[go: up one dir, main page]

WO1995000876A1 - Optical laminated sheet and production thereof - Google Patents

Optical laminated sheet and production thereof Download PDF

Info

Publication number
WO1995000876A1
WO1995000876A1 PCT/JP1993/000877 JP9300877W WO9500876A1 WO 1995000876 A1 WO1995000876 A1 WO 1995000876A1 JP 9300877 W JP9300877 W JP 9300877W WO 9500876 A1 WO9500876 A1 WO 9500876A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
sheet
active energy
laminated sheet
Prior art date
Application number
PCT/JP1993/000877
Other languages
French (fr)
Japanese (ja)
Inventor
Rinjiro Ichikawa
Hiroshi Komori
Haruyuki Tsuboi
Original Assignee
Fujimori Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimori Kogyo Co., Ltd. filed Critical Fujimori Kogyo Co., Ltd.
Priority to PCT/JP1993/000877 priority Critical patent/WO1995000876A1/en
Publication of WO1995000876A1 publication Critical patent/WO1995000876A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/068Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using ionising radiations (gamma, X, electrons)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/14Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length
    • B29C39/148Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation

Definitions

  • the present invention relates to an optical laminated sheet having extremely excellent surface smoothness, particularly to an optical laminated sheet suitable for an electrode substrate for producing a liquid crystal display panel.
  • the present invention also relates to a method for industrially advantageously producing such an optical laminated sheet. Background technology
  • the crosslinked resin cured material layer in these applications means a thermally crosslinked resin layer.
  • FIG. 1 shows an electrode substrate for a liquid crystal display panel in which a single-layer or multiple-layer protective layer made of a cured product of an air-permeable resin or a cross-linkable resin is provided on the anchor coat layer.
  • Japanese Patent Application Laid-Open No. Sho 644-50021 discloses that a laminated body of an air-permeable synthetic resin film layer and a crosslinked resin cured material layer has their respective air-permeable synthetic resin film layers facing each other. Laminated and integrated via the adhesive layer in the state An electrode substrate for a liquid crystal display panel having the configuration described above is shown.
  • Japanese Patent Application Laid-Open No. 640000/1988 discloses that a cross-linking agent capable of reacting with the air-permeable synthetic resin film layer on both sides of the air-permeable synthetic resin film layer formed by the casting film forming method.
  • Japanese Patent Application Laid-Open No. 2-137972 discloses that an alcohol-soluble UV-curable adhesive is provided on the resin layer side of a substrate sheet having a retardation value of 3 O nm or less having a resin layer having no solvent resistance.
  • a laminate sheet for manufacturing a liquid crystal display panel is shown in which a laminate layer or a water-based thermosetting adhesive layer is laminated, and a release sheet is further laminated on the adhesive layer.
  • a sheet having a layer structure of a resin sheet such as polycarbonate, a Z anchor coating layer, a gas-resistant synthetic resin layer, and a Z-funoxy ether-based crosslinked polymer layer is mentioned.
  • Japanese Patent Application Laid-Open No. 2-149898 / 1992 discloses an electrode support film with a transparent electrode having a configuration in which a transparent electrode is provided on one side of an electrode support film that can be wound into a roll. It shows a liquid crystal cell substrate with a transparent electrode, which is laminated and integrated by bonding to a base material with a luminescence value of 8 O nm or less and a light transmittance of 60% or more, and a resin film layer as an example of the electrode support film.
  • a transparent electrode such as ITO is formed on the crosslinked resin cured material layer, and an alignment film is further provided thereon. Assemble into a liquid crystal cell.
  • the liquid crystal sealed between the substrates is TN (twisted * nematic) liquid crystal, slight irregularities on the substrate surface on the side where the transparent electrode is formed will have little effect on the product quality. This is because a liquid crystal display panel assembled from a liquid crystal cell using TN liquid crystal is achromatic, and a panel is acceptable if the shading is clear.
  • the STN liquid crystal can be used, for example, at 270 ° even though the gap between the substrates is only about 5 to 6 urn. Since the twist is only about a degree, even if there are slight irregularities on the surface of the substrate on the side where the transparent electrode is formed, the display will be colored purple or ⁇ and the screen will be very difficult to see. This was the biggest weakness of liquid crystal display panels using the Chix substrate.
  • the above-cited electrode substrate according to the present applicant's application has not sufficiently solved this problem.
  • the present invention provides an optical laminated sheet having extremely excellent surface smoothness, particularly an optical laminated sheet suitable for an electrode substrate for manufacturing a liquid crystal display panel. It is an object of the present invention to provide a method for industrially advantageously producing a simple optical laminated sheet. Disclosure of the invention
  • the optical laminated sheet of the present invention can be activated directly or via an anchor coating layer on a single-layer or multi-layer optically isotropic sheet (1) in which at least the surface layer is a thermally crosslinkable resin layer.
  • the method for producing the optical laminated sheet of the present invention is a method for producing an optically isotropic sheet having at least a single-layer or multi-layer sheet whose surface layer is a thermo-crosslinkable resin layer and having or not providing an anchor coating layer.
  • the resin liquid (2a) of the active energy ray-curable resin composition is supplied to a gap between the sheet (1) and the smoothing mold material (3) having a smooth surface, and the resin liquid (2a) is formed between the two. It is characterized in that the sandwiched layer (2b) is cured by irradiation with active energy rays to form an active energy ray-curable resin cured layer (2).
  • sheet means thin layers, and do not limit the thickness.
  • optically isotropic sheet (1) a single-layer or multiple-layer optically isotropic sheet whose surface layer is at least a thermo-crosslinkable resin layer is used.
  • examples of the heat crosslinkable resin in the heat crosslinkable resin layer include fu- noxy ether type crosslinkable resin, epoxy resin, acrylic resin, acryl epoxy resin, melamine resin, phenol resin and urethane resin.
  • Particularly preferred resins among the crosslinkable resins are represented by the following chemical formula 1. It is a phenoxy ether type polymer-CH zf—
  • R 1 to R 6 are each hydrogen, a lower alkyl group having 1 to 3 carbon atoms or Br, R 7 is a lower alkylene group having 2 to 4 carbon atoms, m is an integer of 0 to 3, n Represents an integer of 20 to 300.
  • a cross-linking reaction of a polyfunctional compound as a cross-linking agent with the hydrogen portion of the hydroxyl group of this polymer gives a phenoxy ether-type cross-linked polymer. .
  • a crosslinking agent polyfunctional compound
  • a group having a high reactivity with a hydroxyl group for example, an isocyanate group, a carboxyl group, or a reactivity inducing group in a carboxyl group (for example, halide, Active amides, active esters, acid anhydride groups, etc.), and compounds having two or more of the same or different mercapto are used, and polyisocyanates are particularly important.
  • acrylyl resins include compounds containing at least three or more acryloyloxy and / or methacryloyloxy groups in the molecule (hereinafter, polyfunctional (meth) acryloyloxy groups). (Referred to as "containing compound") as a main component, and / or a composition containing a primary radical reactant thereof as a main component.
  • containing compound a polyfunctional unsaturated monomer containing at least 3 or more (meth) acryloyloxy groups in the molecule, at least 50% by weight based on the total unsaturated monomers.
  • An unsaturated monomer mixture containing preferably 70% by weight, particularly preferably 90% by weight or more, and A composition comprising the initial radical reactant.
  • the layers other than the thermally crosslinkable resin layer constituting the optically isotropic sheet (1) include a base layer, an air-permeable resin layer, and the like.
  • Examples of the layer configuration of the optically isotropic sheet (1) include a thermo-crosslinkable resin layer Z base layer, a thermo-crosslinkable resin layer, an air-permeable resin layer Z, a thermo-cross-linkable resin layer, and an air-permeable resin.
  • thermo-crosslinkable resin layer Z Air-permeable resin layer Z Thermo-crosslinkable resin layer, thermo-crosslinkable resin layer Z Air-permeable resin layer Z Base layer Z Air-permeable resin layer, thermo-crosslinkable resin layer Air-permeable resin layer / An air-permeable resin layer Z is a thermo-crosslinkable resin layer.
  • an anchor coating layer or an adhesive layer can be provided between the layers.
  • An anchor coating layer can be provided on the surface of the thermo-crosslinkable resin layer constituting the surface layer of the optically isotropic sheet (1), if necessary.
  • polycarbonate, polymethyl methacrylate, polyether sulfone, polysulfone, polyarylate, amorphous polyolefin, polyparabanic acid-based resin, polyamide, and the like are used as the base material layer.
  • the substrate layer preferably has a heat distortion temperature of 80 ° C. or higher.
  • the base material layer is obtained by a casting method and an extrusion method, and its thickness is often about 30 m to 3 m.
  • the gas-permeable resin constituting the gas-permeable resin layer examples include a layer formed from a polymer containing 50% by mole or more of an acrylonitrile component, a vinyl alcohol component or a vinylidene halide component. Particularly, polymers having hydroxyl groups are important, such as polyvinyl alcohol or modified copolymers or grafts thereof, and ethylene-vinyl alcohol copolymers having an ethylene content of 15 to 50 mol%.
  • the gas-permeable resin layer is usually formed by a casting method, and has an oxygen permeability (measured according to ASTM D-1434-75) of 30 cc, 24 hr ⁇ m 2 ⁇ atm or less, especially 20 cc / m 2.
  • the pressure be 24 hr ⁇ m 2 ⁇ atm or less, more preferably 10 cc, 24 hr ⁇ m 2 ⁇ atra or less.
  • the thickness of the air-permeable resin layer is suitably set in the range of 1 to 50 um, especially 2 to 20 um.
  • the active energy linear curable resin constituting the active energy ray curable resin cured layer (2) includes a photopolymerizable bleach polymer and / or monomer, and other monofunctional or polyfunctional monomers as necessary.
  • a resin composition containing a polymer, a photopolymerization initiator, and a photosensitizer is used.
  • examples of the photopolymerizable prepolymer include polyester acrylate, polyester urethane acrylate, epoxy acrylate, and polyol acrylate
  • examples of the photopolymerizable monomer include monofunctional acrylate and bifunctional acrylate. Examples include acrylates and trifunctional or higher acrylates. Of these, epoxy acrylates having good physical properties after curing are particularly useful, and it is desirable to use at least some of them.
  • a phosphazene resin represented by the above formula or the following chemical formula 2 is also preferably used.
  • the active energy ray-curable resin is an ultraviolet-curable resin
  • usually a small amount of a photoinitiator or a photosensitizer is used in combination.
  • a photoinitiator or a photosensitizer is used in combination.
  • Various photo-curing agents such as acetate phenones, benzophenones, michelaketone, benzyl, benzoin, benzoin ether, benzyl ketals, and thioxanthone are used as photoinitiators.
  • Various sensitizers such as amines and getylaminoethyl methacrylate are used.
  • the resin composition usually does not contain a solvent, but if necessary, a small amount of a solvent may be used in combination.
  • the thickness of the active energy ray-curable resin cured layer (2) is set to an appropriately set force of 1 to 20 and especially 2 to 10 in many cases.
  • the optical laminated sheet of the present invention is preferably produced by the following first method. That is, the resin liquid (2a) of the active energy ray-curable resin composition is filled in the gap between the optically isotropic sheet (1) with or without the anchor coating layer and the smoothing mold (3) made of a smooth film. The resin liquid (2a) is supplied so as to be sandwiched between them in a layered manner.
  • the optically isotropic sheet (1) is supplied in advance to the film forming roll (4a), and the smoothing material (3) is supplied in advance to the film forming roll (4b).
  • the gap between (4) and (4b) is adjusted to a predetermined value.
  • the rolls (4a) and (4b) for film formation should be configured so that they can be kept warm if necessary.
  • the sandwiching layer (2b) is cured by irradiation with active energy rays to form an active energy ray-curable resin cured layer (2).
  • active energy include ultraviolet rays and electron beams.
  • the integrated light amount and dose during irradiation of active energy are set to the optimum range in consideration of the thickness of the active energy ray-curable resin hardened layer (2), etc.
