波方法が提 供される。
前記ディジタル通信受信機用同期検波方法は、 さらに、
前記パイロッ ト信号からフエ一ジング周波数を推定する過程と、 前記フェージング周波数をパラメータ と して、 忘却係数と Ι · Ε 達関数 の推定誤差との関係を記憶する過程と、
前記推定誤差を最小にする忘却係数を選択する過程と を具備してもよい。
第 3に、 本発明によれば、 既知のパイロッ ト信号と情報信号とが一定の 周期で交互に繰り返されてなる受信信号が通ってきた伝搬路の伝達関数を、 前記パイロッ ト信号に基づいて、 前記情報信号を構成する各情報シンボル ごとに推定し、 推定された伝達関数によって前記情報シンボルを補正し、 補正後の情報シンボルを判定することによつて同期検波を行う同期検波装 置を有するディジタル通信受信機において、 前記同期検波装置は、
前記受信信号を記憶する受信信号メモリ と、
前記既知のパイ 口ッ ト信号を発生するパイ口ッ ト信号発生手段と、 前記パイロッ ト信号発生手段から供給された前記既知のパイロッ ト信号 と、 前記受信信号メモリに記憶しているパイ ロ ッ ト信号とによって、 前記 伝達関数を推定する伝達関数推定手段と、
前記伝達関数推定手段で推定した伝達関数を複数個用いた補間処理によつ て、 前記情報シンボルごとの伝達関数を求める内挿手段と、
前記内挿手段で求めた伝達関数によって、 前記受信メモリに記憶された 情報シンボルを補償する補償手段と、
該補償手段によ って補償された情報シンボルを判定する判定手段と、 該判定手段から出力された判定値のうち、 少なく とも前記パイロッ ト信 号に隣接する一定数の情報シンボルを、 疑似パイロッ ト信号と して記憶す る疑似パイロッ ト信号記憶手段とを具備し、
前記伝達関数推定手段は、 前記疑似パイ ロ ッ ト信号と、 これに対応する 前記受信信号メモリ中の情報シンボルとを用いて、 前記疑似パイロッ ト信 号に対応する前記情報シンボルごとに前記伝搬路の伝達関数を再度推定す ることを特徴とするディジタル通信受信機が提供される。
前記伝達関数推定手段は、 さらに、 前記パイ 口ッ ト信号からフエージング周波数を推定する手段と、 前記フエージング周波数をパラメータ として、 忘却係数と前記伝達関数 の推定誤差との関係を記憶する手段と
を具備し、 前記推定誤差を最小にする忘却係数を選択してもよい。 図面の簡単な説明
図 1 は、 内挿型同期検波で使用される信号の構成例を示す図である。 図 2は、 従来の受信機の検波段までの構成を示すブロック図である。 図 3は、 本発明による同期検波装置の第 1実施例を示すプロック図であ る。
図 4は、 本発明の同期検波で使用される信号の構成例を示す図である。 図 5は、 本発明における平均ビッ ト誤り率を、 従来例と比較して示した グラフである。
図 6は、 本発明による同期検波装置の第 2実施例を示すプロック図であ る。
図 7は、 忘却係数による推定誤差の変動を示すグラフである。 発明を実施するための最良の形態
以下、 図面を参照して、 本発明の実施例を説明する。
実施例 1
図 3は、 本発明による同期検波装置の一実施例を示すブロック図である。 この同期検波装置は、 図 2に示す従来の内挿補償部 9 と判定部 1 0 との組 み合わせに対応する。
図 2の直交準同期検波回路 5 によつて準同期検波された受信信号は、 L P F 7および A / D変換器 8を通り、 図 3の同期検波装置の同期 M路 2 2 と受信信号メモリ 2 3 とに供給される。 同期回路 2 2は、 各シンボルのク ロックタイ ミ ングを再生すると ともに、 パイロッ ト信号の繰り返し周期で あるフ レームタイ ミ ングを再生し、 シンボル同期信号とフ レーム同期信号 とを生成する。 これらのシンボル同期信号とフ レーム同期信号は、 図 3に 破線で示すように、 本同期検波装置の各部に供給される。
受信信号メモリ 2 3は、 2つのパイ口ッ ト信号およびその間の惰報シン ボル群の合計シンボル数以上の容量をもち、 A / D変換器 8から供給され たベースバン ドのディ ジタルデータを格納する。 受信信号メ モリ 2 3 は、 また、 フ レーム同期信号を用いて、 2つの隣接パイロッ ト信号を読み出し、 伝達関数推定部 2 4 に供給する。
伝達関数推定部 2 4は、 パイ 口ッ ト信号発生部 2 5から供給される既知 パターンの正しいパイロッ トシンボルを用いて、 受信信号に含まれるパイ 口ッ トシンボルとの間で演算するこ とによって、 伝搬路の伝達関数を推定 する。 ノ、'イ ロッ ト シンボルが受信されるごとにこの操作を行う こ とによつ て、 伝搬路の伝達関数をリ アルタイ ムで推定するこ とができる。 本発明の 特徴は、 この伝達関数の推定方法にある力 その詳細は後述する。 推定さ れた伝達関数は内挿部 2 6に供給される。
