WO1995010023A1 - Non-destructive inspection method for mechanical behaviour of article - Google Patents
Non-destructive inspection method for mechanical behaviour of article Download PDFInfo
- Publication number
- WO1995010023A1 WO1995010023A1 PCT/JP1993/001423 JP9301423W WO9510023A1 WO 1995010023 A1 WO1995010023 A1 WO 1995010023A1 JP 9301423 W JP9301423 W JP 9301423W WO 9510023 A1 WO9510023 A1 WO 9510023A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inspection object
- displacement
- obtaining
- wave
- plastic deformation
- Prior art date
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims abstract description 61
- 238000006073 displacement reaction Methods 0.000 claims abstract description 80
- 230000001066 destructive effect Effects 0.000 claims abstract description 7
- 230000003287 optical effect Effects 0.000 claims description 26
- 238000012360 testing method Methods 0.000 claims description 22
- 238000003384 imaging method Methods 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 10
- 230000002123 temporal effect Effects 0.000 claims description 4
- 238000009659 non-destructive testing Methods 0.000 claims description 2
- 238000010998 test method Methods 0.000 claims description 2
- 230000033001 locomotion Effects 0.000 abstract description 27
- 238000012544 monitoring process Methods 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 16
- 230000006378 damage Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 239000013598 vector Substances 0.000 description 5
- 230000001427 coherent effect Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005206 flow analysis Methods 0.000 description 1
- 238000012615 high-resolution technique Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
- G01N3/06—Special adaptations of indicating or recording means
- G01N3/068—Special adaptations of indicating or recording means with optical indicating or recording means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
- G01B11/161—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means
- G01B11/162—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means by speckle- or shearing interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0641—Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
- G01N2203/0647—Image analysis
Definitions
- the present invention relates to a method for inspecting materials and structures, and more particularly to a method for non-destructively inspecting the mechanical behavior of a loaded object.
- a coherent laser beam was applied to a loaded object before and after loading to obtain a pair of superimposed speckle patterns, which were then loaded.
- Methods for determining the stress and strain of an object are known.
- the speckle pattern obtained by the above method is converted into a diffraction pattern and subjected to mathematical processing. From the amplitudes obtained by this mathematical process, the stress and strain values at each point of the body undergoing elastic deformation are calculated (see, for example, PCT87 / 07365).
- the above method is not set for the purpose of obtaining the three-dimensional plastic deformation wave, so it cannot be applied to the analysis of the plastic deformation process.
- the stress and strain fields in the elastic region can be calculated from the displacement obtained during the inspection, but the plastic flow analysis cannot be performed. Therefore, the above method is only applied to the evaluation of elastic deformation and is not substantially suitable for analyzing the region of plastic deformation.
- Another drawback of this type of method relates to the problem of applying mechanical property data obtained under laboratory conditions to mechanical parts actually used in the field.
- the mechanical parts or actual machines operating in the field are usually under more complex stress conditions than in the inspection stage.
- the mechanical properties data of actual materials are greatly affected by surface conditions and environment. In consideration of this, even if an attempt is made to take into account the effects of the actual equipment at the inspection stage, only the inspection equipment and the inspection process become very complicated, and under such conditions, appropriate data cannot be obtained. ,.
- the applicant of the present application paid attention to the fact that the characteristics of the wave pattern were strong and characteristically changed when the test object to which the load was applied was close to destruction, and was first submitted on January 19, 1993.
- the effective non-destructive inspection method is disclosed in Japanese Patent Application No. 5—2 3 773 “Non-destructive inspection method of mechanical behavior of object and its device”. In other words, when the test object is close to breaking, the wavelength will be on the order of the sample size, the velocity will be zero, and the waves will be concentrated in two local vortices with opposite angular velocities.
- the wave patterns of plastic deformation at various stages of deformation have a lot of information, and the yield limit, ultimate strength, and processing of plasticity, strength, reliability, and fracture of materials and structures are improved.
- the yield limit, ultimate strength, and processing of plasticity, strength, reliability, and fracture of materials and structures are improved.
- it is extremely important that the judgment conditions for plasticity, strength, and reliability can be handled in a unified manner regardless of the type of plastic material and load conditions. This approach allows plastic deformation and the resulting failure to be treated as different stages of the same process.
- the photographic plate is chemically treated, and the information on the plastic displacement recorded in the photographic plate is decoded by speckle photography point scanning using a fine laser beam. Then, the parameters of the Young band diffraction pattern at each point are measured, and the absolute value of the displacement vector between two irradiations is determined from the band interval.
- the components of the strain tensor for example, the shear component
- the consistent distribution of the plastic strain tensors £ xy and ⁇ z in the body is a relaxation wave of plastic deformation.
- Non-destructive inspection method and apparatus of mechanical behavior of an object a three-dimensional wave of relaxation wave of plastic deformation.
- a non-destructive inspection method and an apparatus for mechanical behavior of an object which can obtain a dynamic pattern and evaluate a rate of change of a plastic strain tensor both during a test and during an operation, are disclosed.
- the present invention has been made in view of the above-mentioned problems of the prior art, and the purpose of the present invention is to solve the above problem even when the object to be inspected moves rigidly at the time of measurement.
- An object of the present invention is to provide a new and improved method capable of performing a nondestructive inspection by a speckle method as described in 37773.
- the displacement position information of the reference point of the inspection object at that point in time is obtained by the second A second step of obtaining by means of:
- the reference position information and the displacement position of the reference point obtained by the second means A third step of superimposing information to obtain a displacement amount of the test object as a rigid body, and the first optical pattern and the second optical pattern obtained by the first imaging means.
- a relaxation wave of plastic deformation which is a temporal and spatial distribution of deformation and rotational displacement speeds due to plastic deformation generated in the inspection object, is characterized.
- a method for non-destructive testing of the mechanical behavior of a loaded object is provided.
- the second optical pattern of the inspection object after a predetermined time has passed from the certain point
- the first optical pattern and the second optical pattern obtained by the above are superimposed, and a diffraction pattern of the total displacement of the inspection object is obtained from the superimposed optical pattern, and the diffraction pattern is obtained.
- a relaxation wave of plastic deformation which is a temporal and spatial distribution of deformation and rotational displacement speeds due to plastic deformation generated in the inspection object, is characterized.
- a non-soil test method for the mechanical behavior of a loaded object is provided.
- the movement of that point is recorded by the second means.
- FIG. 1 shows a configuration of a first inspection apparatus capable of performing the method of the present invention
- FIG. 2 shows a configuration of a second inspection apparatus capable of performing the method of the present invention. ing.
- plastic deformation and the resulting fracture are determined by the deformation of the plastic deformation wave and the change in the rotational displacement velocity field.
- a plastic deformation wave is characterized as the process by which a plastic element event self-focuses into a single wave, referred to herein as a "relaxation wave of plastic deformation”.
- the plastic deformation wave since the plastic deformation wave always appears as a three-dimensional wave on the surface of the object under load, the above-mentioned conditions for determining the fracture based on the zero group velocity of the relaxation wave of the plastic deformation are applied correctly. Therefore, it is essential to measure wave parameters in three-dimensional space.
- the measurement of the wave parameters in the three-dimensional space is realized by superimposing the condensing hologram and processing the superimposed image.
- the present applicant has already proposed in Japanese Patent Application No. 5-237377 a method for nondestructively inspecting the mechanical behavior of an inspection object to which an external load is applied based on this principle. ing.
- the inspection object itself is a static body, and when the inspection object itself performs a rigid body motion such as vibration, the displacement generated in the obtained optical pattern is It was not possible to identify whether the force was due to an externally applied load or to the rigid motion of the test object itself, so it could not be applied.
- the present invention has been made in view of such a problem, and makes it possible to apply the above method even when the inspection object itself is performing a rigid body motion.
- the non-destructive inspection apparatus to which the method of the present invention can be applied comprises an arbitrary pulse laser apparatus 1 capable of irradiating a hologram medium with a predetermined pulse cycle and within 1 second.
- the optical system of this device has two optical paths.
- the first optical path is designed to form a collimated object beam, and comprises a reflecting mirror 2, a semi-transmitting mirror 3, a reflecting mirror 4, a beam expander 5, and a collimating lens 6.
- the second optical path is designed to generate a reference beam and comprises reflectors 2, 3 and reflectors 7, 8 and expander 9.
- the optical system has an objective lens 10 for forming an object pattern on a carrier 11 (for example, a photographic plate) set in a holder (not shown). The holder can be moved in two mutually orthogonal directions for the purposes described below. As described above, a hologram of a focused image can be obtained by irradiating the carrier with light.
- the system has an optical decoder consisting of reflectors 12 and 13 forming a 0.8 mm diameter beam that forms a diffraction pattern on the screen 14 through the hologram.
- the mathematical processing of the hologram obtained on the carrier 11 is performed in a computation unit consisting of an input and an analog / digital signal conversion system 15.
- a digital output video camera can be used as the input and analog Z digital signal conversion system 15.
- the output of system 15 is connected to monitor 16 and to display 17.
- the test apparatus is provided with a second video camera 21 for monitoring the inspection object 19 without any apparent deformation, for example, the chuck portion 20 of the tensile test apparatus.
- the video camera 21 has a flash light source 22.
- the light source 22 is emitted in synchronization with the pulse cycle of the pulse laser 1, and the displacement of the reference point of the inspection object 19 at that time is measured. It is possible.
- the output of the video camera 21 is also connected to the computer 17 where the output from the video camera 15 is output.
- the output of the computer is the wave pattern of plastic deformation, and by observing its behavior, the deformation of the object can be predicted.
- the same wave pattern is reproduced by the plotter 18.
- the pulse laser output from pulse laser 1 is divided into two beams by the optical system.
- the first beam is an object beam, and after collimated, has the role of illuminating the image of the object 19 with a plane wave.
- the second beam is applied to the photographic plate 11 as reference light.
- the intensity ratio of the two beams is empirically selected by a transflective mirror 3 acting as a beam splitter.
- the objective lens system 10 forms an image of the object 19 illuminated by the coherent light on the surface of the photographic plate 11.
- the first exposure is performed on the photographic plate 11 to create a speckle photograph.
- the exposure time is empirically determined.
- a picture of the object is taken by the second camera 21 so that the reference point is included in the screen.
- the photograph by the second camera is not used as a specklegram, it can be a normal photograph, and therefore, it is not necessary to use coherent light as a light source.
- the timings of the first camera 15 and the second camera 21 need to be accurately synchronized.
- a predetermined time ⁇ t (for example, 40 to 80 seconds) elapses, and the object 19 is deformed. (Deformation depends on the applied load, changes in temperature and surrounding conditions, and other factors), and then the first camera 15 and the second camera 21 respectively use the same photo plate on the same photo plate. Perform the exposure of step 2 to create a double exposure photograph.
- the double exposure photograph by the first camera is the power of a spectacle photograph
- the double exposure photograph by the second camera is a normal photograph.