  • the smooth peelability of (3) and the solvent resistance of the active energy ray-curable resin cured layer (2) should be ensured.
  • a laminate composed of the optically isotropic sheet (1) the cured layer of the active energy ray-curable resin (2) and the Z-smoothed mold material (3) can be obtained.
  • the smoothing mold material (3) is peeled off to obtain a laminated sheet composed of the optically isotropic sheet (1) and the active energy ray-curable resin cured layer (2).
  • Examples of the smoothing mold material (3) include a biaxially stretched polyester film such as a biaxially stretched polyethylene terephthalate sheet, a biaxially stretched polybutylene terephthalate sheet, a biaxially stretched polyethylene naphtholate sheet, and the like.
  • a stretched polypropylene film or the like is used, and in view of cost and smoothness, a biaxially stretched polyethylene terephthalate film is particularly important. In this case, if the surface has been subjected to corona discharge or flame treatment, it will be difficult to peel off the smoothing mold material (3) in the subsequent steps, so care should be taken to use a material that is not subjected to such treatment. .
  • These smooth films has a surface roughness 0.15wni less, preferably rather below 0.05 W m, more is required to be less O.Olwm, surface roughness is greater than 0.15wm and the desired An optical laminated sheet having smoothness cannot be obtained.
  • the surface smoothness is significantly improved by the biaxial stretching, so that the smoothness can be increased to the utmost.
  • the second method for producing the optical laminated sheet according to the present invention is a method for producing an optically isotropic sheet (1) having or without an anchor coating layer or a smoothing mold (3) made of a smooth film.
  • Energy beam hardness The resin liquid (2a) of the curable resin composition is cast, and while the casting layer is covered with the smoothing mold material (3) or the optically isotropic sheet (1), the holding layer ( While controlling the thickness of 2b), the sandwiching layer (2b) is cured by irradiation with active energy rays to form an active energy ray-curable resin cured layer (2).
  • a third method for producing the optical laminated sheet of the present invention comprises the step of forming a resin liquid (2a) of an active energy ray-curable resin composition on a light isotropic sheet (1) with or without an anchor coating layer. While controlling the thickness of the sandwiching layer (2b) while pressing the smoothed glass as the smoothing mold material (3) against the casting layer, irradiation with active energy rays is performed. In this method, the sandwiching layer (2b) is cured to form an active energy ray-curable resin cured layer (2). In this method, the used glass is used repeatedly.
  • the surface roughness of the free surface of the active energy ray-curable resin cured layer (2) of the laminated sheet obtained by each of the above methods is determined according to the degree of surface smoothness of the smoothed mold material (3) and the like. , Preferably 0.2
  • the active energy ray-curable resin cured layer (2) of the laminated sheet also has excellent heat resistance, solvent resistance, and transparent electrode forming property.
  • the laminated sheet of the present invention has an overall retardation value of 6 O nm or less, preferably 3 O nm or less, and a visible light transmittance of 60% or more, preferably 70% or more desirable.
  • the photoisotropic sheet (1) obtained above is transparent on the active energy ray-curable resin-cured layer (2) of the laminated sheet composed of the Z-active energy ray-curable resin-cured layer (2). If an electrode is provided and an alignment film is formed thereon, a liquid crystal cell substrate can be manufactured.
  • the transparent electrode For the formation of the transparent electrode, vacuum evaporation, sputtering, ion plating, metal spraying, metal plating, chemical vapor deposition, spraying, etc. are adopted, and sputtering is particularly important.
  • the material of the transparent electrode metals such as Sn, In, Ti, Pb, and Tb or oxides thereof are mainly used, and the layer thickness of the transparent electrode is at least 100 angstroms, and furthermore, Usually, it is set to 200 angstrom or more.
  • the free surface of the active energy ray-curable resin cured layer (2) located on the surface of the laminated sheet has extremely high surface smoothness, for example, this is filled with STN liquid crystal. Even when it is used as an electrode substrate of a liquid crystal cell, the display does not appear to be very hard to see due to colors such as purple and blue on the display.
  • the display is colored in purple, blue, or the like, and the screen is extremely colored. It will not be difficult to see.
  • FIG. 1 is a process diagram showing an example of a production process of the optical laminated sheet of the present invention.
  • the meanings of the reference numerals in the figure are as follows.
  • parts means parts by weight.
  • FIG. 1 is a process chart showing an example of a production process of the optical laminated sheet of the present invention.
  • (5) is a tank
  • (6) is a jacket
  • (7) a lip-shaped discharge port
  • (4a) and (4b) are a pair of film forming rolls.
  • (8) is an ultraviolet irradiation device.
  • (9) is a nip roll
  • (10) is a peeling roll for peeling off the laminated sheet.
  • a water-soluble quaternized ester urethane-based anchor coating agent is applied to one surface of a polycarbonate sheet (thickness: 110 ⁇ m, retardation value: 12 nm), dried, and dried to a thickness of 0.5 wni.
  • 20 parts of ethylene-vinyl alcohol copolymer having an ethylene content of 32 mol%, 45 parts of water, 50 parts of n-propanol, and methylolated melamine (above the anchor coating layer) Sumitec M-3 manufactured by Sumitomo Chemical Co., Ltd. 3)
  • a resin solution having a composition of 4 parts was cast and passed through a dryer at a temperature of 110 ° C. to be dried.
  • an air-permeable resin layer having a thickness of 8 iim was formed.
  • an anchor coating layer having a thickness of 0.5 m is provided on the other surface of the polycarbonate sheet as the base material layer, and an air permeability of 8 urn having the same thickness as described above is formed on the anchor coating layer.
  • a resin layer was provided.
  • the mixture was heated at 130 ° C for 20 minutes to form a phenoxy ether resin-based thermally crosslinkable resin layer having a thickness of 10 m. Similarly, a 10 ⁇ m-thick thermally crosslinkable resin layer was formed on the other air-permeable resin layer.
  • an optically isotropic sheet having a layer structure of a heat-crosslinkable resin layer, an air-permeable resin layer, a Z anchor coating layer, a base layer / anchor coating layer, an air-permeable resin layer, and a heat-crosslinkable resin layer. (1) was obtained.
  • a biaxially stretched polyethylene terephthalate film (0 type, manufactured by Teijin Limited) with a thickness of 50 im and a surface roughness of 0.004 um, which has not been subjected to corona discharge treatment, is prepared as a smoothing mold material (3). did.
  • This resin liquid (2a) was charged into a tank (5), and a heating medium was sent to a jacket (6) to keep the contents at about 3 (TC and degas).
  • the film-forming rolls (4a) and (4b) are supplied with the above-mentioned optically isotropic sheet (1) and the smoothing mold material (3) in advance, respectively.
  • the resin discharged from the discharge roller (7) The liquid (2a) was sandwiched between the thermally crosslinkable resin layer surface of the optically isotropic sheet (1) and the smooth surface of the smoothing mold material (3) to form a sandwiching layer (2b).
  • the sandwiched sheet was irradiated with ultraviolet light by an ultraviolet irradiation device (8) under the following conditions, and then the smoothing mold material (3) was peeled off.
  • the sandwiching layer (2b) was cured by the irradiation of ultraviolet rays, and became an active energy ray-curable resin cured layer (2).
  • Sheet (S) was obtained.
  • the peeling and removal of the smoothing mold material (3) may be performed at a later date after being wound on a winder once instead of immediately after the ultraviolet irradiation.
  • Table 1 shows the conditions and results. The meanings of the evaluation items are as follows.
  • the thickness is the thickness of the energy-curable resin cured layer (2) formed.
  • the surface smoothness of the free surface of the active energy ray-curable resin cured layer (2) is measured by a non-contact type surface roughness meter using light interference.
  • the active energy linear curing type resin cured layer (2) of the laminated sheets (S) of No. 1 to No. 4 obtained above was subjected to a sputtering process to form a 500 ⁇ thick IT 0.
  • a transparent electrode composed of layers was directly formed.
  • an alignment film was formed and rubbed, a liquid crystal cell was assembled, and a retardation plate and a polarizing plate were laminated by a conventional method to produce a liquid crystal display panel.
  • the obtained liquid crystal display panel showed no coloration in the display, and had performance comparable to that of a liquid crystal display panel using glass as a substrate.
  • Example 2 The same procedure as in Example 1 was carried out except that a polycarbonate sheet (polyester sheet, 100 m thick, retardation value: 15 nm) was used instead of the polycarbonate sheet. An isotropic sheet (1) was obtained.
  • a polycarbonate sheet polyester sheet, 100 m thick, retardation value: 15 nm
  • Example 1 was repeated except that the above-described optically isotropic sheet (1) and the resin liquid (2a) were used.
  • Table 2 shows the conditions and results.
  • Example 1 the heat-crosslinkable resin layer Z air-permeable resin layer / anchor coating layer Base material layer Z anchor coating layer air-permeable resin layer No heat-crosslinkable resin layer
  • An anchor coating layer having a thickness of lm with a commercially available solvent-type urethane-based anchor coating agent is formed on one of the heat-crosslinkable resin layers of the optically isotropic sheet (1) having a structure.
  • thermosetting resin composition On a polyester film, 20 parts of an ethylene-vinyl alcohol copolymer having an ethylene content of 32 mol%, 45 parts of water, 50 parts of n-propanol, and methylolated melamine (Sumitec M-3 manufactured by Sumitomo Chemical Co., Ltd.) ) A resin solution composed of 4 parts is cast and passed through a dryer at a temperature of 110 ° C and dried to form an air-permeable resin layer with a thickness of 15 jum. I let it. The same thermosetting resin composition as in Example 1 was applied from above, dried, and heated to form a 10-inch-thick thermally crosslinkable resin layer.
  • a urethane-based adhesive solution is applied on the air-permeable resin layer of the obtained laminated film, dried, and then, the surface of the air-permeable resin layer side of the same laminated film as above is placed on top of it and pressed. After left overnight, the polyester films on both sides were peeled off. As a result, an optically isotropic sheet (1) having a layer configuration composed of the heat-crosslinkable resin layer, the air-permeable resin layer / adhesive layer Z, and the air-permeable resin layer was obtained.
  • an active energy ray-curable resin cured layer (2) having a thickness of 4 was formed on one surface in the same manner as in Example 1, and the other surface was subsequently applied.
  • An active energy ray-curable resin cured layer (2) having a thickness of 4.0 / ⁇ ⁇ was formed.
  • the surface roughness of the active energy ray-curable resin cured layer (2) surface of the obtained laminated sheet (S) was 0.1 Um or less on both surfaces.
  • the resin liquid (2a) of Example 1 was cast on the surface of the thermo-crosslinkable resin layer of the optically isotropic sheet (1) of Example 1, and the casting layer was used as a smoothing mold material (3). While pressing the glass having a surface roughness of 0.05 mn, the thickness of the sandwiching layer (2b) was controlled to 5.0 wm while irradiating with ultraviolet light, and then the glass was peeled off. The surface roughness of the active energy ray-curable resin cured layer (2) surface of the obtained laminated sheet (S) was 0.1 m or less. Industrial applicability
  • the optical laminated notebook obtained by the method of the present invention is a liquid crystal display panel. Although it is particularly important as an electrode substrate for manufacturing a film, it can also be applied to applications such as a member for a retardation plate, a member for a polarizing plate, an optical disk, and an optical card.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)

Abstract

A process for producing an optical laminated sheet by supplying a resin fluid (2a) comprising an actinic-radiation-curable resin composition into a gap between an optically isotropic sheet (1) having a surface layer comprising a thermally crosslinking resin and a smoothening template material (3) having a smooth surface to thereby form an interposed layer (2b) and curing the layer (2b) by irradiating with an actinic radiation to thereby form an actinic-radiation-cured resin layer (2). The template material (3) usable herein includes a biaxially oriented polyethylene terephthalate film which has a surface roughness of 0.004 νm and does not cause corona discharge. As a result, the surface roughness of a free surface of the cured resin layer (2) can be reduced to, for example, 0.1 νm or less.