内挿部 2 6は、 推定された複数の隣接伝達関数を用いて、 一次補間ある いは二次補間を行い、 パイ ロ ッ ト信号間の各情報シンボルタイ ミ ングにお ける伝達関数を推定する。 すなわち、 内挿部 2 6は、 1 つの情報シンボル あたり 1つの推定伝達関数を生成し、 それらを補償部 2 8へ供給する。 補償部 2 8は、 推定された伝達関数を用いて、 各情報シンボルを補償す る。 補償された情報シンボルは、 判定部 2 9に供給される。 判定部 2 9は、 各情報シンボルを絶対同期検波する もので、 その結果を出力する。 この判 定結果の一部は、 判定値メモリ 2 7に記憶される。 例えば、 [¾1 4 に小す情 報シンボル群 が判定結果と して得られた場合、 判定値メモリ 2 7は、 パ ィロッ ト信号 P!に隣接する L q個のシンボルからなる情報シンボル群 A! と、 パイロッ ト信号 P 2に隣接する L q個のシンボルからなる情報シンボル 群 B xとを記憶する。 他の情報シンボル群 D kについても同様に、 パイ口ッ ト信号 P kに隣接する L q個のシンボルからなる情報シンボル群 A kおよび パイロッ ト信号 P K + iに隣接する L q個のシンボルからなる B kを記憶する。 これらの情報シンボル群 A kおよび B kは、 予め定められたシンボル数から なり、 伝達関数の推定に用いられる。
すなわち、 伝達関数推定部 2 4 は、 判定値メモリ 2 7から供給される情 報シンボル群 A kおよび B k (シンボル数はそれぞれ L q ) を、 パターン力 既知の新たなパイ 口ッ ト信号 (疑似パイ口ッ ト信号と呼ぶ) .とみなして、 情報シンボル群 A kと B kの部分の伝達関数を推定する。 すなわち、 判定値 メモリ 2 7から供給された疑似パイ口ッ ト信号を正しいパイ 口ッ ト信号と みなして、 惰報シンボル群 A kおよび B kの各シンポルごとの伝達関数を推 定する。 この伝達関数の推定は、 正規のパイロッ ト信号 P kの場合と同様に、 以下の手順で実行される。 まず、 疑似パイロッ ト信号の各シンボルを u(n) (n = 1,2,...,L)、 受信信号の各シンボルを r(n)、 各シンボルについての伝達 関数の推定値を Z' (n)とすると、 Z' (n)は、 次の方程式を解くことで得られる。
Φ (η)Ζ' (η) = Θ (η) ( 1 ) ただし、 Φ (η)は疑似パィロッ ト信号を構成する各疑似パイロッ トシンボル の自己相関、 Θ (η)は疑似パイ ロ ッ ト シンボルと受信信号シンボル! "( との 相互相関であり、 次式で与えられる。 Φ(η) = Λ Φ(η-1) + u(n)u*(n) ( 2 )
Θ(η) = Α Φ(η-1)Ζ' (η-1) + u(n)r*(n) ( 3 ) ここで、 スは、 指数関数的に変化する重みづけを各シンボルに与える忘却 係数である。 この忘却係数(forgetting factor)は、 過去からの影響を減らし て、 追従性を改善するための係数である。 例えば、 現在処理中のシンボル の 1つ前のシンボルには Λ (≤ 1.0 ) を乗じ、 2つ前のシンボルには 2を乗じ るという ようにして、 過去の重み付けを小さ くする。 ( 1 ) 一 (3 ) 式よ り、 伝達関数の推定値 Z'(n)は、 次式で与えられる。
Ζ'(η) = { λ Φ(η-1)Ζ' (η-1) + u(n)r*(n)}
/ { Φ(η-1) + u(n)u*(n)} ( 4 )
( 4 ) 式を情報シンボル群 A kおよび B kの各シンボルごとに逐次計算する ことによ って、 各シンボルの推定伝達関数が求められる。 なお、 こ こでは、 疑似パイロッ トシンボルによる伝達関数の推定方法について述べたが、 上 述したパイロッ ト信号による伝達関数の推定も同様に行われる'。 なお、 こ の推定方法そのものは公知であり、 その詳細は、 Simon Haykin, "Adaptive Filter Theory", Prentice Hall, pp. 381-385、 または、 した Sampei, et al. に開示されている。
本発明の特徴は、 パイロッ ト信号に隣接する所定数の情報シンボルを疑 似パイ口ッ ト信号とし、 これらの情報シンボルごとの伝達関数を推定する 点にある。
推定された伝達関数は、 内挿部 2 6に供給さる。 内挿部 2 6は、 ·次の ガウス補間を用いて、 情報シンボル群 D iの各シンボルの伝達関数を次式を 使って求める。
{1 - (m/Ld)}Z'k + (m/Ld)Z'k+1 ( 5 )
