[go: up one dir, main page]

WO1994026184A1 - Process and device for thermally obliterating biological tissues - Google Patents

Process and device for thermally obliterating biological tissues Download PDF

Info

Publication number
WO1994026184A1
WO1994026184A1 PCT/DE1994/000554 DE9400554W WO9426184A1 WO 1994026184 A1 WO1994026184 A1 WO 1994026184A1 DE 9400554 W DE9400554 W DE 9400554W WO 9426184 A1 WO9426184 A1 WO 9426184A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
tissue
scattering
cannula
laser radiation
Prior art date
Application number
PCT/DE1994/000554
Other languages
German (de)
French (fr)
Inventor
Jürgen BEUTHAN
André ROGGAN
Gerhard Müller
Original Assignee
Laser-Medizin-Zentrum Gmbh, Berlin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4316176A external-priority patent/DE4316176A1/en
Application filed by Laser-Medizin-Zentrum Gmbh, Berlin filed Critical Laser-Medizin-Zentrum Gmbh, Berlin
Priority to EP94914343A priority Critical patent/EP0697840B1/en
Priority to DE59410356T priority patent/DE59410356D1/en
Priority to US08/545,864 priority patent/US6143018A/en
Publication of WO1994026184A1 publication Critical patent/WO1994026184A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/28Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for heating a thermal probe or absorber
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/206Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the laser light passing along a liquid-filled conduit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2261Optical elements at the distal end of probe tips with scattering, diffusion or dispersion of light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light

Definitions

  • the invention relates to a method of the type specified in the preamble of claim 1 and an apparatus for performing the method.
  • laser radiation is guided by means of optical waveguides and the radiation thus transmitted ent neither introduced transluminally or transcutaneously into biological tissue directly by means of the optical waveguide, or its distribution function additionally influenced in a targeted manner by further measures, for example via special catheters or endoscopes, and the radiation specifically applied in this way for inducing thermal or photo ⁇ chemical necrosis can be used.
  • neodymium: YAG laser radiation into biological tissue in this way and to use the absorption of this radiation that occurs in the tissue to heat the tissue-end areas and thus to cause coagulation necrosis.
  • the optical fibers used have active diameters between 200 and 600 ⁇ m, a very high power density results at the fiber / fabric interface even with low laser output powers.
  • the carbonization threshold of the tissue is therefore exceeded very quickly, with the result that the emerging laser radiation is additionally absorbed by the carbonate and can no longer penetrate in accordance with the optical coefficient typical of the tissue.
  • Even the most experienced surgeon only succeeds in producing coagulation necrosis with a diameter of 5 to 7 mm, which is usually accompanied by carbonization of the tissue touching the end of the fiber.
  • the transcutaneous introduction of the optical fiber is usually carried out with puncture sets, ie with metallic cannulas and trousers. Karen.
  • the transluminal application continues via suitable flexible catheters or endoscopes.
  • US Pat. No. 5,169,396 describes a method for interstitial laser therapy, the basic features of which are characterized in that direct contact of the fiber end face with the tissue is prevented by first placing a liquid depot with a biocompatible liquid absorbing the laser radiation at the end of the puncture cannula becomes.
  • a liquid depot with a biocompatible liquid absorbing the laser radiation at the end of the puncture cannula becomes.
  • the fiber-tissue interface is no longer heated, but rather the light-absorbing liquid, which in turn heats the surrounding tissue via heat conduction.
  • the method has the major disadvantage that the pigments or chromophoric groups of the liquid absorbing the laser radiation also decompose photochemically or thermally at the radiation powers used and the resulting power densities at the fiber end and thus trigger uncontrollable side effects .
  • the problem of carbonization at the fiber-fabric interface is attempted to be solved by the fiber end being specially prepared in such a way that the laser radiation is no longer directs prograd out of the fiber with a very small exit aperture, but is gradually sprinkled radially out of the fiber over a longer distance.
  • the distribution of the laser power on the surface of the applicator is further evened out by further measures which increase the radial scatter, such as the provision of a scattering dome.
  • DE 42 11 526 AI and DE 42 37 286 AI specify a device which works with active cooling within the sheath catheter, the coolant simultaneously taking on the task of additionally dispersing the laser light.
  • biocompatible cooling fluid can escape from the catheter through preformed pores in the sheath catheter, thus avoiding carbonization and thus also adherence of adjacent tissue.
  • laser power of more than 5 W, typically 10 to 1 W can be used by the active cooling, but at the same time, part of the applied energy is dissipated unused due to the cooling. Since the biocompatible liquid is rapidly distributed in the tissue, relatively large amounts are also required during a treatment lasting 10 to 20 minutes, which may also lead to stress on the patient.
  • the invention is based on the object of developing a method of the type mentioned at the outset in such a way that tissue obliteration using efficient use of laser radiation and stray liquid is made possible in treatment zones which are as large as possible and also non-spherically symmetrical, and to provide an apparatus for carrying out the method.
  • the invention includes the idea that in the vicinity of the exit surface of the laser radiation from one of its line serving optical waveguide into the tissue to be obliterated to create a scattering range that is essentially stable during the treatment and that is essentially stable during treatment, in which essentially no absorption takes place, but only as diffuse a scattering of the laser radiation as possible.
  • a scattering fluid depot made of a sufficiently viscous liquid or a liquid mixture which is essentially transparent in the wavelength range of the laser radiation serves this purpose.
  • the fluid does not absorb the laser radiation and the scattering processes represent pure phase scattering, the fluid does not heat up significantly, as a result of which coagulation at the radiation exit surface to the tissue is suppressed over a long period of time, measured in terms of the total irradiation time.
  • the method according to the invention is based on the surprising finding that by avoiding primary coagulation at the edge zone of scattering liquid / tissue, the laser radiation which diffuses diffusely in the scattering liquid can penetrate into the tissue by a factor of 2 to 3, and thus is absorbed there in a significantly larger volume and this volume is heated up. After an irradiation time of several minutes, a concentric coagulation zone then occurs, which prevents further pure radiation transport into the depth of the tissue, but at the same time, due to the increased temperature, a very large volume of heat source for utilizing the heat conduction for further thermal desolation of the surrounding tissue.
  • the tissue surrounding the liquid depot is only coagulated towards the end of the treatment by increasing the radiation power of the laser and thus indirectly leads to further heating of the cooling liquid, so that even after the laser has been switched off, the liquid depot introduced and the massive thermal coagulation front set up again a heat source is present which, on the other hand, thermally damages surrounding tissue via heat output also in the subcoagulative area according to the Arrhenius integral.
  • diameters of coagulation zones of up to 3 cm can be achieved.
  • the subcoagulative, hyperthermic influence due to heat conduction results in a further necrosis with an additional radius of approximately 5 to 7 mm, so that a total of necrosis centers of up to can be set to 4 cm in a controlled manner.
  • the surgical procedure is chosen so that access to the center of the tissue area to be obliterated is first found via a probing needle, this procedure being able to take place under simultaneous X-ray or ultrasound control. Then be over this Depending on the size of the necrosis focus to be placed later, one or more dilators are guided, the last of the dilators being identical to the cannula that later guides the laser beam.
  • the biocompatible phase-scattering fluid is then introduced into the tissue via this plastic dilator, which is open at the end.
  • the cannula used is expediently designed such that it consists of essentially two subassemblies, one of which is the puncture cannula itself, which is to be introduced via a probing needle, and the second of which is a fluid-tight Y to be attached to this puncturing cannula after removal of the probing needle
  • the fluid has a viscosity adapted to the particular treatment situation, so that a spatially suitably defined liquid depot is maintained over a sufficiently long irradiation time. Therefore, common biocompatible fluids such as physiological saline are excluded, since they have such a low viscosity that during the typical treatment times of 10 to 20 minutes in the tissue types such as parenchyma, muscle, prostate, etc., which are particularly suitable for this type of therapy ml of liquid would be needed to maintain a depot. This can be avoided by choosing a suitable viscosity of the fluid.
  • the fluid can easily and inexpensively consist of a mixture of 0.1 to 2 parts of oil, 10 to 50 parts of water and 50 to 80 parts of glycerin, the respective sum of parts being 100.
  • an oil-water-glycerine suspension is used, which has the following mixing ratio: 80% glycerin, 18% water and 2% suspended oil droplets.
  • a mixture of 1 to 30 parts of water and 70 to 99 parts of methyl cellulose - preferably methyl cellulose, mixed with a few percent of physiological saline solution - can be used.
  • hyalaronic acid and intralipid can also be used.
  • the numerical aperture of the optical fiber must be selected. Good results are achieved with numerical apertures between 0.2 and 0.6.
  • the use of an increased numerical aperture makes it possible to use diode lasers at approximately 800 nm as an energy source in a simple manner.
  • the liquid consists of an essentially transparent and a strongly light-scattering component, and the components are injected into the tissue by means of a concentrically double-lumen cannula in such a way that the transparent component passes over the inner and the strongly light-scattering component are introduced via the outer lumen so that the highly light-scattering component envelops the transparent component.
  • the transparent component can contain glycerin and water, preferably in a mixing ratio of 80:20, and the strongly scattering component can contain oil and water, preferably with 1 to 5 parts of oil in 100 parts of the mixture.
  • the laser radiation can be introduced into the tissue via the liquid column of the transparent component in the inner lumen, which also serves as an optical waveguide, the radiation of the laser light possibly also via an unsteady liquid column - that is, during liquid is still injected - can take place.
  • the optical waveguide can be displaced into the depot by a predetermined amount in the distal direction.