Description

曰月糸田 ¾  Say 糸
光学用積層シートおよびその製法 技 術 分 野  Optical laminated sheet and its manufacturing technology
本発明は、 表面平滑性の極めてすぐれた光学用積層シー ト、 殊に 液晶表示パネル製造用の電極基板に適した光学用積層シートに関す るものである。 またそのような光学用積層シートを工業上有利に製 造する方法に関するものである。 背 景 技 術  The present invention relates to an optical laminated sheet having extremely excellent surface smoothness, particularly to an optical laminated sheet suitable for an electrode substrate for producing a liquid crystal display panel. The present invention also relates to a method for industrially advantageously producing such an optical laminated sheet. Background technology
〈従来の技術〉  <Conventional technology>
液晶表示用透明電極の基板.としては、 従来はガラスが用いられて いたが、 薄型にできないこと、 耐衝撃性が劣ること、 量産化しにく いことなどの問題点があるため、 最近ではプラスチックス基板を用 いることが多くなっており、 本出願人においても以下に述べるよう ないくつかの出願を行っている。 なお、 これらの出願における架橋 性樹脂硬化物層とは熱架橋性樹脂層の意味である。  Conventionally, glass has been used as a substrate for transparent electrodes for liquid crystal displays.However, plastics have recently been used because of problems such as the inability to make them thin, poor impact resistance, and difficulty in mass production. In many cases, the present applicant has made several applications as described below. The crosslinked resin cured material layer in these applications means a thermally crosslinked resin layer.
たとえば、 特開昭 6 3 - 7 1 8 2 9号公報には、 ポリカーボネー 卜 樹脂等のシー卜からなるレターデーション値 3 O nm以下の基材 層の少なく とも片面に水性アンカ一コー卜層を設けた後、 そのアン カーコート層の上に耐透気性樹脂または および架橋性樹脂硬化物 からなる単層または複層の保護層を設けた液晶表示パネル用電極基 板が示されている。  For example, Japanese Unexamined Patent Publication (Kokai) No. 63-71892 states that at least one surface of a base material layer having a retardation value of 3 O nm or less composed of a sheet of polycarbonate resin or the like is provided on at least one surface. FIG. 1 shows an electrode substrate for a liquid crystal display panel in which a single-layer or multiple-layer protective layer made of a cured product of an air-permeable resin or a cross-linkable resin is provided on the anchor coat layer.
特開昭 6 4— 5 0 0 2 1号公報には、 耐透気性合成樹脂フィルム 層と架橋性樹脂硬化物層との積層体同士が、 それぞれの耐透気性合 成樹脂フィルム層面が対向する状態で接着剤層を介して積層一体化 された構成を有する液晶表示パネル用電極基板が示されている。 特開昭 6 4 - 5 0 0 2 2号公報には、 流延製膜法により形成され た耐透気性合成樹脂フィルム層の両面に、 その耐透気性合成樹脂 フィルム層と反応しうる架橋剤を使用した架橋性樹脂硬化物層を流 延法により直接形成させるようにした液晶表示パネル用電極基板の 製造法が示されている。 Japanese Patent Application Laid-Open No. Sho 644-50021 discloses that a laminated body of an air-permeable synthetic resin film layer and a crosslinked resin cured material layer has their respective air-permeable synthetic resin film layers facing each other. Laminated and integrated via the adhesive layer in the state An electrode substrate for a liquid crystal display panel having the configuration described above is shown. Japanese Patent Application Laid-Open No. 640000/1988 discloses that a cross-linking agent capable of reacting with the air-permeable synthetic resin film layer on both sides of the air-permeable synthetic resin film layer formed by the casting film forming method. A method for manufacturing an electrode substrate for a liquid crystal display panel in which a cured crosslinkable resin layer is formed directly by a casting method using the method described above.
特開平 2 - 1 3 7 9 2 2号公報には、 耐溶剤性を有しない樹脂層 を有するレターデーション値 3 O nm以下の基材シー卜の樹脂層側 に、 アルコール可溶性紫外線硬化型接着剤層または水系熱硬化型接 着剤層を積層し、 さらにその接着剤層上に剥離性シートを積層した 液晶表示パネル製造用の貼着型積層シー卜が示されており、 基材 シートの例として、 ポリカーボネー卜等の樹脂シー卜 Zアンカー コーティ ング層ノ耐透気性合成樹脂層 Zフュノキシエーテル系架橋 重合体層の層構成を有するシートがあげられている。  Japanese Patent Application Laid-Open No. 2-137972 discloses that an alcohol-soluble UV-curable adhesive is provided on the resin layer side of a substrate sheet having a retardation value of 3 O nm or less having a resin layer having no solvent resistance. A laminate sheet for manufacturing a liquid crystal display panel is shown in which a laminate layer or a water-based thermosetting adhesive layer is laminated, and a release sheet is further laminated on the adhesive layer. As an example, a sheet having a layer structure of a resin sheet such as polycarbonate, a Z anchor coating layer, a gas-resistant synthetic resin layer, and a Z-funoxy ether-based crosslinked polymer layer is mentioned.
特開平 2 - 1 4 9 8 1 9号公報には、 ロール状に巻回可能な電極 支持フィルムの片面に透明電極を設けた構成を有する透明電極付き 電極支持フィルムの電極支持フィルム側を、 レターデーション値が 8 O nm以下、 光線透過率が 6 0 %以上の母材に貼着により積層一体 化した透明電極付き液晶セル基板が示されており、 電極支持フィル ムの例として、 樹脂フィルム層 Zアンカーコーティング層 架橋性 樹脂硬化物層、 樹脂フィルム層 アンカーコーティング層 Z耐透気 性合成樹脂フィルム層 架橋性樹脂硬化物層、 架橋性樹脂硬化物層 /耐透気性合成樹脂フィルム層 アンカーコーティ ング層 樹脂 フィルム層ノアンカーコーティング層 Z耐透気性合成樹脂フィルム 層 Z架橋性樹脂硬化物層、 架橋性樹脂硬化物層 Z耐透気性合成樹脂 フィルム層 Z接着剤層 Z耐透気性合成樹脂フィルム層 Z架橋性樹脂 硬化物層などの層構成を有するフィルムがあげられている。 Japanese Patent Application Laid-Open No. 2-149898 / 1992 discloses an electrode support film with a transparent electrode having a configuration in which a transparent electrode is provided on one side of an electrode support film that can be wound into a roll. It shows a liquid crystal cell substrate with a transparent electrode, which is laminated and integrated by bonding to a base material with a luminescence value of 8 O nm or less and a light transmittance of 60% or more, and a resin film layer as an example of the electrode support film. Z anchor coating layer Crosslinkable cured resin layer, resin film layer Anchor coating layer Z Air-permeable synthetic resin film layer Crosslinked resin cured layer, crosslinked resin cured layer / air-permeable synthetic resin film layer Anchor coating Layer Resin Film layer Non-anchor coating layer Z Air-permeable synthetic resin film layer Z Cross-linked resin cured product layer, Cross-linked resin cured product layer Z Air-permeable synthetic resin film layer Z Adhesive Z impermeability temper synthetic resin film layer Z crosslinking resin Films having a layer structure such as a cured product layer are mentioned.
〈発明が解決しょうとする課題〉  <Problems to be solved by the invention>
上にあげたシート状基板を液晶表示パネル製造用の電極基板とし て用いる場合は、 架橋性樹脂硬化物層上に I T O等の透明電極を形 成させ、 さらにその上に配向膜を設けてから、 液晶セルに組み立て る。 この場合、 基板間に封じ込める液晶が T N (ツイステド *ネマ チック) 液晶である場合には、 透明電極形成側の基板表面の多少の 凹凸は製品品質にほとんど影響を及ぼさない。 というのは、 T N 液晶を用いた液晶セルから組み立てた液晶表示パネルは無彩色で あって、 濃淡さえはっきりすればパネルとして合格となるからであ る。  When the above-mentioned sheet substrate is used as an electrode substrate for manufacturing a liquid crystal display panel, a transparent electrode such as ITO is formed on the crosslinked resin cured material layer, and an alignment film is further provided thereon. Assemble into a liquid crystal cell. In this case, if the liquid crystal sealed between the substrates is TN (twisted * nematic) liquid crystal, slight irregularities on the substrate surface on the side where the transparent electrode is formed will have little effect on the product quality. This is because a liquid crystal display panel assembled from a liquid crystal cell using TN liquid crystal is achromatic, and a panel is acceptable if the shading is clear.
しかしながら、 基板間に封じ込める液晶が S T N (スーパー * ッ イステド ,ネマチック) 液晶である場合には、 基板間の間隙が 5〜 6 u rn 程度にすぎないにもかかわらず S T N液晶によりたとえば 2 7 0 ° 程度のツイストがなされるため、 透明電極形成側の基板表 面にわずかの凹凸があっても表示に紫、 綠などの色がついて画面が 非常に見にく くなるという事態を生じ、 この点がブラスチックス基 板を用いた液晶表示パネルの最大の弱点となっていた。 上に引用し た本出願人の出願にかかる電極基板も、 この問題点については充分 な解決がなされていなかった。  However, when the liquid crystal to be sealed between the substrates is STN (super * twisted, nematic) liquid crystal, the STN liquid crystal can be used, for example, at 270 ° even though the gap between the substrates is only about 5 to 6 urn. Since the twist is only about a degree, even if there are slight irregularities on the surface of the substrate on the side where the transparent electrode is formed, the display will be colored purple or 綠 and the screen will be very difficult to see. This was the biggest weakness of liquid crystal display panels using the Chix substrate. The above-cited electrode substrate according to the present applicant's application has not sufficiently solved this problem.
本発明は、 このような背景下において、 表面平滑性の極めてすぐ れた光学用積層シー卜、 殊に液晶表示パネル製造用の電極基板に適 した光学用積層シートを提供すること、 およびそのような光学用積 層シートを工業上有利に製造する方法を提供することを目的とする ものである。 発 明 の 開 示 Under such a background, the present invention provides an optical laminated sheet having extremely excellent surface smoothness, particularly an optical laminated sheet suitable for an electrode substrate for manufacturing a liquid crystal display panel. It is an object of the present invention to provide a method for industrially advantageously producing a simple optical laminated sheet. Disclosure of the invention
本発明の光学用積層シートは、 少なく とも表面層が熱架橋性樹脂 層である単層または複層の光等方性シ一ト (1 ) 上に直接またはアン カーコーティ ング層を介して活性エネルギー線硬化型樹脂硬化層 ( 2 ) を設けた積層シートであって、 前記活性エネルギー線硬化型樹 脂硬化層(2 ) の自由面の表面粗度が 0. 5 m 以下であり、 積層シー 卜全体のレターデーション値が 6 Ο ηιη以下、 可視光線透過率が 6 0 %以上であることを特徴とするものである。  The optical laminated sheet of the present invention can be activated directly or via an anchor coating layer on a single-layer or multi-layer optically isotropic sheet (1) in which at least the surface layer is a thermally crosslinkable resin layer. A laminated sheet provided with an energy ray-curable resin cured layer (2), wherein the active energy ray-curable resin cured layer (2) has a free surface having a surface roughness of 0.5 m or less, and a laminated sheet. It is characterized in that the retardation value of the entire container is 6Οηιη or less and the visible light transmittance is 60% or more.