- the total displacement of the object to be inspected is calculated from the double-exposure speckle photograph obtained by the first camera 15 thus obtained.
- This total displacement includes not only the load from the outside (that is, the factor to be measured), but also the rigid motion of the test object itself, such as vibration. Therefore, according to the method of the present invention, the change in the position of the reference point recorded in the double exposure photograph by the second camera further indicates the displacement (vector) caused by the rigid motion of the inspection object itself.
- the displacement due to the rigid body motion is subtracted from the total displacement calculated above. In this way, the displacement amount (vector amount) actually generated on the inspection object due to the deformation can be obtained.
- This series of processes is repeated at a new time interval or at the same time interval ⁇ t.
- the entire process of deformation that actually occurred in the inspection object is obtained from a series of double-exposure holograms of the focused image.
- the data of the velocity values of the displacement vectors at all points on the surface of the inspection object actually generated as a result of the deformation can be obtained from the double exposure holographic image.
- This data can be reconstructed by optically processing the resulting image. If the image is recorded on a photographic plate, first develop and fix the photographic latent image to obtain a negative film. Then, the hologram is placed in a holder and irradiated with the same reference beam used for recording. Along the axis perpendicular to the object surface, an object image consisting of the superposition of equidistant lines is input to the computer 1 by the system 15, and the displacement velocity component (5wZc5t) (in the Z-axis direction) is calculated. Is calculated. The observed image is Monitored on display 16.
- the displacement velocity on the object surface (in the X and y directions) is determined by processing the speckle pattern of the object image.
- the double-exposure image is line-scanned every 1 mm by a thin beam formed by the reflectors 12 and 13.
- a so-called Young band diffraction pattern force is formed at each point.
- This pattern is recorded by the system 15 and digitized and input to the computer.
- the band step d and the tilt angle with respect to the axis X are estimated.
- the tensor component of the plastic deformation rate of the object is calculated by the following equation.
- A is represented as S A ⁇ 5 t
- a ′ is represented as A ⁇ .
- FIG. 1 shows an embodiment to which the method of the present invention is applied when the amount of displacement due to the rigid motion of the inspection object is substantially equal to the amount of displacement due to deformation, that is, when a diffraction pattern can be obtained on the same photographic plate.
- the displacement amount due to the rigid body motion of the inspection object is larger than the displacement amount due to the deformation, that is, when the diffraction pattern cannot be obtained on the same photographic plate. It can also be applied to
- the basic configuration of the inspection device of FIG. 2 is the same as that of the inspection device of FIG. Therefore, components having the same functions are given the same reference numerals, and detailed description thereof will be omitted.
- the photo plate 11 of the inspection apparatus shown in Fig. 2 has a double structure, and the first plate 23 for taking the first speckle photograph and the first plate 23 for taking the second speckle photograph are taken. And a second plate 24.
- the first plate 23 and the second plate 24 are arranged so that the surfaces thereof are in close contact with each other, and are configured to be arbitrarily driven in the X, ⁇ , and ⁇ directions by a driving device (not shown). ing.
- first exposure is performed using a first camera 15 to create a first speckle photograph on a first photographic plate 23.
- a photograph of the inspection object is taken using the second camera 21 so that the reference point is included in the screen.
- the light source may be incoherent.
- a predetermined time ⁇ t for example, 40 to 80 seconds
- the object 19 is deformed.
- the second shooting is performed by the first camera 15 and the second camera 21.
- the speckle photograph by the first camera 15 is not a double-exposure photograph as in the embodiment shown in FIG. It will be an independent second speckle photograph.
- the position of the first camera 15 is fixed without moving.
- an image is taken by the second camera 21, which is created as a double exposure photograph.
- This photograph may be a normal photograph as in the previous embodiment, and need not be a spec photo.
- the displacement caused by the rigid movement of the inspection object itself (based on the change in the position of the reference point recorded in the double exposure photograph by the second camera 21). Is calculated.
- the second camera plate 24 on which the second speckle photograph taken by the first camera 15 has been recorded is placed, and the photo holder 1 (not shown) is inserted into the second camera plate 21 by the second camera 21.
- the inspection object itself is spatially returned by a drive unit (not shown) by an amount of displacement as a rigid body motion obtained from a reference point recorded in the multiple exposure photograph.
- the first speckle photograph taken by the first camera 15 for the first time is converted into a second speckle photograph that has been moved at the initial position of the photo holder 1 so as to offset the amount of displacement due to rigid body motion. Superimpose.
- it is important that the two photographs are closely arranged so that a diffraction pattern can be obtained from the superimposed photograph.
- the difference in spatial position between the first speckle photograph and the second speckle photograph reflects only the amount of displacement due to deformation.
- the two superimposed photographs thus obtained can be decoded in the same manner as in the embodiment shown in FIG. 1 to obtain a young band. Since the decoding method and the analysis method are the same as those described above, a detailed description is omitted here.
- the method of the present invention is applied to the case where the displacement amount due to the rigid motion of the inspection object is approximately the same as the displacement amount due to the force deformation and the displacement amount due to the rigid motion is larger than the displacement amount due to the deformation.
- the displacement amount due to the rigid movement can be offset, so that the speckle method is used. It is suitable for performing non-destructive inspection of the mechanical behavior of an object more easily.
- the method of the present invention can be applied to a machine under load such as a pressure vessel, a pipeline, a load structure, a power plant, various devices of a power plant, a chemical reactor, a steam boiler, a turbine, and a housing of an engine. It can be applied to the analysis of stress Z strain state of structures, structures and various devices. Further, the method and apparatus of the present invention are useful for research on the analysis of the mechanism of plastic deformation and fracture, evaluation of the reliability of new materials, and evaluation of the maximum allowable load.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
This invention contemplates to provide a method of executing a non-destructive inspection by a speckle method even when an object of inspection has rigid-body motion. The present invention uses a first camera (15) for measuring the total displacement quantity of an object and a second camera (21) for measuring the displacement quantity of the object due to a rigid-body motion by monitoring a reference point in the object. The displacement quantity due to rigid motion is subtracted from the total displacement quantity to obtain a displacement quantity reflecting only the displacement quantity resulting from deformation as a speckle pattern. The method of the present invention can obtain only the displacement quantity resulting from deformation by offsetting the displacement quantity of the object due to a rigid-body motion.
Description
明 細 書 物体の機械的挙動の非破壊検査方法 (技 術 分 野) Description Nondestructive inspection method for mechanical behavior of objects (Technical field)
本発明は材料および構造体の検査方法に関し、 特に、 負荷が加えられた物体の 機械的挙動の非破壊検査方法に関する。 The present invention relates to a method for inspecting materials and structures, and more particularly to a method for non-destructively inspecting the mechanical behavior of a loaded object.
(背 景 技 術) (Background technology)
従来より、 負荷のかけられた物体に対して、 負荷のかかる前後にコヒ一レント なレ一ザ一光を照射して一対の重畳されたスペックルパターンを得て、 それより 負荷のかけられた物体の応力とひずみを決定する方法が知られている。 この方法 では、 上記方法により得られたスペックルパターンが回折パターンに変換され、 数学的処理が施される。 この数学的処理により得られた振幅から、 弾性変形を起 こしている物体の各点の応力およびひずみの値が計算される (例えば、 P C T 8 7 / 0 7 3 6 5を参照のこと) 。 Conventionally, a coherent laser beam was applied to a loaded object before and after loading to obtain a pair of superimposed speckle patterns, which were then loaded. Methods for determining the stress and strain of an object are known. In this method, the speckle pattern obtained by the above method is converted into a diffraction pattern and subjected to mathematical processing. From the amplitudes obtained by this mathematical process, the stress and strain values at each point of the body undergoing elastic deformation are calculated (see, for example, PCT87 / 07365).
しかし上記方法は、 3次元の塑性変形波を得る目的で設定されていないため、 塑性変形過程の解析には適用できない。 つまり、 検査中に得られた変位から弾性 領域の応力、 およびひずみの場を計算することはできるが、 塑性流れの解析は行 えない。 従って、 上記方法は、 単に弾性変形の評価に適用されるのみで、 塑性変 形の領域を解析するには実質的に適さない。 However, the above method is not set for the purpose of obtaining the three-dimensional plastic deformation wave, so it cannot be applied to the analysis of the plastic deformation process. In other words, the stress and strain fields in the elastic region can be calculated from the displacement obtained during the inspection, but the plastic flow analysis cannot be performed. Therefore, the above method is only applied to the evaluation of elastic deformation and is not substantially suitable for analyzing the region of plastic deformation.
一方、 変形の動力学は、 特に物体の機 «的挙動の非破壊検査を中心とする各種 の応用分野において極めて重要である。 というのも、 全ての場合、 外部から負荷 が加えられた材料の破壊に先だって、 材料内に局所的な塑性変形が生じるからで
ある。 従って、 塑性変形のダイナミクスに関する問題に対する適切なアプローチ がないことが、 長年問題とされていた。 On the other hand, the dynamics of deformation is extremely important in various application fields, especially for non-destructive inspection of mechanical behavior of an object. In all cases, local plastic deformation occurs in the material prior to the fracture of the externally loaded material. is there. Therefore, the lack of an appropriate approach to the problem of plastic deformation dynamics has long been a problem.
上記以外の従来の方法として、 種々の塑性変形の材料内での塑性流れの実際の 過程および破壊への寄与を明らかにするものがある ( 「実験力学ハンドブック」 、 エイ .エス ' コバヤシ編、 プレンティス 'ホール社、 1 9 8 7年 ( Handbook on Experimental mechanics, Ed. by A. S. Kobayashi Prentice - Hall Inc. 19 Other conventional methods, such as those that clarify the contribution of various plastic deformations to the actual process and fracture of plastic flow in materials ("Experimental Mechanics Handbook", edited by AS Kobayashi, Plenty Su Hall, 1987 (Handbook on Experimental mechanics, Ed. By AS Kobayashi Prentice-Hall Inc. 19
87) を参照のこと) 。 これらの方法は、 全て変形の生じた材料の欠陥構造の顕微 鏡的観察に基づく ものであり、 一般に負荷を取り除いた後に実行される。 これら の方法では、 光学顕微鏡、 電子顕微鏡、 X線構造解析、 種々の微視的機械法など の多くの手法が用いられている。 87)). These methods are all based on microscopic observation of the defect structure of the deformed material and are generally performed after the load has been removed. Many of these methods use optical microscopy, electron microscopy, X-ray structural analysis, and various micromechanical methods.
しかし、 これらの方法は、 多大な労力を要する、 複雑な装置を必要とする、 高 分解能な手法を用いるため検査領域の極端な局所化が要求される、 などの欠点を 持つ。 そして最大の欠点として、 これらの方法では、 材料に残存する欠陥にしか 適用できず、 欠陥の発生や運動を解析できない。 However, these methods have drawbacks such as requiring a great deal of labor, requiring complicated equipment, and requiring extremely localization of the inspection area due to the use of a high-resolution technique. The biggest drawback is that these methods can only be applied to defects remaining in the material, and cannot analyze the occurrence and motion of defects.