  • the scattering fluid depot is formed in an elongated, in particular essentially ellipsoidal or cylindrical shape, and / or an optical waveguide arrangement with an emission surface shaped in this way is used.
  • this has an optical fiber, the surface of which is in a distal end section has a plurality of areas in the longitudinal direction that follow one another, preferably in the form of a ring, and the end section of which is provided with a protective cover that is transparent to the laser radiation.
  • the matted areas can have a roughness depth and / or a decreasing diameter towards the distal end of the optical fiber.
  • a cladding tube that scatters the laser radiation — for example, matted — can be provided coaxially with the optical waveguide arrangement.
  • a protective cover is required because the partial matting or roughening makes the optical fiber extremely fragile. It can be formed in a cost-effective manner by a precision glass or hard plastic cannula which is closed at the end and attached to the mechanically fixed part of the optical waveguide or the cannula.
  • the protective sheath encloses the entire front part thereof and has openings for the liquid scattering the laser radiation to exit into the tissue.
  • the course of the temperature field propagation in the treated tissue can expediently be checked by continuous observation of the therapeutic area with a sonography device, echoes additionally occurring depending on the temperature in the area of adjacent blood vessels if the temperature here exceeds a value of 55 ° C. tet and thus the C0 2 dissolved in the blood outgasses intermediate and further echoes occur, if one is exceeded Temperature of 95 ° C in the aqueous component of the scattered light fluid intermediate water vapor bubbles arise.
  • an X-ray contrast medium can be added to the liquid and an X-ray observation of the formation and the condition of the depot can be carried out.
  • FIGS. 1 a to 1 d are schematic representations for explaining an embodiment of the method according to the invention.
  • FIG. 2 shows a further schematic illustration to explain a modified embodiment of the method according to the invention and a device for carrying it out
  • FIG. 3 shows a schematic detail representation (in cross section) of a further modified device for carrying out the method according to the invention
  • FIG. 4 shows a simplified, partially sectioned illustration of a further embodiment
  • FIG. 5 shows a detailed illustration of the device shown in FIG. 5
  • FIG. 6 shows a simplified, partially sectioned illustration of a further embodiment
  • FIG. 7 shows a schematic illustration of a method for producing the optical waveguide arrangement used in the embodiments according to FIGS. 4 to 6.
  • FIG. 1a to 1d schematically show how the formation of a fluid depot 1 in a body tissue section 2 by means of a cannula 3, the scattering of laser radiation coupled into the depot 1 via a light guide 4 within the cannula 3 and the development of coagulation necrosis 5 run according to an embodiment of the inventive method.
  • FIG. 1 a schematically illustrates the general procedure when introducing a cannula 3 to carry out the method in the body tissue section 2: First, access to the center of the tissue area to be obliterated is found with a probing wire or a probing needle S. Then a dilator D is inserted via the probing needle S, and finally the cannula 3 via the dilator D. Depending on the size of the necrosis focus to be formed, several dilators can also be set in several stages, and the last one can simultaneously use the laser and / or liquid-carrying cannula for the further steps, as will be described in more detail below.
  • viscous scattering liquid was first injected into the tissue 2 via the cannula 3, in which the spatially limited fluid depot 1 was formed. det and started with the coupling of laser radiation into the depot. The photons of the laser radiation are scattered - which is symbolized by jagged arrows - in the quasi-absorption-free scattering liquid of the depot 1 and in the tissue 2. As a result, a first virtual increase in volume during energy transfer into the tissue to be treated is achieved.
  • the scattering liquid at the phase boundary 1 'of the depot 1 to the tissue 2 still has a cooling effect, so that a coagulative effect spreads primarily in the depth of the tissue and that which is at a distance from the depot 1 Coagulation layer 5 forms.
  • heat conduction causes the quasi-absorption-free stray liquid depot 1 to heat up - there is therefore an energy exchange in the boundary layer area, which is symbolized in the figure by straight arrows.
  • the laser radiation is switched off.
  • the heated total volume of the interactive partial volumes causes an optimal expansion of the coagulation necrosis 5 inwards, i.e. to depot 1, as to the outside, i.e. into the depth of the fabric 2 (indicated by arrows thickening towards the end).
  • a cannula 3A inserted into body tissue 2 has a double lumen in the form of an integrated liquid light guide in such a way that it has a coaxial inner lumen 4A which is concentric from an outer lumen. - le ⁇
  • the inner lumen 4A serves as a liquid light guide through which an optically transparent component 7A is supplied to the stray liquid.
  • the outer lumen 6A leads a scattering or more viscous component 8A of the fluid to the distal end of the cannula 3A, where a fluid depot 1A forms from both components.
  • the proximal end of the cannula 3A has a branching element 9A, from which a feed line 10A to the inner lumen 4A and a feed line 11A to the outer lumen 6A extend.
  • the inner lumen serves as a guide shaft for the probing needle for positioning the cannula in the area to be treated.
  • the cannula 3A is positioned by means of a puncture needle, the puncture needle is then removed and the optically transparent fluid component is first applied via the feed line 10A and the inner lumen 4A and then in a second step via the feed line 11A and the outer lumen 6A resulting liquid depot 1A enriched with scattering medium.
  • an optical fiber 13A is coupled to the liquid column in the interior of the central lumen 4A of this puncture needle at the proximal end via a pinch seal 12A, which then serves as a liquid light guide when laser radiation is coupled in via the optical fiber 13A.
  • a mixture of 80% glycerol and 20% is used as the transparent carrier fluid.
  • Water which has a refractive index which is essentially identical to the refractive index of the coupling, laser light-guiding optical fiber.
  • the light-scattering medium consists of a 2 to 5% oil-water emulsion, for example intralipid in a suitable dilution.
  • FIG. 3 shows a detailed illustration in longitudinal section of the end section of a cannula 3B modified in relation to the cannula 3A according to FIG. 2, which contains an optical fiber 7B that is continuous to the distal end (which is not shown in the figure).
  • An outer lumen 6B which is connected via a side extension 8B to a device (not shown) for supplying scattering liquid, is closed at the proximal end of the cannula 3B with an axially displaceable, liquid-tight closure cap 14B.
  • the optical fiber 7B is with the Cap 14B firmly connected.
  • the fiber end can be extended from the distal end of the cannula 3B by approximately 1 to after the insertion of the cannula with a pre-adjusted end of the fiber ending with the end of the cannula 2 mm into a scattering fluid depot created there beforehand.
  • the catheter 3C has an outer catheter body 15C made of transparent plastic of essentially cylindrical shape, which is rounded at its distal end and is provided with openings 16C over a distal area of a few cm in length.
  • an inner glass cannula 17C is arranged in the interior 6C thereof, which extends almost to the distal end of the outer catheter body 15C and is also closed at its distal end.
  • the outer catheter body has a laterally branching liquid supply 8C near its proximal end, which is closed with a plug 19C.
  • the glass cannula 17C receives an optical fiber 7C, which is provided in its end region of approximately 3 cm in length with a plurality of ring-shaped matting regions 18C, each of which is equidistant from one another.
  • the optical fiber 7C is connected (which is not shown in the figure) at its proximal end to a laser radiation source.
  • An elongated liquid depot IC surrounding the catheter end region is formed by the paraxial supply of medium to highly viscous scattering liquid via the feed line 8C, which is conducted into the surrounding tissue via the catheter interior 6C and the openings 16C.
  • laser radiation is subsequently supplied, it is coupled out sequentially or periodically on the matted rings and on the end face of the fiber 7C.
  • the first time In connection with the marginal scattering fluid spot, it is possible for the first time and surprisingly to achieve an almost uniform distribution of the laser radiation over a longer cylindrical distance in the tissue without a considerable fluid volume of the biocompatible scattered light fluid.
  • the prolongation of the scattered light application which is thus possible for the first time according to the invention, at the same time allows higher laser powers to be applied, so that, for example, for the above-mentioned treatment of a prostate flap with a longitudinal extent of up to 5 cm and a diameter of 2 cm when applied from 15 to 20 W.
  • Laser light power Radiation times of only 10 minutes are necessary to achieve the desired therapy result.
  • the inner cannula 17C with the optical fiber 7C shows. It can be seen how in the end region of the fibers freed from their cladding 21C and coating 22C there with an aspect ratio of 1: 1 each matted rings 18C and untreated fiber sections 20C alternate.
  • the matted rings 18C have a decreasing diameter towards the end of the fiber or an increasing roughness depth.
  • the glass cannula 17C which is made clear or matt and can alternatively also consist of plastic (such as polycarbonate), is glued proximal to the matting area by an adhesive 23C with the coating 22C of the fiber and an MRI marker 24C encasing it.
  • FIG. 6 shows a modification of the arrangement shown in FIGS. 4 and 5. While the construction of the inner cannula and the optical fiber corresponds to that according to the figures mentioned and these are therefore also designated by the same reference numerals 17C and 7C as in FIG. 4, here is a closed catheter body 15D made of material that scatters the laser radiation intended. With this setup, a stray fluid depot can largely or possibly can also be dispensed with entirely, or the catheter can be inserted into a depot previously set by other means.
  • the end of the base fiber which has been freed from coating and cladding is coated with rings L made of an acid-resistant lacquer (etching lacquer) and the fiber is used using a Control C, a motor M and a spindle holder Sp in the fiber longitudinal direction gradually in an etching liquid E. immersed where the surface of the fiber is etched in the uncoated areas. Since the residence time in the etching liquid decreases with increasing distance of the etched areas from the fiber end, the etching depth also decreases in this direction, whereby the desired course of the roughness depth or the effective fiber diameter is achieved. After the etching, the lacquer rings are removed.
  • etching lacquer acid-resistant lacquer
  • the embodiment of the invention is not limited to the exemplary embodiments specified above. Rather, a number of variants are conceivable which make use of the solution shown, even in the case of fundamentally different types.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Otolaryngology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Laser Surgery Devices (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

A process is disclosed for thermally obliterating biological tissues by laser radiation introduced into the tissue by means of an optical waveguide. The laser radiation is scattered by means associated with the radiation output surface of the optical waveguide. A biocompatible, medium to highly visquous liquid which does not substantially absorb the laser radiation but scatters it, is injected into the tissue, forming a scattering fluid deposit around the radiation output surface which is not separated from the tissue and which allows the tissue to be heated in a controlled manner.

Description

Verfahren und Vorrichtung zur thermischen Verödung biologischen Gewebes Method and device for thermal sclerotherapy of biological tissue
B e s c h r e i b u n gDescription
Die Erfindung betrifft ein Verfahren der im Oberbegrif des Anspruchs 1 angegebenen Art sowie eine Vorrichtung zu Durchführung des Verfahrens.The invention relates to a method of the type specified in the preamble of claim 1 and an apparatus for performing the method.
Es ist bekannt, daß Laserstrahlung mittels optischer Wel lenleiter geführt und die so transmittierte Strahlung ent weder unmittelbar mittels des optischen Wellenleiters transluminal bzw. transkutan in biologisches Gewebe einge¬ bracht oder zusätzlich in ihrer Verteilungsfunktion durch weitere Maßnahmen - etwa über spezielle Katheter bzw. En- doskope - gezielt beeinflußt und die derart gezielt appli- zierte Strahlung zur Induzierung thermischer oder photo¬ chemischer Nekrosen genutzt werden kann. Seit Mitte der 70er Jahre ist es geübte Praxis, auf diese Weise etwa Neodym:YAG Laserstrahlung in biologisches Gewebe einzu- bringen und die im Gewebe auftretende Absorption dieser Strahlung zur Aufheizung der zur Faser endständigen Gewebs¬ areale zu nutzen und damit Koagulationsnekrosen herbeizu¬ führen.It is known that laser radiation is guided by means of optical waveguides and the radiation thus transmitted ent neither introduced transluminally or transcutaneously into biological tissue directly by means of the optical waveguide, or its distribution function additionally influenced in a targeted manner by further measures, for example via special catheters or endoscopes, and the radiation specifically applied in this way for inducing thermal or photo ¬ chemical necrosis can be used. It has been common practice since the mid-1970s to introduce neodymium: YAG laser radiation into biological tissue in this way and to use the absorption of this radiation that occurs in the tissue to heat the tissue-end areas and thus to cause coagulation necrosis.
Bedingt durch die Tatsache, daß die verwendeten Lichtleit¬ fasern aktive Durchmesser zwischen 200 und 600 μm haben, ergibt sich an der Grenzfläche Faser/Gewebe selbst bei ge¬ ringen Ausgangsleistungen des Lasers eine sehr hohe Lei¬ stungsdichte. Daher wird sehr schnell die Karbonisations- schwelle des Gewebes überschritten mit der Folge, daß die austretende Laserstrahlung zusätzlich durch das Karbonisat absorbiert wird und nicht mehr entsprechend dem gewebstypi- schen optischen Koeffizienten eindringen kann. Selbst dem geübtesten Operateur gelingt auf diese Weise nur die Er- zeugung von Koagulationsnekrosen mit 5 bis 7 mm Durchmes¬ ser, die in der Regel mit einer Karbonisierung des das Fa¬ serende berührenden Gewebes einhergehen.Due to the fact that the optical fibers used have active diameters between 200 and 600 μm, a very high power density results at the fiber / fabric interface even with low laser output powers. The carbonization threshold of the tissue is therefore exceeded very quickly, with the result that the emerging laser radiation is additionally absorbed by the carbonate and can no longer penetrate in accordance with the optical coefficient typical of the tissue. Even the most experienced surgeon only succeeds in producing coagulation necrosis with a diameter of 5 to 7 mm, which is usually accompanied by carbonization of the tissue touching the end of the fiber.
Operationstechnisch erfolgt das transkutane Einbringen der Lichtleitfaser, der sogenannten "bare-fiber" , in der Regel mit Punktionssets, d.h. mit metallischen Kanülen und Tro- karen. Die transluminale Anwendung erfolgt weiterführen über geeignete flexible Katheter oder Endoskope.In terms of surgery, the transcutaneous introduction of the optical fiber, the so-called "bare-fiber", is usually carried out with puncture sets, ie with metallic cannulas and trousers. Karen. The transluminal application continues via suitable flexible catheters or endoscopes.
In US 5,169,396 ist ein Verfahren zur interstitiellen La sertherapie beschrieben, das sich in seinen Grundzüge dadurch auszeichnet, daß ein direkter Kontakt der Faser endfläche mit dem Gewebe dadurch unterbunden wird, daß a Ende der Punktionskanüle zunächst ein Flüssigkeitsdepo mit einer die Laserstrahlung absorbierenden biokompatible Flüssigkeit gesetzt wird. Somit wird primär nicht mehr di Grenzfläche Faser-Gewebe aufgeheizt, sondern die lichtab¬ sorbierende Flüssigkeit, die dann ihrerseits über Wärme¬ leitung das umliegende Gewebe erwärmt.US Pat. No. 5,169,396 describes a method for interstitial laser therapy, the basic features of which are characterized in that direct contact of the fiber end face with the tissue is prevented by first placing a liquid depot with a biocompatible liquid absorbing the laser radiation at the end of the puncture cannula becomes. Thus, primarily the fiber-tissue interface is no longer heated, but rather the light-absorbing liquid, which in turn heats the surrounding tissue via heat conduction.
Diese Vorgehensweise vermeidet zwar die primäre Karbonisa- tion am Faserende, hat aber den entscheidenden Nachteil, daß der Energietransport ins Gewebe lediglich noch durc Wärmeleitung erfolgt und damit in Anbetracht der große Wärmesenke des umgebenden Gewebes nur zu sehr begrenzten Koagulationsnekrosen führt. Weiterhin hat das Verfahren den wesentlichen Nachteil, daß die Pigmente bzw. chromo- phoren Gruppen der die Laserstrahlung absorbierenden Flüs¬ sigkeit bei den zur Anwendung kommenden Strahlungsleistun¬ gen und dadurch bedingten Leistungsdichten am Faserende sich ebenfalls photochemisch bzw. thermisch zersetzen und dadurch unkontrollierbare Nebenwirkungen auslösen.Although this procedure avoids the primary carbonization at the end of the fiber, it has the decisive disadvantage that the energy is only transported into the tissue by heat conduction and thus, in view of the large heat sink of the surrounding tissue, leads to very limited coagulation necrosis. Furthermore, the method has the major disadvantage that the pigments or chromophoric groups of the liquid absorbing the laser radiation also decompose photochemically or thermally at the radiation powers used and the resulting power densities at the fiber end and thus trigger uncontrollable side effects .
Bei einer aus DE 40 41 234 bekannten Anordnung wird das Problem der Karbonisierung an der Faser-Gewebe-Grenzfläche dadurch zu lösen versucht, daß das Faserende speziell prä¬ pariert ist derart, daß die Laserstrahlung nicht mehr ge- richtet prograd aus der Faser mit einer sehr geringen Aus¬ trittsapertur austritt, sondern über eine längere Strecke schrittweise radial aus der Faser herausgestreut wird. Durch weitere, die radiale Streuung noch erhöhende Maßnah- men, wie das Vorsehen eines Streudoms, wird die Verteilung der Laserleistung auf der Oberfläche des Applikators wei¬ ter vergleichmäßigt.In an arrangement known from DE 40 41 234, the problem of carbonization at the fiber-fabric interface is attempted to be solved by the fiber end being specially prepared in such a way that the laser radiation is no longer directs prograd out of the fiber with a very small exit aperture, but is gradually sprinkled radially out of the fiber over a longer distance. The distribution of the laser power on the surface of the applicator is further evened out by further measures which increase the radial scatter, such as the provision of a scattering dome.
Durch diese Maßnahmen kann zwar das Ziel einer möglichst homogenen Einbringung der Laserstrahlung in das Gewebe weitgehend erreicht werden, die technologischen Aufwendun¬ gen zur Präparation des Faserendes und ggfs. eines hoch- temperaturfesten, aber flexiblen Hüllkatheters sind jedoch erheblich. Ein weiterer Nachteil dieses Laserstreulicht- applikators mit Hüllkatheter ist, daß sich naturgemäß die dem Katheter anliegende Gewebeschicht durch die Lichtab¬ sorption besonders schnell aufheizt und damit koaguliert, wobei sich gezeigt hat, daß das koagulierte Gewebe eine deutlich schlechtere Transmittanz für gerichtete optische Strahlung im Wellenlängenbereich aufweist.Although these measures largely achieve the goal of introducing the laser radiation into the tissue as homogeneously as possible, the technological expenditure for the preparation of the fiber end and possibly a high-temperature-resistant but flexible sheath catheter are considerable. Another disadvantage of this laser scattered light applicator with an enveloping catheter is that the tissue layer adjacent to the catheter naturally heats up and coagulates particularly quickly due to the absorption of light, and it has been shown that the coagulated tissue has a significantly poorer transmittance for directional optical radiation in the wavelength range having.
In DE 42 11 526 AI und DE 42 37 286 AI ist eine Vorrich¬ tung angegeben, die mit einer aktiven Kühlung innerhalb des Hüllkatheters arbeitet, wobei die Kühlflüssigkeit gleichzeitig die Aufgabe einer zusätzlich Zerstreuung des Laserlichtes übernimmt. In einer Abwandlung ist vorgese¬ hen, daß durch präformierte Poren im Hüllkatheter biokom¬ patible Kühlflüssigkeit aus dem Katheter austreten kann und so eine Karbonisierung und damit auch ein Anhaften an- liegenden Gewebes vermieden wird. Bei dieser Anordnung kann zwar durch die aktive Kühlun Laserleistung von mehr als 5 W, typischerweise 10 bis 1 W, genutzt werden, jedoch wird durch die Kühlung gleich zeitig ein Teil der applizierten Energie ungenutzt wiede abgeführt. Da die biokompatible Flüssigkeit sich im Geweb schnell verteilt, werden während einer 10 bis 20 min dau¬ ernden Behandlung zudem relativ große Mengen benötigt, di ggfs. auch zu Belastungen des Patienten führen können. Schließlich sind auf diese Weise - wie auch mit den vorge- nannten Lösungen - nur in etwa kugelsymmetrische Behand¬ lungszonen realsierbar. Die Behandlung langgestreckter, aber relativ schlanker krankhafter Gewebsareale erforder eine Mehrfachapplikation durch Repositionierung im Hüll¬ katheter und führt beispielsweise bei der Behandlung der benignen Prostatahyperplasie (BPH) zu sehr langen Bestrah¬ lungszeiten pro Prostatalappen von bis zu 40 min.DE 42 11 526 AI and DE 42 37 286 AI specify a device which works with active cooling within the sheath catheter, the coolant simultaneously taking on the task of additionally dispersing the laser light. In a modification it is provided that biocompatible cooling fluid can escape from the catheter through preformed pores in the sheath catheter, thus avoiding carbonization and thus also adherence of adjacent tissue. In this arrangement, laser power of more than 5 W, typically 10 to 1 W, can be used by the active cooling, but at the same time, part of the applied energy is dissipated unused due to the cooling. Since the biocompatible liquid is rapidly distributed in the tissue, relatively large amounts are also required during a treatment lasting 10 to 20 minutes, which may also lead to stress on the patient. Finally, in this way - as with the aforementioned solutions - only spherically symmetrical treatment zones can be realized. The treatment of elongated, but relatively slim, diseased tissue areas requires multiple application by repositioning in the sheath catheter and leads, for example in the treatment of benign prostatic hyperplasia (BPH), to very long radiation times per prostate flap of up to 40 min.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Gattung so weiterzubilden, daß eine Gewebsverödung unter effizienter Nutzung von Laserstrah¬ lung und Streuflüssigkeit in möglichst großen und auch i nicht kugelsymmetrischen Behandlungszonen ermöglicht wird, sowie eine Vorrichtung zur Durchführung des Verfahrens anzugeben.The invention is based on the object of developing a method of the type mentioned at the outset in such a way that tissue obliteration using efficient use of laser radiation and stray liquid is made possible in treatment zones which are as large as possible and also non-spherically symmetrical, and to provide an apparatus for carrying out the method.
Diese Aufgabe wird durch ein Verfahren mit den Merkmale des Anspruchs 1 sowie eine Vorrichtung mit den Merkmalen des Anspruchs 14 gelöst.This object is achieved by a method having the features of claim 1 and an apparatus having the features of claim 14.
Die Erfindung schließt den Gedanken ein, in der Umgebung der Austrittsfläche der Laserstrahlung aus einem ihrer Zu- leitung dienenden Lichtwellenleiter in das zu verödende Gewebe einen den Behandlungserfordernissen in der Größe und räumlichen Gestalt möglichst genau angepaßten, während der Behandlung im wesentlichen stabilen Streubereich zu schaffen, in dem im wesentlichen keine Absorption, sondern nur eine möglichst diffuse Streuung der Laserstrahlung er¬ folgt. Diesen Zweck erfüllt ein Streufluid-Depot aus einer hinreichend viskosen, im Wellenlängenbereich der verwende¬ ten Laserstrahlung im wesentlichen transparenten Flüssig- keit bzw. einem Flüssigkeitsgemisch.The invention includes the idea that in the vicinity of the exit surface of the laser radiation from one of its line serving optical waveguide into the tissue to be obliterated to create a scattering range that is essentially stable during the treatment and that is essentially stable during treatment, in which essentially no absorption takes place, but only as diffuse a scattering of the laser radiation as possible. A scattering fluid depot made of a sufficiently viscous liquid or a liquid mixture which is essentially transparent in the wavelength range of the laser radiation serves this purpose.
Da das Fluid die Laserstrahlung nicht absorbiert und die Streuprozesse reine Phasenstreuung darstellen, heizt sich das Fluid nicht wesentlich auf, wodurch über einen großen Zeitraum - gemessen an der Gesamtbestrahlungszeit - eine Koagulation an der Strahlungsaustrittsfläche zum Gewebe unterdrückt wird.Since the fluid does not absorb the laser radiation and the scattering processes represent pure phase scattering, the fluid does not heat up significantly, as a result of which coagulation at the radiation exit surface to the tissue is suppressed over a long period of time, measured in terms of the total irradiation time.
Das erfindungsgemäße Verfahren beruht auf der überraschen- den Erkenntnis, daß durch Vermeidung der primären Koagula¬ tion an der Randzone Streuflüssigkeit/Gewebe die sich dif¬ fus in der Streuflüssigkeit ausbreitende Laserstrahlung um den Faktor 2 bis 3 tiefer in das Gewebe eindringen kann, und somit dort in einem deutlich größeren Volumen absor- biert wird und dieses Volumen aufheizt. Dabei tritt dann zunächst nach einer Bestrahlungszeit von mehreren Minuten in der Tiefe des Gewebes eine konzentrische Koagulations¬ zone auf, die einen weiteren reinen Strahlungstransport in die Tiefe des Gewebes hindert, gleichzeitig aber durch er- höhte Temperatur eine volumenmäßig sehr große Wärmequelle zur Ausnutzung der Wärmeleitung zur weiteren thermischen Verödung des umliegenden Gewebes bildet. Das das Flüssigkeitsdepot umgebende Gewebe wird erst gegen Ende der Behandlung durch Anheben der Bestrahlungsleistung des Lasers koagulieirt und führt damit indirekt zu einer weiteren Aufheizung der Kühlflüssigkeit, so daß auch nach Abschalten des Lasers noch einmal durch das eingebrachte Flüssigkeitsdepot und die massive gesetzte thermische Koa¬ gulationsfront eine Wärmequelle vorhanden ist, die ihrer¬ seits über Wärmeleistung weiterhin umliegendes Gewebe thermisch auch im subkoagulativen Bereich gemäß dem Arrhenius-Integral schädigt. Bei verfahrensgemäßem Vorge¬ hen lassen sich so Durchmesser von Koagulationszonen von bis zu 3 cm erreichen, darüber hinaus entsteht durch die subkoagulative, hyperthermische Einflußnahme aufgrund der Wärmeleitung eine weiteren Nekrose mit einem Radius von zusätzlich ca. 5 bis 7 mm, so daß insgesamt Nekroseherde bis zu 4 cm kontrolliert gesetzt werden können.The method according to the invention is based on the surprising finding that by avoiding primary coagulation at the edge zone of scattering liquid / tissue, the laser radiation which diffuses diffusely in the scattering liquid can penetrate into the tissue by a factor of 2 to 3, and thus is absorbed there in a significantly larger volume and this volume is heated up. After an irradiation time of several minutes, a concentric coagulation zone then occurs, which prevents further pure radiation transport into the depth of the tissue, but at the same time, due to the increased temperature, a very large volume of heat source for utilizing the heat conduction for further thermal desolation of the surrounding tissue. The tissue surrounding the liquid depot is only coagulated towards the end of the treatment by increasing the radiation power of the laser and thus indirectly leads to further heating of the cooling liquid, so that even after the laser has been switched off, the liquid depot introduced and the massive thermal coagulation front set up again a heat source is present which, on the other hand, thermally damages surrounding tissue via heat output also in the subcoagulative area according to the Arrhenius integral. When the procedure is carried out according to the method, diameters of coagulation zones of up to 3 cm can be achieved. In addition, the subcoagulative, hyperthermic influence due to heat conduction results in a further necrosis with an additional radius of approximately 5 to 7 mm, so that a total of necrosis centers of up to can be set to 4 cm in a controlled manner.
Die in der US 5,169,396 beschriebenen Nachteile der Benut¬ zung einer metallischen Kanüle werden in vorteilhafter Weise dadurch vermieden, daß zur Einbringung der Licht¬ leitfaser und der streuenden Kühlflüssigkeit in das Gewebe ein die Laserstrahlung nicht absorbierendes, biokompati¬ bles Kanülenmaterial verwendet wird. Hierfür kommen Va¬ rianten der thermoplastischen PTFE-Familie, Polykarbonate, Varianten des HDPE und bestimmte Polyuretane in Frage.The disadvantages of using a metallic cannula described in US Pat. No. 5,169,396 are avoided in an advantageous manner by using a biocompatible cannula material that does not absorb the laser radiation to introduce the optical fiber and the scattering cooling liquid into the tissue. Variants of the thermoplastic PTFE family, polycarbonates, variants of the HDPE and certain polyurethane are suitable for this.
Das operationstechnische Vorgehen wird so gewählt, daß über eine Sondiernadel zunächst der Zugang in das Zentrum des zu verödenden Gewebeareals gefunden wird, wobei dieses Vorgehen unter gleichzeitiger Röntgen- oder Ultraschall¬ kontrolle erfolgen kann. Anschließend werden über diese Nadel je nach Größe des später zu setzenden Nekroseherdes ein oder mehrere Dilatoren geführt, wobei der letzte der Dilatoren mit der später den Laserstrahl führenden Kanüle identisch ist. Anschließend wird über diesen Kunststoffdi- latator, der endständig offen ist, das biokompatible pha¬ senstreuende Fluid in das Gewebe eingebracht.The surgical procedure is chosen so that access to the center of the tissue area to be obliterated is first found via a probing needle, this procedure being able to take place under simultaneous X-ray or ultrasound control. Then be over this Depending on the size of the necrosis focus to be placed later, one or more dilators are guided, the last of the dilators being identical to the cannula that later guides the laser beam. The biocompatible phase-scattering fluid is then introduced into the tissue via this plastic dilator, which is open at the end.
Die verwendete Kanüle ist zweckmäßig so ausgebildet, daß sie aus im wesentlichen zwei Baugruppen besteht, deren ei- ne die über eine Sondiernadel einzubringende Punktionska- nüle selbst ist und deren zweite ein an eben dieser Punk¬ tionskanüle nach Entfernung der Sondiernadel anzubringen¬ des fluiddichtes Y-Stück darstellt, über das einerseits das das Laserlicht streuende Fluid injiziert werden kann und andererseits der das Laserlicht führende Lichtwellen¬ leiter vorjustiert fixiert und über einen Verschiebemecha¬ nismus definiert axial vorgeschoben werden kann.The cannula used is expediently designed such that it consists of essentially two subassemblies, one of which is the puncture cannula itself, which is to be introduced via a probing needle, and the second of which is a fluid-tight Y to be attached to this puncturing cannula after removal of the probing needle Represents piece via which the fluid scattering the laser light can be injected on the one hand and on the other hand the light waveguide guiding the laser light can be fixed in a pre-adjusted manner and can be axially advanced in a defined manner by means of a displacement mechanism.
Von besonderer Bedeutung für das Verfahren ist, daß das Fluid eine an die jeweilige Behandlungssituation angepaßte Viskosität besitzt, damit über eine hinreichend lange Be¬ strahlungszeit ein räumlich geeignet definiertes Flüssig¬ keitsdepot aufrechterhalten wird. Daher scheiden gängige biokompatible Fluide wie phyisiologische Kochsalzlösung aus, da diese eine so geringe Viskosität aufweisen, daß während der typischen Behandlungszeiten von 10 bis 20 Mi¬ nuten in den für diese Therapieform insbesondere in Frage kommenden Gewebetypen wie Parenchym, Muskel, Prostata usw. mehrere 100 ml Flüssigkeit zur Aufrechterhaltung eines De- pots benötigt würden. Dies läßt sich durch Wahl einer ge¬ eigneten Viskosität des Fluids vermeiden. Das Fluid kann einfach und kostengünstig aus einer Mi¬ schung von 0,1 bis 2 Anteilen Öl, 10 bis 50 Anteilen Was¬ ser und 50 bis 80 Anteilen Glyzerin bestehen, wobei die jeweiligen Anteils-Summen 100 betragen. In einer bevorzug- ten Ausführung wird eine Öl-Wasser-Glyzerin-Suspension verwendet, die folgendes Mischungsverhältnis aufweist: 80 % Glyzerin, 18 % Wasser und 2 % suspendierte Öltröpf- chen.It is of particular importance for the method that the fluid has a viscosity adapted to the particular treatment situation, so that a spatially suitably defined liquid depot is maintained over a sufficiently long irradiation time. Therefore, common biocompatible fluids such as physiological saline are excluded, since they have such a low viscosity that during the typical treatment times of 10 to 20 minutes in the tissue types such as parenchyma, muscle, prostate, etc., which are particularly suitable for this type of therapy ml of liquid would be needed to maintain a depot. This can be avoided by choosing a suitable viscosity of the fluid. The fluid can easily and inexpensively consist of a mixture of 0.1 to 2 parts of oil, 10 to 50 parts of water and 50 to 80 parts of glycerin, the respective sum of parts being 100. In a preferred embodiment, an oil-water-glycerine suspension is used, which has the following mixing ratio: 80% glycerin, 18% water and 2% suspended oil droplets.
Weiterhin kann eine Mischung aus 1 bis 30 Teilen Wasser und 70 bis 99 Teilen Methylzellulose - vorzugsweise Met¬ hylzellulose, versetzt mit wenigen Prozenten physiologi¬ scher Kochsalzlösung - verwendet werden.Furthermore, a mixture of 1 to 30 parts of water and 70 to 99 parts of methyl cellulose - preferably methyl cellulose, mixed with a few percent of physiological saline solution - can be used.
Schließlich kann auch eine Mischung aus Hyalaronsäure und Intralipid eingesetzt werden.Finally, a mixture of hyalaronic acid and intralipid can also be used.
In Abhängigkeit von der Größe und geometrischen Gestalt des Depots ist die numerische Apertur des Lichtwellen- leiters zu wählen. Gute Ergebnisse werden bei numerischen Aperturen zwischen 0,2 und 0,6 erreicht. Die Verwendung einer erhöhten numerischen Apertur bietet die Möglichkeit, in einfacher Weise auch Diodenlaser bei ca. 800 nm als Energiequelle enzusetzen.Depending on the size and geometric shape of the depot, the numerical aperture of the optical fiber must be selected. Good results are achieved with numerical apertures between 0.2 and 0.6. The use of an increased numerical aperture makes it possible to use diode lasers at approximately 800 nm as an energy source in a simple manner.
In einer vorteilhaften Ausgestaltung besteht die Flüssig¬ keit aus einer im wesentlichen transparenten und einer stark lichtstreuenden Komponente, und die Komponenten wer¬ den mittels einer konzentrisch doppellumigen Kanüle derart in das Gewebe injiziert, daß die transparente Komponente über das innere und die stark lichtstreuende Komponente über das äußere Lumen eingebracht werden, so daß die stark lichtstreuende Komponente die transparente Komponente um¬ hüllt.In an advantageous embodiment, the liquid consists of an essentially transparent and a strongly light-scattering component, and the components are injected into the tissue by means of a concentrically double-lumen cannula in such a way that the transparent component passes over the inner and the strongly light-scattering component are introduced via the outer lumen so that the highly light-scattering component envelops the transparent component.
Die transparente Komponente kann Glyzerin und Wasser, vor¬ zugsweise in einem Mischungsverhältnis von 80:20, und die stark streuende Komponente Öl und Wasser, vorzugsweise mit 1 bis 5 Anteilen Öl in 100 Teilen Mischung, aufweisen.The transparent component can contain glycerin and water, preferably in a mixing ratio of 80:20, and the strongly scattering component can contain oil and water, preferably with 1 to 5 parts of oil in 100 parts of the mixture.
In einer konstruktiv einfachen Fortbildung dieser Ausge¬ staltung kann die Laserstrahlung über die gleichzeitig als Lichtwellenleiter dienende Flüssigkeitssäule der transpa¬ renten Komponente im inneren Lumen in das Gewebe einge¬ bracht werden, wobei die Einstrahlung des Laserlichtes ggf. auch über eine instationäre Flüssigkeitssäule - also während weiterhin Flüssigkeit injiziert wird - erfolgen kann.In a structurally simple further development of this embodiment, the laser radiation can be introduced into the tissue via the liquid column of the transparent component in the inner lumen, which also serves as an optical waveguide, the radiation of the laser light possibly also via an unsteady liquid column - that is, during liquid is still injected - can take place.
Zur Optimierung des Strahlungseintrages in das Fluiddepot kann nach Injektion der Flüssigkeit und Bildung des Depots der Lichtwellenleiter in distaler Richtung um einen vorbe¬ stimmten Betrag in das Depot hinein verschoben werden.To optimize the radiation input into the fluid depot, after the liquid has been injected and the depot has been formed, the optical waveguide can be displaced into the depot by a predetermined amount in the distal direction.
Zur Bildung langgestreckter Behandlungszonen wird das Streufluiddepot in langgestreckter, insbesondere im we¬ sentlichen ellipsoidischer oder zylinderförmiger Gestalt, gebildet und/oder eine Lichtwellenleiteranordnung mit ei¬ ner derart geformten Abstrahlfläche eingesetzt.To form elongated treatment zones, the scattering fluid depot is formed in an elongated, in particular essentially ellipsoidal or cylindrical shape, and / or an optical waveguide arrangement with an emission surface shaped in this way is used.
Diese weist in vorteilhafter Ausbildung eine Lichtleitfa¬ ser auf, deren Oberfläche in einem distalen Endabschnitt mehrere in Längsrichtung aufeinanderfolgende mattierte, vorzugsweise ringförmig ausgebildete, Bereiche aufweist, und deren Endabschnitt mit einer für die Laserstrahlung transparenten Schutzhülle versehen ist. Die mattierten Be- reiche können eine zum distalen Ende der Lichtleitfaser hin zunehmende Rauhtiefe und/oder abnehmenden Durchmesser aufweisen.In an advantageous embodiment, this has an optical fiber, the surface of which is in a distal end section has a plurality of areas in the longitudinal direction that follow one another, preferably in the form of a ring, and the end section of which is provided with a protective cover that is transparent to the laser radiation. The matted areas can have a roughness depth and / or a decreasing diameter towards the distal end of the optical fiber.
Koaxial zur Lichtwellenleiteranordnung kann ein die Laser- Strahlung streuendes - etwa mattiertes - Hüllrohr vorgese¬ hen sein.A cladding tube that scatters the laser radiation — for example, matted — can be provided coaxially with the optical waveguide arrangement.