また本発明の光学用積層シ一卜の製法は、 少なく とも表面層が熱 架橋性樹脂層である単層または複層のシートであってアンカーコー ティ ング層を設けまたは設けない光等方性シート(1) と平滑面を有 する平滑化铸型材(3) との間隙に活性エネルギー線硬化型樹脂組成 物の樹脂液(2a)を供給して該樹脂液(2a)が両者間に層状に挟持され るようにし、 ついで活性エネルギー線の照射によりその挟持層(2b) を硬化させて活性エネルギー線硬化型樹脂硬化層(2 ) となすことを 特徴とするものである。  In addition, the method for producing the optical laminated sheet of the present invention is a method for producing an optically isotropic sheet having at least a single-layer or multi-layer sheet whose surface layer is a thermo-crosslinkable resin layer and having or not providing an anchor coating layer. The resin liquid (2a) of the active energy ray-curable resin composition is supplied to a gap between the sheet (1) and the smoothing mold material (3) having a smooth surface, and the resin liquid (2a) is formed between the two. It is characterized in that the sandwiched layer (2b) is cured by irradiation with active energy rays to form an active energy ray-curable resin cured layer (2).
以下本発明を詳細に説明する。 なお 「シート」 、 「フィルム」 、 「層」 とあるのはいずれも薄層物という意味であり、 厚さを限定す るものではない。  Hereinafter, the present invention will be described in detail. The terms “sheet”, “film”, and “layer” all mean thin layers, and do not limit the thickness.
光等方性シート(1 ) としては、 少なく とも表面層が熱架橋性樹脂 層である単層または複層の光等方性シー卜が用いられる。  As the optically isotropic sheet (1), a single-layer or multiple-layer optically isotropic sheet whose surface layer is at least a thermo-crosslinkable resin layer is used.
上記中、 熱架橋性樹脂層における熱架橋性樹脂としては、 フユノ キシエーテル型架橋性樹脂、 エポキシ樹脂、 アクリル樹脂、 ァクリ ルエポキシ樹脂、 メラミン樹脂、 フヱノール樹脂またはウレタン樹 脂などがあげられる。  Among the above, examples of the heat crosslinkable resin in the heat crosslinkable resin layer include fu- noxy ether type crosslinkable resin, epoxy resin, acrylic resin, acryl epoxy resin, melamine resin, phenol resin and urethane resin.
架橋性樹脂の中で特に好ましい樹脂は、 下記の化 1で示される フエノキシエーテル型重合体である - CH z-f— (化 1 )
Figure imgf000007_0001
Particularly preferred resins among the crosslinkable resins are represented by the following chemical formula 1. It is a phenoxy ether type polymer-CH zf—
Figure imgf000007_0001
(式中、 R 1 〜R 6 は、 それぞれ水素、 炭素数 1〜3の低級アルキ ル基または B r 、 R 7 は炭素数 2〜4の低級アルキレン基、 mは 0 〜3の整数、 nは 2 0〜3 0 0の整数をそれぞれ意味する。 ) この重合体の水酸基の水素部分に架橋剤である多官能性化合物を 架橋反応させると、 フヱノキシエーテル型架橋重合体が得られる。 架橋重合体を得るために反応させる架橋剤 (多官能性化合物) とし ては、 水酸基との反応活性が高い基、 例えば、 イソシァネート基、 カルボキシル基、 カルボキシル基における反応性誘導基 (たとえば ハライ ド、 活性アミ ド、 活性エステル、 酸無水物基等) 、 メルカブ ト等を同一または異なって 2以上有する化合物などが用いられ、 特 にポリィソシァネー卜が重要である。 (Wherein, R 1 to R 6 are each hydrogen, a lower alkyl group having 1 to 3 carbon atoms or Br, R 7 is a lower alkylene group having 2 to 4 carbon atoms, m is an integer of 0 to 3, n Represents an integer of 20 to 300.) A cross-linking reaction of a polyfunctional compound as a cross-linking agent with the hydrogen portion of the hydroxyl group of this polymer gives a phenoxy ether-type cross-linked polymer. . As a crosslinking agent (polyfunctional compound) to be reacted to obtain a crosslinked polymer, a group having a high reactivity with a hydroxyl group, for example, an isocyanate group, a carboxyl group, or a reactivity inducing group in a carboxyl group (for example, halide, Active amides, active esters, acid anhydride groups, etc.), and compounds having two or more of the same or different mercapto are used, and polyisocyanates are particularly important.
上記のうちァクリル樹脂としては、 分子中に少なく とも 3個以上 のァクリロイルォキシ基または およびメタァクリロイルォキシ基 を含有する化合物 (以下、 多官能 (メタ) ァクリロイルォキシ基含 有化合物という) を主成分とする多官能不飽和単量体または/およ びその初期ラジカル反応物を主成分とする組成物をあげることがで きる。 特に好ましいのは、 分子中に少なく とも 3個以上の (メタ) ァクリロイルォキシ基を含有する多官能不飽和単量体を、 全不飽和 単量体に対して 5 0重量%以上、 好ましくは 7 0重量%、 特に好ま しくは 9 0重量%以上含有する不飽和単量体混合物または および その初期ラジカル反応物から成る組成物である。 Of the above, acrylyl resins include compounds containing at least three or more acryloyloxy and / or methacryloyloxy groups in the molecule (hereinafter, polyfunctional (meth) acryloyloxy groups). (Referred to as "containing compound") as a main component, and / or a composition containing a primary radical reactant thereof as a main component. Particularly preferred is a polyfunctional unsaturated monomer containing at least 3 or more (meth) acryloyloxy groups in the molecule, at least 50% by weight based on the total unsaturated monomers, An unsaturated monomer mixture containing preferably 70% by weight, particularly preferably 90% by weight or more, and A composition comprising the initial radical reactant.
光等方性シート(1) を構成する熱架橋性樹脂層以外の層としては, 基材層、 耐透気性樹脂層などがあげられる。 光等方性シート(1) の 層構成の例は、 熱架橋性樹脂層 Z基材層、 熱架橋性樹脂層 耐透気 性樹脂層 Z基材層、 熱架橋性樹脂層 耐透気性樹脂層 基材層 Z 耐透気性樹脂層 Z熱架橋性樹脂層、 熱架橋性樹脂層 Z耐透気性樹脂 層 Z基材層 Z耐透気性樹脂層、 熱架橋性樹脂層 耐透気性樹脂層/ 耐透気性樹脂層 Z熱架橋性樹脂層などである。 なお積層構成の場合 は、 層間にアンカーコ一ティング層や接着剤層を設けることができ る。 また光等方性シート(1) の表面層を構成する熱架橋性樹脂層の 表面には、 必要に応じアンカーコーティ ング層を設けることができ る。  The layers other than the thermally crosslinkable resin layer constituting the optically isotropic sheet (1) include a base layer, an air-permeable resin layer, and the like. Examples of the layer configuration of the optically isotropic sheet (1) include a thermo-crosslinkable resin layer Z base layer, a thermo-crosslinkable resin layer, an air-permeable resin layer Z, a thermo-cross-linkable resin layer, and an air-permeable resin. Layer Base layer Z Air-permeable resin layer Z Thermo-crosslinkable resin layer, thermo-crosslinkable resin layer Z Air-permeable resin layer Z Base layer Z Air-permeable resin layer, thermo-crosslinkable resin layer Air-permeable resin layer / An air-permeable resin layer Z is a thermo-crosslinkable resin layer. In the case of a laminated structure, an anchor coating layer or an adhesive layer can be provided between the layers. An anchor coating layer can be provided on the surface of the thermo-crosslinkable resin layer constituting the surface layer of the optically isotropic sheet (1), if necessary.
上記中、 基材層としては、 ポリカーボネート、 ポリメチルメタク リレー卜、 ポリエーテルスルホン、 ポリスルホン、 ポリアリ レート、 アモルファスポリオレフイ ン、 ポリパラバン酸系樹脂、 ポリアミ ド などが用いられる。  In the above, polycarbonate, polymethyl methacrylate, polyether sulfone, polysulfone, polyarylate, amorphous polyolefin, polyparabanic acid-based resin, polyamide, and the like are used as the base material layer.
基材層は熱変形温度が 8 0 °C以上であることが望ましい。 基材層 は流延法ゃ押出法により得られ、 その厚さは 3 0 m 〜 3 程度と することが多い。  The substrate layer preferably has a heat distortion temperature of 80 ° C. or higher. The base material layer is obtained by a casting method and an extrusion method, and its thickness is often about 30 m to 3 m.
耐透気性樹脂層を構成する耐透気性樹脂としては、 たとえば、 ァクリロ二ト リル成分、 ビニルアルコール成分またはハロゲン化ビ 二リデン成分を 5 0モル%以上含有する重合体から形成された層が あげられ、 特にポリビニルアルコールまたはその共重合変性物ある いはグラフ 卜物、 エチレン含量が 1 5 〜 5 0モル%のエチレン—ビ ニルアルコール共重合体など、 水酸基を有するポリマーが重要であ る。 耐透気性樹脂層は通常流延法によ り形成され、 その酸素透過率 (ASTM D-1434-75に準じて測定) が 30 cc,24hr · m2 · atm 以下、 殊に 2 0 cc/24hr · m2 · atm 以下さらには 1 0 cc,24hr · m2 · atra 以下であることが望ましい。 耐透気性樹脂層の厚さは、 1〜 5 0 um 、 殊に 2〜20 um の範囲に設定するのが適当である。 Examples of the gas-permeable resin constituting the gas-permeable resin layer include a layer formed from a polymer containing 50% by mole or more of an acrylonitrile component, a vinyl alcohol component or a vinylidene halide component. Particularly, polymers having hydroxyl groups are important, such as polyvinyl alcohol or modified copolymers or grafts thereof, and ethylene-vinyl alcohol copolymers having an ethylene content of 15 to 50 mol%. The gas-permeable resin layer is usually formed by a casting method, and has an oxygen permeability (measured according to ASTM D-1434-75) of 30 cc, 24 hr · m 2 · atm or less, especially 20 cc / m 2. It is desirable that the pressure be 24 hr · m 2 · atm or less, more preferably 10 cc, 24 hr · m 2 · atra or less. The thickness of the air-permeable resin layer is suitably set in the range of 1 to 50 um, especially 2 to 20 um.
活性エネルギー線硬化型樹脂硬化層(2) を構成する活性エネル ギ一線硬化型樹脂としては、 光重合性を有するブレポリマーまたは /およびモノマーに、 必要に他の単官能または多官能モノマー、 各 種ポリマー、 光重合開始剤、 增感剤を配合した樹脂組成物が用いら れる。  The active energy linear curable resin constituting the active energy ray curable resin cured layer (2) includes a photopolymerizable bleach polymer and / or monomer, and other monofunctional or polyfunctional monomers as necessary. A resin composition containing a polymer, a photopolymerization initiator, and a photosensitizer is used.
ここで光重合性プレポリマーとしては、 ポリエステルァクリ レー 卜、 ポリエステルウレタンァクリ レート、 エポキシァクリ レート、 ポリオールァクリ レー卜などが例示され、 光重合性モノマーとして は、 単官能ァクリ レー卜、 2官能ァクリ レート、 3官能以上のァク リ レー卜などが例示される。 これらの中では、 硬化後の物性が良好 なエポキシァクリ レー卜が特に有用であるので、 これを少なく とも 一部用いることが望ましい。  Here, examples of the photopolymerizable prepolymer include polyester acrylate, polyester urethane acrylate, epoxy acrylate, and polyol acrylate, and examples of the photopolymerizable monomer include monofunctional acrylate and bifunctional acrylate. Examples include acrylates and trifunctional or higher acrylates. Of these, epoxy acrylates having good physical properties after curing are particularly useful, and it is desirable to use at least some of them.
光重合性を有するブレポリマーまたはモノマーとしては、 上記の ほ力 、 下記の化 2で示されるホスファゼン系樹脂も好適に用いられ る。  As the photopolymerizable polymer or monomer, a phosphazene resin represented by the above formula or the following chemical formula 2 is also preferably used.
R0 OR R0 OR
\ /  \ /
N N N N
CH3 CH 3