ただし、 Z'k, Z'k+1は、 それぞれ、 kおよび k+1番目のパイ ロッ ト信号および 疑似パイロッ ト信号から得られた伝達関数の推定値、 z'k+m/ iは、 パイロッ ト信号間の Ld個の情報シンボル中の、 m番目の情報シンボルの伝達関数の 推定値である。
本発明は、 このようにして伝達関数の変動を補償するため、 絶対位相検 波を行うこ とができる。
また、 本発明は、 準同期検波後の信号を、 ディジタル信号と して処理す るので、 図 3の各部は、 ディジタル回路、 またはシグナルプロセッサ等の マイクロプロセッサで構成することができる。 また、 伝達関数の推定およ び内揷、 シンボルの補償および判定を高速に行う ことで、 この処理による 信号の遅延をきわめて小さ くすることが可能である。
図 5は、 本発明による同期検波装置を用いた場合の平均ビッ ト誤り率を、 従来装置との比較において示したグラフであり、 横軸は 1パイ 口ッ ト信号 当たりのシンボル数、 縦軸は平均ビッ ト誤り率である。 受信 E bZN。 ( Energy per bit to noise spectral density は 6 d Bで、 1 般路の変 jj力 ¾レ、 場合を想定している。 このため、 パイロッ ト信号の挿入周期は、 ビッ ト誤 り率には無関係である。
図 5において、 破線は理論限界を示し、 白四角が、 パイ ロッ ト信号のみ による従来の内挿同期検波の結果を表し、 黒丸が、 情報シンボルの -部を 疑似パイロッ ト と して用いた、 本発明による内挿同期検波の結果を表して いる。 疑似パイロッ ト信号と して用いた情報シンボルのシンボル数 L q = 1 0である。
このグラフからわかるように、 疑似パィロッ ト信号も用いることによつ て、 1パイロッ ト信号当たりのシンボル数を、 従来の 1 / 2以下にするこ とができる。 伝送効率を一定と した場合、 1パイロッ ト当たりのシンボル 数が 1 2であれば、 1 / 2の周期でパイロッ ト信号を挿入することがで きる。 したがって、 伝搬路の伝達関数が 2倍の速度で変動しても、 これに 追従できる同期検波装置を実現することが可能となった。 本発明は、 特に、 シンボル数の少ないパイロッ ト信号を、 短い周期で挿入するこ とによって、 伝搬路の伝達関数の高速な変動に対処することができる。 実施例 2
図 6は、 本発明による同期検波装置の第 2実施例の要部の構成を示すブ ロック図である。 この実施例の特徴は、 上記 ( 3 ) 式の忘却係数 λ を、 フエ 一ジング周波数に応じて自動的に切り替えるようにした点である。
図 7は、 f D Tをパラメータ と したときの、 忘却係数対伝達関数の推定誤 差を示すグラフである。 f D Tは、 最大ドッブラ一周波数 f υ ( H z ) と 1 情報シンボル長 T (秒) との積であり、 1情報シンボル長で規格化したフエ 一ジング周波数に相当する。 図 7から分かるように、 i' D Tが変化すると、 推定誤差を最小にする忘却係数ス も変化する。 例えば、 フェージングが早 レ まど、 すなわち、 f D Tが大きいほど、 忘却係数を小さくする必要がある。 この忘却係数の設定方法として、 次のような方法が考えられる。
( 1 ) 忘却係数を固定する方法。
忘却係数を固定する場合は、 どのような値に固定するかが重要な問題と なる。 最大ドップラー周波数 f Dに対応できるように設定する方法と、 平均 的な f DTに対応する値に設定する方法とがある。 前者の場合には、 図 7力 ら 0. 8 5近辺が最適であり、 後者の場合には、 0. 9 1程度が最適であ る o
( 2 ) フエ一ジング周波数に応じて、 忘却係数を切り替える方法。
第 2実施例で採用したのは、 この方法である。 以下、 図 6 を参照して、 本実施例を説明する。
本実施例が第 1実施例と異なる点は、 伝達関数推定部 2 4の構成であり、 本第 2実施例の伝達関数推定部 2 4は、 図 3に示す第 1実施例のものと次 の点で異なつている。
( 1 ) 図 3の伝達関数推定部 2 4 と同様の機能をもつプロックを伝達関数 演算部 2 4 a とした点。
(2 ) フェージング周波数推定部 2 4 bを設けた点。
フェージング周波数推定部 2 4 bは、 情報信号両端のパイ 口ッ ト信号の 位相差を推定し、 その推定位相差からフェージング周波数を推定する。
(2 ) 図 7に示すような忘却係数対推定誤差のグラフに対応する忘却係数 - 推定誤差記憶部 2 4 c を設けた点。
この記憶部 2 4 c に、 フェージング周波数推定部 2 4 bで推定したフエ 一ジング周波数を入力し、 推定誤差が最小となる忘却係数を求める。 伝達 関数推定部 2 4は、 この忘却係数を ( 2 ) - ( 4 ) 式に代入して伝達関数 を推定する。 '
第 2実施例によれば、 移動局の移動速度に応じた最適の伝達関数の推定 が可能となる。

Claims

請 求 の 範 囲 1 . 既知のパイロッ ト信号と情報信号とが一定の周期で交互に繰り返され てなる受信信号が通ってきた伝搬路の伝達関数を、 前記パイ ロッ ト信号に 基づいて、 前記情報信号を構成する各情報シンボルごとに推定し、 推定さ れた伝達関数によつて前記情報シンボルを補正し、 補正後の情報シンボル を判定することによつて同期検波を行う同期検波装置において、
前記受信信号を記憶する受信信号メモリ と、
前記既知のパイ 口ッ ト信号を発生するパイ口ッ ト信号発生手段と、 前記パイロッ ト信号発生手段から供給された前記既知のパイロッ ト信号 と、 前記受信信号メモリ に記憶しているパイロッ ト信号とによって、 前記 伝達関数を推定する伝達関数推定手段と、
前記伝達関数推定手段で推定した伝達関数を複数個用いた補間処理によつ て、 前記情報シンボルごとの伝達関数を求める内挿手段と、
前記内挿手段で求めた伝達関数によって、 前記受信メモリに記憶された 情報シンボルを補償する補償手段と、
該補償手段によって補償された情報シンボルを判定する判定手段と、 該判定手段から出力された判定値のうち、 少なく とも前記パイロッ ト信 号に隣接する一定数の情報シンボルを、 疑似パイ ロッ ト信号と して記憶す る疑似パィロッ ト信号記憶手段とを具備し、
前記伝達関数推定手段は、 前記疑似パイ ロッ ト信号と、 これに対応する 前記受信信号メモリ中の情報シンボルとを用いて、 前記疑似パイロッ ト信 号に対応する前記惰報シンボルごとに前記伝搬路の伝達関数を再度推定す るこ とを特徴とするディジタル通信受信機用同期検波装置。
2 . 前記伝達関数推定手段は、 さ らに、
前記パイロッ ト信号からフ ージング周波数を推定する手段と、 前記フニ一ジング周波数をパラメータと して、 忘却係数と前記伝達関数 の推定誤差との関係を記憶する手段と
を具備し、 前記推定誤差を最小にする忘却係数を選択すること特徴とする 請求の範囲第 1項に記載のディ ジタル通信受信機用同期検波装置。
3 . 既知のパイロッ ト信号と情報信号とが一定の周期で交互に繰り返され てなる受信信号が通ってきた伝搬路の伝達関数を、 前記パイ ロッ ト信号に 基づいて、 前記情報信号を構成する各情報シンボルごとに推定し、 推定さ れた伝達関数によつて前記情報シンボルを補正し、 補正後の情報シンボル を判定することによつて同期検波を行う同期検波方法において、
前記受信信号を記憶する過程と、
前記既知のパイ 口ッ ト信号を発生する過程と、
前記既知のパイ ロッ ト信号と、 前記記憶された受信信号中のパイ ロッ ト 信号とによって、 前記伝達関数を推定する過程と、
前記推定した伝達関数を複数個用いた補間処理によって、 前記情報シン ボルごとの伝達関数を求める過程と、
前記求めた伝達関数によって、 前記情報シンボルを補償する過程と、 前記補償された情報シンボルを判定する過程と、
前記判定する過程で得た判定値のうち、 少なく とも前記パイ口ッ ト信号 に隣接する一定数の情報シンボルを、 疑似パイ ロッ ト信号と して記憶する 過程と、
前記疑似パイ ロ ッ ト信号と、 これに対応する情報シンボルと を用いて、 前記疑似パイ ロッ ト信号に対応する前記情報シンボルごとに前記伝搬路の 伝達関数を再度推定する過程と
を具備することを特徴とするディジタル通信受信機用同期検波方法。
4 . 前記ディ ジタル通信受信機用同期検波方法は、 さ らに、
前記パイロッ ト信号からフェージング周波数を推定する過程と、 前記フェージング周波数をパラメータと して、 忘却係数と前記伝達関数 の推定誤差との関係を記憶する過程と、
前記推定誤差を最小にする忘却係数を選択する過程と
を具備すること特徴とする請求の範囲第 3項に記載のディ ジタル通信受信 機用同期検波方法。
5 . 既知のパイロッ ト信号と情報信号とが一定の周期で交互に繰り返され てなる受信信号が通ってきた伝搬路の伝達関数を、 前記パイ ロッ ト信号に 基づいて、 前記情報信号を構成する各情報シンボルごとに推定し、 推定さ れた伝達関数によつて前記情報シンボルを補正し、 補正後の情報シンボル を判定するこ とによって同期検波を行う同期検波装置を有するディジタル 通信受信機において、 前記同期検波装置は、
前記受信信号を記憶する受信信号メモリ と、
前記既知のパイ口ッ ト信号を発生するパイ 口ッ ト信号発生手段と、 前記パイ口ッ ト信号発生手段から供給された前記既知のパイ 口ッ ト信号 と、 前記受信信号メモリ に記憶しているパイ ロ ッ ト信号とによって、 前記 伝達関数を推定する伝達関数推定手段と、
前記伝達関数推定手段で推定した伝達関数を複数個用いた補間処理によつ て、 前記情報シンボルごとの伝達関数を求める内挿手段と、
前記内挿手段で求めた伝達関数によって、 前記受信メモリ に記憶された 情報シンボルを補償する補償手段と、
該補償手段によって補償された情報シンボルを判定する判定手段と、 該判定手段から出力された判定値のうち、 少なく とも前記パイ口ッ ト信 号に隣接する一定数の情報シンボルを、 疑似パイ ロッ ト信号と して記憶す る疑似パイ口ッ ト信号記憶手段とを具備し、
前記伝達関数推定手段は、 前記疑似パイロッ ト信号と、 これに対応する 前記受信信号メモリ中の情報シンポルとを用いて、 前記疑似パイロッ ト信 号に対応する前記情報シンポルごとに前記伝搬路の伝達関数を再度推定す ることを特徴とするディジタル通信受信機。
6 . 前記伝達関数推定手段は、 さらに、
前記パイ口ッ ト信号からフニ ージング周波数を推定する手段と、 前記フュージング周波数をパラメータとして、 忘却係数と前記伝達関数 の推定誤差との関係を記憶する手段と
を具備し、 前記推定誤差を最小にする忘却係数を選択するこ と特徴とする 請求の範囲第 5項に記載のディ ジタル通信受信機。
PCT/JP1995/001229 1994-06-22 1995-06-21 Detecteur synchrone et procede de synchronisation pour un recepteur numerique de telecommunications WO1995035615A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/553,464 US5692015A (en) 1994-06-22 1995-06-21 Coherent detector and a coherent detection method for a digital communication receiver
JP07522826A JP3118548B2 (ja) 1994-06-22 1995-06-21 ディジタル通信受信機用同期検波装置および同期方法
EP95922721A EP0715440B1 (en) 1994-06-22 1995-06-21 Synchronous detector and synchronizing method for digital communication receiver
DE69533156T DE69533156T2 (de) 1994-06-22 1995-06-21 Synchrondetektorschaltung und synchronisierungsmethode für einen digitalsignalempfänger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP14056994 1994-06-22
JP6/140569 1994-06-22

Publications (1)

Publication Number Publication Date
WO1995035615A1 true WO1995035615A1 (fr) 1995-12-28

Family

ID=15271740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001229 WO1995035615A1 (fr) 1994-06-22 1995-06-21 Detecteur synchrone et procede de synchronisation pour un recepteur numerique de telecommunications

Country Status (6)

Country Link
US (1) US5692015A (ja)
EP (1) EP0715440B1 (ja)
JP (1) JP3118548B2 (ja)
CN (1) CN1082757C (ja)
DE (1) DE69533156T2 (ja)
WO (1) WO1995035615A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997039557A1 (en) * 1996-04-15 1997-10-23 Ericsson Inc. Pilot-symbol-assisted radiotelephone communications
KR19980070420A (ko) * 1997-01-10 1998-10-26 다까또리스나오 스펙트럼 확산 무선 통신 수신기 장치 및 그 위상 보정 방법
US5875215A (en) * 1995-08-25 1999-02-23 Nec Corporation Carrier synchronizing unit
EP0798870A3 (en) * 1996-03-29 1999-10-20 Matsushita Electric Industrial Co., Ltd. Receiving apparatus for spectrum spread system
JP3024524B2 (ja) 1995-09-25 2000-03-21 日本電気株式会社 キャリア同期ユニット及び同期方法
JP3074533B1 (ja) 1999-08-12 2000-08-07 郵政省通信総合研究所長 データ伝送システム
JP3086173B2 (ja) 1996-06-18 2000-09-11 日本無線株式会社 同期確立方法及びこれを用いたデータ復調装置
JP2000324020A (ja) * 1999-04-08 2000-11-24 Texas Instr Inc <Ti> Wcdmaのためのダイバーシティ検出
JP3283210B2 (ja) 1997-05-30 2002-05-20 株式会社鷹山 スペクトラム拡散通信方式における信号受信装置
JP3289676B2 (ja) 1998-05-28 2002-06-10 日本電気株式会社 パイロット信号を含む受信信号の復調方法及びその装置
US6411649B1 (en) 1998-10-20 2002-06-25 Ericsson Inc. Adaptive channel tracking using pilot sequences
JP3338364B2 (ja) 1998-03-17 2002-10-28 松下電器産業株式会社 無線受信装置
JP3391288B2 (ja) 1999-03-03 2003-03-31 日本電気株式会社 自動周波数制御回路及びそれに用いる周波数オフセット補正方法
JP2003521840A (ja) * 1999-05-12 2003-07-15 クゥアルコム・インコーポレイテッド 無線通信システムにおける振幅および位相の評価方法
US6782035B1 (en) 1997-04-17 2004-08-24 Ntt Docomo Inc. Base station apparatus of mobile communication system
US6904078B1 (en) 1998-04-23 2005-06-07 Ntt Docomo, Inc. CDMA receiver and CDMA transmitter/receiver
KR100542807B1 (ko) * 2003-04-10 2006-01-11 용인송담대학 디지탈 이동통신 시스템의 채널신호 복조 방법 및 장치
KR100552076B1 (ko) * 1997-06-18 2006-09-20 가부시키가이샤 엔.티.티.도코모 Cdma통신시스템에있어서의신호수신장치
JP2008502254A (ja) * 2004-06-08 2008-01-24 フリースケール セミコンダクター インコーポレイテッド 無線通信装置及び符号分割多重アクセス信号を処理する方法
JP2009232478A (ja) * 1999-07-28 2009-10-08 Panasonic Corp 受信方法及び受信装置

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3575883B2 (ja) * 1995-09-18 2004-10-13 三菱電機株式会社 ディジタル復調器
US6138001A (en) * 1996-03-12 2000-10-24 Ntt Mobile Communications Network, Inc. Scheme for intermittent reception of paging signals in mobile communication system
JP2934185B2 (ja) 1996-03-15 1999-08-16 松下電器産業株式会社 Cdmaセルラ無線基地局装置および移動局装置および送信方法
FR2747870B1 (fr) * 1996-04-19 1998-11-06 Wavecom Sa Signal numerique a blocs de reference multiples pour l'estimation de canal, procedes d'estimation de canal et recepteurs correspondants
JP3006679B2 (ja) * 1997-01-16 2000-02-07 日本電気株式会社 セルラー移動電話システム
DE19747367C2 (de) * 1997-10-27 2003-06-26 Siemens Ag Verfahren und Anordnung zur Übertragung von Daten über eine Funkschnittstelle in einem Funk-Kommunikationssystem
KR100295437B1 (ko) * 1997-12-30 2001-07-12 윤종용 멀티주파수할당시스템의커버리지최적화방법
JP3904716B2 (ja) 1998-03-10 2007-04-11 松下電器産業株式会社 Cdma移動通信システム
JP3214466B2 (ja) * 1998-04-07 2001-10-02 日本電気株式会社 移動通信システム及びその通信制御方法並びにそれに用いる基地局及び移動局
GB2339120B (en) 1998-06-30 2003-03-19 Nec Technologies Channel estimation device for digital telecommunications stations
US6404826B1 (en) * 1998-07-02 2002-06-11 Texas Instruments Incorporated Iterative signal-to-interference ratio estimation for WCDMA
JP3029030B2 (ja) * 1998-08-05 2000-04-04 日本電気株式会社 パイロット信号を含む受信信号の復調方法およびその装置
GB9818378D0 (en) 1998-08-21 1998-10-21 Nokia Mobile Phones Ltd Receiver
JP3029031B2 (ja) * 1998-09-03 2000-04-04 日本電気株式会社 内挿同期検波方法と無線通信システム
US6456671B1 (en) * 1998-11-18 2002-09-24 Trw Inc. Decision feedback phase tracking demodulation
MY130820A (en) * 1998-12-16 2007-07-31 Ericsson Telefon Ab L M Channel estimation for a cdma system using pre-defined symbols in addition to pilot symbols
US6654429B1 (en) * 1998-12-31 2003-11-25 At&T Corp. Pilot-aided channel estimation for OFDM in wireless systems
KR100531356B1 (ko) * 1999-02-05 2005-11-28 엘지전자 주식회사 이동 무선 통신 시스템의 데이터 심볼 전송 방법
EP2146469B1 (en) 1999-04-02 2011-01-05 NTT DoCoMo, Inc. Fading frequency decision device and method
US6452917B1 (en) * 1999-04-08 2002-09-17 Qualcomm Incorporated Channel estimation in a CDMA wireless communication system
DE60037841T2 (de) 1999-05-10 2009-05-07 Ntt Docomo Inc. Datenmultiplexverfahren und Datenmultiplexmittel und Datenübertragungsverfahren und Datenübertragungsmittel
CN1124728C (zh) 1999-11-25 2003-10-15 华为技术有限公司 一种多选择相干检测方法
AU1912201A (en) * 1999-12-01 2001-06-12 Telefonaktiebolaget Lm Ericsson (Publ) Bit error estimates from pilot signals
KR100318952B1 (ko) 1999-12-29 2002-01-04 윤종용 무선통신시스템에서 채널 추정을 위한 장치 및 방법
JP3419726B2 (ja) * 2000-02-03 2003-06-23 松下電器産業株式会社 メモリ回路および同期検波回路
EP1317827A2 (en) * 2000-09-15 2003-06-11 Telefonaktiebolaget LM Ericsson (publ) Pilot-assisted channel estimation with pilot interpolation
US6775340B1 (en) * 2000-10-13 2004-08-10 Ericsson Inc. Synchronization and channel estimation with extended pilot symbols
JP4448633B2 (ja) * 2001-08-31 2010-04-14 富士通株式会社 移動体通信端末
US7161955B1 (en) * 2002-05-03 2007-01-09 Atheros Communications, Inc. Modified start frame delimiter detection
US7158542B1 (en) 2002-05-03 2007-01-02 Atheros Communications, Inc. Dynamic preamble detection
US20040165683A1 (en) * 2002-09-04 2004-08-26 Gupta Alok Kumar Channel estimation for communication systems
CN104147082A (zh) * 2014-08-25 2014-11-19 济南康众医药科技开发有限公司 一种杜仲的干燥方法及其制品的应用
US11722223B2 (en) * 2019-08-19 2023-08-08 Nippon Telegraph And Telephone Corporation Optical communication system and optical communication method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746284A (ja) * 1993-07-27 1995-02-14 Mitsubishi Electric Corp フェージング補償装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2247812B (en) * 1990-09-06 1994-08-31 Motorola Inc Equalizer for linear modulated signal
US5257312A (en) * 1991-05-03 1993-10-26 U.S. Philips Corporation Time-discrete stereo decoder
GB2271916B (en) * 1992-10-23 1996-05-22 Roke Manor Research Improvements in or relating to digital radio communication systems
US5329547A (en) * 1993-03-11 1994-07-12 Motorola, Inc. Method and apparatus for coherent communication in a spread-spectrum communication system
US5442646A (en) * 1994-02-01 1995-08-15 The Mitre Corporation Subcarrier communication system
US5544156A (en) * 1994-04-29 1996-08-06 Telefonaktiebolaget Lm Ericsson Direct sequence CDMA coherent uplink detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746284A (ja) * 1993-07-27 1995-02-14 Mitsubishi Electric Corp フェージング補償装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
IEICE TECHNICAL RESEARCH REPORT, Vol. 94, No. 312, 28 October 1994, (Tokyo), AKIHIRO HIGASHI, TSUTOMU TAGUCHI, KOJI ONO, "Characteristics of an Interpalation Type Synchronous Detector RAKE in DC/CDMA", p. 57-62. *
IEICE TRANSACTIONS, J72-B-II, No. 1, January 1989, (Tokyo), MASAICHI MIHEI, "System for Compensating Fading Distortion in Land Communication 16QAM", p. 7-15. *
SEASONAL REPORT OF COMMUNICATION SYNTHESIS INSTITUTE, Vol. 37, No. 1, February 1991, (Tokyo), MASAICHI MIHEI, "System for Compensating Fading Distortion in Multivalue QAM", p. 87-98. *
See also references of EP0715440A4 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875215A (en) * 1995-08-25 1999-02-23 Nec Corporation Carrier synchronizing unit
JP3024524B2 (ja) 1995-09-25 2000-03-21 日本電気株式会社 キャリア同期ユニット及び同期方法
EP0798870A3 (en) * 1996-03-29 1999-10-20 Matsushita Electric Industrial Co., Ltd. Receiving apparatus for spectrum spread system
US5901185A (en) * 1996-04-15 1999-05-04 Ericsson Inc. Systems and methods for data-augmented, pilot-symbol-assisted radiotelephone communications
AU714804B2 (en) * 1996-04-15 2000-01-13 Ericsson Inc. Pilot-symbol-assisted radiotelephone communications
WO1997039557A1 (en) * 1996-04-15 1997-10-23 Ericsson Inc. Pilot-symbol-assisted radiotelephone communications
JP3086173B2 (ja) 1996-06-18 2000-09-11 日本無線株式会社 同期確立方法及びこれを用いたデータ復調装置
JP3377389B2 (ja) 1997-01-10 2003-02-17 株式会社鷹山 スペクトラム拡散無線通信方式における信号受信方法および装置
KR19980070420A (ko) * 1997-01-10 1998-10-26 다까또리스나오 스펙트럼 확산 무선 통신 수신기 장치 및 그 위상 보정 방법
US7672357B2 (en) 1997-04-17 2010-03-02 Ntt Docomo, Inc. Base station apparatus of mobile communication system
US6782035B1 (en) 1997-04-17 2004-08-24 Ntt Docomo Inc. Base station apparatus of mobile communication system
US8005120B2 (en) 1997-04-17 2011-08-23 Ntt Docomo, Inc. Base station apparatus of mobile communication system
US7826861B2 (en) 1997-04-17 2010-11-02 Ntt Docomo, Inc. Base station apparatus of mobile communication system
US7443907B2 (en) 1997-04-17 2008-10-28 Ntt Docomo, Inc. Base station apparatus of mobile communication system
US7095780B2 (en) 1997-04-17 2006-08-22 Ntt Docomo, Inc. Base station apparatus of mobile communication system
JP3283210B2 (ja) 1997-05-30 2002-05-20 株式会社鷹山 スペクトラム拡散通信方式における信号受信装置
KR100552076B1 (ko) * 1997-06-18 2006-09-20 가부시키가이샤 엔.티.티.도코모 Cdma통신시스템에있어서의신호수신장치
JP3338364B2 (ja) 1998-03-17 2002-10-28 松下電器産業株式会社 無線受信装置
US6904078B1 (en) 1998-04-23 2005-06-07 Ntt Docomo, Inc. CDMA receiver and CDMA transmitter/receiver
US6570935B1 (en) 1998-05-28 2003-05-27 Nec Corporation Method and system for demodulating a receive signal including a pilot signal
JP3289676B2 (ja) 1998-05-28 2002-06-10 日本電気株式会社 パイロット信号を含む受信信号の復調方法及びその装置
US6411649B1 (en) 1998-10-20 2002-06-25 Ericsson Inc. Adaptive channel tracking using pilot sequences
JP3391288B2 (ja) 1999-03-03 2003-03-31 日本電気株式会社 自動周波数制御回路及びそれに用いる周波数オフセット補正方法
JP2000324020A (ja) * 1999-04-08 2000-11-24 Texas Instr Inc <Ti> Wcdmaのためのダイバーシティ検出
JP2003521840A (ja) * 1999-05-12 2003-07-15 クゥアルコム・インコーポレイテッド 無線通信システムにおける振幅および位相の評価方法
JP4777517B2 (ja) * 1999-05-12 2011-09-21 クゥアルコム・インコーポレイテッド 無線通信システムにおける振幅および位相の評価方法
JP2011176837A (ja) * 1999-05-12 2011-09-08 Qualcomm Inc 無線通信システムにおける振幅および位相の評価方法
US8295399B2 (en) 1999-07-28 2012-10-23 Panasonic Corporation Transmission apparatus, reception apparatus and digital radio communication method
JP2009296655A (ja) * 1999-07-28 2009-12-17 Panasonic Corp 送信方法及び送信装置
JP2009232478A (ja) * 1999-07-28 2009-10-08 Panasonic Corp 受信方法及び受信装置
US9106486B2 (en) 1999-07-28 2015-08-11 Wi-Fi One, Llc Transmission apparatus, reception apparatus and digital radio communication method
US9525575B2 (en) 1999-07-28 2016-12-20 Wi-Fi One, Llc Transmission apparatus, reception apparatus and digital radio communication method
US10270631B2 (en) 1999-07-28 2019-04-23 WiFi One, LLC Transmission apparatus, reception apparatus and digital radio communication method
US10498571B2 (en) 1999-07-28 2019-12-03 Wi-Fi One, Llc Transmission apparatus, reception apparatus and digital radio communication method
JP3074533B1 (ja) 1999-08-12 2000-08-07 郵政省通信総合研究所長 データ伝送システム
KR100542807B1 (ko) * 2003-04-10 2006-01-11 용인송담대학 디지탈 이동통신 시스템의 채널신호 복조 방법 및 장치
JP2008502254A (ja) * 2004-06-08 2008-01-24 フリースケール セミコンダクター インコーポレイテッド 無線通信装置及び符号分割多重アクセス信号を処理する方法

Also Published As

Publication number Publication date
DE69533156D1 (de) 2004-07-22
EP0715440A4 (en) 2000-03-15
EP0715440B1 (en) 2004-06-16
JP3118548B2 (ja) 2000-12-18
US5692015A (en) 1997-11-25
CN1082757C (zh) 2002-04-10
CN1126013A (zh) 1996-07-03
EP0715440A1 (en) 1996-06-05
DE69533156T2 (de) 2005-07-14

Similar Documents

Publication Publication Date Title
WO1995035615A1 (fr) Detecteur synchrone et procede de synchronisation pour un recepteur numerique de telecommunications
EP1195033B1 (en) Equalization with dc-offset compensation
US5875215A (en) Carrier synchronizing unit
US7450924B1 (en) Interference cancellation and receive diversity for single-valued modulation receivers
US6956895B2 (en) Method and arrangement for reducing frequency offset in a radio receiver
JP2715662B2 (ja) 時分割信号のダイバーシチ受信のための方法および装置
US6246732B1 (en) Demodulator including adaptive equalizer and demodulating method in digital communications
US5235621A (en) Receiver systems
US5400368A (en) Method and apparatus for adjusting the sampling phase of a digitally encoded signal in a wireless communication system
CA2274101A1 (en) Method and apparatus for bidirectional demodulation of digitally modulated signals
HK99897A (en) Phase coherent TDMA quadrature receiver for multipath fading channels
US20010000703A1 (en) Transmission/reception unit with bidirectional equalization
WO2002032067A1 (en) Method for automatic frequency control
CA2345534A1 (en) Adaptive channel tracking using pilot sequences
KR100255726B1 (ko) 자동 주파수 제어방법 및 장치
EP0960498A2 (en) A synchronization system and method for digital communication systems
JP3251432B2 (ja) ディジタル無線通信における周波数とタイムスロット位置を決定する装置及び方法
GB2250667A (en) An apparatus and method for removing distortion in a received signal
EP1072133B1 (en) Self-optimizing channel equalization and detection
US20020181615A1 (en) Frequency estimator for use in a receiver of packetised data, the receiver and a method of reception
WO2002069493A2 (en) Automatic frequency control systems and methods for joint demodulation
EP1259040A2 (en) Equalisation for QAM signals
US6853681B1 (en) Using different channel models for different training sequences
US6956915B2 (en) Method of correcting frequency error
KR100958508B1 (ko) 수신기, 수신 방법 및 주파수 보정 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95190253.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 08553464

Country of ref document: US

Ref document number: 1995922721

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE GB IT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995922721

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995922721

Country of ref document: EP