Eine Schutzhülle ist erforderlich, weil die Lichtleitfaser durch die partielle Mattierung bzw. Aufrauhung extrem bruchempfindlich wird. Sie kann in kostengünstiger Weise durch eine endständig verschlossene.und am mechanisch fe¬ sten Teil des Lichtwellenleiters oder der Kanüle befestig¬ ten Präzisionsglas-oder Hartkunststoffkanüle gebildet sein. In einer zweckmäßigen, robusten Ausbildung des Katheters bzw. der Kanüle umschließt die Schutzhülle deren gesamtes Vorderteil und weist Öffnungen zum Austritt der die Laser¬ strahlung streuenden Flüssigkeit in das Gewebe auf.A protective cover is required because the partial matting or roughening makes the optical fiber extremely fragile. It can be formed in a cost-effective manner by a precision glass or hard plastic cannula which is closed at the end and attached to the mechanically fixed part of the optical waveguide or the cannula. In an expedient, robust design of the catheter or cannula, the protective sheath encloses the entire front part thereof and has openings for the liquid scattering the laser radiation to exit into the tissue.
Der Verlauf der Temperaturfeldausbreitung im behandelten Gewebe kann in zweckmäßiger Weise durch fortlaufende Beo¬ bachtung des Therapieareals mit einem Sonographiegerät kontrolliert wird, wobei zusätzlich Echos temperaturabhän¬ gig in dem Areal benachbarten Blutgefäßen dann auftreten, wenn hier die Temperatur einen Wert von 55 °C überschrei- tet und damit das im Blut gelöste C02 intermediär ausgast unhd weitere Echos auftreten, wenn bei überschreiten einer Temperatur von 95 °C in der wässerigen Komponente des Streulichtfluids intermediär Wasserdampfblasen entstehen.The course of the temperature field propagation in the treated tissue can expediently be checked by continuous observation of the therapeutic area with a sonography device, echoes additionally occurring depending on the temperature in the area of adjacent blood vessels if the temperature here exceeds a value of 55 ° C. tet and thus the C0 2 dissolved in the blood outgasses intermediate and further echoes occur, if one is exceeded Temperature of 95 ° C in the aqueous component of the scattered light fluid intermediate water vapor bubbles arise.
Weiterhin kann der Flüssigkeit ein Röntgenkontrastmittel beigefügt und eine röntgenologische Beobachtung der Bil¬ dung und des Zustandes des Depots vorgenommen werden.Furthermore, an X-ray contrast medium can be added to the liquid and an X-ray observation of the formation and the condition of the depot can be carried out.
Vorteilhafte Weiterbildungen der Erfindung sind in den Un¬ teransprüchen gekennzeichnet bzw. werden nachstehend zu- sammen mit der Beschreibung der bevorzugten Ausführung der Erfindung anhand der Figuren näher dargestellt. Es zeigen:Advantageous developments of the invention are characterized in the subclaims or are shown in more detail below together with the description of the preferred embodiment of the invention with reference to the figures. Show it:
Figuren la bis Id schematische Darstellungen zur Erläute¬ rung einer A sführungsform des erfindungsgemäßen Verfah- rens,FIGS. 1 a to 1 d are schematic representations for explaining an embodiment of the method according to the invention,
Figur 2 eine weitere schematische Darstellung zur Erläu¬ terung einer modifizierten Ausführungsform des erfindungs¬ gemäßen Verfahrens und einer Vorrichtung zu dessen Durch- führung,FIG. 2 shows a further schematic illustration to explain a modified embodiment of the method according to the invention and a device for carrying it out,
Figur 3 eine schematische Ausschnittsdarstellung (im Querschnitt) einer weiter modifizierten Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens,FIG. 3 shows a schematic detail representation (in cross section) of a further modified device for carrying out the method according to the invention,
Figur 4 eine vereinfachte, teilweise geschnittene Darstel¬ lung einer weiteren Ausführungsform,FIG. 4 shows a simplified, partially sectioned illustration of a further embodiment,
Figur 5 eine Detaildarstellung zur in Fig. 5 gezeigten Vorrichtung, Figur 6 eine vereinfachte, teilweise geschnittene Dar¬ stellung einer weiteren Ausführungsform undFIG. 5 shows a detailed illustration of the device shown in FIG. 5, FIG. 6 shows a simplified, partially sectioned illustration of a further embodiment and
Figur 7 eine schematische Darstellung eines Verfahrens zur Herstellung der bei den Ausführungsformen nach Fig. 4 bis 6 eingesetzten Lichtwellenleiteranordnung.FIG. 7 shows a schematic illustration of a method for producing the optical waveguide arrangement used in the embodiments according to FIGS. 4 to 6.
In Fig. la bis ld ist schematisch dargestellt, wie die Ausbildung eines Fluiddepots 1 in einem Körpergewebeab- schnitt 2 mittels einer Kanüle 3, die Streuung einer über einen Lichtleiter 4 innerhalb der Kanüle 3 eingekoppelten Laserstrahlung in dem Depot 1 und die Entstehung einer Koagulationsnekrose 5 gemäß einer Ausführungsform des er¬ findungsgemäßen Verfahrens ablaufen.1a to 1d schematically show how the formation of a fluid depot 1 in a body tissue section 2 by means of a cannula 3, the scattering of laser radiation coupled into the depot 1 via a light guide 4 within the cannula 3 and the development of coagulation necrosis 5 run according to an embodiment of the inventive method.
Fig. la verdeutlicht schematisch das allgemeine Vorgehen bei Einführung einer Kanüle 3 zur Durchführung des Verfah¬ rens in den Körpergewebeabschnitt 2: Zunächst wird mit ei¬ nem Sondierdraht bzw. einer Sondiernadel S der Zugang in das Zentrum des zu verödenden Gewebsareals gefunden. An¬ schließend wird über die Sondiernadel S ein Dilator D ein¬ geführt, und über den Dilator D schließlich die Kanüle 3. Je nach Größe des zu bildendne Nekroseherdes können auch in mehreren Stufen mehrere Dilatoren gesetzt werden, und der letzte kann gleichzeitig die laser- und/oder flüssig¬ keitsführende Kanüle für die weiteren Schritte sein, wie unten genauer beschrieben wird.FIG. 1 a schematically illustrates the general procedure when introducing a cannula 3 to carry out the method in the body tissue section 2: First, access to the center of the tissue area to be obliterated is found with a probing wire or a probing needle S. Then a dilator D is inserted via the probing needle S, and finally the cannula 3 via the dilator D. Depending on the size of the necrosis focus to be formed, several dilators can also be set in several stages, and the last one can simultaneously use the laser and / or liquid-carrying cannula for the further steps, as will be described in more detail below.
In der in Fig. lb skizzierten Phase wurde zunächst über die Kanüle 3 viskose Streuflüssigkeit in das Gewebe 2 in¬ jiziert, darin das räumlich begrenzte Fluiddepot 1 gebil- det und mit der Einkopplung von Laserstrahlung in das De¬ pot begonnen. Die Photonen der Laserstrahlung werden - was durch gezackte Pfeile symbolisiert ist - in der quasi ab¬ sorptionsfreien Streuflüssigkeit des Depots 1 und in das Gewebe 2 gestreut. Dadurch wird eine erste virtuelle Volu¬ menvergrößerung bei der Energieübertragung in das zu the- rapierende Gewebe erreicht.In the phase outlined in FIG. 1b, viscous scattering liquid was first injected into the tissue 2 via the cannula 3, in which the spatially limited fluid depot 1 was formed. det and started with the coupling of laser radiation into the depot. The photons of the laser radiation are scattered - which is symbolized by jagged arrows - in the quasi-absorption-free scattering liquid of the depot 1 and in the tissue 2. As a result, a first virtual increase in volume during energy transfer into the tissue to be treated is achieved.
In der in Figur lc skizzierten Phase wirkt die Streu- flüssigkeit an der Phasengrenze 1' des Depots l zum Gewebe 2 noch kühlend, so daß eine koagulative Wirkung sich pri¬ mär in der Tiefe des Gewebes ausbreitet und sich die vom Depot 1 einen Abstand aufweisende Koagulationsschicht 5 bildet. Dies bedeutet eine weitere virtuelle Vergrößerung des aktiven Applikationsvolumens beim Energieübertrag. Gleichzeitig tritt durch Wärmeleitung eine Erwärmung des quasi absorptionsfreien Streuflüssigkeitsdepots 1 ein - es gibt also einen Energieaustausch im Grenzschichtbereich, der in der Figur durch gerade Pfeile symbolisiert ist.In the phase outlined in FIG. 1c, the scattering liquid at the phase boundary 1 'of the depot 1 to the tissue 2 still has a cooling effect, so that a coagulative effect spreads primarily in the depth of the tissue and that which is at a distance from the depot 1 Coagulation layer 5 forms. This means a further virtual enlargement of the active application volume during energy transfer. At the same time, heat conduction causes the quasi-absorption-free stray liquid depot 1 to heat up - there is therefore an energy exchange in the boundary layer area, which is symbolized in the figure by straight arrows.
In der in Figur ld skizzierten Phase ist die Laserstrah¬ lung abgeschaltet. Das aufgeheizte Gesamtvolumen der in¬ teraktiven Teilvolumina bewirkt eine optimale Ausdehnung der Koagulationsnekrose 5 nach innen, d.h. zum Depot 1 hin, wie nach außen, d.h. in die Tiefe des Gewebes 2 (durch sich zum Ende hin verdickende Pfeile verdeutlicht).In the phase outlined in FIG. 1d, the laser radiation is switched off. The heated total volume of the interactive partial volumes causes an optimal expansion of the coagulation necrosis 5 inwards, i.e. to depot 1, as to the outside, i.e. into the depth of the fabric 2 (indicated by arrows thickening towards the end).
Eine Kontrolle dieser thermischen Verödung von Gewebevolu¬ mina erfolgt über das Ausnutzen von zwei überraschend ge- fundenen Phänomenen: 1. Bei vitalen biologischen Geweben, die eine Durchblutung aufweisen, ist stoffwechselbedingt immer eine gewisse Men¬ ge C02 im Blut gelöst, wobei sich gezeigt hat, daß das Löslichkeitsprodukt von C02 im humanen Vollblut dergestalt ist, daß oberhalb von Temperaturen von 55 °C eine interme¬ diäre Ausgasung erfolgt, die aber bei Unterschreiten die¬ ser Temperatur, also tiefer im Gewebevolumen, reversibel ist. Diese Ausgasung von C0 im Blut kann in einfacher Weise durch das zur ursprünglichen Positionierung der Füh- rungsnadel benutzte Ultraschallsystem als Kontraständerung nachgewiesen werden, so daß dadurch in einfacher Weise die 55 cC-Front der Temperaturfeldausbreitung in Echtzeit ver¬ folgt werden kann.This thermal obliteration of tissue volumis is checked by taking advantage of two surprisingly found phenomena: 1. In the case of vital biological tissues which have circulation, a certain amount of C0 2 is always dissolved in the blood due to metabolism, it being shown that the solubility product of C0 2 in human whole blood is such that above temperatures of 55 ° C there is an intermittent outgassing, which, however, is reversible when the temperature falls below this, ie lower in the tissue volume. This outgassing of CO in the blood can be detected as a change in contrast in a simple manner by the ultrasound system used for the original positioning of the guide needle, so that the 55 C C front of the temperature field propagation can be followed in real time in a simple manner.
2. Weiterhin hat sich gezeigt, daß auch bei der verwende¬ ten Streuflüssigkeit, einer viskosen Wasser-Glyzerin-Öl- Mischung oder Wasser-Methyzell-Mischung, bei einer Tempe¬ ratur von etwa 95 °C Wasserdampf gebildet wird, so daß die dadurch entstehenden Gasblasen im Ultraschallbild im Flüs- sϊgkeitsdepot leicht beobachtet werden können und die La¬ serleistung entsprechend zurückgeregelt werden kann, um nicht den Siedepunkt zu überschreiten. Der Wasserdampf geht dann bei Unterschreiten des Löslichkeitsproduktes un¬ mittelbar wieder in Lösung und stellt keine Emboliegefahr dar.2. It has also been shown that even with the scattering liquid used, a viscous water-glycerol-oil mixture or water-methyl cell mixture, water vapor is formed at a temperature of about 95 ° C., so that this results in resulting gas bubbles can be easily observed in the ultrasound image in the liquid depot and the laser power can be reduced accordingly so as not to exceed the boiling point. When the solubility product is undershot, the water vapor then immediately goes back into solution and does not represent a risk of embolism.
In einer in Fig. 2 schematisch gezeigten Weiterbildung ist eine in Körpergewebe 2 eingeführte Kanüle 3A doppellumig in Form eines integrierten Flüssigkeitslichtleiters ausge- führt dergestalt, daß sie ein koaxial verlaufendes inneres Lumen 4A aufweist, das konzentrisch von einem äußeren Lu- - l e ¬In a further development, shown schematically in FIG. 2, a cannula 3A inserted into body tissue 2 has a double lumen in the form of an integrated liquid light guide in such a way that it has a coaxial inner lumen 4A which is concentric from an outer lumen. - le ¬
rnen 6A umgeben ist. Dabei dient das innere Lumen 4A als Flüssigkeitslichtleiter, durch den eine optisch transparen¬ te Komponente 7A der Streuflüssigkeit zugeführt wird. Das äußere Lumen 6A führt eine streuende oder höher viskose Komponente 8A des Fluids zum distalen Ende der Kanüle 3A, wo sich aus beiden Komponenten ein Fluiddepot 1A ausbil¬ det.6A is surrounded. The inner lumen 4A serves as a liquid light guide through which an optically transparent component 7A is supplied to the stray liquid. The outer lumen 6A leads a scattering or more viscous component 8A of the fluid to the distal end of the cannula 3A, where a fluid depot 1A forms from both components.
Das proximale Ende der Kanüle 3A weist ein Verzweigungs- element 9A auf, von dem eine Zuleitung 10A zum inneren Lu¬ men 4A und eine Zuleitung 11A zum äußeren Lumen 6A abge¬ hen.The proximal end of the cannula 3A has a branching element 9A, from which a feed line 10A to the inner lumen 4A and a feed line 11A to the outer lumen 6A extend.
Das innere Lumen dient in der Phase der Punktion als Füh- rungsschaft für die Sondiernadel zur Positionierung der Kanüle im zu therapierenden Bereich. Die Kanüle 3A wird mittels einer Punktionsnadel positioniert, anschließend wird die Punktionsnadel entfernt und über die Zuleitung 10A und das innere Lumen 4A zunächst die optisch transpa- rente Fluidkomponente appliziert und sodann in einem zwei¬ ten Schritt über die Zuleitung 11A und das äußere Lumen 6A das entstehende Flüssigkeitsdepot 1A mit Streumedium ange¬ reichert. Gleichzeitig wird am proximalen Ende über eine Quetschdichtung 12A eine Lichtleitfaser 13A an die Flüs- sigkeitssäule im Inneren des zentralen Lumens 4A dieser Punktionsnadel angekoppelt, welche sodann als Flüssig¬ keitslichtleiter dient, wenn über die Lichtleitfaser 13A Laserstrahlung eingekoppelt wird.In the puncture phase, the inner lumen serves as a guide shaft for the probing needle for positioning the cannula in the area to be treated. The cannula 3A is positioned by means of a puncture needle, the puncture needle is then removed and the optically transparent fluid component is first applied via the feed line 10A and the inner lumen 4A and then in a second step via the feed line 11A and the outer lumen 6A resulting liquid depot 1A enriched with scattering medium. At the same time, an optical fiber 13A is coupled to the liquid column in the interior of the central lumen 4A of this puncture needle at the proximal end via a pinch seal 12A, which then serves as a liquid light guide when laser radiation is coupled in via the optical fiber 13A.
In einer bevorzugten Ausführungsform wird als transparen¬ tes Trägerfluid eine Mischung aus 80 % Glyzerin und 20 % Wasser verwendet, welche einen Brechungsindex besitzt, der im wesentlichen identisch ist mit dem Brechungsindex der ankoppelnden, laserlichtführenden Lichtleitfaser. Das lichtstreuende Medium besteht aus einer 2 bis 5-%igen Öl- Wasser-Emulsion, beispielsweise Intralipid in geeigneter Verdünnung. Bei dieser Weiterbildung kommt es konstruk¬ tionsbedingt überhaupt nicht mehr zu einem Kontakt zwi¬ schen Lichtleitfaser und Gewebe mit dem Risiko einer Kar- bonisation, sondern der Strahlungseintrag in das Gewebe und das entstehende Depot erfolgt a priori nur durch die Flüssigkeit selbst. Eine Durchmischung der beiden Kompo¬ nenten Streumedium und transparente Trägersubstanz erfolgt bei Beaufschlagung mit Laserstrahlung selbständig durch die auftretenden thermischen Fluktuationen mit der Folge, daß das aus dem Flüssigkeitslichtleiter austretende Laser¬ licht nicht unmittelbar in eine Zone hoher Streuung ein¬ tritt, sondern graduell mit zunehmender Durchstrahlungstie¬ fe im Depot stärker gestreut wird. Dies führt zu einer nochmals verbesserten Streulichteinbringung in das zu the- rapierende Gewebevolumen.In a preferred embodiment, a mixture of 80% glycerol and 20% is used as the transparent carrier fluid. Water is used which has a refractive index which is essentially identical to the refractive index of the coupling, laser light-guiding optical fiber. The light-scattering medium consists of a 2 to 5% oil-water emulsion, for example intralipid in a suitable dilution. In this development, there is no longer any contact between the optical fiber and tissue with the risk of carbonization due to the design, but the radiation is introduced into the tissue and the resulting depot is only a priori made by the liquid itself Both components, scattering medium and transparent carrier substance, take place automatically when exposed to laser radiation due to the thermal fluctuations that occur, with the result that the laser light emerging from the liquid light guide does not immediately enter a zone of high scattering, but gradually with increasing radiation depth is more widely distributed in the depot. This leads to an even better introduction of scattered light into the tissue volume to be treated.
In Fig. 3 ist in einer Detaildarstellung im Längsschnitt der Endabschnitt einer gegenüber der Kanüle 3A nach Fig. 2 modifizierten Kanüle 3B gezeigt, die eine (was in der Fi- gur nicht dargestellt ist) bis zum distalen Ende durchge¬ hende Lichtleitfaser 7B enthält. Ein äußeres Lumen 6B, das über ein seitliches Ansatzstück 8B mit einer (nicht ge¬ zeigten) Vorrichtung zur Zufuhr von Streuflüssigkeit in Verbindung steht, ist am proximalen Ende der Kanüle 3B mit einer axial verschiebbaren, flüssigkeitsdichten Verschlu߬ kappe 14B verschlossen. Die Lichtleitfaser 7B ist mit der Verschlußkappe 14B fest verbunden. Über eine Axialver¬ schiebung der Verschlußkappe (oder bei Ausbildung mit Überwurfmutter auch ein Drehen derselben) ist nach dem Einbringen der Kanüle mit vorjustiert endständig mit dem Ende der Kanüle abschließendem Faserende ein Ausfahren des Faserendes aus dem distalen Ende der Kanüle 3B um ca. l bis 2 mm in ein dort vorab angelegtes Streufluiddepot hin¬ ein möglich.FIG. 3 shows a detailed illustration in longitudinal section of the end section of a cannula 3B modified in relation to the cannula 3A according to FIG. 2, which contains an optical fiber 7B that is continuous to the distal end (which is not shown in the figure). An outer lumen 6B, which is connected via a side extension 8B to a device (not shown) for supplying scattering liquid, is closed at the proximal end of the cannula 3B with an axially displaceable, liquid-tight closure cap 14B. The optical fiber 7B is with the Cap 14B firmly connected. By means of an axial displacement of the closure cap (or, in the case of a design with a union nut, it can also be turned), the fiber end can be extended from the distal end of the cannula 3B by approximately 1 to after the insertion of the cannula with a pre-adjusted end of the fiber ending with the end of the cannula 2 mm into a scattering fluid depot created there beforehand.
In Fig. 4 ist in einer vereinfachten Längsschnittdarstel¬ lung eine weitere Kanüle bzw. ein Katheter 3C zur Erzeu¬ gung großvolumiger, langgestreckter Koagulationsnekrosen in Körpergewebe 2 gezeigt. Der Katheter 3C weist einen äu¬ ßeren Katheterkörper 15C aus transparentem Kunststoff von im wesentlicher zylindrischer Gestalt auf, der an seinem distalen Ende verrundet geschlossen ist und über einen di¬ stalen Bereich von einigen cm Länge mit Öffnungen 16C ver¬ sehen ist. Koaxial zum äußeren Katheterkörper 15C ist in dessen Innenraum 6C eine sich bis nahezu zum distalen Ende des äußeren Katheterkörpers 15C erstreckende, an ihrem di¬ stalen Ende ebenfalls verschlossene, innere Glaskanüle 17C angeordnet. Der äußere Katheterkörper weist nahe seinem proximalen Ende, das mit einem Stopfen 19C verschlossen ist, eine seitlich abzweigende FlüssigkeitsZuführung 8C auf.4 shows, in a simplified longitudinal section, a further cannula or a catheter 3C for producing large-volume, elongated coagulation necrosis in body tissue 2. The catheter 3C has an outer catheter body 15C made of transparent plastic of essentially cylindrical shape, which is rounded at its distal end and is provided with openings 16C over a distal area of a few cm in length. Coaxial to the outer catheter body 15C, an inner glass cannula 17C is arranged in the interior 6C thereof, which extends almost to the distal end of the outer catheter body 15C and is also closed at its distal end. The outer catheter body has a laterally branching liquid supply 8C near its proximal end, which is closed with a plug 19C.
Die Glaskanüle 17C nimmt eine Lichtleitfaser 7C auf, die in ihrem Endbereich von ca. 3 cm Länge mit mehreren ringförmi¬ gen, jeweils voneinander äquidistant beabstandeten Mattie- rungsbereichen 18C versehen ist. Die Lichtleitfaser 7C ist (was in der Figur nicht dargestellt ist) an ihrem proxima¬ len Ende mit einer Laserstrahlungsquelle verbunden. Durch paraxiale Zuführung von mittel- bis hochviskoser Streuflüssigkeit über die Zuleitung 8C, die über den Katheter-Innenraum 6C und die Öffnungen 16C in das umlie¬ gende Gewebe geleitet wird, wird ein den Katheter-End- bereich umgebendes, langgestrecktes Flüssigkeitsdepot IC gebildet. Bei anschließender Zufuhr von Laserstrahlung wird diese an den mattierten Ringen sowie an der Stirnflä¬ che des Faser 7C sequentiell bzw. periodisch ausgekoppelt.The glass cannula 17C receives an optical fiber 7C, which is provided in its end region of approximately 3 cm in length with a plurality of ring-shaped matting regions 18C, each of which is equidistant from one another. The optical fiber 7C is connected (which is not shown in the figure) at its proximal end to a laser radiation source. An elongated liquid depot IC surrounding the catheter end region is formed by the paraxial supply of medium to highly viscous scattering liquid via the feed line 8C, which is conducted into the surrounding tissue via the catheter interior 6C and the openings 16C. When laser radiation is subsequently supplied, it is coupled out sequentially or periodically on the matted rings and on the end face of the fiber 7C.
In Verbindung mit dem randständigen Streufluidepot wird es erstmalig und überraschenderweise möglich, ohne ein erheb¬ liches Fluidvolumen des biokompatiblen Streulichtfluids eine nahezu gleichmäßige Verteilung der Laserstrahlung über eine längere zylinderförmige Strecke im Gewebe zu er- reichen. Die Verlängerung der Streulichtapplikation, die damit erfindungsgemäß erstmalig möglich wird, erlaubt gleichzeitig höhere Laserleistungen zu applizieren, so daß beispielsweise für die oben zitierte Behandlung eines Pro¬ statalappens mit bis zu 5 cm Längsausdehnung und einem Durchmesser von 2 cm bei Applikation von 15 bis 20 W La¬ serlichtleistung Strahlungszeiten von lediglich 10 min zur Erzielung des gewünschten Therapieergebnisses notwendig sind. Die Kombination von paraxial zugeführtem Streufluid und in Katheterlängsrichtung verteilt eingekoppelter La- serstrahlung bei der Behandlung sorgt dafür, daß die zu¬ nächst im Grundsatz periodisch inhomogen aus der Faser herausgestreute Strahlung zum umliegenden Gewebe hin homo¬ genisiert wird, und es damit zu einem kalkulierbaren und gleichmäßigen Behandlungsergebnis kommt.In connection with the marginal scattering fluid spot, it is possible for the first time and surprisingly to achieve an almost uniform distribution of the laser radiation over a longer cylindrical distance in the tissue without a considerable fluid volume of the biocompatible scattered light fluid. The prolongation of the scattered light application, which is thus possible for the first time according to the invention, at the same time allows higher laser powers to be applied, so that, for example, for the above-mentioned treatment of a prostate flap with a longitudinal extent of up to 5 cm and a diameter of 2 cm when applied from 15 to 20 W. Laser light power Radiation times of only 10 minutes are necessary to achieve the desired therapy result. The combination of paraxially supplied scattering fluid and laser radiation coupled in in the longitudinal direction of the catheter during the treatment ensures that the radiation, which in principle is periodically inhomogeneously scattered out of the fiber, is homogenized towards the surrounding tissue and thus becomes a calculable and even treatment result comes.
In Fig. 5 ist die innere Kanüle 17C mit der Lichtleitfaser 7C nach Fig. 4 in vergrößerter Darstellung genauer ge- zeigt. Es ist zu erkennen, wie sich im von Endbereich der dort von ihrem Cladding 21C und Coating 22C befreiten Fa¬ ser mit einem Längenverhältnis von jeweils 1:1 mattierte Ringe 18C und unbehandelte Faserabschnitte 20C abwechseln. Die mattierten Ringe 18C weisen einen zum Ende der Faser hin abnehmenden Durchmesser bzw. eine zunehmende Rauhtiefe auf. Die Glaskanüle 17C, die klar oder mattiert ausgeführt sein und alternativ auch aus Kunststoff (etwa Polykarbonat) bestehen kann, ist proximal des Mattierungsbereiches durch eine Verklebung 23C mit dem Coating 22C der Faser und ei¬ nem diese ummantelnden MRI-Marker 24C verklebt.In FIG. 5, the inner cannula 17C with the optical fiber 7C according to FIG. shows. It can be seen how in the end region of the fibers freed from their cladding 21C and coating 22C there with an aspect ratio of 1: 1 each matted rings 18C and untreated fiber sections 20C alternate. The matted rings 18C have a decreasing diameter towards the end of the fiber or an increasing roughness depth. The glass cannula 17C, which is made clear or matt and can alternatively also consist of plastic (such as polycarbonate), is glued proximal to the matting area by an adhesive 23C with the coating 22C of the fiber and an MRI marker 24C encasing it.
In Fig. 6 ist eine Modifikation der in Fig. 4 und 5 ge¬ zeigten Anordnung dargestellt. Während der Aufbau der in- neren Kanüle und der Lichtleitfaser dem nach den genannten Figuren entsprechen und diese daher auch mit den gleichen Bezugsziffern 17C bzw. 7C wie in Fig. 4 bezeichnet sind, ist hier ein geschlossener Katheterkörper 15D aus die La¬ serstrahlung streuendem Material vorgesehen. Bei diesem Aufbau kann auf ein Streufluiddepot weitgehnd oder u.U. auch ganz verzichtet werden, oder der Katheter kann in ein vorab mit anderen Mitteln gesetztes Depot eingeführt wer¬ den.FIG. 6 shows a modification of the arrangement shown in FIGS. 4 and 5. While the construction of the inner cannula and the optical fiber corresponds to that according to the figures mentioned and these are therefore also designated by the same reference numerals 17C and 7C as in FIG. 4, here is a closed catheter body 15D made of material that scatters the laser radiation intended. With this setup, a stray fluid depot can largely or possibly can also be dispensed with entirely, or the catheter can be inserted into a depot previously set by other means.
In Fig. 7 ist eine Möglichkeit zur Erzeugung der Ring- Struktur im distalen Endbereich der Lichtleitfaser 7C skizziert: Das von Coating und Cladding befreite Ende der Basis-Faser wird mit Ringen L aus einem säurfesten Lack (Ätzlack) beschichtet und die Faser unter Einsatz einer Steuerung C, eines Motors M und einer Spindel-Halterung Sp in Faserlängsrichtung stufenweise in eine Ätzflüssigkeit E eingetaucht, wo in den nicht beschichteten Bereichen die Oberfläche der Faser angeätzt wird. Da die Verweildauer in der Ätzflüssigkeit mit zunehmendem Abstand der geätzten Bereiche vom Faserende abnimmt, nimmt auch die Ätztiefe in dieser Richtung ab, wodurch der gewünschte Verlauf der Rauhtiefe bzw. des effektiven Faserdurchmessers erreicht wird. Nach dem Ätzen werden die Lackringe entfernt.7 shows a possibility for producing the ring structure in the distal end region of the optical fiber 7C: the end of the base fiber which has been freed from coating and cladding is coated with rings L made of an acid-resistant lacquer (etching lacquer) and the fiber is used using a Control C, a motor M and a spindle holder Sp in the fiber longitudinal direction gradually in an etching liquid E. immersed where the surface of the fiber is etched in the uncoated areas. Since the residence time in the etching liquid decreases with increasing distance of the etched areas from the fiber end, the etching depth also decreases in this direction, whereby the desired course of the roughness depth or the effective fiber diameter is achieved. After the etching, the lacquer rings are removed.
Die Erfindung beschränkt sich in ihrer Ausführung nicht auf die vorstehend angegebenen Ausführungsbeispiele. Viel¬ mehr ist eine Anzahl von Varianten denkbar, welche von der dargestellten Lösung auch bei grundsätzlich anders gearte¬ ten Ausführungen Gebrauch macht. The embodiment of the invention is not limited to the exemplary embodiments specified above. Rather, a number of variants are conceivable which make use of the solution shown, even in the case of fundamentally different types.

Claims

A n s p r ü c h e Expectations
1. Verfahren zur thermischen Verödung biologischen Gewebes mittels über einen Lichtwellenleiter in das Gewebe eingebrachter Laserstrahlung, wobei die Laserstrahlung über der Austrittsfläche der Strahlung aus dem Lichtwel¬ lenleiter zugeordneten Mitteln zerstreut wird,1. Method for the thermal obliteration of biological tissue by means of laser radiation introduced into the tissue via an optical waveguide, the laser radiation being scattered over the means assigned to the radiation exit surface from the optical waveguide,
d a d u r c h g e k e n n z e i c h n e t , daßd a d u r c h g e k e n n z e i c h n e t that
um die Austrittsfläche der Strahlung herum durch Injektion einer die Laserstrahlung im wesentlichen nicht absorbie¬ renden, diese aber streuenden, biokompatiblen, mittel- bis hochviskosen Flüssigkeit innerhalb des Gewebes ein von diesem nicht getrenntes Streufluiddepot gebildet wird, das zur kontrollierten Aufheizung des Gewebes benutzt wird.around the exit surface of the radiation by injecting a biocompatible, medium to highly viscous liquid which does not essentially absorb the laser radiation but scatters it within the tissue, a scattering fluid depot which is not separate from it and which is used for the controlled heating of the tissue.
2. Verfahren nach Anspruch 1, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Flüssigkeit aus einer im wesentlichen transparenten und einer stark lichtstreu¬ enden Komponente besteht und die Komponenten mittels einer konzentrisch doppellumigen Kanüle derart in das Gewebe in- jiziert werden, daß die transparente Komponente über das innere und die stark lichtstreuende Komponente über das äußere Lumen eingebracht werden, so daß die stark licht¬ streuende Komponente die transparente Komponente umhüllt.2. The method according to claim 1, dadurchge ¬ indicates that the liquid consists of an essentially transparent and a strongly light-scattering component and the components are injected into the tissue by means of a concentrically double-lumen cannula such that the transparent component on the inner and the strongly light-scattering component are introduced via the outer lumen, so that the strongly light-scattering component envelops the transparent component.
3. Verfahren nach Anspruch 2, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Laserstrahlung über die gleichzeitig als Lichtwellenleiter dienende Flüssigkeits¬ säule der transparenten Komponente im inneren Lumen in das Gewebe eingebracht wird.3. The method according to claim 2, dadurchge ¬ indicates that the laser radiation on the at the same time, the liquid column of the transparent component serving as an optical waveguide is introduced into the tissue in the inner lumen.
4. Verfahren nach Anspruch 4, d a d u r c h g e ¬ k e n n z e i c h n e t , daß in das innere Lumen in sich mindestens überlappenden Zeitbereichen die transparente Komponente der Flüssigkeit eingebracht und die Laserstrah- lung eingekoppelt werden.4. The method according to claim 4, so that the transparent component of the liquid is introduced into the inner lumen in at least overlapping time ranges and the laser radiation is injected.
5. Verfahren nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Vis- kosität der Flüssigkeit derart eingestellt wird, daß das Streufluiddepot während der Behandlungsdauer im wesentli¬ chen stabil bleibt.5. The method as claimed in one of the preceding claims, that the viscosity of the liquid is adjusted in such a way that the scattering fluid depot remains essentially stable during the treatment period.
6. Verfahren nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Flüssigkeit Öl, Wasser und Glyzerin aufweist, wobei abhän¬ gig vom zu verödenden Gewebe und den gewünschten Streuei¬ genschaften 0,1 bis 2 % Öl, 10 bis 50 % Wasser und 50 bis 80 % Glyzerin enthalten sind.6. The method according to any one of the preceding claims, characterized in that the liquid comprises oil, water and glycerin, depending on the tissue to be sclerosed and the desired scattering properties 0.1 to 2% oil, 10 to 50% water and 50th up to 80% glycerin is included.
7. Verfahren nach einem der Ansprüche 1 bis 5, d a ¬ d u r c h g e k e n n z e i c h n e t , daß die Flüssig- keit eine Mischung von Methylzellulose und Wasser auf¬ weist, wobei in Abhängigkeit von der geforderten Viskosi- tat und den Streueigenschaften 1 bis 30 % Wasser und 70 bis 99 % Methyzellulose enthalten sind.7. The method according to any one of claims 1 to 5, since ¬ characterized in that the liquid has a mixture of methyl cellulose and water, depending on the viscosity required tat and the scattering properties contain 1 to 30% water and 70 to 99% methyl cellulose.
8. Verfahren nach einem der Ansprüche 2 bis 7 , d a - d u r c h g e k e n n z e i c h n e t , daß die transpa¬ rente Komponente Glyzerin und Wasser, vorzugsweise in ei¬ nem Mischungsverhältnis von 80:20, und die stark streuende Komponente Öl und Wasser, vorzugsweise mit einem Anteil von 1 bis 5 % Öl, aufweist.8. The method according to any one of claims 2 to 7, characterized in that the transparent component glycerol and water, preferably in a mixing ratio of 80:20, and the strongly dispersing component oil and water, preferably in a proportion of 1 to 5% oil.
9. Verfahren nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Flüssigkeit Hyalaronsäure und/oder Intralipid aufweist.9. The method according to any one of the preceding claims, that the liquid has hyalaronic acid and / or intralipid.
10. Verfahren nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß nach In- jektion der Flüssigkeit und Bildung des Streufluiddepots der Lichtwellenleiter in distaler Richtung um einen vorbe¬ stimmten Betrag in das Streufluiddepot hinein verschoben wird.10. The method as claimed in one of the preceding claims, that after injection of the liquid and formation of the scattering fluid depot, the optical waveguide is displaced in the distal direction by a predetermined amount into the scattering fluid depot after the liquid has been injected.
11. Verfahren nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß das Streufluiddepot in langgestreckter, insbesondere im we¬ sentlichen ellipsoidischer oder zylinderförmiger Gestalt, gebildet wird. 11. The method according to any one of the preceding claims, characterized in that the scattering fluid depot is formed in an elongated, in particular in a substantially ellipsoidal or cylindrical shape.
12. Verfahren nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß der Ver¬ lauf der Temperaturfeldausbreitung im Gewebe durch fort¬ laufende Beobachtung des Therapieareals mit einem Sono- graphiegerät kontrolliert wird, wobei zusätzlich Echos temperaturabhängig in dem Areal benachbarten Blutgefäßen dann auftreten, wenn hier die Temperatur einen Wert von 55°C überschreitet und damit das im Blut gelöste C0 inter¬ mediär ausgast unhd weitere Echos auftreten, wenn bei Überschreiten einer Temperatur von 95°C in der wässerigen Komponente des Streulichtfluids intermediär Wasserdampf entsteht.12. The method according to any one of the preceding claims, characterized in that the course of the temperature field propagation in the tissue is checked by continuous observation of the therapeutic area with a sonography device, with additional echoes depending on the temperature occurring in the area adjacent blood vessels when the here Temperature exceeds a value of 55 ° C and thus the C0 dissolved in the blood outgassing and further echoes occur if a temperature of 95 ° C in the aqueous component of the scattered light fluid creates intermediate water vapor.
13. Verfahren nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß der Flüssigkeit ein Röntgenkontrastmittel beigefügt wird und eine röntgenologische Beobachtung erfolgt.13. The method according to any one of the preceding claims, that a x-ray contrast medium is added to the liquid and an x-ray observation is carried out.
14. Vorrichtung zur Durchführung des Verfahrens nach ei¬ nem der vorangehenden Ansprüche, g e k e n n z e i c h ¬ n e t d u r c h eine mit einer Laserstrahlungsquelle verbindbare, in einem Lumen einer mehrlumigen Kanüle ange- ordnete Lichtwellenleiteranordnung und eine mit mindestens einem weiteren Lumen der Kanüle verbundene Vorrichtung zur Zuführung einer mittel- bis hochviskosen Flüssigkeit.14. Device for carrying out the method according to one of the preceding claims, characterized by a light waveguide arrangement which can be connected to a laser radiation source and is arranged in a lumen of a multi-lumen cannula and a device which is connected to at least one further lumen of the cannula for feeding a medium to highly viscous liquid.
15. Vorrichtung nach Anspruch 14, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Kanüle aus im wesentli- chen zwei Baugruppen besteht, deren eine die über eine Sondiernadel einzubringende Punktionskanüle selbst ist und deren zweite ein an eben dieser Punktionskanüle nach Ent¬ fernung der Sondiernadel anzubringendes fluiddichtes Y- Stück darstellt, über das einerseits das das Laserlicht streuende Fluid injiziert werden kann und andererseits der das Laserlicht führende Lichtwellenleiter vorjustiert fi¬ xiert und über einen Verschiebemechanismus definiert axial vorgeschoben werden kann.15. The apparatus according to claim 14, dadurchge ¬ indicates that the cannula from essentially There are two subassemblies, one of which is the puncture cannula itself, which is to be inserted via a probing needle, and the second of which represents a fluid-tight Y-piece to be attached to this puncture cannula after removal of the probing needle, via which the fluid that scatters the laser light can be injected on the one hand and the fluid on the other the optical waveguide guiding the laser light is fixed in a pre-adjusted manner and can be advanced axially in a defined manner by means of a displacement mechanism.
16. Vorrichtung nach Anspruch 14 oder 15, d a d u r c h g e k e n n z e i c h n e t , daß die Kanüle konzentrisch doppellumig ausgeführt ist, dergestalt, daß das innere Lu- men nach Flutung und Injektion einer optisch transparenten Komponente des Streufluids selbst als Lichtwellenleiter dient und Mittel zur koaxialen Ankopplung eines faseropti¬ schen Lichtwellenleiters am proximalen Ende vorgesehen sind, während das äußere Lumen zur Zuführung der stark lichtstreuenden Komponente der Flüssigkeit dient.16. The apparatus of claim 14 or 15, characterized in that the cannula is designed concentrically double-lumen, such that the inner lumen after flooding and injection of an optically transparent component of the scattering fluid itself serves as an optical waveguide and means for coaxial coupling of a fiber optic rule Optical waveguide are provided at the proximal end, while the outer lumen serves to supply the highly light-scattering component of the liquid.
17. Vorrichtung nach einem der Ansprüche 14 bis 16, d a - d u r c h g e k e n n z e i c h n e t , daß die Kanüle eine die Laserstrahlung im wesentlichen nicht absorbieren¬ de Wandung aufweist.17. The device as claimed in one of claims 14 to 16, that the cannula has a wall which does not substantially absorb the laser radiation.
18. Vorrichtung nach einem der Ansprüche 14 bis 17, d a - d u r c h g e k e n n z e i c h n e t , daß die Licht¬ wellenleiteranordnung eine Lichtleitfaser aufweist, deren Oberfläche in einem distalen Endabschnitt mehrere in Längsrichtung aufeinanderfolgende mattierte, vorzugsweise ringförmig ausgebildete, Bereiche aufweist, und daß der Endabschnitt mit einer für die Laserstrahlung transparen- ten Schutzhülle versehen ist.18. Device according to one of claims 14 to 17, since - characterized in that the Licht¬ waveguide arrangement has an optical fiber whose Surface in a distal end section has a plurality of areas in the longitudinal direction successively matted, preferably ring-shaped, and that the end section is provided with a protective sheath that is transparent to the laser radiation.
19. Vorrichtung nach Anspruch 18, d a d u r c h g e - k e n n z e i c h n e t , daß die Schutzhülle aus einem endständig verschlossenen und am mechanisch festen Teil des Lichtwellenleiters oder oder der Kanüle befestigten Präzisionsglas- oder Hartkunststoffkapillare besteht.19. The apparatus of claim 18, d a d u r c h g e - k e n n z e i c h n e t that the protective cover consists of a terminally closed and attached to the mechanically fixed part of the optical waveguide or the cannula precision glass or hard plastic capillary.
20. Vorrichtung nach Anspruch 18 oder 19, d a d u r c h g e k e n n z e i c h n e t , daß die mattierten Bereiche eine zum distalen Ende der Lichtleitfaser hin zunehmende Rauhtiefe und/oder abnehmenden Durchmesser aufweisen.20. Apparatus according to claim 18 or 19, so that the matted areas have a roughness depth and / or a decreasing diameter towards the distal end of the optical fiber.
21. Vorrichtung nach einem der Ansprüche 14 bis 20, d a - d u r c h g e k e n n z e i c h n e t , daß koaxial zur Lichtwellenleiteranordnung ein die Laserstrahlung streuen¬ des Hüllrohr vorgesehen ist, das Öffnungen zum Austritt der die Laserstrahlung streuenden Flüssigkeit in das Gewe¬ be aufweist. 21. Device according to one of claims 14 to 20, d a - d u r c h g e k e n n z e i c h n e t that coaxial with the optical waveguide arrangement is provided a cladding tube that scatters the laser radiation and has openings for the exit of the liquid scattering the laser radiation into the tissue.
PCT/DE1994/000554 1993-05-14 1994-05-11 Process and device for thermally obliterating biological tissues WO1994026184A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP94914343A EP0697840B1 (en) 1993-05-14 1994-05-11 Device for thermally obliterating biological tissues
DE59410356T DE59410356D1 (en) 1993-05-14 1994-05-11 DEVICE FOR THERMAL DEODILATION OF BIOLOGICAL TISSUE
US08/545,864 US6143018A (en) 1993-05-14 1994-05-11 Method and device for thermally obliterating biological tissue

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DEP4316176.6 1993-05-14
DE4316176A DE4316176A1 (en) 1993-05-14 1993-05-14 Method and device for thermal obliteration of biological tissue under controlled conditions
DEP4403134.3 1994-02-02
DE4403134A DE4403134A1 (en) 1993-05-14 1994-02-02 Combination device for thermal obliteration of biological tissue

Publications (1)

Publication Number Publication Date
WO1994026184A1 true WO1994026184A1 (en) 1994-11-24

Family

ID=25925915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/000554 WO1994026184A1 (en) 1993-05-14 1994-05-11 Process and device for thermally obliterating biological tissues

Country Status (4)

Country Link
US (1) US6143018A (en)
EP (1) EP0697840B1 (en)
DE (2) DE4403134A1 (en)
WO (1) WO1994026184A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846477A1 (en) * 1996-12-05 1998-06-10 Centre International De Recherches Dermatologiques Galderma (C.I.R.D. Galderma) Chromophor use in a composition suitable to be used on the skin in conjonction with laser treatment
US5807383A (en) * 1996-05-13 1998-09-15 United States Surgical Corporation Lasing device
EP0891157A1 (en) 1996-04-04 1999-01-20 Somatex Medizintechnische Instrumente GmbH Laser applicator set
EP0847728A3 (en) * 1996-12-12 1999-06-23 United States Surgical Corporation Apparatus for transmyocardial revascularization
US5980545A (en) * 1996-05-13 1999-11-09 United States Surgical Corporation Coring device and method
US6135996A (en) * 1998-04-17 2000-10-24 Baxter International, Inc. Controlled advancement lasing device
US6283955B1 (en) 1996-05-13 2001-09-04 Edwards Lifesciences Corp. Laser ablation device
DE10008557A1 (en) * 2000-02-24 2001-10-25 Huettinger Medtech Gmbh Device for thermal obliteration of biological tissue using intense laser radiation, where the device is split into a handpiece and a puncture shaft, the latter being easily removable to facilitate cleaning
WO2002005722A1 (en) * 2000-07-14 2002-01-24 Cardiofocus, Inc. Cardiac photoablation instruments
WO2002053230A1 (en) * 2001-01-08 2002-07-11 Ulrich Speck Sterile tissue access system
US6676656B2 (en) 1994-09-09 2004-01-13 Cardiofocus, Inc. Surgical ablation with radiant energy
EP1336423A4 (en) * 2000-10-31 2005-03-09 Shigehiro Kubota Laser therapy method, highly laser beam-absorbing media to be used in the therapy and laser therapy apparatus with the use of the same
US8900219B2 (en) 1999-07-14 2014-12-02 Cardiofocus, Inc. System and method for visualizing tissue during ablation procedures
US9033961B2 (en) 1999-07-14 2015-05-19 Cardiofocus, Inc. Cardiac ablation catheters for forming overlapping lesions
US9861437B2 (en) 1999-07-14 2018-01-09 Cardiofocus, Inc. Guided cardiac ablation catheters
CN108115283A (en) * 2017-12-12 2018-06-05 吉林大学 The method and thermal upsetting die of bionic surface are coupled with operating mode preparation according to ingredient
US10154888B2 (en) 2014-12-03 2018-12-18 Cardiofocus, Inc. System and method for visual confirmation of pulmonary vein isolation during abalation procedures
US11246476B2 (en) 2014-04-28 2022-02-15 Cardiofocus, Inc. Method for visualizing tissue with an ICG dye composition during ablation procedures

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19630255A1 (en) * 1996-07-26 1998-01-29 Annelie Dr Ing Pfannenstein Laser beam applicator for interstitial heat therapy
DE19725877B4 (en) * 1997-06-18 2004-02-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Application device for removing biological tissue
DE19803460C1 (en) * 1998-01-30 1999-08-12 Dornier Medizintechnik Application device for the treatment of biological tissue with laser radiation
US8256430B2 (en) 2001-06-15 2012-09-04 Monteris Medical, Inc. Hyperthermia treatment and probe therefor
US6546080B1 (en) * 2000-11-10 2003-04-08 Scimed Life Systems, Inc. Heat sink for miniature x-ray unit
US6540720B1 (en) 2000-11-10 2003-04-01 Scimed Life Systems, Inc. Miniature x-ray unit
US6551278B1 (en) * 2000-11-10 2003-04-22 Scimed Life Systems, Inc. Miniature x-ray catheter with retractable needles or suction means for positioning at a desired site
US6554757B1 (en) 2000-11-10 2003-04-29 Scimed Life Systems, Inc. Multi-source x-ray catheter
US6540655B1 (en) 2000-11-10 2003-04-01 Scimed Life Systems, Inc. Miniature x-ray unit
US7004911B1 (en) * 2003-02-24 2006-02-28 Hosheng Tu Optical thermal mapping for detecting vulnerable plaque
US20060106374A1 (en) * 2004-11-18 2006-05-18 Ceramoptec Industries, Inc. Expendable optical waveguide with use-tracking feature
SE0501077L (en) * 2005-05-12 2006-11-13 Spectracure Ab Device for photodynamic diagnosis or treatment
US10219815B2 (en) 2005-09-22 2019-03-05 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US8057408B2 (en) 2005-09-22 2011-11-15 The Regents Of The University Of Michigan Pulsed cavitational ultrasound therapy
US9078680B2 (en) * 2006-04-12 2015-07-14 Lumenis Ltd. System and method for microablation of tissue
AU2007245011A1 (en) 2006-04-12 2007-11-08 Lumenis Ltd. System and method for microablation of tissue
US8628520B2 (en) 2006-05-02 2014-01-14 Biosense Webster, Inc. Catheter with omni-directional optical lesion evaluation
US8986298B2 (en) 2006-11-17 2015-03-24 Biosense Webster, Inc. Catheter with omni-directional optical tip having isolated optical paths
US8500730B2 (en) * 2007-11-16 2013-08-06 Biosense Webster, Inc. Catheter with omni-directional optical tip having isolated optical paths
US20090182315A1 (en) * 2007-12-07 2009-07-16 Ceramoptec Industries Inc. Laser liposuction system and method
US9693826B2 (en) 2008-02-28 2017-07-04 Biolitec Unternehmensbeteiligungs Ii Ag Endoluminal laser ablation device and method for treating veins
ES2710180T3 (en) * 2008-04-25 2019-04-23 Dornier Medtech Laser Gmbh Light-based device for the endovascular treatment of pathologically altered blood vessels
US20120022510A1 (en) * 2009-03-05 2012-01-26 Cynosure, Inc. Thermal surgery safety apparatus and method
US8827991B2 (en) * 2009-04-09 2014-09-09 Biolitec Pharma Marketing Ltd Medical laser treatment device and method utilizing total reflection induced by radiation
CA2770452C (en) 2009-08-17 2017-09-19 Histosonics, Inc. Disposable acoustic coupling medium container
JP5726191B2 (en) 2009-08-26 2015-05-27 リージェンツ オブ ザ ユニバーシティー オブ ミシガン Apparatus and method using control of bubble turbidity cavitation phenomenon during fracture of ureteral stones
US9943708B2 (en) 2009-08-26 2018-04-17 Histosonics, Inc. Automated control of micromanipulator arm for histotripsy prostate therapy while imaging via ultrasound transducers in real time
US8539813B2 (en) 2009-09-22 2013-09-24 The Regents Of The University Of Michigan Gel phantoms for testing cavitational ultrasound (histotripsy) transducers
US8781275B2 (en) 2010-07-27 2014-07-15 Boston Scientific Scimed, Inc. Laser assembly with shock absorber
US9492113B2 (en) 2011-07-15 2016-11-15 Boston Scientific Scimed, Inc. Systems and methods for monitoring organ activity
US9144694B2 (en) 2011-08-10 2015-09-29 The Regents Of The University Of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
US20130090640A1 (en) * 2011-10-07 2013-04-11 University Of Surrey Methods and systems for detection and thermal treatment of lower urinary tract conditions
US9049783B2 (en) 2012-04-13 2015-06-02 Histosonics, Inc. Systems and methods for obtaining large creepage isolation on printed circuit boards
EP2844343B1 (en) 2012-04-30 2018-11-21 The Regents Of The University Of Michigan Ultrasound transducer manufacturing using rapid-prototyping method
WO2014003855A1 (en) 2012-06-27 2014-01-03 Monteris Medical Corporation Image-guided therapy of a tissue
EP2903688A4 (en) 2012-10-05 2016-06-15 Univ Michigan COLOR DOPPLER FEEDBACK INDUCED BY BUBBLES DURING HISTOTRIPSY
JP5952327B2 (en) * 2013-03-22 2016-07-13 富士フイルム株式会社 Photoacoustic measuring device and puncture needle
WO2015003154A1 (en) 2013-07-03 2015-01-08 Histosonics, Inc. Articulating arm limiter for cavitational ultrasound therapy system
JP6600304B2 (en) 2013-07-03 2019-10-30 ヒストソニックス,インコーポレーテッド Optimized histotripsy excitation sequence for bubble cloud formation using shock scattering
WO2015027164A1 (en) 2013-08-22 2015-02-26 The Regents Of The University Of Michigan Histotripsy using very short ultrasound pulses
WO2015143025A1 (en) 2014-03-18 2015-09-24 Monteris Medical Corporation Image-guided therapy of a tissue
US9504484B2 (en) 2014-03-18 2016-11-29 Monteris Medical Corporation Image-guided therapy of a tissue
US10675113B2 (en) 2014-03-18 2020-06-09 Monteris Medical Corporation Automated therapy of a three-dimensional tissue region
US10327830B2 (en) 2015-04-01 2019-06-25 Monteris Medical Corporation Cryotherapy, thermal therapy, temperature modulation therapy, and probe apparatus therefor
US11135454B2 (en) 2015-06-24 2021-10-05 The Regents Of The University Of Michigan Histotripsy therapy systems and methods for the treatment of brain tissue
EP3886737A4 (en) 2018-11-28 2022-08-24 Histosonics, Inc. HISTOTRIPSY SYSTEMS AND METHODS
AU2021213168A1 (en) 2020-01-28 2022-09-01 The Regents Of The University Of Michigan Systems and methods for histotripsy immunosensitization
WO2022047193A1 (en) 2020-08-27 2022-03-03 The Regents Of University Of Michigan Ultrasound transducer with transmit-receive capability for histotripsy
US20240149078A1 (en) 2022-10-28 2024-05-09 Histosonics, Inc. Histotripsy systems and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3532604A1 (en) * 1984-09-14 1986-03-27 Olympus Optical Co., Ltd., Tokio/Tokyo LASER PROBE
EP0247746A1 (en) * 1986-05-27 1987-12-02 Sumitomo Electric Industries Limited Laser catheter
WO1990004363A1 (en) * 1988-10-24 1990-05-03 The General Hospital Corporation Delivering laser energy
DE4211526A1 (en) * 1992-04-06 1993-10-07 Berlin Laser Medizin Zentrum Optical working shaft for rigid endoscope for photo therapy - radiates optical radiation of high power e.g of laser isotropically through working shaft at distal end in predetermined spaced segments

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336809A (en) * 1980-03-17 1982-06-29 Burleigh Instruments, Inc. Human and animal tissue photoradiation system and method
DE3323365C2 (en) * 1982-09-04 1994-10-20 Gsf Forschungszentrum Umwelt Method and device for illuminating cavities
DE4137983C2 (en) * 1990-12-19 1997-03-06 Schott Glaswerke Application device for the treatment of biological tissue with laser radiation
US5489279A (en) * 1994-03-21 1996-02-06 Dusa Pharmaceuticals, Inc. Method of applying photodynamic therapy to dermal lesion
US5571151A (en) * 1994-10-25 1996-11-05 Gregory; Kenton W. Method for contemporaneous application of laser energy and localized pharmacologic therapy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3532604A1 (en) * 1984-09-14 1986-03-27 Olympus Optical Co., Ltd., Tokio/Tokyo LASER PROBE
EP0247746A1 (en) * 1986-05-27 1987-12-02 Sumitomo Electric Industries Limited Laser catheter
WO1990004363A1 (en) * 1988-10-24 1990-05-03 The General Hospital Corporation Delivering laser energy
DE4211526A1 (en) * 1992-04-06 1993-10-07 Berlin Laser Medizin Zentrum Optical working shaft for rigid endoscope for photo therapy - radiates optical radiation of high power e.g of laser isotropically through working shaft at distal end in predetermined spaced segments

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6676656B2 (en) 1994-09-09 2004-01-13 Cardiofocus, Inc. Surgical ablation with radiant energy
EP0891157B1 (en) * 1996-04-04 2001-03-14 Somatex Medizintechnische Instrumente GmbH Laser applicator set
EP0891157A1 (en) 1996-04-04 1999-01-20 Somatex Medizintechnische Instrumente GmbH Laser applicator set
US5807383A (en) * 1996-05-13 1998-09-15 United States Surgical Corporation Lasing device
US5980545A (en) * 1996-05-13 1999-11-09 United States Surgical Corporation Coring device and method
US6283955B1 (en) 1996-05-13 2001-09-04 Edwards Lifesciences Corp. Laser ablation device
FR2756741A1 (en) * 1996-12-05 1998-06-12 Cird Galderma USE OF A CHROMOPHORE IN A COMPOSITION INTENDED TO BE APPLIED TO THE SKIN BEFORE LASER TREATMENT
EP0846477A1 (en) * 1996-12-05 1998-06-10 Centre International De Recherches Dermatologiques Galderma (C.I.R.D. Galderma) Chromophor use in a composition suitable to be used on the skin in conjonction with laser treatment
US6086580A (en) * 1996-12-05 2000-07-11 Centre International De Recherches Dermatologiques Laser treatment/ablation of skin tissue
EP0847728A3 (en) * 1996-12-12 1999-06-23 United States Surgical Corporation Apparatus for transmyocardial revascularization
US5947989A (en) * 1996-12-12 1999-09-07 United States Surgical Corporation Method and apparatus for transmyocardial revascularization
US6135996A (en) * 1998-04-17 2000-10-24 Baxter International, Inc. Controlled advancement lasing device
US9861437B2 (en) 1999-07-14 2018-01-09 Cardiofocus, Inc. Guided cardiac ablation catheters
US9421066B2 (en) 1999-07-14 2016-08-23 Cardiofocus, Inc. System and method for visualizing tissue during ablation procedures
US8900219B2 (en) 1999-07-14 2014-12-02 Cardiofocus, Inc. System and method for visualizing tissue during ablation procedures
US9033961B2 (en) 1999-07-14 2015-05-19 Cardiofocus, Inc. Cardiac ablation catheters for forming overlapping lesions
DE10008557A1 (en) * 2000-02-24 2001-10-25 Huettinger Medtech Gmbh Device for thermal obliteration of biological tissue using intense laser radiation, where the device is split into a handpiece and a puncture shaft, the latter being easily removable to facilitate cleaning
WO2002005722A1 (en) * 2000-07-14 2002-01-24 Cardiofocus, Inc. Cardiac photoablation instruments
US6558375B1 (en) 2000-07-14 2003-05-06 Cardiofocus, Inc. Cardiac ablation instrument
US7182760B2 (en) 2000-10-31 2007-02-27 Shigehiro Kubota Laser therapy method, highly laser beam-absorbing media to be used in the therapy and laser therapy apparatus with the use of the same
EP1336423A4 (en) * 2000-10-31 2005-03-09 Shigehiro Kubota Laser therapy method, highly laser beam-absorbing media to be used in the therapy and laser therapy apparatus with the use of the same
US6899708B2 (en) 2001-01-08 2005-05-31 Ulrich Speck Sterile tissue access system
WO2002053230A1 (en) * 2001-01-08 2002-07-11 Ulrich Speck Sterile tissue access system
US11246476B2 (en) 2014-04-28 2022-02-15 Cardiofocus, Inc. Method for visualizing tissue with an ICG dye composition during ablation procedures
US10154888B2 (en) 2014-12-03 2018-12-18 Cardiofocus, Inc. System and method for visual confirmation of pulmonary vein isolation during abalation procedures
CN108115283A (en) * 2017-12-12 2018-06-05 吉林大学 The method and thermal upsetting die of bionic surface are coupled with operating mode preparation according to ingredient
CN108115283B (en) * 2017-12-12 2020-06-09 吉林大学 Method for preparing coupled bionic surface according to composition and working conditions and hot upsetting mold

Also Published As

Publication number Publication date
US6143018A (en) 2000-11-07
EP0697840A1 (en) 1996-02-28
DE59410356D1 (en) 2004-03-25
EP0697840B1 (en) 2004-02-18
DE4403134A1 (en) 1995-08-03

Similar Documents

Publication Publication Date Title
EP0697840B1 (en) Device for thermally obliterating biological tissues
EP2004081B1 (en) Laser applicator
DE68928921T2 (en) DONATION DEVICE FOR LASER ENERGY
DE4137983C2 (en) Application device for the treatment of biological tissue with laser radiation
EP0292695B1 (en) Device for circumferential irradiation of objects
DE69226634T2 (en) DEVICE WITH LASER LIGHT TRANSMITTING NEEDLE
DE69229128T2 (en) MEDICAL DEVICE
DE69230409T2 (en) DIFFUSION TIP FOR AN OPTICAL FIBER
DE69325692T2 (en) Guide wire with fiber optics
EP0634909B1 (en) Working shaft for photo-thermal therapy
DE69738119T2 (en) Balloon catheter for photodynamic therapy
DE60032421T2 (en) Laser irradiation apparatus
DE102006039471B3 (en) Body tissues treatment applicator for endovascular photodynamic therapy of thin hollow organ, has elastic unit formed such that distal section of fiber adopts permitted curved shape, and is pushed out of guide catheter
DE10212366A1 (en) Light emitting probe for hyperthermic treatment of carcinogenic tissue, has light dispersing material of different dispersive power, filled in each segmented section of tube coupled to optical fiber
EP0647152B1 (en) Probe for heating body tissue
DE4416902A1 (en) Medical probe device with optical eyesight
DE4416840A1 (en) Medical probe with stylets
DE19821986C1 (en) Laser instrument
DE2826383A1 (en) Probe for laser surgery - is tubular and placed against or inserted in tissue, with or without heated end
DE9410654U1 (en) Controllable medical probe with stylets
DE102017111708B4 (en) Apex for an optical fiber arrangement, surgical instrument and laser unit comprising this apex
DE4211526A1 (en) Optical working shaft for rigid endoscope for photo therapy - radiates optical radiation of high power e.g of laser isotropically through working shaft at distal end in predetermined spaced segments
WO2001062171A1 (en) Device for the thermal treatment of biological tissue
DE10129029A1 (en) Flexible laser applicator for thermal medical treatment of biological tissue using silicon dioxide nanoparticles useful for tissue coagulation in surgery
DE4316176A1 (en) Method and device for thermal obliteration of biological tissue under controlled conditions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994914343

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1994914343

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08545864

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1994914343

Country of ref document: EP