R0\ /OR  R0 \ / OR
R: -CHz-)-20-C-C = CH2 R: -CH z -)- 20 -CC = CH 2
R0 zp / ヽ OR II (化 2 ) ヽ 0 . 活性エネルギー線硬化型樹脂が紫外線硬化型樹脂であるときは、 通常光開始剤や增感剤を少量併用するが、 樹脂の種類によっては これらを配合しないで紫外線照射しても硬化する場合がある。 光開 始剤としてはァセ 卜フエノ ン類、 ベンゾフエノン類、 ミヒラーケト ン、 ベンジル、 ベンゾイン、 ベンゾインエーテル、 ベンジルケター ル類、 チォキサントン類をはじめとする種々の光硬化剤が用いら れ、 增感剤としてはァミン類、 ジェチルアミノエチルメタクリレー 卜をはじめとする種々の增感剤が用いられる。 R0 z p / ヽ OR II (Chemical Formula 2) ヽ 0. When the active energy ray-curable resin is an ultraviolet-curable resin, usually a small amount of a photoinitiator or a photosensitizer is used in combination. . Various photo-curing agents such as acetate phenones, benzophenones, michelaketone, benzyl, benzoin, benzoin ether, benzyl ketals, and thioxanthone are used as photoinitiators. Various sensitizers such as amines and getylaminoethyl methacrylate are used.
樹脂組成物は通常は溶剤を含まないが、 もし必要なら少量の溶剤 を併用しても差し支えない。  The resin composition usually does not contain a solvent, but if necessary, a small amount of a solvent may be used in combination.
活性エネルギー線硬化型樹脂硬化層(2 ) の厚さは適宜に設定でき る力 1〜2 0 、 殊に 2〜 1 0 とすることが多い。  The thickness of the active energy ray-curable resin cured layer (2) is set to an appropriately set force of 1 to 20 and especially 2 to 10 in many cases.
本発明の光学用積層シー卜は、 好適には次の第 1の方法により製 造される。 すなわち、 アンカーコーティング層を設けまたは設けな い光等方性シート (1) と平滑フィルムからなる平滑化铸型材(3) と の間隙に活性エネルギー線硬化型樹脂組成物の樹脂液(2a)を供給し て該樹脂液(2a)が両者間に層状に挟持されるようにする。 光等方性 シート(1 ) は製膜用ロール(4a)に、 平滑化铸型材(3) は製膜用ロー ル(4b)にそれぞれ予め供給しておき、 両製膜用ロール(4a), (4b)間 の間隙は所定の値に調整しておく。 製膜用ロール(4a) , (4b)は必要 に応じ保温可能に構成しておく。  The optical laminated sheet of the present invention is preferably produced by the following first method. That is, the resin liquid (2a) of the active energy ray-curable resin composition is filled in the gap between the optically isotropic sheet (1) with or without the anchor coating layer and the smoothing mold (3) made of a smooth film. The resin liquid (2a) is supplied so as to be sandwiched between them in a layered manner. The optically isotropic sheet (1) is supplied in advance to the film forming roll (4a), and the smoothing material (3) is supplied in advance to the film forming roll (4b). The gap between (4) and (4b) is adjusted to a predetermined value. The rolls (4a) and (4b) for film formation should be configured so that they can be kept warm if necessary.
ついで、 活性エネルギー線の照射により上記の挟持層(2b)を硬化 させて活性エネルギー線硬化型樹脂硬化層(2) となす。 活性エネル ギ一線としては、 紫外線、 電子線などがあげられる。 活性エネル ギ一線照射時の積算光量や線量は、 活性エネルギー線硬化型樹脂硬 化層(2 ) の厚さなどを考慮して最適範囲に設定し、 平滑化铸型材 (3) の円滑剥離性や活性エネルギー線硬化型樹脂硬化層(2) の耐溶 剤性を確保するようにする。 Next, the sandwiching layer (2b) is cured by irradiation with active energy rays to form an active energy ray-curable resin cured layer (2). Examples of the active energy include ultraviolet rays and electron beams. The integrated light amount and dose during irradiation of active energy are set to the optimum range in consideration of the thickness of the active energy ray-curable resin hardened layer (2), etc. The smooth peelability of (3) and the solvent resistance of the active energy ray-curable resin cured layer (2) should be ensured.
これにより、 光等方性シート(1) 活性エネルギー線硬化型樹脂 硬化層(2) Z平滑化铸型材(3) よりなる積層体が得られるので、 爾 後の任意の段階でその積層体から平滑化铸型材(3) を剥離除去し、 光等方性シー卜(1) 活性エネルギー線硬化型樹脂硬化層(2) より なる積層シートを得る。  As a result, a laminate composed of the optically isotropic sheet (1) the cured layer of the active energy ray-curable resin (2) and the Z-smoothed mold material (3) can be obtained. The smoothing mold material (3) is peeled off to obtain a laminated sheet composed of the optically isotropic sheet (1) and the active energy ray-curable resin cured layer (2).
上記における平滑化铸型材(3) としては、 二軸延伸ポリエチレン テレフタレートシート、 二軸延伸ポリブチレンテレフ夕レートシー 卜、 二軸延伸ポリエチレンナフ夕レートシ一卜等の二軸延伸ポリェ ステルフィルムや、 二軸延伸ポリプロピレンフィルムなどが用いら れ、 コス卜および平滑性を加味すると二軸延伸ポリエチレンテレフ タレートフィルムが特に重要である。 この場合、 その表面がコロナ 放電や火炎処理されていると、 爾後の工程での平滑化铸型材(3) の 剥離が困難となるので、 そのような処理を施さないものを用いるよ うに留意する。  Examples of the smoothing mold material (3) include a biaxially stretched polyester film such as a biaxially stretched polyethylene terephthalate sheet, a biaxially stretched polybutylene terephthalate sheet, a biaxially stretched polyethylene naphtholate sheet, and the like. A stretched polypropylene film or the like is used, and in view of cost and smoothness, a biaxially stretched polyethylene terephthalate film is particularly important. In this case, if the surface has been subjected to corona discharge or flame treatment, it will be difficult to peel off the smoothing mold material (3) in the subsequent steps, so care should be taken to use a material that is not subjected to such treatment. .
これらの平滑フィルムは、 その表面粗度が 0.15wni 以下、 好まし くは 0.05Wm 以下、 さらには O.Olwm 以下であることが要求され、 表面粗度が 0.15wm よりも大きくなると所期の平滑性を有する光学 用積層シ一卜が得られなくなる。 上記の二軸延伸ポリエチレンテレ フタレートフィルムのうち填料を配合しないものは、 二軸延伸によ り表面平滑性が顕著に向上するので、 平滑性を極限にまで上げるこ とができる。 These smooth films has a surface roughness 0.15wni less, preferably rather below 0.05 W m, more is required to be less O.Olwm, surface roughness is greater than 0.15wm and the desired An optical laminated sheet having smoothness cannot be obtained. Among the biaxially stretched polyethylene terephthalate films described above, in which no filler is blended, the surface smoothness is significantly improved by the biaxial stretching, so that the smoothness can be increased to the utmost.
本発明の光学用積層シートを製造する第 2の方法は、 アンカー コーティ ング層を設けまたは設けない光等方性シート(1) または平 滑フィルムからなる平滑化铸型材(3) の一方に活性エネルギー線硬 化型樹脂組成物の樹脂液(2a)を流延しておき、 該流延層に平滑化鐯 型材(3) または光等方性シート(1 ) を被覆させながらロールの間隙 により挟持層(2b)の厚さを制御しつつ、 活性エネルギー線の照射に より挟持層(2b)を硬化させて活性エネルギー線硬化型樹脂硬化層 (2) となす方法である。 The second method for producing the optical laminated sheet according to the present invention is a method for producing an optically isotropic sheet (1) having or without an anchor coating layer or a smoothing mold (3) made of a smooth film. Energy beam hardness The resin liquid (2a) of the curable resin composition is cast, and while the casting layer is covered with the smoothing mold material (3) or the optically isotropic sheet (1), the holding layer ( While controlling the thickness of 2b), the sandwiching layer (2b) is cured by irradiation with active energy rays to form an active energy ray-curable resin cured layer (2).
本発明の光学用積層シートを製造する第 3の方法は、 アンカー コーティ ング層を設けまたは設けない光等方性シー卜(1) 上に活性 エネルギー線硬化型樹脂組成物の樹脂液(2a)を流延しておき、 該流 延層に平滑化铸型材(3) としての平滑加工したガラスを押し当てな がら挟持層(2b)の厚さを制御しつつ、 活性エネルギー線の照射によ り挟持層(2b)を硬化させて活性エネルギー線硬化型樹脂硬化層(2) となす方法である。 この方法においては、 使用したガラスを反復使 用する。  A third method for producing the optical laminated sheet of the present invention comprises the step of forming a resin liquid (2a) of an active energy ray-curable resin composition on a light isotropic sheet (1) with or without an anchor coating layer. While controlling the thickness of the sandwiching layer (2b) while pressing the smoothed glass as the smoothing mold material (3) against the casting layer, irradiation with active energy rays is performed. In this method, the sandwiching layer (2b) is cured to form an active energy ray-curable resin cured layer (2). In this method, the used glass is used repeatedly.
上記の各方法により得られる積層シー卜の活性エネルギー線硬化 型樹脂硬化層(2) の自由面の表面粗度は、 平滑化铸型材(3) の表面 平滑性の程度などなどに応じ、 以下、 好ましくは 0. 2 |Li m 以下、 さらに好ましくは O . l m 以下となる。 一般に、 溶融押出 フィルムの表面粗度は 1 0 0 w m 厚のフイルムで 3〜4 μ πι 、 流延 製膜フィルムの表面粗度は 1 0 0 u m 厚のフイルムで 2〜3 tt m で あるから、 活性エネルギー線硬化型樹脂硬化層(2) の自由面の表面 粗度は常識外とも言えるほど小さいものである。  The surface roughness of the free surface of the active energy ray-curable resin cured layer (2) of the laminated sheet obtained by each of the above methods is determined according to the degree of surface smoothness of the smoothed mold material (3) and the like. , Preferably 0.2 | Li m or less, more preferably O.lm or less. Generally, the surface roughness of a melt extruded film is 3 to 4 μπι for a 100-wm thick film, and the surface roughness of a cast film is 2-3 ttm for a 100-um thick film. However, the surface roughness of the free surface of the active energy ray-curable resin cured layer (2) is so small that it can be said that it is beyond common sense.
また、 積層シートの活性エネルギー線硬化型樹脂硬化層(2) の耐 熱性、 耐溶剤性、 透明電極形成性もすぐれたものとなる。  Further, the active energy ray-curable resin cured layer (2) of the laminated sheet also has excellent heat resistance, solvent resistance, and transparent electrode forming property.
本発明の積層シートは、 光学的用途に用いることを考慮して、 そ の全体のレターデーション値が 6 O nm以下、 好ましくは 3 O nm以下、 可視光線透過率が 6 0 %以上、 好ましくは 7 0 %以上であることが 望ましい。 The laminated sheet of the present invention has an overall retardation value of 6 O nm or less, preferably 3 O nm or less, and a visible light transmittance of 60% or more, preferably 70% or more desirable.
上記で得た光等方性シー卜(1) Z活性エネルギー線硬化型樹脂硬 化層 (2)よりなる層構成の積層シー卜の活性エネルギー線硬化型樹 脂硬化層(2) 上に透明電極を設け、 さらにその上から配向膜を形成 すれば、 液晶セル基板が作製できる。  The photoisotropic sheet (1) obtained above is transparent on the active energy ray-curable resin-cured layer (2) of the laminated sheet composed of the Z-active energy ray-curable resin-cured layer (2). If an electrode is provided and an alignment film is formed thereon, a liquid crystal cell substrate can be manufactured.