材料の信頼性の指標に関するデータを得るために最も広く採用されている方法 (例えば、 アール .エイ · コラコット著 「構造上の保全性監視」 ロンドン、 チヤ ップマン ·アンド 'ホール、 1 9 8 5年 (Collacott R. A. "Structual Integrity Monitoring", London, Chapman and Hall, 1985) を参照のこと) は、 種々の 負荷条件 (引っ張り、 圧縮、 曲げ、 ねじり、 クラック試料試験他) における機械 的試験から成り、 極限弾性、 降伏限界、 極限強さ、 応力強度係数、 破壊じん性、 極限疲労および長時間強度などの特性が得られる。 The most widely adopted method for obtaining data on material reliability indicators (see, e.g., R. A. Collakot, Structural Integrity Monitoring, London, Chipman and Hall, 1985) (See Collacott RA "Structual Integrity Monitoring", London, Chapman and Hall, 1985) consists of mechanical testing under various loading conditions (tension, compression, bending, torsion, crack sample testing, etc.) Properties such as elasticity, yield limit, ultimate strength, stress strength coefficient, fracture toughness, ultimate fatigue and long-term strength can be obtained.
これらの試験は、 一般的に、 特別に準備され予め調整された形状、 寸法の試料 で行われる。 こうして得られる強度および塑性データは、 機械部品や構造物の強 度計算、 並びに信頼性の特性の計算に用いられる。
この種の方法は、 各検査項目毎に、 特殊な機械的特性や破壊の判断基準の組合 わせを用いる必要があるという点で問題がある。 すなわち、 種々の検査項目に対 するこれらの特性は、 互いに関連性を持っておらず、 それらの物理的解釈は、 多 くの互し、に矛盾し、 しばしば互 、を排斥し合うモデルに基づし、て行われる。 These tests are generally performed on specially prepared and pre-adjusted samples of shape and dimensions. The strength and plasticity data obtained in this way are used to calculate the strength of mechanical parts and structures, as well as to calculate reliability characteristics. This type of method is problematic in that it requires the use of a combination of special mechanical properties and failure criteria for each test item. That is, these properties for the various test items are not related to each other, and their physical interpretations are based on models that contradict and often exclude each other. It is done.
この種の方法のもう一つの欠点は、 実験室条件で得られた機械特性デ一タを現 場で実際に使用されている機械部品に適用する際の問題に関連している。 すなわ ち、 現場で操業されている機械部品、 または実機は、 検査段階よりも、 通常、 複 雑な応力状態におかれている。 さらに、 実機の材料の機械特性データは、 表面状 態や環境に大きく影響される。 これを考慮して、 検査段階で実機の受ける影響を 考慮に入れようとしても、 検査装置および検査過程が非常に複雑になるのみで、 そのような条件下では適切なデ一タは得られな 、。 Another drawback of this type of method relates to the problem of applying mechanical property data obtained under laboratory conditions to mechanical parts actually used in the field. In other words, the mechanical parts or actual machines operating in the field are usually under more complex stress conditions than in the inspection stage. In addition, the mechanical properties data of actual materials are greatly affected by surface conditions and environment. In consideration of this, even if an attempt is made to take into account the effects of the actual equipment at the inspection stage, only the inspection equipment and the inspection process become very complicated, and under such conditions, appropriate data cannot be obtained. ,.
最後に、 上記の検査によって得られる機械特性は、 本質的に検査試料全体で平 均化された値となる。 これは、 特殊な境界面を持つ多結晶体や異なる弾性係数や 強度特性を持つ複合材料の特性を記述しょうとする際問題となる。 Finally, the mechanical properties obtained by the above inspection are essentially averaged over the entire test sample. This poses a problem when trying to describe the properties of polycrystals with special interfaces or composites with different elastic moduli and strength properties.
これら既存の塑性材料試験法のすべてに共通な問題点のひとつは、 これらの試 験法が塑性変形の進展過程を適切に記録できず、 従って、 将来発生する破壊の位 置を予測することができないことである。 One of the problems common to all of these existing plastic material testing methods is that they do not adequately record the evolution of plastic deformation and therefore predict the location of future fractures. That is not possible.
上記のような問題の解決には、 変形の動力学を局所的に解析し、 特に、 種々の 負荷条件下での実機の挙動を予測できる、 根本的に新し t、塑性変形の解析法を確 立することが必要である。 In order to solve the above-mentioned problems, a new and fundamentally new plastic deformation analysis method that can locally analyze the dynamics of deformation and predict the behavior of the actual machine under various load conditions is proposed. It needs to be established.
本願出願人は、 そのような新し 、解析法の基本となる理論体系を確立している (例えば、 「塑性変形および破壊の構造レベル」、 ヴィ 'ィ一 'パニン他、 ボボ シビルスク、 ナウ力、 1 9 9 0年 ( "Structual levels of plastic strain and destruction", V. E. Paninn et al, Bovosibirsk, Nauka, 1990) を参照のこと) 。
この物体の機械的挙動の解析方法の本質は、 塑性変形の波動理論に基礎を置 ^、て いる。 この波動理論によれば、 塑性変形およびその結果として生じる破壊は、 波 動性を持っており、 その波動のパラメ一夕 (波長、 振幅、 伝搬速度) カ、 その時 点での材料の特性および負荷条件に依存している。 これらの波動パラメータが変 化するということは、 材料に構造的な変化が生じたことを示すことになる。 The present applicant has established such a new theoretical system which is the basis of the analytical method (for example, "Structural level of plastic deformation and fracture", Vyi-I-Panin et al., Bobo Sibirsk, Now force 1990, (see "Structual levels of plastic strain and destruction", VE Paninn et al, Bovosibirsk, Nauka, 1990). The essence of this method of analyzing the mechanical behavior of a body is based on the wave theory of plastic deformation. According to this wave theory, plastic deformation and the resulting destruction are wave-like, and their parameters (wavelength, amplitude, propagation velocity), material properties and load at that time Depends on conditions. Changes in these wave parameters indicate that a structural change has occurred in the material.
また、 本願出願人は、 負荷が加えられた検査対象が破壊に近い状態になると波 動パターンの特性力く、 特徴的に変化することに着目し、 先に平成 5年 1月 1 9日 提出の特願平 5— 2 3 7 7 3号 「物体の機械的挙動の非破壊検査方法およびその 装置」 において有効な非破壊検査方法を開示している。 すなわち、 検査対象が破 壊に近い状態になると、 波長が試料の大きさと同程度になり、 速度がゼロとなる 上、 波が二つの互いに反対の角速度を有する局所的な渦に集約される。 これによ り、 変形の種々の段階における塑性変形の波動パターンは多くの情報を持つこと になり、 材料および構造物の塑性、 強度、 信頼性、 破壊に関して、 降伏限界、 極 限強さ、 加工硬化係数など従来用いられていた機械特性とは異なる、 新しい判定 条件を与える。 その際、 塑性、 強度、 および信頼性の判定条件が、 塑性材料の種 類や負荷の条件にらず、 統一的に扱えることが極めて重要となる。 かかる手法に より、 塑性変形とその結果生じる破壊を同一の過程の異なる段階として扱うこと が可能となる。 In addition, the applicant of the present application paid attention to the fact that the characteristics of the wave pattern were strong and characteristically changed when the test object to which the load was applied was close to destruction, and was first submitted on January 19, 1993. The effective non-destructive inspection method is disclosed in Japanese Patent Application No. 5—2 3 773 “Non-destructive inspection method of mechanical behavior of object and its device”. In other words, when the test object is close to breaking, the wavelength will be on the order of the sample size, the velocity will be zero, and the waves will be concentrated in two local vortices with opposite angular velocities. As a result, the wave patterns of plastic deformation at various stages of deformation have a lot of information, and the yield limit, ultimate strength, and processing of plasticity, strength, reliability, and fracture of materials and structures are improved. Gives new judgment conditions that are different from the conventionally used mechanical characteristics such as the curing coefficient. At that time, it is extremely important that the judgment conditions for plasticity, strength, and reliability can be handled in a unified manner regardless of the type of plastic material and load conditions. This approach allows plastic deformation and the resulting failure to be treated as different stages of the same process.
上記の 「塑性変形および破壊の構造レベル」 、 ヴィ 'ィー 'パニン他、 ボボシ ビルスク、 ナウ力、 1 9 9 0年 ( "S uctual levels of plastic strain and destruction", V. E. Pan in et al, . Novosibirsk, Nauka, 1990) 」 に言己 ¾されて いるように、 本発明者らは、 塑性変形の波動性を見い出し、 それを理論的に体系 づけると共に、 単純な負荷に対する実験的考察も行っている。 この方法によれば、 解析を行おうとする物体をコヒ一レン卜なレーザー光で照射し、 写真プレー卜に
写す。 そして、 物体に変形が起こった後に写真プレート上に同プレートを動かさ ずに第 2の照射を行う。 しかる後に写真プレートを化学的に処理し、 同写真に記 録された塑性変位の情報を細かいレーザービームを用いてスペックルホトグラフ ィ一の点走査によってデコードする。 そして、 各点のヤングバンド回折パターン のパラメ一夕を測定し、 バンドの間隔より 2回の照射の間の変位べクトルの絶対 値が決定される。 "Structural levels of plastic deformation and fracture," Vyi Panin et al., Bobosi Birsk, Now Power, 1990 ("Suctual levels of plastic strain and destruction", VE Pan in et al,. (Novosibirsk, Nauka, 1990) '', the present inventors found the wave nature of plastic deformation, systematized it theoretically, and conducted experimental studies on simple loads. I have. According to this method, an object to be analyzed is irradiated with a coherent laser beam, and is applied to a photographic plate. Copy. Then, after the object is deformed, the second irradiation is performed on the photographic plate without moving the plate. Thereafter, the photographic plate is chemically treated, and the information on the plastic displacement recorded in the photographic plate is decoded by speckle photography point scanning using a fine laser beam. Then, the parameters of the Young band diffraction pattern at each point are measured, and the absolute value of the displacement vector between two irradiations is determined from the band interval.
さらに座標軸に関する空間的な微分をとることによりひずみテンソルの成分、 例えば、 剪断成分、 Furthermore, by taking the spatial derivative with respect to the coordinate axes, the components of the strain tensor, for example, the shear component,
£ xy = l / 2 ( Δ u / Δ y + Δ ν / Δ x ) £ xy = l / 2 (Δ u / Δ y + Δ ν / Δ x)
および回転変位 And rotational displacement
ω z = 1 / 2 ( Δ u Ζ Δ y—△ ν Ζ Δ χ ) ω z = 1/2 (Δ u Ζ Δ y— △ ν Ζ Δ χ)
が得られる。 Is obtained.
物体内での塑性ひずみテンソル £ xy、 ω zのつじつまの合う分布は、 塑性変 形の緩和波となる。 The consistent distribution of the plastic strain tensors £ xy and ωz in the body is a relaxation wave of plastic deformation.
波動パラメータを解析することにより物体の破壊を予見するという考え方は、 上記の 「塑性変形および破壊の構造レベル」 、 ヴィ 'ィー 'パニン他、 ボボシビ ノレスク、 ナウ力、 1 9 9 0年 ( "Structual levels of plastic strain and destruction", V. E. Panin et al, . Novosibirsk, Nauka, 1990) に示唆されてい る。 しかし、 同書が書かれた時点では、 塑性変形の緩和波が変形の度合いと共に 進展していく際の法則性や、 変形とそれにより発生する破壊の関係についての研 究はなされていなかった。 また、 種々の負荷条件下での波動パラメータによる破 壊の判定条件の定量化は確立されていなかった。 従って、 その時点においては、 波動パターンを解析することによって負荷のかかった物体の挙動を非破壊的に検 査することは不可能であつた。
この点に鑑み、 本件出願人は、 前出の特願平 5— 2 3 7 7 3号「物体の機械的 挙動の非破壊検査方法およびその装置」 において、 塑性変形の緩和波の 3次元波 動パターンを得て、 塑性ひずみテンソルの変化率をテスト時、 および動作時のい ずれにおいても評価できる物体の機械的挙動の非破壊検査方法およびその装置を 開示している。 The idea of predicting the destruction of an object by analyzing wave parameters is based on the above-mentioned "structural level of plastic deformation and destruction", Vyi Panin et al., Bobosibi Norescu, Now Force, 1990 (" Structual levels of plastic strain and destruction ", VE Panin et al., Novosibirsk, Nauka, 1990). However, at the time of this writing, no study had been made on the law of the relaxation wave of plastic deformation evolving with the degree of deformation, nor on the relationship between deformation and the resulting fracture. In addition, the quantification of the criterion for destruction by wave parameters under various load conditions has not been established. Therefore, at that time, it was not possible to nondestructively examine the behavior of the loaded object by analyzing the wave pattern. In view of this point, the applicant of the present application disclosed in Japanese Patent Application No. 5-237377 “Non-destructive inspection method and apparatus of mechanical behavior of an object”, a three-dimensional wave of relaxation wave of plastic deformation. A non-destructive inspection method and an apparatus for mechanical behavior of an object, which can obtain a dynamic pattern and evaluate a rate of change of a plastic strain tensor both during a test and during an operation, are disclosed.
しかしながら、 特願平 5— 2 3 7 7 3号記載の方法により物体の機械的挙動の 非破壊検査を実施した場合、 検查対象物が剛体として運動してしまうと、 スぺッ クル法によって測定される各点の変位が変形によるものか区別がつかなくなつて しまう。 したがって、 エンジンなどのように測定時に検査対象物が剛体運動を起 こす場合には、 上記方法を適用することはできなかった。 However, when the nondestructive inspection of the mechanical behavior of an object is performed by the method described in Japanese Patent Application No. 5-237373, if the object to be inspected moves as a rigid body, It becomes impossible to distinguish whether the displacement of each point measured is due to deformation. Therefore, the above method could not be applied to the case where the object to be inspected caused a rigid body motion during measurement, such as an engine.
本発明は従来技術の有する上記のような問題点に鑑みなされたもので、 その目 的とするところは、 測定時に検査対象物が剛体運動を起こす場合であっても、 特 願平 5 _ 2 3 7 7 3号に記載されているようなスペックル法による非破壊検査を 実施することが可能な、 新規かつ改良された方法を提供することである。 The present invention has been made in view of the above-mentioned problems of the prior art, and the purpose of the present invention is to solve the above problem even when the object to be inspected moves rigidly at the time of measurement. An object of the present invention is to provide a new and improved method capable of performing a nondestructive inspection by a speckle method as described in 37773.
(発 明 の 開 示) (Disclosure of the invention)
上記課題を解決するために、 本発明の第 1の観点によれば、 To solve the above problems, according to a first aspect of the present invention,
外部から負荷が加えられる検査対象物のある時点における第 1の光学パターン を第 1の撮像手段により得ると同時に、 同検査対象物の参照点の基準位置情報を 第 2の手段により得る第 1ステップと; A first step of obtaining a first optical pattern of an inspection object to which a load is applied from the outside at a certain point in time by the first imaging means, and obtaining reference position information of a reference point of the inspection object by the second means; When;
前記ある時点から所定時間経過後の前記検査対象物の第 2の光学パターンを前 記第 1の撮像手段により得ると同時に、 その時点の同検査対象物の参照点の変位 位置情報を前記第 2の手段により得る第 2ステップと; At the same time as obtaining the second optical pattern of the inspection object after a lapse of a predetermined time from the certain point in time by the first imaging means, the displacement position information of the reference point of the inspection object at that point in time is obtained by the second A second step of obtaining by means of:
前記第 2の手段により得られた前記参照点の前記基準位置情報と前記変位位置
情報とを重畳して、 前記検査対象物の剛体としての変位量を得る第 3ステップと 前記第 1の撮像手段により得られた前記第 1の光学パターンと前記第 2の光学 パタ一ンとを予め前記第 3ステツプで得た前記対象物の剛体としての変位量分だ け相殺した後重畳する第 4ステップと ; The reference position information and the displacement position of the reference point obtained by the second means A third step of superimposing information to obtain a displacement amount of the test object as a rigid body, and the first optical pattern and the second optical pattern obtained by the first imaging means. A fourth step of superimposing and superimposing the displacement of the object as a rigid body obtained in the third step in advance, and canceling the displacement;
前記第 4ステップで得られた重畳パターンから、 前記検査対象物の塑性変形を 特徴づけるパラメータを含む回折パターンを得る第 5ステップと ; A fifth step of obtaining a diffraction pattern including a parameter characterizing plastic deformation of the inspection object from the superimposed pattern obtained in the fourth step;
前記第 5ステップで得られた回折パターンから、 外部から負荷を加えられた前 記検査対象物に生じた塑性変形による塑性流れを特徴づけるパラメータを得る第 6ステップと ; A sixth step of obtaining, from the diffraction pattern obtained in the fifth step, a parameter characterizing a plastic flow due to plastic deformation generated in the inspection object subjected to an external load;
前記第 6ステツプで得られたパラメータを処理することにより、 前記検査対象 物に生じた塑性変形による変形および回転変位の速度の時間的および空間的な分 布である、 塑性変形の緩和波を特徴づける波動パラメータを含む波動パターンを 得る第 7ステップと ; By processing the parameters obtained in the sixth step, a relaxation wave of plastic deformation, which is a temporal and spatial distribution of deformation and rotational displacement speeds due to plastic deformation generated in the inspection object, is characterized. A seventh step of obtaining a wave pattern including wave parameters to be added;
前記第 7ステップで得られた波動パタ一ンに表れる所定の変化に基づ 、て、 外 部から負荷を加えられた前記検査対象物の機械的挙動を判定する第 8ステップと から成ることを特徴とする、 負荷が加えられた物体の機械的挙動の非破壊試験 方法が提供される。 An eighth step of determining the mechanical behavior of the inspection object loaded from outside based on a predetermined change appearing in the wave pattern obtained in the seventh step. A method for non-destructive testing of the mechanical behavior of a loaded object is provided.
さらにまた本発明の第 2の観点によれば、 Furthermore, according to a second aspect of the present invention,
外部から負荷が加えられる検査対象物のある時点における第 1の光学パターン を第 1の撮像手段により得ると同時に、 同検査対象物の参照点の基準位置情報を 第 2の手段により得る第 1ステップと ; A first step of obtaining a first optical pattern of an inspection object to which a load is applied from the outside at a certain point in time by the first imaging means, and obtaining reference position information of a reference point of the inspection object by the second means; When ;
前記ある時点から所定時間経過後の前記検査対象物の第 2の光学バタ一ンを前
記第 1の撮像手段により得ると同時に、 その時点の同検査対象物の参照点の変位 位置情報を前記第 2の手段により得る第 2ステップと ; The second optical pattern of the inspection object after a predetermined time has passed from the certain point A second step of obtaining the displacement position information of the reference point of the inspection object at that time by the second means at the same time as obtaining by the first imaging means;
前記第 2の手段により得られた前記参照点の前記基準位置情報と前記変位位置 情報とを重畳して、 前記検査対象物の剛体としての変位量を得る第 3ステップと 前記第 1の撮像手段により得られた前記第 1の光学パターンと前記第 2の光学 バタ一ンとを重畳し、 その重畳光学バタ一ンから前記検査対象物の総変位量の回 折パターンを得て、 その回折パターンから前記検査対象物の総変位量を得る第 4 ステップと ; A third step of superimposing the reference position information and the displacement position information of the reference point obtained by the second means to obtain a displacement amount of the test object as a rigid body, and the first imaging means The first optical pattern and the second optical pattern obtained by the above are superimposed, and a diffraction pattern of the total displacement of the inspection object is obtained from the superimposed optical pattern, and the diffraction pattern is obtained. A fourth step of obtaining the total displacement of the inspection object from
前記第 4ステツプで得られた前記検査対象物の総変位量から前記第 3ステップ で得られた前記検査対象物の剛体としての変位量を相殺する第 5ステップと ; 前記第 5ステップで得られた前記検査対象物の剛体としての変位量が相殺され た前記検査対象物の塑性変形による変位量から、 外部から負荷を加えられた前記 検査対象物に生じた塑性変形による塑性流れを特徴づけるパラメータを得る第 6 ステップと ; A fifth step of canceling the rigid displacement of the inspection object obtained in the third step from the total displacement amount of the inspection object obtained in the fourth step; obtained in the fifth step A parameter characterizing the plastic flow due to the plastic deformation generated in the inspection object to which an external load is applied, from the displacement amount due to the plastic deformation of the inspection object in which the displacement amount of the inspection object as a rigid body is offset. The sixth step of obtaining
前記第 6ステツプで得られたパラメータを処理することにより、 前記検査対象 物に生じた塑性変形による変形および回転変位の速度の時間的および空間的な分 布である、 塑性変形の緩和波を特徴づける波動パラメータを含む波動パターンを 得る第 7ステップと ; By processing the parameters obtained in the sixth step, a relaxation wave of plastic deformation, which is a temporal and spatial distribution of deformation and rotational displacement speeds due to plastic deformation generated in the inspection object, is characterized. A seventh step of obtaining a wave pattern including wave parameters to be added;
前記第 7ステツプで得られた波動パターンに表れる所定の変化に基づ 、て、 外 部から負荷を加えられた前記検査対象物の機械的挙動を判定する第 8ステップと から成ることを特徴とする、 負荷が加えられた物体の機械的挙動の非破壤試験 方法が提供される。
以上のように、 本発明によれば、 検査対象物において明らかに変形を起こさな い点、 例えば引っ張り試験装置のチャック部分を参照点として、 その点の運動が 第 2の手段により記録され、 第 1の撮像手段により測定された検査対象物の変位 量からその分を差し引くことにより、 測定時に検査対象物に生じた剛体運動によ る変位量を相殺することが可能である。 その結果、 振動するエンジンなどのよう に測定時に剛体運動を生じる検査対象物に対しても、 特願平 5— 2 3 7 7 3号に 記載のスぺックル法による非破壊試験を適用することが可能となる。 An eighth step of determining the mechanical behavior of the test object loaded from outside based on a predetermined change appearing in the wave pattern obtained in the seventh step. A non-soil test method for the mechanical behavior of a loaded object is provided. As described above, according to the present invention, with respect to a point at which no apparent deformation occurs in the inspection object, for example, with the chuck portion of the tensile test device as a reference point, the movement of that point is recorded by the second means, By subtracting that amount from the displacement amount of the inspection object measured by the first imaging means, it is possible to offset the displacement amount due to the rigid body motion generated in the inspection object at the time of measurement. As a result, the nondestructive test using the speckle method described in Japanese Patent Application No. 5-237377 should be applied to inspection objects that generate rigid body motion during measurement, such as vibrating engines. Becomes possible.
(図面の簡単な説明) (Brief description of drawings)
以下添付図面に基づ 、て本発明に基づし、て構成された非破壊試験の公的な実施 例について説明する。 A description will now be given, with reference to the accompanying drawings, of a public example of a nondestructive test constructed based on the present invention.
なお添付図面中、 第 1図は、 本発明方法を実施可能な第 1の検査装置の構成を 示していおり、 第 2図は、 本発明方法を実施可能な第 2の検査装置の構成を示し ている。 In the accompanying drawings, FIG. 1 shows a configuration of a first inspection apparatus capable of performing the method of the present invention, and FIG. 2 shows a configuration of a second inspection apparatus capable of performing the method of the present invention. ing.
(発明を実施するための最良の形態) (Best mode for carrying out the invention)
以下に本発明の好適な実施例について添付図面を参照しながら説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
まず、 本発明方法の理解を容易にするために、 本発明が基づくところのスぺッ クル法による物体の機械的挙動の非破壊試験の原理について簡単に説明する。 この原理によれば、 塑性変形とそれに起因する破壊は、 塑性変形波の変形およ び回転変位の速度場の変化により決定される。 塑性変形波は、 塑性の要素事象が、 本明細書において 「塑性変形の緩和波」 と称する単一の波動に自己集束していく 過程として特徴づけられる。 First, in order to facilitate understanding of the method of the present invention, the principle of a nondestructive test of the mechanical behavior of an object by the scattering method on which the present invention is based will be briefly described. According to this principle, plastic deformation and the resulting fracture are determined by the deformation of the plastic deformation wave and the change in the rotational displacement velocity field. A plastic deformation wave is characterized as the process by which a plastic element event self-focuses into a single wave, referred to herein as a "relaxation wave of plastic deformation".
塑性変形の緩和波の群速度が減少してゼロになると、 その結果として生じる定
在波が一対の局所化された変位の渦へと縮退する。 このとき、 渦の角速度は互い に反対となり、 回転の振幅は継続的に増加していく。 その結果、 渦の境界に不連 続点が生じ、 この不連続点が成長して材料の破壊に至る。 この事実より、 塑性変 形の緩和波の群速度の進展に基づく新しい破壊の判定条件が定義される。 この新 しい判定条件は、 本発明に基づく負荷のかけられた材料ノ物体に対する非破壊検 查方法に適用することができるものである。 When the group velocity of the relaxation wave of plastic deformation decreases to zero, the resulting constant The standing wave degenerates into a pair of localized displacement vortices. At this time, the angular velocities of the vortices are opposite to each other, and the amplitude of rotation continuously increases. The result is a discontinuity at the vortex boundary that grows and leads to material destruction. This fact defines a new failure criterion based on the evolution of the group velocity of the relaxation wave of plastic deformation. This new determination condition can be applied to the nondestructive detection method for a loaded material body according to the present invention.
すなわち、 塑性変形波は負荷のかかった物体表面上で常に 3次元の波として現 れるので、 上述の塑性変形の緩和波の群速度がゼロになることに基づく破壊の判 定条件を正しく適用するためには、 波動パラメータを 3次元空間で測定すること が不可欠となる。 波動パラメ一夕の 3次元空間での測定は、 本発明によれば、 集 光ホログラムを重畳し、 重畳された像を処理することにより実現される。 In other words, since the plastic deformation wave always appears as a three-dimensional wave on the surface of the object under load, the above-mentioned conditions for determining the fracture based on the zero group velocity of the relaxation wave of the plastic deformation are applied correctly. Therefore, it is essential to measure wave parameters in three-dimensional space. According to the present invention, the measurement of the wave parameters in the three-dimensional space is realized by superimposing the condensing hologram and processing the superimposed image.
かかる原理に基づいて外部から負荷が加えられた検査対象物の機械的挙動を非 破壊的に検査する方法について、 本件出願人らは特願平 5— 2 3 7 7 3号におい て既に提案している。 しかしながら、 そこでは検査対象物自体は静体であること が前提とされており、 検査対象物自体が振動などの剛体運動をしている場合には、 得られた光学パターンに生じた変位が、 外部から加えられた負荷によるものなの 力、、 あるいは検査対象物自体の剛体運動によるものなのかを識別することが不可 能であるため適用することができなかった。 本発明はかかる問題点に鑑みてなさ れたものであり、 検査対象物自体が剛体運動をしている場合にも上記方法を適用 することを可能にするものである。 The present applicant has already proposed in Japanese Patent Application No. 5-237377 a method for nondestructively inspecting the mechanical behavior of an inspection object to which an external load is applied based on this principle. ing. However, it is assumed that the inspection object itself is a static body, and when the inspection object itself performs a rigid body motion such as vibration, the displacement generated in the obtained optical pattern is It was not possible to identify whether the force was due to an externally applied load or to the rigid motion of the test object itself, so it could not be applied. The present invention has been made in view of such a problem, and makes it possible to apply the above method even when the inspection object itself is performing a rigid body motion.
次に、 本発明方法を適用可能な非破壊検査装置の一実施例の構成について簡単 に説明を行う。 Next, the configuration of one embodiment of the nondestructive inspection apparatus to which the method of the present invention can be applied will be briefly described.
本発明方法を適用可能な非破壊検査装置は、 所定のパルス周期でかつ 1秒以内 でホログラム媒体に照射され得る任意のパルスレーザー装置 1から成る。
また、 本装置の光学系は 2系統の光路を持つ。 第 1の光路はコリメートされた ォブジ ク トビ一ムを形成するように設計されており、 反射鏡 2、 半透過鏡 3、 反射鏡 4、 ビームエキスパンダ一 5およびコリメ一シヨンレンズ 6から成る。 第 2の光路は参照ビームを生成するように設計されており、 反射鏡 2、 3および反 射鏡 7、 8とエキスパンダー 9から成る。 さらに本光学系は、 ホルダー (図示せ ず) 内にセッ 卜されたキャリア 1 1 (例えば写真プレート) 上にオブジェク トパ ターンを形成させるための対物レンズ 1 0を持つ。 同ホルダーは、 以下の記述に ある目的のため、 二つの互いに直交する方向に移動できるようになつている。 上 記により、 キャリアに光を照射することによって、 集光された像のホログラムを 得ることができる。 The non-destructive inspection apparatus to which the method of the present invention can be applied comprises an arbitrary pulse laser apparatus 1 capable of irradiating a hologram medium with a predetermined pulse cycle and within 1 second. The optical system of this device has two optical paths. The first optical path is designed to form a collimated object beam, and comprises a reflecting mirror 2, a semi-transmitting mirror 3, a reflecting mirror 4, a beam expander 5, and a collimating lens 6. The second optical path is designed to generate a reference beam and comprises reflectors 2, 3 and reflectors 7, 8 and expander 9. Further, the optical system has an objective lens 10 for forming an object pattern on a carrier 11 (for example, a photographic plate) set in a holder (not shown). The holder can be moved in two mutually orthogonal directions for the purposes described below. As described above, a hologram of a focused image can be obtained by irradiating the carrier with light.
さらに同システムは、 ホログラムを通してスクリーン 1 4上に回折パターンを 形成する直径 0 . 8 mmのビームを形成する反射鏡 1 2および 1 3から成る光デ コーダを持つ。 キャリア 1 1上で得られるホログラムの数学的処理は、 入力およ びアナログ/ディジタル信号変換システム 1 5から成る計算ュニッ 卜で遂行され る。 In addition, the system has an optical decoder consisting of reflectors 12 and 13 forming a 0.8 mm diameter beam that forms a diffraction pattern on the screen 14 through the hologram. The mathematical processing of the hologram obtained on the carrier 11 is performed in a computation unit consisting of an input and an analog / digital signal conversion system 15.
入力およびアナログ Zディジタル信号変換システム 1 5としては、 ディジタル 出力ビデオカメラが使用できる。 システム 1 5の出力は、 モニタ 1 6とコンビュ —夕 1 7に接続されている。 A digital output video camera can be used as the input and analog Z digital signal conversion system 15. The output of system 15 is connected to monitor 16 and to display 17.
また本試験装置は、 検査対象物 1 9において明らかに変形を起こさない点、 例 えば引っ張り試験装置のチャック部分 2 0を監視するための第 2のビデオカメラ 2 1を備えている。 このビデオカメラ 2 1はフラッシュ光源 2 2を備えており、 パルスレーザ 1のパルス周期に同期して光源 2 2を発光させ、 その時点の検査対 象物 1 9の参照点の変位量を測定することが可能である。 またビデオカメラ 2 1 の出力もコンピュータ 1 7に接続されており、 そこでビデオカメラ 1 5からの出
力とともに、 後述する前処理を施し、 その後上記原理に基づいてプログラミング されたコンピュータプログラムにより、 実際に検査対象物に生じた回折パターン により決定される変形および回転変位の速度の値を計算し、 予め任意に設定され た方向の軸上でのその速度値の分布を表示することが可能である。 よって、 コン ピュー夕の出力は塑性変形の波動パターンであり、 その挙動を観測することによ つて物体の変形を予測することができる。 同波動パターンはプロッタ 1 8により 再現される。 In addition, the test apparatus is provided with a second video camera 21 for monitoring the inspection object 19 without any apparent deformation, for example, the chuck portion 20 of the tensile test apparatus. The video camera 21 has a flash light source 22. The light source 22 is emitted in synchronization with the pulse cycle of the pulse laser 1, and the displacement of the reference point of the inspection object 19 at that time is measured. It is possible. The output of the video camera 21 is also connected to the computer 17 where the output from the video camera 15 is output. Along with the force, a pre-processing described later is performed, and then, by a computer program programmed based on the above principle, the values of the speed of deformation and rotational displacement determined by the diffraction pattern actually generated on the inspection object are calculated, and It is possible to display the distribution of the velocity value on an axis in an arbitrarily set direction. Therefore, the output of the computer is the wave pattern of plastic deformation, and by observing its behavior, the deformation of the object can be predicted. The same wave pattern is reproduced by the plotter 18.
次に本発明方法を図 1および図 2の装置に具体的に適用する方法について説明 する。 まず、 本発明方法を、 剛体運動による変位量が変形による変位量と同程度 の場合に適用した実施例について囟 1を参照しながら説明する。 Next, a method for specifically applying the method of the present invention to the apparatus shown in FIGS. 1 and 2 will be described. First, an embodiment in which the method of the present invention is applied to a case where the displacement due to the rigid motion is substantially equal to the displacement due to the deformation will be described with reference to FIG.
パルスレーザー 1から出力されたパルスレーザ出力は光学系により二つのビ一 ムに分けられる。 第一のビームはォブジヱクトビームであり、 コリメ一卜された 後、 物体 1 9の像を平面波で照らしだす役目を持つ。 第二のビームは参照光とし て写真プレー卜 1 1に照射される。 二つのビームの強度比は、 ビ一ムスプリッ夕 として作用する半透過鏡 3により経験的に選択される。 The pulse laser output from pulse laser 1 is divided into two beams by the optical system. The first beam is an object beam, and after collimated, has the role of illuminating the image of the object 19 with a plane wave. The second beam is applied to the photographic plate 11 as reference light. The intensity ratio of the two beams is empirically selected by a transflective mirror 3 acting as a beam splitter.
対物レンズ系 1 0は、 コヒ一レント光によって照らしだされる物体 1 9の像を 写真プレート 1 1の面上に作像する。 こうして写真プレート 1 1上で第一の露光 が行われ、 スペックル写真が作成される。 その露光時間は経験的に決められる。 同時に、 第 2のカメラ 2 1により画面内に参照点が含まれるように対象物の写真 が撮影される。 このとき、 第 2のカメラによる写真はスペックルグラムとして使 用しないので通常の写真でよく、 したがって、 光源としてコヒ一レント光を用い る必要はない。 ただし、 第 1のカメラ 1 5および第 2のカメラ 2 1の撮影のタイ ミングは正確に同期させる必要がある。 The objective lens system 10 forms an image of the object 19 illuminated by the coherent light on the surface of the photographic plate 11. In this way, the first exposure is performed on the photographic plate 11 to create a speckle photograph. The exposure time is empirically determined. At the same time, a picture of the object is taken by the second camera 21 so that the reference point is included in the screen. At this time, since the photograph by the second camera is not used as a specklegram, it can be a normal photograph, and therefore, it is not necessary to use coherent light as a light source. However, the timings of the first camera 15 and the second camera 21 need to be accurately synchronized.
次いで、 所定の時間△ t (例えば、 4 0〜8 0秒) が経過し、 物体 1 9が変形
を受けた後 (変形は、 負荷の印加、 温度や周囲の状況の変化、 その他の因子に依 存する。 ) 、 第 1のカメラ 1 5および第 2のカメラ 2 1によりそれぞれ同じ写真 プレート上で第 2の露光を行い、 2重露光写真を作成する。 このとき、 当然、 第 1のカメラによる 2重露光写真はスぺックノレ写真である力、 第 2のカメラによる 2重露光写真は通常の写真となる。 Then, a predetermined time △ t (for example, 40 to 80 seconds) elapses, and the object 19 is deformed. (Deformation depends on the applied load, changes in temperature and surrounding conditions, and other factors), and then the first camera 15 and the second camera 21 respectively use the same photo plate on the same photo plate. Perform the exposure of step 2 to create a double exposure photograph. At this time, of course, the double exposure photograph by the first camera is the power of a spectacle photograph, and the double exposure photograph by the second camera is a normal photograph.
こうして得られた第 1のカメラ 1 5による 2重露光スペックル写真から検査対 象物の総変位量を算出する。 この総変位量には、 外部からの負荷 (つまり、 測定 したい因子) によるものの他、 検査対象物自体の剛体運動、 例えば振動などによ るものが含まれる。 そのため本発明方法によれば、 さらに第 2のカメラによる 2 重露光写真に記録された参照点の位置の変化から、 検査対象物自体の剛体運動に より生じた変位量 (べク トル量) 力算出され、 先に求めた総変位量から剛体運動 による変位量が差し引かれる。 こうして、 変形により実際に検査対象物に生じた 変位量 (べク トル量) を得ることができる。 The total displacement of the object to be inspected is calculated from the double-exposure speckle photograph obtained by the first camera 15 thus obtained. This total displacement includes not only the load from the outside (that is, the factor to be measured), but also the rigid motion of the test object itself, such as vibration. Therefore, according to the method of the present invention, the change in the position of the reference point recorded in the double exposure photograph by the second camera further indicates the displacement (vector) caused by the rigid motion of the inspection object itself. The displacement due to the rigid body motion is subtracted from the total displacement calculated above. In this way, the displacement amount (vector amount) actually generated on the inspection object due to the deformation can be obtained.
この一連のプロセスが新しい時間間隔、 または同じ時間間隔△ tで反復される。 その結果、 実際に検査対象物に生じた変形の全過程が、 集光像の一連の二重露光 ホログラムより得られる。 This series of processes is repeated at a new time interval or at the same time interval Δt. As a result, the entire process of deformation that actually occurred in the inspection object is obtained from a series of double-exposure holograms of the focused image.
こうして、 変形の結果実際に生じた検査対象物表面上の全ての点における変位 べクトルの速度値のデータを二重露光ホログラフィック像より得ることができる。 このデータは、 結果として得られる像を光学的に処理することにより再生できる。 像が写真プレート上に記録されている場合は、 まずその写真潜像を現像、 定着さ せ、 ネガフィルムを得る。 そして、 そのホログラムをホルダ一に収め記録に用い たのと同じ参照ビームで照射する。 物体表面に垂直な軸に沿っては、 等変位線の 重畳からなるォブジヱク卜像が、 システム 1 5によりコンピュータ 1 マに入力さ れ、 変位速度成分 (5 wZ c5 t ) ( Z軸方向) が計算される。 観測される像は、
ディスプレイ 1 6でモニタされる。 Thus, the data of the velocity values of the displacement vectors at all points on the surface of the inspection object actually generated as a result of the deformation can be obtained from the double exposure holographic image. This data can be reconstructed by optically processing the resulting image. If the image is recorded on a photographic plate, first develop and fix the photographic latent image to obtain a negative film. Then, the hologram is placed in a holder and irradiated with the same reference beam used for recording. Along the axis perpendicular to the object surface, an object image consisting of the superposition of equidistant lines is input to the computer 1 by the system 15, and the displacement velocity component (5wZc5t) (in the Z-axis direction) is calculated. Is calculated. The observed image is Monitored on display 16.
物体表面上の変位速度 (Xおよび y軸方向) は、 物体像のスペックルパターン を処理することによって決定される。 この目的で、 反射鏡 1 2および 1 3で形成 される細いビームにより二重露光像が 1 mmおきに線走査される。 このとき、 各 点においていわゆるヤングバンド回折パターン力形成される。 このパターンはシ ステム 1 5によって記録され、 ディジタル化されてコンピュータに入力される。 コンピュータでは、 バンドステップ dおよび軸 Xに対する傾き角 が見積もられ る。 The displacement velocity on the object surface (in the X and y directions) is determined by processing the speckle pattern of the object image. For this purpose, the double-exposure image is line-scanned every 1 mm by a thin beam formed by the reflectors 12 and 13. At this time, a so-called Young band diffraction pattern force is formed at each point. This pattern is recorded by the system 15 and digitized and input to the computer. In the computer, the band step d and the tilt angle with respect to the axis X are estimated.
さらに次式によって X y平面上の変位速度べク トルの値が計算され、 Further, the value of the displacement velocity vector on the xy plane is calculated by the following equation.
r〜= 1 ΖΔ t · ス s Zd r ~ = 1 ΖΔt
さらに、 下式によって物体の塑性変形速度のテンソル成分が計算される。 Furthermore, the tensor component of the plastic deformation rate of the object is calculated by the following equation.
なお、 本明細書においては、 A を S Aノ <5 tと、 A'を A〜と書き表すことと する。 In this specification, A is represented as S A <5 t, and A ′ is represented as A〜.
δ u/ <5 t=r〜 cos Θヽ δ / δ t=r〜 sin θ δ u / <5 t = r〜 cos Θ ヽ δ / δ t = r〜 sin θ
δ ( ε χκ)/ δ t= δ ( δ u/ δ t)/ δ δ (ε χκ) / δ t = δ (δ u / δ t) / δ
δ ( ε )/ δ t= δ ( δ W δ t)/ δ , δ (ε) / δ t = δ (δ W δ t) / δ,
δ ( ε X))/ δ t=l/2{ δ ( δ u/ δ t)/ δ y+ δ ( δ / δ t)/ δ χ} δ (ε X)) / δ t = l / 2 {δ (δ u / δ t) / δ y + δ (δ / δ t) / δ χ}
δ ( ω ζ )/ δ t=l/2{ δ ( S / 6 t)/ δ χ- δ ( δ u/ δ t)/ δ } δ (ωζ) / δt = l / 2 {δ (S / 6t) / δχ-δ (δu / δt) / δ}
上式により得られた、 S ( £ xx)/ c5 t、 (5 ( £ yy)/ 5 t、 δ ( ε xy)/ δ t. δ ( ω ζ )/ 6 t が、 選ばれた軸 (例えば、 引っ張り方向) に沿って連続的に評価さ れ、 プロッタで作図される。 そして、 その変化の動特性から物体材料の機械的挙 動が判断される。 その際、 破壊に至る以前の材料の挙動の解析は、 本発明者らに より確立された強度および破壊に関する新しい理論的、 実験的判定条件に基づい
て行われるが、 その詳細な説明については省略する。 S (£ xx) / c5t, (5 (£ yy) / 5t, δ (εxy) /δt.δ (ωζ) / 6t) obtained from the above equation are selected axes ( (E.g., in the direction of pull), and the plot is plotted on a plotter.The mechanical behavior of the object material is determined from the dynamic characteristics of the change. The analysis of the behavior of steel is based on the new theoretical and experimental criteria for strength and fracture established by the present inventors. However, a detailed description thereof will be omitted.
以上、 検査対象物の剛体運動による変位量が変形による変位量と同程度の場合、 すなわち、 同一写真プレー卜上で回折パターンを得ることができる場合に本発明 方法を適用した実施例について図 1を参照して説明したが、 本発明は、 さらに、 検査対象物の剛体運動による変位量が変形による変位量より大き 、場合、 すなわ ち、 同一写真プレート上で回折パターンを得ることができない場合にも適用する ことができる。 As described above, FIG. 1 shows an embodiment to which the method of the present invention is applied when the amount of displacement due to the rigid motion of the inspection object is substantially equal to the amount of displacement due to deformation, that is, when a diffraction pattern can be obtained on the same photographic plate. However, according to the present invention, when the displacement amount due to the rigid body motion of the inspection object is larger than the displacement amount due to the deformation, that is, when the diffraction pattern cannot be obtained on the same photographic plate, It can also be applied to
次に、 本発明方法を、 剛体運動による変位量が変形による変位量より大きい場 合について図 2を参照しながら説明する。 Next, the method of the present invention will be described with reference to FIG. 2 in the case where the amount of displacement due to rigid motion is larger than the amount of displacement due to deformation.
図 2の検査装置の基本的構成は図 1の検査装置と同様である。 したがって、 同 じ機能を有する構成部品については、 同じ参照番号を付することにより、 詳細な 説明は省略する。 ただし、 図 2の検査装置の写真プレート 1 1は 2重構造を有し ており、 1回目のスペックル写真を撮るための第 1プレー卜 2 3と 2回目のスぺ ックル写真を撮るための第 2プレート 2 4とから構成されている。 これらの第 1 プレート 2 3および第 2プレート 2 4は相互に面同士が密着するように配置され、 図示しない駆動装置により X、 Υ、 Ζ方向に任意に駆動することが可能なように 構成されている。 The basic configuration of the inspection device of FIG. 2 is the same as that of the inspection device of FIG. Therefore, components having the same functions are given the same reference numerals, and detailed description thereof will be omitted. However, the photo plate 11 of the inspection apparatus shown in Fig. 2 has a double structure, and the first plate 23 for taking the first speckle photograph and the first plate 23 for taking the second speckle photograph are taken. And a second plate 24. The first plate 23 and the second plate 24 are arranged so that the surfaces thereof are in close contact with each other, and are configured to be arbitrarily driven in the X, Υ, and Ζ directions by a driving device (not shown). ing.
まず、 図 1の装置と同様に、 第 1のカメラ 1 5を用いて第 1の露光を行い、 第 1写真プレート 2 3上に第 1のスペックル写真を作成する。 同時に第 2のカメラ 2 1を用いて、 画面内に参照点が含まれるように検査対象物の写真を撮影する。 このとき、 本実施例の場合にも、 第 2のカメラによる写真はスペックルグラムと して使用しないので、 光源はインコヒ一レントなもので構わない。 ただし、 先の 実施例と同様に両方のカメラの撮影のタイミングは正確に同期させる必要がある。 次いで、 所定の時間△ t (例えば、 4 0〜8 0秒) が経過し、 物体 1 9が変形
を受けた後、 第 1のカメラ 1 5および第 2のカメラ 2 1により 2回目の撮影が行 われる。 このとき、 第 1のカメラ 1 5によるスペックル写真は図 1に示す実施例 のように 2重露光写真とはせずに、 第 2写真プレート 2 4上に先の第 1スペック ル写真とは独立した第 2スペックル写真とする。 ただし、 その場合にも、 第 1の カメラ 1 5の位置は動かさず固定とする。 First, similarly to the apparatus shown in FIG. 1, first exposure is performed using a first camera 15 to create a first speckle photograph on a first photographic plate 23. At the same time, a photograph of the inspection object is taken using the second camera 21 so that the reference point is included in the screen. At this time, also in the case of the present embodiment, since the photograph by the second camera is not used as a specklegram, the light source may be incoherent. However, as in the previous embodiment, it is necessary to accurately synchronize the shooting timing of both cameras. Then, a predetermined time △ t (for example, 40 to 80 seconds) elapses, and the object 19 is deformed. After that, the second shooting is performed by the first camera 15 and the second camera 21. At this time, the speckle photograph by the first camera 15 is not a double-exposure photograph as in the embodiment shown in FIG. It will be an independent second speckle photograph. However, in this case, the position of the first camera 15 is fixed without moving.
同時に第 2のカメラ 2 1により撮影が行われるが、 これは 2重露光写真として 作成される。 なお、 この写真も先の実施例と同様に通常の写真でよく、 スペック ノレ写真とする必要はない。 さらに、 先の実施例と同様に、 第 2のカメラ 2 1によ る 2重露光写真に記録された参照点の位置の変化から、 検査対象物自体の剛体運 動により生じた変位量 (べク トル量) が算出される。 At the same time, an image is taken by the second camera 21, which is created as a double exposure photograph. This photograph may be a normal photograph as in the previous embodiment, and need not be a spec photo. In addition, as in the previous embodiment, the displacement caused by the rigid movement of the inspection object itself (based on the change in the position of the reference point recorded in the double exposure photograph by the second camera 21). Is calculated.
次いで、 第 1のカメラ 1 5により 2回目に撮った第 2スペックル写真が記録さ れた第 2写真プレート 2 4を入れたまま図示しない写真ホルダ一を、 第 2のカメ ラ 2 1による 2重露光写真に記録された参照点から求めた検査対象物自体の剛体 運動としての変位量分だけ、 図示しない駆動装置を用いて空間的に戻す。 さらに、 第 1のカメラ 1 5により 1回目に撮られた第 1スペックル写真を、 写真ホルダ一 の初期位置において、 剛体運動による変位量分を相殺するように移動された第 2 スペックル写真に重畳する。 この際、 重畳写真から回折パターンを得ることがで きるように、 2つの写真が密着配置されることが重要である。 この結果、 第 1ス ペックル写真と第 2スペックル写真の空間的位置の相違は、 変形による変位量の みを反映することになる。 Next, the second camera plate 24 on which the second speckle photograph taken by the first camera 15 has been recorded is placed, and the photo holder 1 (not shown) is inserted into the second camera plate 21 by the second camera 21. The inspection object itself is spatially returned by a drive unit (not shown) by an amount of displacement as a rigid body motion obtained from a reference point recorded in the multiple exposure photograph. Furthermore, the first speckle photograph taken by the first camera 15 for the first time is converted into a second speckle photograph that has been moved at the initial position of the photo holder 1 so as to offset the amount of displacement due to rigid body motion. Superimpose. At this time, it is important that the two photographs are closely arranged so that a diffraction pattern can be obtained from the superimposed photograph. As a result, the difference in spatial position between the first speckle photograph and the second speckle photograph reflects only the amount of displacement due to deformation.
さらに、 このようにして得られた重畳された 2枚の写真を図 1に示す実施例と 同様の方法で、 デコードし、 ヤングバンドを得ることができる。 なお、 デコード の方法および分析の方法について先に説明した方法と同様なので、 ここでは詳細 な説明は省略する。
なお上記実施例においては、 本発明方法を、 検査対象の剛体運動による変位量 力変形による変位量と同程度の場合および剛体運動による変位量が変形による変 位量より大きい場合に適用した例について、 図 1および図 2を参照しながら説明 したが、 本発明はかかる実施例に限定されず、 特許請求の範囲に記載された技術 的思想の範囲内で各種の変更および修正が可能である。 また X— Y平面における 剛体運動の変位量の補正に関して説明したが、 Z方向への導体運動の変位量につ いてもあわせて補正したい場合には、 参照点を認識する手段、 例えばカメラなど を複数用いることにより、 慣用の技術により 3次元的に信号処理を行うことによ り容易に補正することができる。 Further, the two superimposed photographs thus obtained can be decoded in the same manner as in the embodiment shown in FIG. 1 to obtain a young band. Since the decoding method and the analysis method are the same as those described above, a detailed description is omitted here. In the above embodiments, the method of the present invention is applied to the case where the displacement amount due to the rigid motion of the inspection object is approximately the same as the displacement amount due to the force deformation and the displacement amount due to the rigid motion is larger than the displacement amount due to the deformation. Although described with reference to FIGS. 1 and 2, the present invention is not limited to such an embodiment, and various changes and modifications can be made within the scope of the technical idea described in the claims. In addition, the explanation of the correction of the displacement of the rigid body motion in the XY plane has been described. However, if the displacement of the conductor motion in the Z direction is also to be corrected, a means for recognizing the reference point, such as a camera, may be used. By using a plurality of them, correction can be easily performed by performing three-dimensional signal processing by a conventional technique.
(産業上の利用の可能性) (Possibility of industrial use)
以上説明したように、 本発明方法によれば、 測定時に検査対象物自体が剛体運 動をする場合であっても、 その剛体運動による変位量を相殺することが可能なの で、 スペックル法による物体の機械的挙動の非破壊検査をより容易に実施するの に適している。 As described above, according to the method of the present invention, even when the inspection object itself moves rigidly at the time of measurement, the displacement amount due to the rigid movement can be offset, so that the speckle method is used. It is suitable for performing non-destructive inspection of the mechanical behavior of an object more easily.
また、 本発明の方法は、 圧力容器、 パイプライン、 負荷構造物、 動力装置、 発 電所の諸装置、 化学反応器、 水蒸気ボイラ、 タービンおよびエンジンのハウジン グなど負荷のかかった動作中の機械、 構造体、 各種装置の応力 Zひずみ状態の解 折に応用できる。 また、 本発明の方法および装置は、 塑性変形や破壊の機構の解 折の研究、 新材料の信頼性の評価、 ならびに最大許容負荷の評価などに有用であ る。
Also, the method of the present invention can be applied to a machine under load such as a pressure vessel, a pipeline, a load structure, a power plant, various devices of a power plant, a chemical reactor, a steam boiler, a turbine, and a housing of an engine. It can be applied to the analysis of stress Z strain state of structures, structures and various devices. Further, the method and apparatus of the present invention are useful for research on the analysis of the mechanism of plastic deformation and fracture, evaluation of the reliability of new materials, and evaluation of the maximum allowable load.
Claims
( 1 ) 外部から負荷が加えられる検査対象物のある時点における第 1の光学パタ ―ンを第 1の撮像手段により得ると同時に、 同検査対象物の参照点の基準位置情 報を第 2の手段により得る第 1ステップと ; (1) The first optical pattern at a certain point of the inspection object to which an external load is applied is obtained by the first imaging means, and the reference position information of the reference point of the inspection object is obtained by the second imaging means. A first step of obtaining by means;
前記ある時点から所定時間経過後の前記検査対象物の第 2の光学パターンを前 記第 1の撮像手段により得ると同時に、 その時点の同検査対象物の参照点の変位 位置情報を前記第 2の手段により得る第 2ステップと ; At the same time as obtaining the second optical pattern of the inspection object after a lapse of a predetermined time from the certain point in time by the first imaging means, the displacement position information of the reference point of the inspection object at that point in time is obtained by the second A second step of obtaining by means of:
前記第 2の手段により得られた前記参照点の前記基準位置情報と前記変位位置 情報とを重畳して、 前記検査対象物の剛体としての変位量を得る第 3ステップと 前記第 1の撮像手段により得られた前記第 1の光学パターンと前記第 2の光学 パターンとを予め前記第 3ステップで得た前記対象物の剛体としての変位量分だ け相殺した後重畳する第 4ステップと ; A third step of superimposing the reference position information and the displacement position information of the reference point obtained by the second means to obtain a displacement amount of the test object as a rigid body, and the first imaging means A fourth step in which the first optical pattern and the second optical pattern obtained by the above are offset in advance by a displacement amount of the object as a rigid body obtained in the third step and then superimposed;
前記第 4ステツプで得られた重畳パ夕一ンから、 前記検査対象物の塑性変形を 特徴づけるパラメータを含む回折パターンを得る第 5ステップと ; A fifth step of obtaining a diffraction pattern including parameters characterizing plastic deformation of the inspection object from the superimposed pattern obtained in the fourth step;
前記第 5ステップで得られた回折パターンから、 外部から負荷を加えられた前 記検査対象物に生じた塑性変形による塑性流れを特徴づけるパラメ一夕を得る第 6ステップと ; A sixth step of obtaining, from the diffraction pattern obtained in the fifth step, a parameter characterizing a plastic flow caused by plastic deformation occurring in the inspection object subjected to an external load;
前記第 6ステツプで得られたパラメータを処理することにより、 前記検査対象 物に生じた塑性変形による変形および回転変位の速度の時間的および空間的な分 布である、 塑性変形の緩和波を特徴づける波動パラメ一タを含む波動バタ一ンを 得る第 7ステップと ; By processing the parameters obtained in the sixth step, a relaxation wave of plastic deformation, which is a temporal and spatial distribution of deformation and rotational displacement speeds due to plastic deformation generated in the inspection object, is characterized. A seventh step of obtaining a wave pattern including wave parameters to be added;
前記第 7ステップで得られた波動パターンに表れる所定の変化に基づいて、 外
部から負荷を加えられた前記検査対象物の機械的挙動を判定する第 8ステップと から成ることを特徴とする、 負荷が加えられた物体の機械的挙動の非破壊試験 方法。 Based on a predetermined change appearing in the wave pattern obtained in the seventh step, An eighth step of determining a mechanical behavior of the test object loaded from a part. A non-destructive test method for a mechanical behavior of a loaded object.
( 2 ) 外部から負荷が加えられる検査対象物のある時点における第 1の光学パタ -ンを第 1の撮像手段により得ると同時に、 同検査対象物の参照点の基準位置情 報を第 2の手段により得る第 1ステップと; (2) The first optical pattern at a certain point in time of the inspection object to which a load is applied from the outside is obtained by the first imaging means, and the reference position information of the reference point of the inspection object is acquired by the second imaging means. A first step of obtaining by means;
前記ある時点から所定時間経過後の前記検査対象物の第 2の光学パターンを前 記第 1の撮像手段により得ると同時に、 その時点の同検査対象物の参照点の変位 位置情報を前記第 2の手段により得る第 2ステップと; At the same time as obtaining the second optical pattern of the inspection object after a lapse of a predetermined time from the certain point in time by the first imaging means, the displacement position information of the reference point of the inspection object at that point in time is obtained by the second A second step of obtaining by means of:
前記第 2の手段により得られた前記参照点の前記基準位置情報と前記変位位置 情報とを重畳して、 前記検査対象物の剛体としての変位量を得る第 3ステップと 前記第 1の撮像手段により得られた前記第 1の光学パターンと前記第 2の光学 パタ一ンとを重畳し、 その重畳光学パタ一ンから前記検査対象物の絵変位量の回 折パターンを得て、 その回折パターンから前記検査対象物の総変位量を得る第 4 ステップと; A third step of superimposing the reference position information and the displacement position information of the reference point obtained by the second means to obtain a displacement amount of the test object as a rigid body, and the first imaging means The first optical pattern and the second optical pattern obtained by the above are superimposed, and a diffraction pattern of a picture displacement amount of the inspection object is obtained from the superimposed optical pattern, and a diffraction pattern thereof is obtained. A fourth step of obtaining the total displacement of the inspection object from
前記第 4ステツプで得られた前記検査対象物の総変位量から前記第 3ステップ で得られた前記検査対象物の剛体としての変位量を相殺する第 5ステップと ; 前記第 5ステップで得られた前記検査対象物の剛体としての変位量が相殺され た前記検査対象物の塑性変形による変位量から、 外部から負荷を加えられた前記 検査対象物に生じた塑性変形による塑性流れを特徴づけるパラメータを得る第 6 ステップと; A fifth step of canceling the rigid displacement of the inspection object obtained in the third step from the total displacement amount of the inspection object obtained in the fourth step; obtained in the fifth step A parameter characterizing the plastic flow due to the plastic deformation generated in the inspection object to which an external load is applied, from the displacement amount due to the plastic deformation of the inspection object in which the displacement amount of the inspection object as a rigid body is offset. A sixth step of obtaining
前記第 6ステツプで得られたパラメータを処理することにより、 前記検査対象
物に生じた塑性変形による変形および回転変位の速度の時間的および空間的な分 布である、 塑性変形の緩和波を特徴づける波動パラメ一夕を含む波動パターンを 得る第 7ステップと ; By processing the parameters obtained in the sixth step, the inspection object A seventh step of obtaining a wave pattern including a set of wave parameters characterizing the relaxation wave of plastic deformation, which is a temporal and spatial distribution of deformation and rotational displacement speeds due to plastic deformation generated in the object;
前記第 7ステップで得られた波動パタ一ンに表れる所定の変化に基づいて、 外 部から負荷を加えられた前記検査対象物の機械的挙動を判定する第 8ステップと 力、ら成ることを特徴とする、 負荷が加えられた物体の機械的挙動の非破壊試験 方法。
An eighth step of determining the mechanical behavior of the test object loaded from the outside based on a predetermined change appearing in the wave pattern obtained in the seventh step, and a force. A non-destructive testing method for the mechanical behavior of a loaded object.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1993/001423 WO1995010023A1 (en) | 1993-10-05 | 1993-10-05 | Non-destructive inspection method for mechanical behaviour of article |
AU48349/93A AU4834993A (en) | 1993-10-05 | 1993-10-05 | Non-destructive inspection method for mechanical behaviour of article |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1993/001423 WO1995010023A1 (en) | 1993-10-05 | 1993-10-05 | Non-destructive inspection method for mechanical behaviour of article |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1995010023A1 true WO1995010023A1 (en) | 1995-04-13 |
Family
ID=14070569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1993/001423 WO1995010023A1 (en) | 1993-10-05 | 1993-10-05 | Non-destructive inspection method for mechanical behaviour of article |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU4834993A (en) |
WO (1) | WO1995010023A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003514247A (en) * | 1999-10-29 | 2003-04-15 | ホロテック アクティーゼルスカブ | Method and apparatus for real-time non-destructive measurement of residual stress in an object by optical hologram interferometry |
JP2010181248A (en) * | 2009-02-05 | 2010-08-19 | Toyota Central R&D Labs Inc | Deformation amount evaluation supporter, method of supporting deformation amount evaluation, and program |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1987007365A1 (en) * | 1986-05-23 | 1987-12-03 | Vachon Reginald I | Apparatus and method for determining stress and strain in pipes, pressure vessels, structural members and other deformable bodies |
JPH05118816A (en) * | 1991-10-29 | 1993-05-14 | Hamamatsu Photonics Kk | Optical measuring apparatus for amount of displacement |
-
1993
- 1993-10-05 AU AU48349/93A patent/AU4834993A/en not_active Abandoned
- 1993-10-05 WO PCT/JP1993/001423 patent/WO1995010023A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1987007365A1 (en) * | 1986-05-23 | 1987-12-03 | Vachon Reginald I | Apparatus and method for determining stress and strain in pipes, pressure vessels, structural members and other deformable bodies |
JPH05118816A (en) * | 1991-10-29 | 1993-05-14 | Hamamatsu Photonics Kk | Optical measuring apparatus for amount of displacement |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003514247A (en) * | 1999-10-29 | 2003-04-15 | ホロテック アクティーゼルスカブ | Method and apparatus for real-time non-destructive measurement of residual stress in an object by optical hologram interferometry |
JP2010181248A (en) * | 2009-02-05 | 2010-08-19 | Toyota Central R&D Labs Inc | Deformation amount evaluation supporter, method of supporting deformation amount evaluation, and program |
Also Published As
Publication number | Publication date |
---|---|
AU4834993A (en) | 1995-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Steinzig et al. | Residual stress measurement using the hole drilling method and laser speckle interferometry: part 1 | |
Hung | Shearography for non-destructive evaluation of composite structures | |
Sirohi | Speckle methods in experimental mechanics | |
Hung | Digital shearography versus TV-holography for non-destructive evaluation | |
Sirohi | Shearography and its applications–a chronological review | |
KR100297518B1 (en) | Non-destructive inspection method of mechanical behavior of loaded object, determination method thereof and apparatus thereof | |
Rastogi | Principles of holographic interferometry and speckle metrology | |
Steinchen et al. | Determination of strain distribution by means of digital shearography | |
Nazarchuk et al. | Digital speckle pattern interferometry for studying surface deformation and fracture of materials | |
WO1995010023A1 (en) | Non-destructive inspection method for mechanical behaviour of article | |
CA2114025C (en) | Method and apparatus for nondestructive testing of the mechanical behavior of objects under loading | |
JP2554996B2 (en) | Non-destructive inspection of mechanical behavior of a loaded object, its determination method and its apparatus | |
Hung | Recent development in practical optical nondestructive testing | |
KR20060062997A (en) | Phase Shifting Method Using Wavelength Plate and Measurement System Using Speckle Pattern Shear Interference Method | |
Shang et al. | Theories and industrial applications of optical interferometric NDT techniques: A review | |
Hung | Shearography and applications in experimental mechanics | |
Albertazzi Jr et al. | Portable residual stresses measurement device using ESPI and a radial in-plane interferometer | |
Tornari | Optical and digital holographic interferometry applied in art conservation structural diagnosis | |
Steinchen et al. | Full field tensile strain shearography of welded specimens | |
Spagnolo et al. | Local Correlation Degree of Laser Speckle for Vibration Analysis | |
Hung | Shearography: A New Strain-Measurement Technique and a Practical Approach to Nondestructive Testing | |
FINDEIS et al. | Evaluating Low Cost Portable Shearography on Aircraft Components | |
Sasaki et al. | Fatigue damage analysis of aluminum alloy by ESPI | |
Andonian | Optical methods | |
Casavola et al. | ESPI analysis of thermo-mechanical behavior of electronic components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR BY CA CH CZ DE DK ES FI GB HU JP KR KZ LK LU LV MG MN MW NL NO NZ PL PT RO RU SD SE SK UA US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |