WO1995012490A1 - Heat-shrinkable laminated polyethylene film - Google Patents
Heat-shrinkable laminated polyethylene film Download PDFInfo
- Publication number
- WO1995012490A1 WO1995012490A1 PCT/JP1993/001588 JP9301588W WO9512490A1 WO 1995012490 A1 WO1995012490 A1 WO 1995012490A1 JP 9301588 W JP9301588 W JP 9301588W WO 9512490 A1 WO9512490 A1 WO 9512490A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- film
- temperature
- density
- layer
- Prior art date
Links
- -1 polyethylene Polymers 0.000 title claims abstract description 14
- 239000004698 Polyethylene Substances 0.000 title claims abstract description 12
- 229920000573 polyethylene Polymers 0.000 title claims abstract description 12
- 229920000092 linear low density polyethylene Polymers 0.000 claims abstract description 28
- 239000004707 linear low-density polyethylene Substances 0.000 claims abstract description 27
- 238000002844 melting Methods 0.000 claims abstract description 25
- 230000008018 melting Effects 0.000 claims abstract description 25
- 230000004927 fusion Effects 0.000 claims abstract description 17
- 239000000155 melt Substances 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 239000005977 Ethylene Substances 0.000 claims description 9
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 8
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 150000001336 alkenes Chemical class 0.000 claims description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 2
- 210000003323 beak Anatomy 0.000 claims 1
- 238000004806 packaging method and process Methods 0.000 description 27
- 229920005989 resin Polymers 0.000 description 20
- 239000011347 resin Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 15
- 229920006257 Heat-shrinkable film Polymers 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229920005672 polyolefin resin Polymers 0.000 description 5
- 239000004711 α-olefin Substances 0.000 description 5
- 230000002950 deficient Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000011342 resin composition Substances 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229920005684 linear copolymer Polymers 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 1
- ZZLCFHIKESPLTH-UHFFFAOYSA-N 4-Methylbiphenyl Chemical compound C1=CC(C)=CC=C1C1=CC=CC=C1 ZZLCFHIKESPLTH-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000000816 ethylene group Chemical class [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- AYOOGWWGECJQPI-NSHDSACASA-N n-[(1s)-1-(5-fluoropyrimidin-2-yl)ethyl]-3-(3-propan-2-yloxy-1h-pyrazol-5-yl)imidazo[4,5-b]pyridin-5-amine Chemical compound N1C(OC(C)C)=CC(N2C3=NC(N[C@@H](C)C=4N=CC(F)=CN=4)=CC=C3N=C2)=N1 AYOOGWWGECJQPI-NSHDSACASA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 229920006300 shrink film Polymers 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
Definitions
- the present invention relates to a polyethylene-based heat-shrinkable laminated film, and more particularly, to a heat-shrinkable laminated film made of a specific ethylene-based copolymer and having excellent suitability for a packaging machine. Regarding the film.
- stretched films such as polyvinyl chloride, polypropylene, and polyethylene have been known.
- polyethylene-based heat-shrinkable films have been used because of their heat-sealing properties and low cost.
- Low-density copolymer hereinafter simply abbreviated as linear low-density polyethylene
- Lum is noted for its excellent impact resistance and heat seal strength, and is expected to be used in many fields.
- the present inventors have previously proposed a heat-shrinkable film mainly comprising a specific ethylene- ⁇ -olefin copolymer (Japanese Patent Application Laid-Open No. 62-201). No. 229 Publication).
- the thickness of the film is small and the low-temperature shrinkage of the film is better than that of the film obtained by inflation.
- the use of automatic packaging machines (pillow wrapping machines, half-fold automatic wrapping machines, etc.) as packaging materials in recent years has led to the increase in packaging speed of packaging machines. Since the speed is significantly increased, there is a problem in that a heat seal defect (partially not sealed), which has not occurred in the past, may occur.
- the inventors of the present invention have conducted further detailed studies in order to eliminate the above-described seal failure, and as a result, have confirmed the following.
- the film has low stiffness (small tensile elasticity), it becomes easier for the film to enter during film running, so it is necessary to use a fusing seal at the part where the film is to be sealed.
- the number of folded parts of the film will increase, and the occurrence of binholes will increase.
- the viscosity of the fusing resin is low, the fusing resin tends to adhere to the blade edge of the heat knife or the heat knife base, and pinholes are generated in the seal portion.
- the film must not be cut or, in extreme cases, not completely sealed.
- the present inventors have made intensive studies on the laminated structure of the film and various kinds of raw material resins.
- the layer has a low melt index, high total heat of fusion, and a high endothermic area ratio above the melting point to increase the cooling and solidification rate during the fusing seal.
- a resin with a higher melt index than that of the intermediate layer and having the same characteristics as the intermediate layer is used. It has been found that a heat-shrinkable film having good suitability for a packaging machine can be obtained, and the present invention has been achieved.
- the intermediate layer has a density of 0.910 to 0.930 g / cm 3 and a melt index of 0.1 to 0.88TZ 10.
- the temperature was lowered to 20'C in 10 minutes, and then the temperature was raised.
- Total heat of fusion in the melting curve obtained when the temperature is increased in 10 minutes at a rate of 10 min. Is not less than 135 mJ Zmg and an endotherm not less than the main peak temperature (melting point).
- the index is 0.8 to 5.Og / 10 min, and the total heat of fusion in the melting curve is in the range of 135 to 160 mJ / mgr; Linear low-density poles whose endothermic area above the main peak temperature is 12% or more of the total endothermic area
- At least one layer of the linear low-density polyethylene (A) used as a main component of the intermediate layer in the present invention has a density of 0.910 to 0.930 s Z cm 3 , Melt index 0 1 to 0 8 S / 10 A material with a characteristic value of 10 minutes is used, and more preferably, the density is 0.9 to 15 to 0.9. 25 g- / cm 3 ⁇ melt index 0.2 to 0.7 sr / 10 min. Density 0. 9 1 0 g / cm 3 non Mitsurude is rather to Do rather preferable because tensile modulus that Do rather low, the density is exceeds the 0. 9 3 0 gZ cm 3 low temperature shrinkability is insufficient Not good because of it.
- melt extrusion it is not preferable because the motor load at the time increases and the workability deteriorates, and if it exceeds 0.8 s / 10 minutes, it is preferable because the fusing sealability deteriorates. Not good.
- the linear low-density polyethylene (A) has a total heat of fusion of 135 mJ / m sr or more in the melting curve in the DSC measurement, and a main peak temperature.
- the above endothermic area must be at least 12% of the total endothermic area. If the condition is not satisfied, the cooling and solidification rate of the blown resin is slow, and good blown sealability cannot be obtained.
- the thickness of the intermediate layer with respect to all layers must be 60% or more. When the thickness of the intermediate layer is less than 60%, excellent fusing sealability cannot be exhibited.
- the linear low-density polyethylene (B) used as a main component in the innermost layer and the outermost layer has a melt index of 0.8 to 5. 0 g Z 10 minutes, the total heat of fusion in the melting curve is in the range of 135 to 160 mJ / mg, and the endothermic area above the main peak temperature is Those having 12% or more of the total endothermic area are used.
- the melt index is less than 0.8 gr 10 min
- the transparency is lowered due to the roughening of the film surface, which is not preferable. If it exceeds S / 10 minutes, the heat seal strength is reduced and the drawability is adversely affected, which is not preferable. Further, if the total heat of fusion is less than 135 mJZmg, good fusing sealability is not obtained, and if it exceeds 160 mJZmg, the transparency is unfavorably reduced.
- the above linear low-density polyethylene (A) and (B) are a linear copolymer of ethylene and an ethylene olefin, and are copolymerized with ethylene.
- the ⁇ -olefin resin to be polymerized is not particularly limited.
- butene-11, pentene-11, hexene-11, heptene-11, octene1-1,4-methan with 4 to 12 carbon atoms Tilpentene-11, decene-11, pendecene-11, dodecene-11, etc., among which ⁇ -branched olefins having 4 to 8 carbon atoms are more preferable.
- the resin composition used in each of the above layers may be used alone or in combination of two or more. Further, the resin composition used in the high-pressure polystyrene may be used as long as the object of the present invention is not hindered. Polyolefin resin such as ethylene-vinyl acetate copolymer, ionomer, ethylene-propylene copolymer, etc. Can be done.
- the laminated film of the present invention includes the above-mentioned linear low-density polyethylene resin (A) in a range satisfying the above-described thickness conditions of each layer in addition to the intermediate layer, the innermost layer, and the outermost layer.
- (B) may contain one or two or more intermediate layers made of a polyolefin resin.
- a linear low-density polyethylene resin (A) and a linear resin other than (B) are used.
- Polyolefin resins such as high-density polyethylene resins, high-pressure polyethylene resins, and ethylene-propylene copolymers, and the like. One type or two or more types can be appropriately selected and used as long as they do not cause a problem.
- additives such as lubricants, antiblocking agents, antistatic agents, and antifogging agents can be used as appropriate for the purpose of achieving their effective effects. This is especially effective for the innermost and outermost layers.
- the production and stretching of the raw film for stretching used in the present invention can be performed by a known method.
- a case of three-layer laminated tubular film forming and stretching will be described as an example. This will be specifically described.
- the linear low-density polyethylene (A) of the above-mentioned ethylene and ⁇ -olefin is placed in the middle layer, and the linear low-density polyethylene of the ethylene and ⁇ -yearly refine is formed.
- the density polyethylene ( ⁇ ) is melt-kneaded by three extruders so as to become inner and outer layers, and is co-extruded into a tube from a three-layer annular die, and is not stretched once. It is quenched and solidified to produce a tube-shaped unstretched film.
- the obtained tube-shaped unstretched film is supplied to, for example, a tuber stretching apparatus as shown in FIG. 1 to obtain a highly oriented temperature range, for example, below the melting point of the intermediate layer resin.
- a gas pressure is applied to the inside of the tube at 0'C, preferably below the melting point and at a temperature lower than 15 to cause simultaneous biaxial orientation by expansion and stretching.