透明電極の形成には、 真空蒸着法、 スパッタリング法、 イオンプ レーティ ング法、 金属溶射法、 金属メツキ法、 化学蒸着法、 スプ レー法などが採用され、 特にスパッタリング法が重要である。 透明 電極の材質としては、 主として S n 、 I n 、 T i 、 P b 、 T b 等の 金属またはそれらの酸化物が用いられ、 透明電極の層厚は、 少なく とも 1 0 0オングストローム、 さらには 2 0 0オングストローム以 上とするのが通常である。  For the formation of the transparent electrode, vacuum evaporation, sputtering, ion plating, metal spraying, metal plating, chemical vapor deposition, spraying, etc. are adopted, and sputtering is particularly important. As the material of the transparent electrode, metals such as Sn, In, Ti, Pb, and Tb or oxides thereof are mainly used, and the layer thickness of the transparent electrode is at least 100 angstroms, and furthermore, Usually, it is set to 200 angstrom or more.
作用 Action
本発明の光学用積層シートにあっては、 積層シートの表面に位置 する活性エネルギー線硬化型樹脂硬化層(2) の自由面の表面平滑度 が極めて高いので、 たとえばこれを S T N液晶を封入する液晶セル の電極基板として用いた場合であっても、 表示に紫、 綠などの色が ついて画面が非常に見にく くなるという事態を生じない。  In the optical laminated sheet of the present invention, since the free surface of the active energy ray-curable resin cured layer (2) located on the surface of the laminated sheet has extremely high surface smoothness, for example, this is filled with STN liquid crystal. Even when it is used as an electrode substrate of a liquid crystal cell, the display does not appear to be very hard to see due to colors such as purple and blue on the display.
発明の効果 The invention's effect
本発明の光学用積層シートにあっては、 たとえばこれを S T N液 晶を封入する液晶セルの電極基板として用いた場合であっても、 表 示に紫、 綠などの色がついて画面が非常に見にく くなるという事態 を生じない。  In the optical laminated sheet of the present invention, for example, even when this is used as an electrode substrate of a liquid crystal cell in which STN liquid crystal is sealed, the display is colored in purple, blue, or the like, and the screen is extremely colored. It will not be difficult to see.
液晶表示パネルは年々大型化すると共に、 S T N液晶方式の普及 には目を見張るものがある力 s、 本発明により、 その用途にガラス基 板に代えてブラスチックス基板を用いても、 表示特性が遜色のない 2 ものとなるのである。 Together with a liquid crystal display panel have been increasing every year, the force to spread the STN liquid crystal system are remarkable s, the present invention, even when a brass Chicks substrate instead of the glass base plate for the application, the display characteristics Comparable It is two things.
そして、 このようにすぐれた性能が得られるにもかかわらず、 そ の製造工程がシンプルであるという工業上の有利さを有する。 図面の簡単な説明  In spite of obtaining such excellent performance, it has an industrial advantage that its manufacturing process is simple. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の光学用積層シー卜の製造工程の一例を示したェ 程図である。 図中の符号の意味は次の通りである。  FIG. 1 is a process diagram showing an example of a production process of the optical laminated sheet of the present invention. The meanings of the reference numerals in the figure are as follows.
( 1 ) …光等方性シート、  (1)… light isotropic sheet,
(2 ) …活性エネルギー  (2)… Activity energy
(2 a)…樹脂液、 (2b) ·  (2a)… Resin liquid, (2b) ·
(3 ) …平滑化铸型材、  (3)… Smoothing type material,
(4a) , (4b)…製膜用口- (4a), (4b) ... film forming port
( 5 ) …タンク、 (5)… tank,
(6) …シャケッ 卜、  (6)… Sketch,
(7) …吐出口、  (7)… Discharge port,
(8) …紫外線照射装置、  (8)… UV irradiation equipment,
( 9) …ニップロール、  (9) ... nip roll,
( 10) …剥離用ロール、  (10)… peeling roll,
(S) …積層シート 発明を実施するための最良の態様  (S) ... Laminated sheet Best mode for carrying out the invention
次に実施例をあげて本発明をさらに説明する。 以下 「部」 とある のは重量部である。  Next, the present invention will be further described with reference to examples. Hereinafter, “parts” means parts by weight.
実施例 1 Example 1
図 1は本発明の光学用積層シートの製造工程の一例を示した工程 図である。 図 1中、 (5) はタンク、 (6) はジャケッ ト、 (7) リ ップ状の吐出 口、 (4a), (4b)は 1対の製膜用ロールである。 (8) は紫外線照射装 置である。 (9) はニップロール、 (10)は積層シート ) を剥離する ための剥離用ロールである。 FIG. 1 is a process chart showing an example of a production process of the optical laminated sheet of the present invention. In FIG. 1, (5) is a tank, (6) is a jacket, (7) a lip-shaped discharge port, and (4a) and (4b) are a pair of film forming rolls. (8) is an ultraviolet irradiation device. (9) is a nip roll, and (10) is a peeling roll for peeling off the laminated sheet.
基材層の一例としてポリカーボネートシート (厚さ 1 1 0 um、 レターデーシヨン値 1 2nm) の片面に水溶性四級化エステルウレタ ン系アンカーコーティ ング剤を塗布、 乾燥して厚さ 0.5wni のアン カーコーティ ング層を設けた後、 そのアンカーコーティ ング層の 上から、 エチレン含量 3 2モル%のエチレン一ビニルアルコール 共重合体 20部、 水 45部、 n—プロパノール 50部、 メチロール 化メラミン (住友化学工業株式会社製スミテック M— 3) 4部より なる組成の樹脂液を流延し、 温度 1 1 0°Cの乾燥機中を通過させて 乾燥させた。 これにより、 厚さ 8 iim の耐透気性樹脂層が形成され た。  As an example of the base material layer, a water-soluble quaternized ester urethane-based anchor coating agent is applied to one surface of a polycarbonate sheet (thickness: 110 μm, retardation value: 12 nm), dried, and dried to a thickness of 0.5 wni. After the anchor coating layer is formed, 20 parts of ethylene-vinyl alcohol copolymer having an ethylene content of 32 mol%, 45 parts of water, 50 parts of n-propanol, and methylolated melamine (above the anchor coating layer) Sumitec M-3 manufactured by Sumitomo Chemical Co., Ltd. 3) A resin solution having a composition of 4 parts was cast and passed through a dryer at a temperature of 110 ° C. to be dried. As a result, an air-permeable resin layer having a thickness of 8 iim was formed.
同様にして、 基材層であるポリカーボネートシ一卜の他面にも厚 さ 0.5 m のアンカーコーティ ング層を設け、 さらにそのアンカー コーティ ング層の上から上記と同じ厚さ 8 urn の耐透気性樹脂層を 設けた。  Similarly, an anchor coating layer having a thickness of 0.5 m is provided on the other surface of the polycarbonate sheet as the base material layer, and an air permeability of 8 urn having the same thickness as described above is formed on the anchor coating layer. A resin layer was provided.
ついで、 片側の耐透気性樹脂層の上から、 フエノキシエーテル樹 脂 (東都化成株式会社製) 40部、 メチルェチルケトン 40部、 セ 口ソルプアセテート 20部、 ト リ レンジィソシァネー卜と ト リメチ ロールプロパンとのァダク 卜体の 75%溶液 (日本ポリウレタン株 式会社製コロネ一ト L) 40部よりなる組成の硬化性樹脂組成物を アブリケ一夕一を使用して塗布し、 8 OeCで 4分間乾燥してから、 1 30°Cで 20分間加熱して、 厚さ 1 0 m のフエノキシエーテル 樹脂系の熱架橋性樹脂層を形成させた。 同様にして、 もう一方の耐透気性樹脂層の上にも厚さ 1 0 u m の 熱架橋性樹脂層を形成させた。 Next, from the top of the air-permeable resin layer on one side, 40 parts of phenoxy ether resin (manufactured by Toto Kasei Co., Ltd.), 40 parts of methyl ethyl ketone, 20 parts of soguchi acetate, 20 parts of tri-range sociate A 75% solution of an adduct of trimethylolpropane and a neat compound (Coronet L, manufactured by Nippon Polyurethane Co., Ltd.) was coated with a curable resin composition having a composition of 40 parts by using Abrique overnight. After drying at 8 OeC for 4 minutes, the mixture was heated at 130 ° C for 20 minutes to form a phenoxy ether resin-based thermally crosslinkable resin layer having a thickness of 10 m. Similarly, a 10 μm-thick thermally crosslinkable resin layer was formed on the other air-permeable resin layer.
これにより、 熱架橋性樹脂層 耐透気性樹脂層 Zアンカーコー ティ ング層ノ基材層/アンカーコーティ ング層 耐透気性樹脂層 /熱架橋性樹脂層の層構成を有する光等方性シー卜 (1) が得られ た。  As a result, an optically isotropic sheet having a layer structure of a heat-crosslinkable resin layer, an air-permeable resin layer, a Z anchor coating layer, a base layer / anchor coating layer, an air-permeable resin layer, and a heat-crosslinkable resin layer. (1) was obtained.
別途、 平滑化铸型材(3) として、 厚さ 5 0 ii m 、 表面粗度 0. 004 u m のコロナ放電処理していない二軸延伸ポリエチレンテレフ夕 レートフィルム (帝人株式会社製 0タイプ) を準備した。  Separately, a biaxially stretched polyethylene terephthalate film (0 type, manufactured by Teijin Limited) with a thickness of 50 im and a surface roughness of 0.004 um, which has not been subjected to corona discharge treatment, is prepared as a smoothing mold material (3). did.
新日鉄化学株式会社製のエポキシァクリル樹脂 「V— 2 5 4 P A」 1 0 0部にベンゾフヱノン 1部を加え、 活性エネルギー線 5L ヒ型樹 脂組成物の樹脂液(2a)を調製した。  One part of benzophenone was added to 100 parts of epoxyacrylic resin “V-254PA” manufactured by Nippon Steel Chemical Co., Ltd., to prepare a resin liquid (2a) of an active energy ray 5L arsenic resin composition.
この樹脂液(2a)をタンク(5) に仕込み、 ジャケッ ト(6) に熱媒を 送って内容物を約 3 (TCに保温すると共に、 脱気を行った。  This resin liquid (2a) was charged into a tank (5), and a heating medium was sent to a jacket (6) to keep the contents at about 3 (TC and degas).
ついでタンク(5 ) の上部空間に圧を加え、 製膜用ロール(4a), (4b)の間隙に吐出口(7) から樹脂液(2a)を吐出した。  Then, pressure was applied to the upper space of the tank (5), and the resin liquid (2a) was discharged from the discharge port (7) into the gap between the film forming rolls (4a) and (4b).
この製膜用ロール(4a), (4b)には、 予め上記の光等方性シート (1) および平滑化铸型材(3) をそれぞれ供給してあり、 吐出ロ(7) から吐出した樹脂液(2a)が光等方性シート(1) の熱架橋性樹脂層面 と平滑化铸型材(3) の平滑面との間に挟持されて挟持層(2b)となる ようにした。  The film-forming rolls (4a) and (4b) are supplied with the above-mentioned optically isotropic sheet (1) and the smoothing mold material (3) in advance, respectively. The resin discharged from the discharge roller (7) The liquid (2a) was sandwiched between the thermally crosslinkable resin layer surface of the optically isotropic sheet (1) and the smooth surface of the smoothing mold material (3) to form a sandwiching layer (2b).
製膜用ロール(4a) , (4b)通過後の挟持シートを紫外線照射装置 (8) にて下記の条件で紫外線照射後、 平滑化鎳型材(3) を剥離除去 した。 紫外線照射により挟持層(2b)は硬化して、 活性エネルギー線 硬化型樹脂硬化層(2) となった。 これにより、 活性エネルギー線硬 化型樹脂硬化層(2 ) /光等方性シート (1 ) の層構成を有する積層 シート (S) が得られた。 なお平滑化錶型材(3) の剥離除去は、 紫外 線照射後にすぐ行わずに、 一旦巻取機に巻き取ってから、 後日行う ようにしてもよい。 After passing through the film-forming rolls (4a) and (4b), the sandwiched sheet was irradiated with ultraviolet light by an ultraviolet irradiation device (8) under the following conditions, and then the smoothing mold material (3) was peeled off. The sandwiching layer (2b) was cured by the irradiation of ultraviolet rays, and became an active energy ray-curable resin cured layer (2). As a result, a laminate having a layer structure of the active energy ray-curable resin cured layer (2) / optically isotropic sheet (1) is obtained. Sheet (S) was obtained. The peeling and removal of the smoothing mold material (3) may be performed at a later date after being wound on a winder once instead of immediately after the ultraviolet irradiation.