- the stretching ratio does not have to be the same in both the vertical and horizontal directions.However, in order to obtain physical properties such as excellent strength and shrinkage, it should be at least 2 times in both directions, preferably 2.5 times or more. More preferably, it is stretched three times or more.
- the film removed from the stretching device can be annealed as desired, and this elimination can suppress natural shrinkage during storage. I can do it.
- FIG. 1 is a cross-sectional view for explaining a tuber biaxial stretching apparatus used in Examples.
- FIG. 2 is a schematic diagram for explaining a load-deformation curve for calculating a tensile modulus in the example.
- each layer of the laminate was measured by observing the cross section of the film with a microscope.
- the ratio of the scattered light transmittance to the parallel light transmittance was indicated by% using an integrating sphere light transmittance measuring device conforming to JIS-K6714.
- a film cut into a square of 10 cm in both length and width was immersed in a glycerin bath at a predetermined temperature for 10 seconds, and calculated by the following equation.
- a and B indicate the vertical and horizontal lengths after immersion (unit: cm).
- test piece Take a test piece with a width of 15 mm and a length of 300 mm each in the MD (vertical direction) and TD (horizontal direction) from the film sample, and measure the thickness.
- test specimens were gripped on an universal tensile tester manufactured by Orientec Co., Ltd. at an interval of 5 Omm, and the tensile speed was 40 mmZ, the recording paper speed was 50 Omm / min, and the full scale. Measured under the condition of 2 kg and calculated by the following formula.
- a half-fold film with a width of 40 O mm was supplied to a half-fold automatic packaging machine (model AT—500) manufactured by Kyowa Electric Co., Ltd., which was 23.5 cm long, 15.5 cm wide, and high.
- a 5.6 cm lunch box (200 g) is packed continuously at a speed of 25 pieces / min and 100 pieces are measured, and the non-defective rate is measured. If the non-defective rate in the seal temperature range of 100% is 100%, it is O, ⁇ is less than 100%, 80% or more is X, and X is less than 80%.
- a half-fold automatic packaging machine model AT—500 manufactured by Kyowa Electric Co., Ltd., which was 23.5 cm long, 15.5 cm wide, and high.
- a 5.6 cm lunch box (200 g) is packed continuously at a speed of 25 pieces / min and 100 pieces are measured, and the non-defective rate is measured. If the non-defective rate in the seal temperature range of 100% is 100%, it is O,
- non-defective products were non-defective products that had no stringiness in the seal after shrink wrapping and had no pinholes of 1 mm or more.
- the margin of spare packaging is set to 13% both vertically and horizontally.
- Linear low-density polyethylene which is a copolymer of ethylene having the properties shown in Table 1 and 41-methylpentene-11 as a comonomer
- Low-density polyethylene which is a copolymer of ethylene and octen-11, also having the properties shown in Table 1 using resin as the intermediate layer
- the resin was melted and kneaded at 170 ° C to 240 ° C in three extruders (for the middle layer, the innermost layer, and the outermost layer) as the inner and outer layers, respectively, as shown in Table 1.
- the extrusion amount from each extruder was set assuming the thickness ratio, and co-extrusion was performed downward from a three-layer annular die maintained at 24 O'C.
- the formed three-layer tube is used to slide the outer surface of the cylindrical cooling mandrel through which the cooling water circulates on the inside, while passing the water tank on the outside.
- the bow I was removed to obtain an unstretched film with a diameter of about 75 mm and a thickness of 320 m.
- the thickness of each layer was adjusted by adjusting the screw rotation speed and the take-up speed of the extruder.
- This tube-shaped unstretched film is guided to the tube biaxial stretching device shown in Fig. 1 and stretched four times in each of the vertical and horizontal directions at 95 to 105 to form a laminated biaxial film. A stretched film was obtained. Next, this stretched film is put into a chip-availing machine for 75. After being treated with hot air of C for 10 seconds, it was cooled to room temperature, folded and wound.
- the obtained stretched film had a thickness configuration as shown in Table 1, was excellent in transparency and low-temperature shrinkage, and had a high tensile modulus.
- Table 1 the continuous actual packaging of the lunch box was evaluated using a half-fold automatic packaging machine, it was found that there was no failure in the seal part and that it had good suitability for the packaging machine in a wide temperature range.
- Example 1 Using the resin composition shown in Table 1, a heat-shrinkable laminated film was produced in the same manner as in Example 1.
- the obtained stretched film was excellent in transparency and low-temperature shrinkage, and had a high tensile modulus. Also, as in Example 1, it was excellent in suitability for a packaging machine.
- a heat-shrinkable laminated film was produced in the same manner as in Example 1. 500,000 ppm of monoglyceride stearate was added to the inner and outer layers as an anti-fog agent, but it has excellent transparency, low-temperature shrinkage, high tensile modulus, and packaging. It was a film with excellent adaptability.
- linear low-density polyethylene with a melt index of 2.0 g / 10 min was used for the intermediate layer, and the inner and outer layers of Example 1 were used.
- extruded under the same conditions as in Example 1 cooled, pulled off, and had a diameter of about 75 mm
- a raw material of a laminated unstretched film having a thickness of 320 wm was obtained. The thickness of each layer was adjusted by adjusting the screw rotation speed and take-off speed of the extruder.
- This tube-shaped unstretched film was guided to the tuber biaxial stretching device shown in Fig. 1 in the same manner as in Example 1, and it was quadrupled vertically and horizontally at 95 to 105'C.
- the film was stretched to obtain a laminated biaxially stretched film.
- this stretched film was treated with 75 pieces of hot air for 10 seconds in a tube-one-ring apparatus, cooled to room temperature, folded and wound up.
- the intermediate layer of Comparative Example 2 has a total heat of fusion of 132.0 mJZ mg in the melting curve, and uses a linear low-density polyethylene that is not more than 135 mJ / msr.
- the intermediate layer of Comparative Example 3 has an endothermic area ratio equal to or higher than the melting point in the melting curve of 11.0%, and uses a linear low-density polyethylene which is not higher than 12%.
- the same linear low-density polyethylene was used as in Example 1, and a heat-shrinkable laminated film was obtained in the same manner as in Example 1.
- the heat-shrinkable films obtained were both excellent in transparency and low-temperature heat shrinkage in Comparative Examples 2 and 3, but had low tensile modulus. In the actual packaging test using the packaging machine, pinholes were liable to occur in the seals of both, and the sealability was insufficient.
- the middle layer uses the same linear low-density polyethylene as in Example 1, and the inner and outer layers have a melt index of 0.68T / 10 minutes and 1.0.
- a heat-shrinkable laminated film was obtained in the same manner as in Example 1 by using a linear low-density polyethylene not in the range of 5.0 S / 10 minutes.
- the resulting film has excellent low-temperature shrinkage and a large tensile modulus, and exhibits good fusing sealability even in actual packaging tests using a packaging machine. There was, however, less transparency.
- the intermediate layer uses the same linear low-density polyethylene as in Example 2, and the inner and outer layers have a total heat of fusion of 121 mJZ mg in the melting curve, and 135 to 16
- a heat-shrinkable laminated film was obtained in the same manner as in Example 1 using a linear low-density polyethylene that was not in the range of 0 mJZ mg.
- the resulting film was excellent in transparency and low-temperature shrinkage.
- the tensile elasticity was slightly inferior, and resin adhesion to the heat knife and adhesion of the film to the heat knife tray were observed, and the length of the seal was about 3 mm. There was a hole in the hole, and the sealability was very unstable.
- the intermediate layer uses the same linear low-density polyethylene as in Example 1, and the inner and outer layers have a total heat of fusion of 162.4 mJZ mg in the melting curve, and 16 OmJ /
- a heat-shrinkable laminated film was obtained in the same manner as in Example 1 by using a linear low-density polyethylene of msr or more.
- the film obtained has poor stability in the stretching process, and the obtained film is inferior in transparency and low-temperature shrinkage.In actual packaging tests using a packaging machine, the seal may be easily sealed. Some pinholes were observed.
- Example 2 The same linear low-density polyethylene as in Example 1 was used for both the intermediate layer and the inner and outer layers, except that the thickness of the intermediate layer was set to 50% of the total thickness.
- a heat-shrinkable laminated film was obtained in the same manner as in Example 1. The resulting film was excellent in transparency and low-temperature shrinkage, but had some pinholes in the seal part and was insufficiently sealable. .
- the polyethylene-based heat-shrinkable laminated film of the present invention is made of a material that satisfies specific conditions as a raw material for each layer, and therefore has excellent transparency and low-temperature shrinkage.
- it provides a shrink film excellent in suitability for packaging machines because it uses a raw material that has a high rate of cooling and solidification of the blown resin at the time of fusing sealing and that can obtain a high tensile modulus. It is. Table 11
Landscapes
- Laminated Bodies (AREA)
Abstract
A heat-shrinkable laminated polyethylene film which is excellent in the adaptability for wrapping machines. The film is composed of an intermediate layer comprising a composition based on a linear low-density polyethylene (A) having a density of 0.910-0.930 g/cm3, a melt index of 0.1-0.8 g/10 min, a total heat quantity of fusion of 135 mJ/mg or above, and the endothermic area above the melting point accounting for at least 12 % of the total endothermic area, and the innermost and outermost layers each comprising a composition based on a linear low-density polyethylene (B) having a density of 0.910-0.930 g/cm3, a melt index of 0.8-5.0 g/10 min, a total heat quantity of fusion of 135-160 mJ/mg, and the endothermic area above the melting point accounting for at least 12 % of the total endothermic area.
Description
十 明 細 書 ポ リ エ チ レ ン系熱収縮性積層フ イ ル ム 技術分野 Technical Description Polyethylene-based heat-shrinkable laminated film
本発明はポ リ ェ チ レ ン系熱収縮性積層フ ィ ルム に関する も のであ り、 よ り 詳し く は特定のエ チ レ ン系共重合体から成る包装機適性が 優れた熱収縮性積層フ イ ル ム に関する。 The present invention relates to a polyethylene-based heat-shrinkable laminated film, and more particularly, to a heat-shrinkable laminated film made of a specific ethylene-based copolymer and having excellent suitability for a packaging machine. Regarding the film.
背景技術 Background art
従来、 熱収縮性フ ィ ルム と し ては、 ポ リ 塩化ビニル、 ポ リ ブロ ピ レ ン、 ポ リ エ チ レ ン系等の延伸 フ ィ ルム な どが知られてい る。 中で も ポ リ エ チ レ ン系熱収縮性 フ ィ ル ム は、 ヒ ー ト シ ール性を有し、 低 価格であ る等の点から実用 されてお り、 特に近年エ チ レ ン と α—才 レ フ イ ン と の線状低密度共重合体 (以下単に線状低密度ポ リ エ チ レ ン と 略す。 ) を用いた ポ リ エ チ レ ン系熱収縮性フ ィ ル ムは、 そ の耐 衝撃性、 ヒー ト シール強度な どにおいて優れてい る点で注目 され、 多 く の分野での利用が期待 されてい る。 Conventionally, as heat shrinkable films, stretched films such as polyvinyl chloride, polypropylene, and polyethylene have been known. Among them, polyethylene-based heat-shrinkable films have been used because of their heat-sealing properties and low cost. Low-density copolymer (hereinafter simply abbreviated as linear low-density polyethylene) of polystyrene and α-olefin refrigeration. Lum is noted for its excellent impact resistance and heat seal strength, and is expected to be used in many fields.
本発明者ら は、 特定のエ チ レ ン一 α—ォ レ フ ィ ン共重合体を主と する熱収縮性フ イ ルム を先に提案し てい る (特開昭 6 2 - 2 0 1 2 2 9 号公報) 。 こ の提案の方法を実施す る こ と に よ り、 厚みム ラ が 小さ く、 イ ン フ レ ー シ a ン で得られる フ ィ ル ム と比較 して低温収縮 性の良好なフ イ ル ムを得る こ と が出来る よ う にな つ たが、 包装材料 と し て 自動包装機 ( ピ ロ一包装機、 半折自動包装機等) に用い る場 合、 近年包装機の包装ス ピー ドが著 し く 高速化し てい る ため、 従来 発生 し なかっ た ヒ ー ト シール不良 (部分的に シール さ れない) が発 生す る と い う 問題点があ る。 自動包装機で包装する場合は ヒ ー ト シー ル は ヒ ー ト ナ イ フ に よ る溶断 シ ールが一般的であ る が、 シ ール 不良現象 と は収縮工程でシ ール部の釗離が生 じ た り、 フ ィ ルム に大 きい張力がかかる場合 (被包装物が嵩高の場合等) に、 シ ール部が
糸曳 き状にな っ て美麗に 力 ッ ト されなか っ た り、 シール部に ピ ンホ —ルが発生し た り、 極端な場合には全 く シ ー ル さ れない こ と等を指 して い る。 The present inventors have previously proposed a heat-shrinkable film mainly comprising a specific ethylene-α-olefin copolymer (Japanese Patent Application Laid-Open No. 62-201). No. 229 Publication). By implementing the proposed method, the thickness of the film is small and the low-temperature shrinkage of the film is better than that of the film obtained by inflation. The use of automatic packaging machines (pillow wrapping machines, half-fold automatic wrapping machines, etc.) as packaging materials in recent years has led to the increase in packaging speed of packaging machines. Since the speed is significantly increased, there is a problem in that a heat seal defect (partially not sealed), which has not occurred in the past, may occur. When wrapping with an automatic wrapping machine, heat seals are generally heat-sealed by heat heat. When the film is separated or a large tension is applied to the film (when the packaged material is bulky, etc.), Fingers may not be beautifully pressed into a stringing shape, pinholes may be formed on the seal, and in extreme cases they may not be sealed at all. are doing.
又、 溶断樹脂が ヒ ー ト ナ イ フ の刃先や ヒ ー ト ナ イ フ受け台へ付着 する場合にも、 前記と 同様のシ ール不良が発生す る。 発明の開示 Further, when the melted resin adheres to the blade edge of the heat knife or the heat knife tray, the same seal failure as described above occurs. Disclosure of the invention
本発明者ら は前記の シ ー ル不良を解消する為に、 更に詳細に検討 した結果、 以下の こ と を確認し た。 The inventors of the present invention have conducted further detailed studies in order to eliminate the above-described seal failure, and as a result, have confirmed the following.
即ち、 包装ス ピー ドが速 く な る こ と に よ り、 収縮 ト ン ネ ル内で収 縮さ れる までの時間も短 く な り、 その短い時間内で溶断樹脂の固化 が進まない場合に、 溶断樹脂の一部が引 き離 され、 ピ ン ホ一ルが発 生し た り、 極端な場合には シール部の完全な釗離 と な る こ と。 In other words, when the packaging speed becomes faster, the time required for shrinkage in the shrinking tunnel becomes shorter, and solidification of the melted resin does not progress within that short time. In addition, part of the blown resin is pulled apart, causing pinholes or, in extreme cases, completely separating the seal.
又、 フ ィ ル ム の腰が弱い (引張弾性率が小 さい) 場合に は、 フ ィ ルム走行時に シ ヮ が入 り 易 く な る ため、 溶断シール し ょ う とす る部 分でのフ イ ル ム折 り重な り 部が多 く な り、 ビ ン ホ ール の発生等が多 く な る こ と。 Also, if the film has low stiffness (small tensile elasticity), it becomes easier for the film to enter during film running, so it is necessary to use a fusing seal at the part where the film is to be sealed. The number of folded parts of the film will increase, and the occurrence of binholes will increase.
又、 フ イ ルムの滑 り 性が悪 く 包装機での走行性が不十分な場合や、 被包装物が嵩高の場合に、 溶断シール部に、 よ り 大き な張力がかか り、 溶断樹脂が固化す る前に、 その シー ル部の一部が引 き 離さ れピ ン ホ ールの発生等が多 く な る こ と。 In addition, when the film is poor in slipperiness and the running property in the packaging machine is insufficient, or when the packaged material is bulky, a greater tension is applied to the fusing seal part and fusing occurs. Before the resin solidifies, part of the seal is torn off, increasing the occurrence of pinholes.
更に、 溶断樹脂の粘度が低い場合には、 溶断樹脂が ヒ ー ト ナ イ フ の刃先や ヒ ー ト ナイ フ受け台へ付着 し易 く、 シール部に ピ ン ホ ール が発生し た り、 フ ィ ル ム が カ ッ ト されなかっ た り、 極端な場合には 全 く シール されなかっ た り する こ と。 Furthermore, if the viscosity of the fusing resin is low, the fusing resin tends to adhere to the blade edge of the heat knife or the heat knife base, and pinholes are generated in the seal portion. The film must not be cut or, in extreme cases, not completely sealed.
本発明者ら は、 前記の問題点を解消し包装機適性の良好な熱収縮 性フ イ ル ムを提供する ために、 フ イ ルム の積層構成及び各種の原料 樹脂について鋭意検討 した結果、 中間層に溶断シ ール時の冷却固化 速度を速め る ため、 メ ル ト イ ン デ ッ ク ス が低 く、 且つ全融解熱量が 高 く、 融点以上の吸熱面積比があ る 範囲以上であ る レ ジ ン を使用 し、
内外層に は透明性を損なわない ため に、 中間層よ り も メ ル ト イ ンデ ッ タ スが高 く、 且つ中間層 と同様の特性を持つレ ジ ン を用い る こ と によ り 包装機適性の良好な熱収縮性フ イ ルム が得られる こ と を見い だし、 本発明に到達し たも のであ る。 In order to solve the above-mentioned problems and to provide a heat-shrinkable film having good suitability for a packaging machine, the present inventors have made intensive studies on the laminated structure of the film and various kinds of raw material resins. The layer has a low melt index, high total heat of fusion, and a high endothermic area ratio above the melting point to increase the cooling and solidification rate during the fusing seal. Using a In order to maintain the transparency of the inner and outer layers, a resin with a higher melt index than that of the intermediate layer and having the same characteristics as the intermediate layer is used. It has been found that a heat-shrinkable film having good suitability for a packaging machine can be obtained, and the present invention has been achieved.
即ち、 本発明は、 中間層 と して密度が 0. 9 1 0 ~ 0. 9 3 0 g / c m3 、 メ ル ト イ ン デ ッ ク ス が 0. 1 〜 0. 8 8T Z 1 0分で あ り、 且つ、 D S Cに よ る融解曲線に おいて、 1 9 0でにて 3 0分保持後、 降温速度 1 0て Z分で 2 0 'Cま で降温し、 その後、 昇温速度 1 0て Z分で昇温す る と き得られ る融解曲線に おけ る全融解熱量が 1 3 5 m J Zm g以上であ り、 且つメ イ ン ピー ク温度 (融点) 以上の吸熱 面積が全吸熱面積の 1 2 %以上であ る線状低密度ポ リ エチ レ ン (A) を主成分 とす る組成物から なる層を少な く と も 1 層 と、 メ ル ト イ ン デ ッ ク ス が 0. 8 ~ 5. O g/ 1 0分であ り、 且つ、 融解曲線にお ける全融解熱量が 1 3 5 ~ 1 6 0 m J / m grの範囲に あ り、 メ イ ン ピー ク温度以上の吸熱面積が全吸熱面積の 1 2 %以上であ る線状低 密度ポ リ エ チ レ ン ( B ) を主成分と する組成物か ら な る層を最内層 及び最外層 と して含む積層 フ イ ルム であ っ て、 全層に対す る 中間層 の厚みが 6 0 %以上であ り、 引張弾性率が 3 0 0 0 k g c m2 以 上、 9 0 °Cに おけ る面積収縮率が 2 0 %以上であ る こ と を特徴 とす る二軸延伸 し た包装機適性に優れる ポ リ エ チ レ ン系熱収縮性積層フ イ ル ム に関す る。 That is, according to the present invention, the intermediate layer has a density of 0.910 to 0.930 g / cm 3 and a melt index of 0.1 to 0.88TZ 10. In the melting curve by DSC, after holding for 30 minutes at 190, the temperature was lowered to 20'C in 10 minutes, and then the temperature was raised. Total heat of fusion in the melting curve obtained when the temperature is increased in 10 minutes at a rate of 10 min. Is not less than 135 mJ Zmg and an endotherm not less than the main peak temperature (melting point). At least one layer composed of a composition mainly composed of linear low-density polyethylene (A) having an area of 12% or more of the total endothermic area, and at least one layer of melt-in The index is 0.8 to 5.Og / 10 min, and the total heat of fusion in the melting curve is in the range of 135 to 160 mJ / mgr; Linear low-density poles whose endothermic area above the main peak temperature is 12% or more of the total endothermic area A laminated film containing, as an innermost layer and an outermost layer, a layer composed of a composition mainly composed of styrene (B), wherein the thickness of the intermediate layer is 60% with respect to all the layers. more der is, tensile modulus 3 0 0 0 kgcm 2 than on, 9 0 ° put that area shrinkage C is you characterized and this Ru der 2 0% or biaxially stretched packaging machine It relates to a polyethylene-based heat-shrinkable laminated film with excellent suitability.
本発明において少な く と も一層、 中間層の主成分 と して用い られ る線状低密度ポ リ エチ レ ン (A ) は密度 0· 9 1 0 ~ 0. 9 3 0 s Z c m3 、 メ ル ト イ ン デ ッ ク ス 0· 1 ~ 0· 8 S / 1 0分の特性値 を有す る ものが用い ら れ、 よ り 好ま し く は密度 0. 9 1 5 ~ 0. 9 2 5 g- / c m 3 ^ メ ル ト イ ン デ ッ ク ス 0. 2 ~ 0. 7 sr/ 1 0分の 特性値を有す る も のが用い られ る。 密度が 0. 9 1 0 g/ c m3 未 満では引張弾性率が低 く な る ため好ま し く な く、 密度が 0. 9 3 0 gZ c m3 を超え る と低温収縮性が不十分であ る ため好ま し く ない。 At least one layer of the linear low-density polyethylene (A) used as a main component of the intermediate layer in the present invention has a density of 0.910 to 0.930 s Z cm 3 , Melt index 0 1 to 0 8 S / 10 A material with a characteristic value of 10 minutes is used, and more preferably, the density is 0.9 to 15 to 0.9. 25 g- / cm 3 ^ melt index 0.2 to 0.7 sr / 10 min. Density 0. 9 1 0 g / cm 3 non Mitsurude is rather to Do rather preferable because tensile modulus that Do rather low, the density is exceeds the 0. 9 3 0 gZ cm 3 low temperature shrinkability is insufficient Not good because of it.
メ ル ト イ ン デ ッ ク ス が 0. l gr / 1 0分未満の も のは、 溶融押出
時のモー タ ー負荷が増大 し加工適性が悪 く な る点で好 ま し く な く、 0. 8 s / 1 0分を超え る と溶断シ ール性が悪 く な る ため好ま し く ない。 If the melt index is less than 0.1 lgr / 10 minutes, melt extrusion It is not preferable because the motor load at the time increases and the workability deteriorates, and if it exceeds 0.8 s / 10 minutes, it is preferable because the fusing sealability deteriorates. Not good.
又、 前記の線状低密度ポ リ エ チ レ ン ( A ) は D S Cの測定に おけ る融解曲線において全融解熱量が 1 3 5 m J /m sr以上であ り、 メ ィ ン ピー ク温度以上の吸熱面積が全吸熱面積の 1 2 %以上であ る必 要があ る。 こ の条件を満た さ ない も のは、 溶断樹脂の冷却固化速度 が遅 く、 良好な溶断シ ール性は得ら れない。 The linear low-density polyethylene (A) has a total heat of fusion of 135 mJ / m sr or more in the melting curve in the DSC measurement, and a main peak temperature. The above endothermic area must be at least 12% of the total endothermic area. If the condition is not satisfied, the cooling and solidification rate of the blown resin is slow, and good blown sealability cannot be obtained.
全層に対す る 中間層の厚みは 6 0 %以上であ る こ と が必要であ る。 中間層の厚みが 6 0 %未満の場合、 優れた溶断シ ール性が発揮でき ない。 The thickness of the intermediate layer with respect to all layers must be 60% or more. When the thickness of the intermediate layer is less than 60%, excellent fusing sealability cannot be exhibited.
ま た、 最内層及び最外層に主成分 と し て各々使用 される線状低密 度ポ リ エ チ レ ン ( B ) は、 メ ル ト イ ン デ ッ ク ス が 0. 8〜 5. 0 g Z 1 0分であ り、 旦っ、 融解曲線に おけ る全融解熱量が 1 3 5 ~ 1 6 0 m J /m gの範囲であ り、 メ イ ン ピー ク温度以上の吸熱面積が 全吸熱面積の 1 2 %以上であ る も のが用い ら れる。 In addition, the linear low-density polyethylene (B) used as a main component in the innermost layer and the outermost layer has a melt index of 0.8 to 5. 0 g Z 10 minutes, the total heat of fusion in the melting curve is in the range of 135 to 160 mJ / mg, and the endothermic area above the main peak temperature is Those having 12% or more of the total endothermic area are used.
メ ル ト イ ン デ ッ ク ス が 0. 8 gr 1 0分未満では、 フ ィ ル ム表面 の粗面化に よ る透明性の低下がみ ら れる ため好ま し く な く、 5. 0 S / 1 0分を超え る と ヒー ト シ ール強度が低下し、 延伸加工性に も 悪い影響を及ぼすため好ま し く ない。 ま た、 全融解熱量が 1 3 5 m J Z m g未満では良好な溶断シ ール性は得ら れず、 1 6 0 m J Zm gを超え る と透明性の低下がみ られ好ま し く ない。 When the melt index is less than 0.8 gr 10 min, the transparency is lowered due to the roughening of the film surface, which is not preferable. If it exceeds S / 10 minutes, the heat seal strength is reduced and the drawability is adversely affected, which is not preferable. Further, if the total heat of fusion is less than 135 mJZmg, good fusing sealability is not obtained, and if it exceeds 160 mJZmg, the transparency is unfavorably reduced.
上記の線状低密度ポ リ エ チ レ ン ( A ) 及び ( B ) は、 エ チ レ ン と な ー ォ レ フ ィ ン と の線状共重合体であ り、 エ チ レ ン と共重合 さ れる α—才 レ フ イ ンは特に限定 され る も のではない。 例えば、 炭素数が 4 ~ 1 2 の も の、 ブテ ン一 1、 ペ ン テ ン一 1、 へ キ セ ン一 1、 ヘ プ テ ン一 1、 ォ ク テ ン一 1, 4ー メ チ ルペ ン テ ン一 1、 デセ ン一 1、 ゥ ン デセ ン一 1、 ドデセ ン一 1 等が挙げられ るが、 炭素数 4 ~ 8の α—才 レ フ イ ン がよ り 好適に用い ら れる。 こ れら のエ チ レ ン と α— ォ レ フ イ ン と の線状共重合体 ( Α ) 及び ( Β ) は、 いわゆ る チー グ
ラーナ ツ タ型触媒を使っ た低中圧法によ っ て容易に得る こ と が出来、 これ ら の製造法につい て は特公昭 5 0 - 3 2 27 0号公報、 特開昭 49一 3 5 3 4 5号公報、 特開昭 5 5— 7 8 0 0 4号公報、 特開昭 5 5— 8 6 8 0 4号公報、 特開昭 5 4— 1 5 44 8 8号公報な どに 開示 される技術に よ る こ と が出来る。 The above linear low-density polyethylene (A) and (B) are a linear copolymer of ethylene and an ethylene olefin, and are copolymerized with ethylene. The α-olefin resin to be polymerized is not particularly limited. For example, butene-11, pentene-11, hexene-11, heptene-11, octene1-1,4-methan with 4 to 12 carbon atoms Tilpentene-11, decene-11, pendecene-11, dodecene-11, etc., among which α-branched olefins having 4 to 8 carbon atoms are more preferable. Used for The linear copolymers (Α) and (Β) of these ethylenes and α-olefins are so-called cheeks. It can be easily obtained by a low-to-medium pressure method using a Lana-tuna type catalyst, and these production methods are described in Japanese Patent Publication No. 50-32270 and Japanese Patent Application Laid-Open No. 49-135. Japanese Patent Publication No. 3445, Japanese Patent Application Laid-Open No. 55-78004, Japanese Patent Application Laid-Open No. 55-8684, Japanese Patent Application Laid-Open No. 54-154488, etc. It can be based on the disclosed technology.
又、 前記の各層に用い られる樹脂組成物はそれぞれ 1種ま たは 2 種以上を混合使用 して も良 く、 更に本発明の 目的に支障を来さ ない 範囲で高圧法ポ リ エチ レ ン、 エ チ レ ン一酢酸 ビュ ル共重合体、 アイ オ ノ マー、 エ チ レ ン一プロ ピ レ ン共重合体な どの ポ リ オ レ フ イ ン系 樹脂を混合し て使用す る こ とができ る。 The resin composition used in each of the above layers may be used alone or in combination of two or more. Further, the resin composition used in the high-pressure polystyrene may be used as long as the object of the present invention is not hindered. Polyolefin resin such as ethylene-vinyl acetate copolymer, ionomer, ethylene-propylene copolymer, etc. Can be done.
尚、 本発明の積層フ ィ ル ムは中間層及び最内層、 最外層の他に前 記の各層の厚 さ の条件を満たす範囲で前記の線状低密度ポ リ ェ チ レ ン樹脂 ( A ) 及び ( B ) 以外の ポ リ オレ フ イ ン系樹脂から成る 中間 層を 1層 または 2層以上含んでいて も良い。 こ の よ う な中間層に用 い ら れる ポ リ ォ レ フ ィ ン系樹脂 と し ては前記の線状低密度ポ リ ェチ レ ン樹脂 ( A ) 及び ( B ) 以外の線状低密度ポ リ エ チ レ ン樹脂、 高 圧法ポ リ エチ レ ン、 エ チ レ ン一プ ロ ピ レ ン共重合体等のポ リ オ レ フ ィ ン樹脂が挙げら れ、 本発明の 目的に支障を来さ ない範囲で 1 種ま たは 2種以上を適宜選択 して用い る こ と が出来る。 In addition, the laminated film of the present invention includes the above-mentioned linear low-density polyethylene resin (A) in a range satisfying the above-described thickness conditions of each layer in addition to the intermediate layer, the innermost layer, and the outermost layer. ) And (B) may contain one or two or more intermediate layers made of a polyolefin resin. As the polyolefin resin used for such an intermediate layer, a linear low-density polyethylene resin (A) and a linear resin other than (B) are used. Polyolefin resins such as high-density polyethylene resins, high-pressure polyethylene resins, and ethylene-propylene copolymers, and the like. One type or two or more types can be appropriately selected and used as long as they do not cause a problem.
そ の他に、 希望によ り 滑剤、 ブロ ッ キ ン グ防止剤、 帯電防止剤、 防曇剤な どの添加剤がそれぞれの有効な作用 を具備させる 目的で適 宜使用す る事がで き、 特に最内層、 最外層の場合有効であ る。 In addition, if desired, additives such as lubricants, antiblocking agents, antistatic agents, and antifogging agents can be used as appropriate for the purpose of achieving their effective effects. This is especially effective for the innermost and outermost layers.
本発明に用い ら れる延伸用原反フ ィ ル ム の製造及び延伸は公知の 方法で行う こ と がで き る が、 以下、 三層積層管状製膜 · 延伸の場合 を例にあ げ、 具体的に説明する。 The production and stretching of the raw film for stretching used in the present invention can be performed by a known method.Hereinafter, a case of three-layer laminated tubular film forming and stretching will be described as an example. This will be specifically described.
まず前記エ チ レ ン と α—ォ レ フ ィ ン と の線状低密度ポ リ エ チ レ ン ( A ) を中間層、 エ チ レ ン と α—才 レ フ イ ン と の線状低密度ポ リ エ チ レ ン ( Β ) を内外層 と な る よ う に 3台の押出機に よ り 溶融混練し、 三層環状ダイ よ り 管状に共押出 し、 延伸する こ と な く 一旦急冷固化 してチ ュ ーブ状未延伸 フ イ ルム を作製す る。
得られたチ ュ ー ブ状未延伸フ イ ル ムを例えば図 1 で示すよ う なチ ユ ー ブラ ー延伸装置に供給 し、 高度の配向可能な温度範囲、 例えば 中間層樹脂の融点以下 1 0 'C、 好ま し く は融点以下 1 5てよ り も低 い温度でチ ュ ー ブ内部に ガ ス圧を適用 して膨脹延伸に よ り 同時二軸 配向を起こ さ せる。 延伸倍率は必ず しも縦横同一でな く て も よ いが、 優れた強度、 収縮率な どの物性を得る ために は縦横何れの方向にも 2倍以上、 好ま し く は 2. 5倍以上、 更に好 ま し く は 3倍以上に延 伸す る のが好適である。 First, the linear low-density polyethylene (A) of the above-mentioned ethylene and α-olefin is placed in the middle layer, and the linear low-density polyethylene of the ethylene and α-yearly refine is formed. The density polyethylene (Β) is melt-kneaded by three extruders so as to become inner and outer layers, and is co-extruded into a tube from a three-layer annular die, and is not stretched once. It is quenched and solidified to produce a tube-shaped unstretched film. The obtained tube-shaped unstretched film is supplied to, for example, a tuber stretching apparatus as shown in FIG. 1 to obtain a highly oriented temperature range, for example, below the melting point of the intermediate layer resin. A gas pressure is applied to the inside of the tube at 0'C, preferably below the melting point and at a temperature lower than 15 to cause simultaneous biaxial orientation by expansion and stretching. The stretching ratio does not have to be the same in both the vertical and horizontal directions.However, in order to obtain physical properties such as excellent strength and shrinkage, it should be at least 2 times in both directions, preferably 2.5 times or more. More preferably, it is stretched three times or more.
延伸装置か ら取 り だ した フ ィ ルム は希望に よ り ァニ ー リ ン グする こ と が出来、 こ の ァユ ー リ ン グに よ り保存中の自然収縮を抑制する こ と が出来る。 図面の簡単な説明 The film removed from the stretching device can be annealed as desired, and this elimination can suppress natural shrinkage during storage. I can do it. BRIEF DESCRIPTION OF THE FIGURES
図 1 は実施例で用い たチ ュー ブラ ー二軸延伸装置を説明する ため の断面図であ る。 FIG. 1 is a cross-sectional view for explaining a tuber biaxial stretching apparatus used in Examples.
図 2は実施例に おいて引張弾性率を算出す る ための、 荷重一変形 曲線を説明す る ための略図であ る。 発明を実施す る ための最良の形態 FIG. 2 is a schematic diagram for explaining a load-deformation curve for calculating a tensile modulus in the example. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明を実施例に よ り 具体的に説明する が本発明はこ れら の実施例に限定される も のではない。 Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.
尚、 本実施例中に示 した諸測定は以下の方法に よ っ た。 In addition, various measurements shown in this example were performed by the following methods.
1 ) 全融解熱量 1) Total heat of fusion
8 ~ 1 O m gの試料を秤量後ア ル ミ パ ン に封入 し、 示差走査熱量 計 ( セ イ コ ー電子 (株) 製 型式 D S C — 1 0 0 ) に て 3 0 m l / 分の窒素気流中で室温から 1 9 O 'Cまで昇温 し、 こ の温度で 3 0分 間保持し、 次いで 1 0て Z分で室温まで冷却する。 こ の後、 昇温速 度 1 0 eC/分で得られ る融解曲線を用い て、 吸熱 ピー ク の面積よ り 融解熱を算出 した。 After weighing a sample of 8 to 1 O mg, enclose the sample in aluminum pan and use a differential scanning calorimeter (Seiko Denshi Co., Ltd., model DSC—100) with a nitrogen flow of 30 ml / min. Then, the temperature is raised from room temperature to 19 O'C in the atmosphere, kept at this temperature for 30 minutes, and then cooled to room temperature in 10 minutes and Z minutes. After this, using a melting curve that obtained in NoboriAtsushisoku degree 1 0 e C / min, was calculated Ri heat of fusion by the area of the endothermic peak.
2 ) 吸熱面積比
前記の融解曲線よ り メ イ ン ピーク温度 (融点) 以上の面積の全吸 熱面積に対する割合を%で示した。 2) Endothermic area ratio From the above melting curve, the ratio of the area above the main peak temperature (melting point) to the total endothermic area was indicated by%.
3 ) 各層の厚さ 3) Thickness of each layer
積層の各層の厚さはフ ィ ルム の断面を顕微鏡で観察する こ と によ り測定した。 The thickness of each layer of the laminate was measured by observing the cross section of the film with a microscope.
4 ) ヘイ ズ 4) Hayes
J I S — K 6 7 1 4に準拠した積分球式光線透過率測定装置を用 い、 散乱光線透過率の平行光線透過率に対する割合を%で示した。 The ratio of the scattered light transmittance to the parallel light transmittance was indicated by% using an integrating sphere light transmittance measuring device conforming to JIS-K6714.
5 ) 面積収縮率 5) Area shrinkage
縦横共 1 0 c mの正方形に切 り と ったフ イ ルムを所定温度のグリ セ リ ン浴中に 1 0秒間浸潰し、 次式によ り算出した。 A film cut into a square of 10 cm in both length and width was immersed in a glycerin bath at a predetermined temperature for 10 seconds, and calculated by the following equation.
面積収縮率 = 1 0 0 - A X B Area shrinkage = 1 0 0-A X B
但し、 A, Bは浸漬後の縦横それぞれの長さ (単位は c m ) を 示す。 However, A and B indicate the vertical and horizontal lengths after immersion (unit: cm).
6 ) 引張弾性率 6) Tensile modulus
フ ィ ル ムサ ン プルよ り M D (縦方向)、 T D (横方向) にそれぞ れ、 幅 1 5 m m X長さ 3 0 0 m mと なる よう に試験片を取り、 厚み を測定する。 Take a test piece with a width of 15 mm and a length of 300 mm each in the MD (vertical direction) and TD (horizontal direction) from the film sample, and measure the thickness.
次いで (株) オ リ エンテ ッ ク製万能型引張試験機に試験片をつか み間隔 5 O m mで装着し、 引張速度 40 mmZ分、 記録紙速度 5 0 O m m /分、 フ ル ス ケ ール 2 k gの条件で測定し、 次式によ り算出 レ Next, the test specimens were gripped on an universal tensile tester manufactured by Orientec Co., Ltd. at an interval of 5 Omm, and the tensile speed was 40 mmZ, the recording paper speed was 50 Omm / min, and the full scale. Measured under the condition of 2 kg and calculated by the following formula.
P P
S S
引張弾性率 ( k g / c m2 ) = Tensile modulus (kg / cm 2) =
Δ L Δ L
L L
但し、 P : フ ルス ケー ル強度 ( k g ) However, P: Full scale strength (kg)
S: フ ィ ル ム の断面積 ( c m2 ) S: Cross-sectional area of the film (cm 2 )
Λ L: 図 2に示す荷重一変形曲線での L 1 から L 2までの 距離 ( m m) L : 試験片のっかみ間隔
7 ) 溶断 シー ル性 Λ L: distance from L 1 to L 2 in the load-deformation curve shown in Fig. 2 (mm) L: gap between test pieces 7) Fusing sealability
協和電気 (株) 製半折自動包装機 (型式 A T— 5 0 0 ) に幅 4 0 O m mの半折 フ ィ ルム を供給し、 縦 2 3. 5 c m、 横 1 5. 5 c m、 高さ 5. 6 c mの弁当箱 ( 2 0 0 g ) を 2 5個/分のス ピー ド で連 続的に 1 0 0個包装し良品率を測定 し、 2 2 0 ' ( 〜 2 5 0 の シー ル温度範囲に おけ る良品率が 1 0 0 %であ る も のを Oと し、 1 0 0 %未満 8 0 %以上のも のを Δ、 8 0 %未満の ものを X と し た。 A half-fold film with a width of 40 O mm was supplied to a half-fold automatic packaging machine (model AT—500) manufactured by Kyowa Electric Co., Ltd., which was 23.5 cm long, 15.5 cm wide, and high. A 5.6 cm lunch box (200 g) is packed continuously at a speed of 25 pieces / min and 100 pieces are measured, and the non-defective rate is measured. If the non-defective rate in the seal temperature range of 100% is 100%, it is O, Δ is less than 100%, 80% or more is X, and X is less than 80%. Was.
尚、 良品率の基準は、 収縮包装後のシ ール部に糸曳 きがな く、 1 m m以上の ピ ン ホールがないも のを良品 と し た。 The criteria for non-defective products were non-defective products that had no stringiness in the seal after shrink wrapping and had no pinholes of 1 mm or more.
又、 予備包装の余裕率は縦 · 横共に 1 3 % と し た。 The margin of spare packaging is set to 13% both vertically and horizontally.
実施例 1 Example 1
表 1 に示すよ う な特性を持つ エ チ レ ン と、 コ モ ノ マー と して 4一 メ チ ルペ ン テ ン一 1 と の共重合体であ る線状低密度ポ リ エ チ レ ン樹 脂を中間層と し、 同様に表 1 に示すよ う な特性を持つエ チ レ ン と ォ ク テ ン一 1 と の共重合体であ る線状低密度ポ リ エ チ レ ン樹脂を内外 層と して 3台の押出機 (中間層用、 最内層用、 最外層用) でそれぞ れ 1 7 0 °C~ 2 4 0 'Cにて溶融混練 し、 表 1 に示す厚み比を想定し て各押出機か ら の押出量を設定 し、 2 4 O 'Cに保っ た 3層環状 ダイ ス よ り 下向き に共押出 した。 Linear low-density polyethylene which is a copolymer of ethylene having the properties shown in Table 1 and 41-methylpentene-11 as a comonomer Low-density polyethylene, which is a copolymer of ethylene and octen-11, also having the properties shown in Table 1 using resin as the intermediate layer The resin was melted and kneaded at 170 ° C to 240 ° C in three extruders (for the middle layer, the innermost layer, and the outermost layer) as the inner and outer layers, respectively, as shown in Table 1. The extrusion amount from each extruder was set assuming the thickness ratio, and co-extrusion was performed downward from a three-layer annular die maintained at 24 O'C.
形成さ れた 3層構成チ ュ ーブを、 内側は冷却水が循環し てい る 円 筒状冷却マ ン ド レ ルの外表面を摺動 させなが ら、 外側は水槽を通す こ と に よ り冷却 し て弓 I き取 り、 直径約 7 5 m m、 厚さ 3 2 0 ^ mの 未延伸フ イ ル ム を得た。 各層の厚み調整は押出機のス ク リ ユ ー回転 数及び引 き取 り 速度を調整する こ と に よ り 行っ た。 こ のチ ュー ブ状 未延伸フ イ ル ム を図 1 に示 した チ ュ ーブ ラー二軸延伸装置に導 き、 9 5〜 1 0 5てで縦横それぞれ 4倍に延伸 し、 積層二軸延伸フ ィ ル ムを得た。 次いで この延伸 フ ィ ルム をチ ユ ー プアユー リ ン グ装置に て 7 5。Cの熱風で 1 0秒間処理 し た後、 室温に冷却し、 折 り 畳んで 巻取っ た。 The formed three-layer tube is used to slide the outer surface of the cylindrical cooling mandrel through which the cooling water circulates on the inside, while passing the water tank on the outside. After further cooling, the bow I was removed to obtain an unstretched film with a diameter of about 75 mm and a thickness of 320 m. The thickness of each layer was adjusted by adjusting the screw rotation speed and the take-up speed of the extruder. This tube-shaped unstretched film is guided to the tube biaxial stretching device shown in Fig. 1 and stretched four times in each of the vertical and horizontal directions at 95 to 105 to form a laminated biaxial film. A stretched film was obtained. Next, this stretched film is put into a chip-availing machine for 75. After being treated with hot air of C for 10 seconds, it was cooled to room temperature, folded and wound.
证伸中の安定性は良好で、 延伸点の上下動や延伸チ ユ ー ブの揺動
も な く、 又、 ネ ッ キ ン グな どの不均一延伸状態も観察 されなか っ た。 得ら れた延伸フ イ ルム は表 1 に示し たよ う な厚み構成を持ち、 透明 性、 低温収縮性に優れ、 引張弾性率が高い も のであ っ た。 又、 半折 自動包装機にて弁当箱の連続実包評価を行つ た と こ ろ、 シ ール部の 不良も な く、 広い温度範囲に於いて良好な包装機適性を有する もの であ っ た。 安定 Good stability during stretching, vertical movement of stretching point and swing of stretching tube No non-uniform stretching state such as necking was observed. The obtained stretched film had a thickness configuration as shown in Table 1, was excellent in transparency and low-temperature shrinkage, and had a high tensile modulus. In addition, when the continuous actual packaging of the lunch box was evaluated using a half-fold automatic packaging machine, it was found that there was no failure in the seal part and that it had good suitability for the packaging machine in a wide temperature range. Was.
実施例 2 Example 2
表 1 に示す樹脂構成にて実施例 1 と同一の方法で熱収縮性積層フ イ ル ム を作製 し た。 得られた延伸フ ィ ル ム は透明性、 低温収縮性に 優れ、 引張弾性率が高い も のであ っ た。 又、 実施例 1 と同様に包装 機適性に優れ る も のであ つ た。 Using the resin composition shown in Table 1, a heat-shrinkable laminated film was produced in the same manner as in Example 1. The obtained stretched film was excellent in transparency and low-temperature shrinkage, and had a high tensile modulus. Also, as in Example 1, it was excellent in suitability for a packaging machine.
実施例 3 Example 3
表 1 に示す樹脂構成にて実施例 1 と同一の方法で熱収縮性積層フ イ ル ム を作製 し た。 内外層に防曇剤 と してス テア リ ン酸モ ノ グ リ セ ラ イ ドを 5 0 0 0 p p m添加し たが、 透明性、 低温収縮性に優れ、 引張弾性率が高 く、 包装機適性に優れた フ ィ ルム であ っ た。 Using the resin composition shown in Table 1, a heat-shrinkable laminated film was produced in the same manner as in Example 1. 500,000 ppm of monoglyceride stearate was added to the inner and outer layers as an anti-fog agent, but it has excellent transparency, low-temperature shrinkage, high tensile modulus, and packaging. It was a film with excellent adaptability.
比較例 1 Comparative Example 1
表 1 に示すよ う に中間層に メ ル ト イ ン デ ッ ク ス が 2. 0 g 1 0 分の線状低密度ポ リ エ チ レ ンを使用 し、 内外層に は実施例 1 の内外 層に用い たも の と 同一の線状低密度ポ リ エ チ レ ン樹脂を使用 し、 実 施例 1 と 同じ条件で押 し出 し、 冷却 して引 き取り、 直径約 7 5 m m、 厚さ 3 2 0 w mの積層未延伸フ イ ル ム原反を得た。 各層の厚み調整 は押出機のス ク リ ユー回転数及び引 き取 り 速度を調整する こ と に よ り行っ た。 As shown in Table 1, linear low-density polyethylene with a melt index of 2.0 g / 10 min was used for the intermediate layer, and the inner and outer layers of Example 1 were used. Using the same linear low-density polyethylene resin as that used for the inner and outer layers, extruded under the same conditions as in Example 1, cooled, pulled off, and had a diameter of about 75 mm A raw material of a laminated unstretched film having a thickness of 320 wm was obtained. The thickness of each layer was adjusted by adjusting the screw rotation speed and take-off speed of the extruder.
こ のチ ュー ブ状未延伸フ ィ ル ムを実施例 1 と同様に図 1 に示 した チ ュ ー ブラー二軸延伸装置に導 き、 9 5 ~ 1 0 5 'Cで縦横それぞれ 4倍に延伸 し、 積層二軸延伸フ ィ ル ムを得た。 次いで こ の延伸 フ ィ ルム をチ ュー プア -一 リ ン グ装 Βにて 7 5 ての熱風で 1 0 秒間処理 した後、 室温に冷却し、 折 り畳んで巻取っ た。 This tube-shaped unstretched film was guided to the tuber biaxial stretching device shown in Fig. 1 in the same manner as in Example 1, and it was quadrupled vertically and horizontally at 95 to 105'C. The film was stretched to obtain a laminated biaxially stretched film. Next, this stretched film was treated with 75 pieces of hot air for 10 seconds in a tube-one-ring apparatus, cooled to room temperature, folded and wound up.
«Ε伸中の安定性は問題な く、 得られた フ ィ ルム は透明性、 低温収
縮性に優れた も の であ つ たが、 引張弾性率は小さ いも のであ っ た。 この フ イ ルム を包装機にかけ包装適性を評価 した と こ ろ、 溶断 シー ルバ一への樹脂付着や糸曳 き は若干は改良 さ れたが、 ビ ン ホールが 発生 し易 く、 シ ー ル性は不十分であ っ た。 «Stability during stretching is not a problem, and the film obtained is transparent and has a low temperature Although it was excellent in shrinkage, it had low tensile modulus. When this film was placed on a packaging machine and evaluated for packaging suitability, resin adhesion and stringing to the fusing sealer were slightly improved, but binholes were liable to occur. Sex was inadequate.
比較例 2 , 3 Comparative Examples 2 and 3
比較例 2の中間層は融解曲線における全融解熱量が 1 3 2. 0 m J Z m g であ り、 1 3 5 m J / m sr以上でない線状低密度ポ リ ェチ レ ン を使用 し、 比較例 3 の中間層は融解曲線における融点以上の吸 熱面積比が 1 1. 0 %であ り、 1 2 %以上でない線状低密度ポ リ エ チ レ ン を使用 し、 内外層に は比較例 2、 3共に実施例 1 と 同じ線状 低密度ボ リ エ チ レ ンを使用 し、 実施例 1 と同様の方法で熱収縮性積 層フ イ ル ムを得た。 The intermediate layer of Comparative Example 2 has a total heat of fusion of 132.0 mJZ mg in the melting curve, and uses a linear low-density polyethylene that is not more than 135 mJ / msr. The intermediate layer of Comparative Example 3 has an endothermic area ratio equal to or higher than the melting point in the melting curve of 11.0%, and uses a linear low-density polyethylene which is not higher than 12%. In both Comparative Examples 2 and 3, the same linear low-density polyethylene was used as in Example 1, and a heat-shrinkable laminated film was obtained in the same manner as in Example 1.
得られた熱収縮性フ ィ ル ムは比較例 2、 3 共に透明性、 低温熱収 縮性に優れた フ イ ルム であ つ たが、 引張弾性率は小さ いも のであつ た。 包装機に よ る実包テ ス ト では、 どち ら も シー ル部に ピ ン ホ ール が発生 しやす く、 シール性が不十分なも のであっ た。 The heat-shrinkable films obtained were both excellent in transparency and low-temperature heat shrinkage in Comparative Examples 2 and 3, but had low tensile modulus. In the actual packaging test using the packaging machine, pinholes were liable to occur in the seals of both, and the sealability was insufficient.
比較例 4 Comparative Example 4
中間層は実施例 1 と 同じ線状低密度ポ リ エ チ レ ン を使用 し、 内外 層は メ ル ト イ ン デ ッ ク ス が 0. 6 8T / 1 0分であ り、 1. 0 ~ 5. 0 S / 1 0分の範囲に ない線状低密度ポ リ エ チ レ ン を使用 し、 実施 例 1 と 同様な方法で熱収縮性積層フ イ ル ムを得た。 得られた フ ィ ル ム は、 低温収縮性に優れ、 引張弾性率の大き いフ ィ ルムであ り、 包 装機に よ る実包テ ス ト でも良好な溶断シ ール性を示すものであ っ た が、 透明性に劣る ものであ っ た。 The middle layer uses the same linear low-density polyethylene as in Example 1, and the inner and outer layers have a melt index of 0.68T / 10 minutes and 1.0. A heat-shrinkable laminated film was obtained in the same manner as in Example 1 by using a linear low-density polyethylene not in the range of 5.0 S / 10 minutes. The resulting film has excellent low-temperature shrinkage and a large tensile modulus, and exhibits good fusing sealability even in actual packaging tests using a packaging machine. There was, however, less transparency.
比較例 5 Comparative Example 5
中間層は実施例 2 と 同 じ線状低密度ポ リ エ チ レ ンを使用 し、 内外 層は融解曲線に おける全融解熱量が 1 2 1 m J Z m gであ り、 1 3 5 ~ 1 6 0 m J Z m g の範囲に ない線状低密度ポ リ ェ チ レ ン を使用 し、 実施例 1 と 同様な方法で熱収縮性積層フ ィ ル ムを得た。 得られ たフ ィ ル ムは、 透明性、 低温収縮性に優れた フ ィ ルム であ つ たが、
引張り弾性率がやや劣り包装機による実包テ ス ト ではヒー ト ナイ フ への樹脂付着、 ヒー ト ナイ フ受け台へのフ イ ルム の粘着な どが認め られ、 シール部に長さ約 3 m mの穴があ く こ ともあ り、 シ ール性が 非常に不安定であ った。 The intermediate layer uses the same linear low-density polyethylene as in Example 2, and the inner and outer layers have a total heat of fusion of 121 mJZ mg in the melting curve, and 135 to 16 A heat-shrinkable laminated film was obtained in the same manner as in Example 1 using a linear low-density polyethylene that was not in the range of 0 mJZ mg. The resulting film was excellent in transparency and low-temperature shrinkage. In the actual packaging test using a packaging machine, the tensile elasticity was slightly inferior, and resin adhesion to the heat knife and adhesion of the film to the heat knife tray were observed, and the length of the seal was about 3 mm. There was a hole in the hole, and the sealability was very unstable.
比較例 6 Comparative Example 6
中間層は実施例 1 と同じ線状低密度ポ リ エ チ レ ンを使用 し、 内外 層は融解曲線における全融解熱量が 1 6 2. 4 m J Z m gであ り、 1 6 O m J / m sr以上の線状低密度ポ リ エ チ レ ンを使用し、 実施例 1 と同様な方法で熱収縮性積層フ ィ ルムを得た。 延伸工程での安定 性が悪 く、 得られたフ ィ ル ムは透明性、 低温収縮性に劣り、 包装機 での実包テス ト ではシール部に シ ヮ が入 り 易い こ と も あ り、 若干の ピ ン ホ ー ルがみられた。 The intermediate layer uses the same linear low-density polyethylene as in Example 1, and the inner and outer layers have a total heat of fusion of 162.4 mJZ mg in the melting curve, and 16 OmJ / A heat-shrinkable laminated film was obtained in the same manner as in Example 1 by using a linear low-density polyethylene of msr or more. The film obtained has poor stability in the stretching process, and the obtained film is inferior in transparency and low-temperature shrinkage.In actual packaging tests using a packaging machine, the seal may be easily sealed. Some pinholes were observed.
比較例 7 Comparative Example 7
中間層の厚さを全体の厚さの 5 0 %の比率にしたこ とを除いては、 実施例 1 ど同じ線状低密度ポ リ エ チ レ ンを中間層、 内外層共に使用 し、 実施例 1 と同様な方法で熱収縮性積層フ ィ ル ムを得た。 得られ たフ ィ ル ムは透明性、 低温収縮性に優れたフ ィ ル ム であつ たが、 シ ール部に若干の ピ ン ホールがみ られ、 シール性が不十分な も のであ つた。 産業上の利用可能性 The same linear low-density polyethylene as in Example 1 was used for both the intermediate layer and the inner and outer layers, except that the thickness of the intermediate layer was set to 50% of the total thickness. A heat-shrinkable laminated film was obtained in the same manner as in Example 1. The resulting film was excellent in transparency and low-temperature shrinkage, but had some pinholes in the seal part and was insufficiently sealable. . Industrial applicability
本発明のポ リ エチ レ ン系熱収縮性積層フ イ ルムは、 各層の原料と して特定の条件を満足する ものを用いて構成しているため、 透明性、 低温収縮性に優れてお り、 更に溶断シー ル時の溶断樹脂の冷却固化 速度が速 く、 且つ、 高い引張弾性率が得られる原料を用いているた め、 包装機適性に優れた収縮フ ィ ル ムを提供する ものである。
表 1 1 The polyethylene-based heat-shrinkable laminated film of the present invention is made of a material that satisfies specific conditions as a raw material for each layer, and therefore has excellent transparency and low-temperature shrinkage. In addition, it provides a shrink film excellent in suitability for packaging machines because it uses a raw material that has a high rate of cooling and solidification of the blown resin at the time of fusing sealing and that can obtain a high tensile modulus. It is. Table 11
表 1一 2 Table 11-2
単位 比較例一 3 比較例一 比較例一 5 比較例- 6 比較例一 7 コモノマー 4ーメ jm τΒΛ ノアノー 1 4ーメチルぺ ノアノー 1 4ーメテルへ ノ τノー 1 4ーメ TflA ノアノー 1 4ーメ ΤΛΛ ノアソ- 1 q Unit Comparative Example 1 3 Comparative Example 1 Comparative Example 1 5 Comparative Example-6 Comparative Example 1 7 Comonomer 4-me jm τΒΛ Noano 14 4-methyl ぺ Noano 14 4-meter Tono τ No 14-me TflA Noano 14 4-me ΤΛΛ Noaso-1q
中 レ 密度 %/ cm3 0.915 0.920 0.9Z0 0.920 間 ジ /"V Medium Les density% / cm 3 0.915 0.920 0.9Z0 0.920 between the di / "V
M l gZIO分 0.8 0.5 0.6 0.5 0.5 est M l gZIO min 0.8 0.5 0.6 0.5 0.5 est
層 ン 融点 c 118.8 124.3 122.5 124.3 124.3 特 全融解熱量 nJ/ ng 136.8 142.7 147.4 142.7 142.7 性 融点以上の吸熱面積比 % 11.0 15.3 13.1 15.3 15.3 厚み比設定 % 75 70 80 70 50 レ コモノ'マー ォゥテン - 1 4-ヌチ) 1 ンテン- 1 4-メチ Α ンテン- 1 ォゥテン- 1 Layer Melting point c 118.8 124.3 122.5 124.3 124.3 Special heat of fusion nJ / ng 136.8 142.7 147.4 142.7 142.7 Endothermic area ratio above melting point% 11.0 15.3 13.1 15.3 15.3 Thickness ratio setting% 75 70 80 70 50 Recorder's weight-1 (4-Nut) 1 content-1 4-methyl-1 content
内 ジ 密度 g/crad 0.920 0.920 0.910 0.930 0.920 外 ン M l gZIO分 1.0 0.6 2.0 0.8 1.0 層 特 全融解熱量 fflj/ fflg 155.7 147,4 120.5 162.4 loo.7 性 融点以上の吸熱面積比 % 12.6 13.1 14.1 13.5 12.6 添加剤 Inner density Density g / cra d 0.920 0.920 0.910 0.930 0.920 Outer M l gZIO content 1.0 0.6 2.0 0.8 1.0 layer Special total heat of fusion fflj / fflg 155.7 147,4 120.5 162.4 loo.7 14.1 13.5 12.6 Additives
厚み比 (内層) % 12.5 15 10 15 25 厚み比 (外層) I C Thickness ratio (inner layer)% 12.5 15 10 15 25 Thickness ratio (outer layer) I C
/ ίά> 0 1 l κo 11 nU lo 25 積 厚み ·中間層 m 15.2 13.8 16.2 14.0 10.2 眉 内層 ur& 2.5 3.1 2.0 2.9 5.1 収 外層 jum 2.4 3.1 1.9 2.9 5.0 縮 ヘイズ % 2.4 5.2 2.5 6.5 2.5 フ 面積収縮率 % 24.8 20.3 28.1 18.9 23.8 ィ 引張弾性率 kg/cnf 2700 3600 2700 3700 3100 ル / ίά> 0 1 l κo 11 nU lo 25 Product Thickness · Middle layer m 15.2 13.8 16.2 14.0 10.2 Eyebrow Inner layer ur & 2.5 3.1 2.0 2.9 5.1 Outer layer jum 2.4 3.1 1.9 2.9 5.0 Shrinkage Haze% 2.4 5.2 2.5 6.5 2.5 F Area shrinkage % 24.8 20.3 28.1 18.9 23.8 Tensile modulus kg / cnf 2700 3600 2700 3700 3100
ム 溶断シール性 X O X 厶 厶
Fusing sealability X O X
Claims
1. ポ リ エ チ レ ン系熱収縮性積層 フ ィ ル ム において、 中間層 と し て密度が 0. 9 1 0一 0. 9 3 0 gr / c m 3 > メ ル ト イ ン デ ッ ク ス が 0. 1 ~ 0. 8 8TZ 1 0分であ り、 且つ、 示差走査熱量計 (以下 D S C と 略す) に よ る 融解曲線において、 1 9 0 'Cにて 3 0分保持 後、 降温速度 1 0て /分で 2 0てま で降温 し、 その後、 昇温速度 1 O 'CZ分で昇温す る と き得られ る融解曲線に おけ る全融解熱量が 1 3 5 m J /m gr以上であ り、 且つ メ イ ン ピー ク温度 (融点) 以上の 吸熱面積が全吸熱面積の 1 2 %以上であ る線状低密度ポ リ エ チ レ ン1. In Po Li et Chi Le emissions-based heat-shrinkable laminated full I le-time, density and the intermediate layer is 0.9 1 0 one 0. 9 3 0 gr / cm 3 > main Le preparative Lee emissions de click Temperature is 0.1 to 0.88 TZ for 10 minutes, and in the melting curve by a differential scanning calorimeter (hereinafter abbreviated as DSC), the temperature is lowered after holding for 30 minutes at 190 ° C. The temperature was lowered to 20 at a rate of 10 / min, and then the total heat of fusion in the melting curve obtained when the temperature was raised at a rate of 1 O'CZ was 135 mJ / linear low-density polyethylene whose endothermic area is at least 12% of the total endothermic area and is not less than mgr and the main peak temperature (melting point) or higher.
( A ) を主成分と する 組成物か ら な る層を少な く と も 1層 と、 密度 が 0. 9 1 0〜0. 9 3 0 grZ c m3 、 メ ル ト イ ン デ ッ ク ス が 0. 8 - 5. O g Z I O分であ り、 且つ、 融解曲線に おけ る全融解熱量 が 1 3 5 ~ 1 6 0 m J Zm srの範囲にあ り、 メ イ ン ビー ク 温度以上 の吸熱面積が全吸熱面積の 1 2 %以上であ る線状低密度ポ リ エ チ レ ン ( B ) を主成分 とす る組成物から なる層を各々最内層及び最外層 と して含むこ と を特徴 とす る ポ リ エ チ レ ン系熱収縮性積層 フ イ ルム。At least one layer composed of a composition containing (A) as a main component, a density of 0.910 to 0.93 grZ cm 3 , and a melt index 0.8 to 5.Og ZIO, and the total heat of fusion in the melting curve is in the range of 135 to 160 mJ Zmsr, and is higher than the main beak temperature. Layers composed of a composition mainly composed of linear low-density polyethylene (B) having an endothermic area of at least 12% of the total endothermic area are included as the innermost layer and the outermost layer, respectively. Polyethylene-based heat-shrinkable laminated film characterized by this.
2. 全層に対す る中間層の厚みが 6 0 %以上であ り、 引張弾性率 が 3 0 0 0 k sr Z c m2 以上、 9 0てに おけ る面積収縮率が 2 0 % 以上であ る こ と を特徴 とす る二軸延伸 し た請求項 1 の ポ リ エ チ レ ン 系熱収縮性積層 フ イ ル ム。 2. Ri Der thickness of the intermediate layer 6 0% or more against the entire thickness, tensile modulus 3 0 0 0 k sr Z cm 2 or more, 9 0 put that area shrinkage hands 2 0% or more The polyethylene-based heat-shrinkable laminated film according to claim 1, wherein the film is biaxially stretched.
3. 線状低密度ポ リ エ チ レ ン (A ) 及び ( B ) がエ チ レ ン と炭素 数 4 ~ 8の α—才 レ フ イ ン と を主成分と する こ と を特徴と する 請求 項 1 の ポ リ エ チ レ ン系熱収縮性積層 フ ィ ルム。
3. The linear low-density polyethylenes (A) and (B) are characterized by having ethylene as the main component and an α-age olefin having 4 to 8 carbon atoms. The polyethylene-based heat-shrinkable laminated film according to claim 1.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002118002A CA2118002C (en) | 1993-11-02 | 1993-11-02 | Heat shrinkable polyethylene laminate film |
PCT/JP1993/001588 WO1995012490A1 (en) | 1993-11-02 | 1993-11-02 | Heat-shrinkable laminated polyethylene film |
US08/313,045 US5635286A (en) | 1991-11-12 | 1993-11-02 | Heat shrinkable polyethylene laminate film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1993/001588 WO1995012490A1 (en) | 1993-11-02 | 1993-11-02 | Heat-shrinkable laminated polyethylene film |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1995012490A1 true WO1995012490A1 (en) | 1995-05-11 |
Family
ID=31317465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1993/001588 WO1995012490A1 (en) | 1991-11-12 | 1993-11-02 | Heat-shrinkable laminated polyethylene film |
Country Status (2)
Country | Link |
---|---|
CA (1) | CA2118002C (en) |
WO (1) | WO1995012490A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LT5038B (en) | 2000-06-14 | 2003-07-25 | CHEMOSVIT, a. s., , | Biaxially oriented polypropylene tobacco film heat shrinkable |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63264349A (en) * | 1987-04-10 | 1988-11-01 | ダブリユー・アール・グレイス・アンド・カンパニー―コネチカット | Flexible expansion film |
JPS6422548A (en) * | 1987-07-17 | 1989-01-25 | Okura Industrial Co Ltd | Heat-shrinkable film |
JPH01301251A (en) * | 1988-05-31 | 1989-12-05 | Kohjin Co Ltd | Polyethylenic heat-shrinkable multilayered film |
JPH03215034A (en) * | 1989-10-09 | 1991-09-20 | Kohjin Co Ltd | Multilayered polyethylene-based stretch shrink film and manufacture thereof |
JPH0418347A (en) * | 1990-05-11 | 1992-01-22 | Kohjin Co Ltd | Polyethylenic heat-shrinkable laminated film |
-
1993
- 1993-11-02 CA CA002118002A patent/CA2118002C/en not_active Expired - Lifetime
- 1993-11-02 WO PCT/JP1993/001588 patent/WO1995012490A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63264349A (en) * | 1987-04-10 | 1988-11-01 | ダブリユー・アール・グレイス・アンド・カンパニー―コネチカット | Flexible expansion film |
JPS6422548A (en) * | 1987-07-17 | 1989-01-25 | Okura Industrial Co Ltd | Heat-shrinkable film |
JPH01301251A (en) * | 1988-05-31 | 1989-12-05 | Kohjin Co Ltd | Polyethylenic heat-shrinkable multilayered film |
JPH03215034A (en) * | 1989-10-09 | 1991-09-20 | Kohjin Co Ltd | Multilayered polyethylene-based stretch shrink film and manufacture thereof |
JPH0418347A (en) * | 1990-05-11 | 1992-01-22 | Kohjin Co Ltd | Polyethylenic heat-shrinkable laminated film |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LT5038B (en) | 2000-06-14 | 2003-07-25 | CHEMOSVIT, a. s., , | Biaxially oriented polypropylene tobacco film heat shrinkable |
Also Published As
Publication number | Publication date |
---|---|
CA2118002A1 (en) | 1995-05-03 |
CA2118002C (en) | 2004-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0450088B1 (en) | Biaxially oriented polyethylene film | |
US3508944A (en) | Biaxially oriented linear highly crystalline polyolefin film coated with a polyolefin coating | |
US4226822A (en) | Biaxially stretched five-layer film and method for manufacture thereof | |
US4495249A (en) | Heat shrinkable multi-layered laminate film | |
US5709932A (en) | Ultra thin heat-shrinkable monolayer polyethylene films | |
US5759675A (en) | Multi-layer stretchable, shrinkable polyethylene film and process for the preparation thereof | |
US5132074A (en) | Process of making stretchable, heat shrinkable polyethylene film | |
US5306549A (en) | Biaxially stretched polyethylene film | |
WO1996009931A1 (en) | Heat-shrinkable polypropylene laminate film | |
JP4429430B2 (en) | Sealant film | |
EP0732196B1 (en) | Heat-shrinkable polyolefin laminate film | |
US5635286A (en) | Heat shrinkable polyethylene laminate film | |
JP3272554B2 (en) | Multilayer polyethylene stretch shrink film and method for producing the same | |
JP2001001468A (en) | Heat-shrinkable multilayered film | |
JP3647568B2 (en) | Stretch shrink film for food packaging and manufacturing method thereof | |
JP3751965B2 (en) | Polyolefin multilayer shrink film | |
WO1995012490A1 (en) | Heat-shrinkable laminated polyethylene film | |
JP2018154803A (en) | Polyethylene film | |
JP3004314B2 (en) | Polyethylene heat-shrinkable laminated film | |
JP5545627B2 (en) | Polyolefin thin film multilayer shrink film | |
JP3068920B2 (en) | Polyethylene heat-shrinkable laminated film | |
AU5607900A (en) | Polymeric film structures useful as shrink bags | |
JP3112553B2 (en) | Multi-layer stretch shrink film | |
JPH01301251A (en) | Polyethylenic heat-shrinkable multilayered film | |
JP3258849B2 (en) | Multilayer polyethylene stretch shrink film and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2118002 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 08313045 Country of ref document: US |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA US |