紫外線照射条件  UV irradiation conditions
紫外線照射装置 ゥシォ電機株式会社製 U V C - 2 5 3 1 M ランプ 高圧水銀ランプ 8 0 WZcmまたは 1 2 0  Ultraviolet irradiation equipment V Shio Electric Co., Ltd. U V C-25 31 M lamp High pressure mercury lamp 80 WZcm or 1 200
W/cm  W / cm
照射距離 2 0 0 mm  Irradiation distance 200 mm
コンベア速度 5 m/min または 3 m/min  Conveyor speed 5 m / min or 3 m / min
条件および結果を表 1に示す。 なお、 評価項目の意味は下記の通 りである。  Table 1 shows the conditions and results. The meanings of the evaluation items are as follows.
•厚さ •thickness
(2) 厚は、 形成したエネルギー線硬化型樹脂硬化層(2) の厚さ < •剥離性  (2) The thickness is the thickness of the energy-curable resin cured layer (2) formed.
平滑化铸型材(3) としての二軸延伸ポリエチレンテレフタレー トフイルムの剥離の円滑さ。 (〇:良好、 X :不良)  Smoothing: Smooth peeling of biaxially stretched polyethylene terephthalate film as mold material (3). (〇: good, X: bad)
•粗度 • Roughness
活性エネルギー線硬化型樹脂硬化層(2) の自由面の表面平滑度 を、 光の干渉を利用した非接触式表面粗さ計により測定。  The surface smoothness of the free surface of the active energy ray-curable resin cured layer (2) is measured by a non-contact type surface roughness meter using light interference.
• R値 • R value
積層シート(S) 全体のレターデーシヨン値。  Retardation value of the whole laminated sheet (S).
•透過率 • transmittance
積層シー卜(S) 全体の可視光線透過率。  Visible light transmittance of the entire laminated sheet (S).
•硬度 • Hardness
鉛筆硬度  Pencil hardness
•耐溶剤性 積層シート (S) を 4 4 ± 1 °Cのジメチルァセ卜アミ ド中に 5分 間浸潰して、 活性エネルギー線硬化型樹脂硬化層(2) の溶解の有 無を観察した。 (〇:異常なし、 X :溶解) 表 1 • Solvent resistance The laminated sheet (S) was immersed in dimethyl acetate at 44 ± 1 ° C for 5 minutes, and the presence or absence of dissolution of the active energy ray-curable resin cured layer (2) was observed. (〇: No abnormality, X: Dissolution) Table 1
積算光量 ( 2 ) 厚 剥離性 粗 度 R値 透過率 硬度 耐溶剤 Integrated light intensity (2) Thickness Releasing Roughness R value Transmittance Hardness Solvent resistance
No . mJ/c 2 } ( U m) ( u m) (nm) (%) 性No. MJ / c 2 } (U m) (um) (nm) (%)
1 354 3. 6 〇 <0. 1 16 90 4H 〇1 354 3.6 〇 <0.1.16 90 4H 〇
2 354 4. 5 〇 <0. 1 16 89 4H 〇2 354 4.5 〇 <0.1.16 89 4H 〇
3 538 6. 8 〇 <0. 1 17 89 5H 〇3 538 6.8 〇 <0.1.17 89 5H 〇
4 675 7. 7 〇 く 0. 1 17 88 5H 〇 4 675 7.7 〇 0.1 0.1 17 88 5H 〇
次に、 上記で得た No. 1〜 No. 4の積層シート(S) の活性エネル ギ一線硬化型樹脂硬化層(2) 面に、 スパッタ リ ング法により厚さ 5 0 0オングストロームの I T 0層からなる透明電極を直接形成さ せた。 以下このシートを電極基板として用いて、 常法に従い、 配向 膜の形成とラビング処理、 液晶セルの組み立て、 位相差板および偏 光板の積層を行い、 液晶表示パネルを作製した。 得られた液晶表示 パネルは、 表示に着色が見られず、 ガラスを基板として用いた液晶 表示パネルと遜色のない性能を有していた。 Next, the active energy linear curing type resin cured layer (2) of the laminated sheets (S) of No. 1 to No. 4 obtained above was subjected to a sputtering process to form a 500 Å thick IT 0. A transparent electrode composed of layers was directly formed. Using this sheet as an electrode substrate, an alignment film was formed and rubbed, a liquid crystal cell was assembled, and a retardation plate and a polarizing plate were laminated by a conventional method to produce a liquid crystal display panel. The obtained liquid crystal display panel showed no coloration in the display, and had performance comparable to that of a liquid crystal display panel using glass as a substrate.
実施例 2 Example 2
基材層として、 ポリカーボネートシー卜に代えてポリァリレー卜 シー卜 (鐘淵化学株式会社製、 厚さ 1 0 0 m 、 レターデーション 値 1 5 nm) を用いたほかは実施例 1 と同様にして光等方性シート (1) を得た。  The same procedure as in Example 1 was carried out except that a polycarbonate sheet (polyester sheet, 100 m thick, retardation value: 15 nm) was used instead of the polycarbonate sheet. An isotropic sheet (1) was obtained.
出光石油化学株式会社製のホスファゼン系硬化性樹脂 「出光 P P Z」 1 0 0部にベンゾフヱノ ン 1部を加え、 活性エネルギー線硬化 型樹脂組成物の樹脂液(2a)を調製した。 Idemitsu Petrochemical Co., Ltd. phosphazene-based curable resin "Idemitsu PP One part of benzophenone was added to 100 parts of "Z" to prepare a resin liquid (2a) of an active energy ray-curable resin composition.
上述の光等方性シー卜 (1) および樹脂液(2a)を用いたほかは実施 例 1を繰り返した。 条件および結果を表 2に示す。 表 2  Example 1 was repeated except that the above-described optically isotropic sheet (1) and the resin liquid (2a) were used. Table 2 shows the conditions and results. Table 2
積算光量 (2 ) 厚 剥離性 粗 度 R値 透過率 硬度 耐溶剤 . (inJ/ cni2 ) ( m) ( u m) (nm) (¾) 性 Cumulative light intensity (2) Thickness Peelability Roughness R value Transmittance Hardness Solvent resistant (inJ / cni 2 ) (m) (um) (nm) (¾)
354 4. 0 〇 <0. 1 18 89 7H 〇 354 4.0 〇 <0.1.18 89 7H 〇
538 6. 8 〇 <0. 1 18 89 7H 〇 538 6.8 〇 <0.1 18 89 7H 〇
実施例 3 Example 3
実施例 1の No. 1〜 No. 4において、 熱架橋性樹脂層 Z耐透気性 樹脂層/アンカーコーティ ング層 基材層 Zアンカーコーティ ング 層 耐透気性樹脂層ノ熱架橋性樹脂層の層構成を有する光等方性 シート (1) の片方の熱架橋性樹脂層の上から、 市販の溶剤タイプの ウレタン系アンカーコーティ ング剤による厚さ l m のアンカー コーティ ング層を形成させ、 このアンカーコーティ ング層側の面に 樹脂液(2a)が接触するようにしたほかは実施例 1を繰り返したとこ ろ、 実施例 1 とほぼ同じ結果が得られた。  In No. 1 to No. 4 of Example 1, the heat-crosslinkable resin layer Z air-permeable resin layer / anchor coating layer Base material layer Z anchor coating layer air-permeable resin layer No heat-crosslinkable resin layer An anchor coating layer having a thickness of lm with a commercially available solvent-type urethane-based anchor coating agent is formed on one of the heat-crosslinkable resin layers of the optically isotropic sheet (1) having a structure. When Example 1 was repeated except that the resin liquid (2a) was brought into contact with the surface on the side of the ring layer, almost the same results as in Example 1 were obtained.
実施例 4 Example 4
ポリエステルフィルム上に、 エチレン含量 3 2モル%のエチレン 一ビニルアルコール共重合体 2 0部、 水 4 5部、 n—プロパノール 5 0部、 メチロール化メラミン (住友化学工業株式会社製スミテツ ク M— 3 ) 4部よりなる組成の樹脂液を流延し、 温度 1 1 0 °Cの乾 燥機中を通過させて乾燥し、 厚さ 1 5 ju m の耐透気性樹脂層を形成 させた。 引き きその上から、 実施例 1 と同じ熱硬化性樹脂組成物 を塗布、 乾燥後、 加熱して、 厚さ 1 0 w in 熱架橋性樹脂層を形成さ せた。 On a polyester film, 20 parts of an ethylene-vinyl alcohol copolymer having an ethylene content of 32 mol%, 45 parts of water, 50 parts of n-propanol, and methylolated melamine (Sumitec M-3 manufactured by Sumitomo Chemical Co., Ltd.) ) A resin solution composed of 4 parts is cast and passed through a dryer at a temperature of 110 ° C and dried to form an air-permeable resin layer with a thickness of 15 jum. I let it. The same thermosetting resin composition as in Example 1 was applied from above, dried, and heated to form a 10-inch-thick thermally crosslinkable resin layer.
得られた積層フィルムの耐透気性樹脂層の上からウレタン系接着 剤溶液を塗布した後、 乾燥し、 さらにその上から上記と同じ積層 フィルムの耐透気性樹脂層側の面を重ね合わせて圧着して熱処理 し、 一夜放置後、 両側のポリエステルフィルムを剥離除去した。 こ れにより、 熱架橋性樹脂層 耐透気性樹脂層/接着剤層 Z耐透気性 樹脂層 熱架橋性樹脂層よりなる層構成の光等方性シート(1) が得 られた。  A urethane-based adhesive solution is applied on the air-permeable resin layer of the obtained laminated film, dried, and then, the surface of the air-permeable resin layer side of the same laminated film as above is placed on top of it and pressed. After left overnight, the polyester films on both sides were peeled off. As a result, an optically isotropic sheet (1) having a layer configuration composed of the heat-crosslinkable resin layer, the air-permeable resin layer / adhesive layer Z, and the air-permeable resin layer was obtained.
この光等方性シート(1) を用い、 実施例 1 と同様にしてその片面 に厚さ 4. の活性エネルギー線硬化型樹脂硬化層(2) を形成さ せ、 引き続きもう一方の面にも厚さ 4. 0 /ι ιη の活性エネルギー線硬 化型樹脂硬化層(2) を形成させた。 得られた積層シート(S) の活性 エネルギー線硬化型樹脂硬化層(2) 面の表面粗度は、 両面とも 0. 1 U m 以下であつた。  Using this optically isotropic sheet (1), an active energy ray-curable resin cured layer (2) having a thickness of 4 was formed on one surface in the same manner as in Example 1, and the other surface was subsequently applied. An active energy ray-curable resin cured layer (2) having a thickness of 4.0 / ι ιη was formed. The surface roughness of the active energy ray-curable resin cured layer (2) surface of the obtained laminated sheet (S) was 0.1 Um or less on both surfaces.
実施例 5 Example 5
実施例 1の光等方性シー卜(1 ) の熱架橋性樹脂層面に実施例 1の 樹脂液(2a)を流延しておき、 該流延層に平滑化铸型材(3) としての 平滑加工した表面粗度 0. 05 mn のガラスを押し当てながら挟持層 ( 2b)の厚さを 5. 0 w m に制御しつつ紫 線照射を行い、 ついでガラ スを剥離除去した。 得られた積層シート(S) の活性エネルギー線硬 化型樹脂硬化層(2) 面の表面粗度は 0. 1 m 以下であった。 産業上の利用可能性  The resin liquid (2a) of Example 1 was cast on the surface of the thermo-crosslinkable resin layer of the optically isotropic sheet (1) of Example 1, and the casting layer was used as a smoothing mold material (3). While pressing the glass having a surface roughness of 0.05 mn, the thickness of the sandwiching layer (2b) was controlled to 5.0 wm while irradiating with ultraviolet light, and then the glass was peeled off. The surface roughness of the active energy ray-curable resin cured layer (2) surface of the obtained laminated sheet (S) was 0.1 m or less. Industrial applicability
本発明の方法により得られる光学用積層'ノー卜は、 液晶表示パネ ル製造用の電極基板として特に重要であるが、 位相差板用部材、 偏 光板用部材、 光ディスク、 光カードなどの用途にも適用することが できる。 The optical laminated notebook obtained by the method of the present invention is a liquid crystal display panel. Although it is particularly important as an electrode substrate for manufacturing a film, it can also be applied to applications such as a member for a retardation plate, a member for a polarizing plate, an optical disk, and an optical card.

Claims

言青求の範囲 Scope of word blue
1 . 少なく とも表面層が熱架橋性樹脂層である単層または複層の 光等方性シー卜は) 上に直接またはアンカーコーティング層を介し て活性エネルギー線硬化型樹脂硬化層(2 ) を設けた積層シー卜で あって、 前記活性エネルギー線硬化型樹脂硬化層(2) の自由面の表 面粗度が 以下であり、 積層シート全体のレターデーショク 値が 6 0 run以下、 可視光線透過率が 6 0 %以上である光学用積層 シー卜。  1. At least a single-layer or multi-layer photo-isotropic sheet whose surface layer is a thermo-crosslinkable resin layer) has an active energy ray-curable resin cured layer (2) directly or via an anchor coating layer. In the laminated sheet provided, the surface roughness of the free surface of the active energy ray-curable resin cured layer (2) is not more than, the retardation value of the entire laminated sheet is not more than 60 run, visible light Optical laminated sheet with transmittance of 60% or more.
2 . 少なく とも表面層が熱架橋性樹脂層である単層または複層の シー卜であってアンカーコーティング層を設けまたは設けない光等 方性シート(1 ) と平滑面を有する平滑化铸型材(3) との間隙に活性 エネルギー線硬化型樹脂組成物の樹脂液(2a)を供給して該樹脂液 ( 2a)が両者間に層状に挟持されるようにし、 ついで活性エネルギー 線の照射によりその挟持層(2b)を硬化させて活性エネルギー線硬化 型樹脂硬化層(2 ) となすことを特徴とする光学用積層シー卜の製 法。  2. At least a single-layer or multi-layer sheet whose surface layer is a thermo-crosslinkable resin layer, with or without an anchor coating layer (1) and a smoothing mold having a smooth surface The resin liquid (2a) of the active energy ray-curable resin composition is supplied to the gap with (3) so that the resin liquid (2a) is sandwiched between the two in a layered manner. A method for producing an optical laminated sheet, characterized in that the sandwiching layer (2b) is cured to form an active energy ray-curable resin cured layer (2).
PCT/JP1993/000877 1993-06-28 1993-06-28 Optical laminated sheet and production thereof WO1995000876A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1993/000877 WO1995000876A1 (en) 1993-06-28 1993-06-28 Optical laminated sheet and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1993/000877 WO1995000876A1 (en) 1993-06-28 1993-06-28 Optical laminated sheet and production thereof

Publications (1)

Publication Number Publication Date
WO1995000876A1 true WO1995000876A1 (en) 1995-01-05

Family

ID=14070361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000877 WO1995000876A1 (en) 1993-06-28 1993-06-28 Optical laminated sheet and production thereof

Country Status (1)

Country Link
WO (1) WO1995000876A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026876A1 (en) * 1999-10-08 2001-04-19 Sumitomo Bakelite Company Limited Process for production of polymer sheet and optical polymer sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371829A (en) * 1986-09-14 1988-04-01 Toyobo Co Ltd Electrode substrate for liquid crystal display panels
JPH02165104A (en) * 1988-12-20 1990-06-26 Matsushita Electric Ind Co Ltd Production of color filter substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371829A (en) * 1986-09-14 1988-04-01 Toyobo Co Ltd Electrode substrate for liquid crystal display panels
JPH02165104A (en) * 1988-12-20 1990-06-26 Matsushita Electric Ind Co Ltd Production of color filter substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026876A1 (en) * 1999-10-08 2001-04-19 Sumitomo Bakelite Company Limited Process for production of polymer sheet and optical polymer sheet
US6592802B1 (en) 1999-10-08 2003-07-15 Sumitomo Bakelite Company Limited Process for production of polymer sheet and optical polymer sheet

Similar Documents

Publication Publication Date Title
WO1996013381A1 (en) Decorative material having abrasion resistance
JP2006163082A (en) Optical member, manufacturing method thereof, and liquid crystal display device
WO1995000876A1 (en) Optical laminated sheet and production thereof
JP3160072B2 (en) Manufacturing method of optical laminated sheet
JP3098304B2 (en) Manufacturing method of optical laminated sheet
JP3488012B2 (en) Plastics board
JP2000167999A (en) Film having hardened film layer of radiation curable resin composition
JP3151051B2 (en) Manufacturing method of optical laminated sheet
JP3098303B2 (en) Manufacturing method of optical laminated sheet
WO1995000875A1 (en) Optical laminated sheet and production thereof
JP3088814B2 (en) Manufacturing method of optical laminated sheet
WO1995000877A1 (en) Optical laminated sheet and production thereof
JP4134159B2 (en) Anti-glare film
JP3045579B2 (en) Manufacturing method of optical laminated sheet
JP3534804B2 (en) Manufacturing method of optical sheet
JP2645519B2 (en) Manufacturing method of liquid crystal cell substrate with transparent electrode
JPH07124969A (en) Method for producing antiglare optical sheet
JP3190076B2 (en) Manufacturing method of phase difference compensator
JP3040859B2 (en) Manufacturing method of optical laminated sheet
JP3090988B2 (en) Manufacturing method of optical laminated sheet
JP3434968B2 (en) Plastics board
WO1995019579A1 (en) Protective sheet for producing polarizing plate and polarizing plate
JP3406134B2 (en) Optical laminated sheet
JPH05313012A (en) Color filter manufacturing method
JP2024144152A (en) Polarizing plate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase