[go: up one dir, main page]

WO1994003937A1 - Brennstoffzelle und verfahren zur befeuchtung des elektrolyten - Google Patents

Brennstoffzelle und verfahren zur befeuchtung des elektrolyten Download PDF

Info

Publication number
WO1994003937A1
WO1994003937A1 PCT/DE1992/000661 DE9200661W WO9403937A1 WO 1994003937 A1 WO1994003937 A1 WO 1994003937A1 DE 9200661 W DE9200661 W DE 9200661W WO 9403937 A1 WO9403937 A1 WO 9403937A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
air
cathode
exhaust gas
electrolyte
Prior art date
Application number
PCT/DE1992/000661
Other languages
English (en)
French (fr)
Inventor
Karl Strasser
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE59205882T priority Critical patent/DE59205882D1/de
Priority to PCT/DE1992/000661 priority patent/WO1994003937A1/de
Priority to JP6504867A priority patent/JPH08500931A/ja
Priority to CA002142090A priority patent/CA2142090A1/en
Priority to EP92917913A priority patent/EP0654182B1/de
Publication of WO1994003937A1 publication Critical patent/WO1994003937A1/de
Priority to US08/383,721 priority patent/US5543238A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell, in particular a PEM fuel cell, and a method for moistening the electrolyte of the fuel cell.
  • a fuel cell generally consists of an electrically conductive current transfer plate, a cathode, an ion-conductive intermediate layer, an anode and a further electrically conductive current transfer plate, which are stacked on top of one another in the order mentioned as flat plates.
  • Fuel cells of this construction are, inter alia, by the "Fuel Cell Handbook” by Appleby and Foulkes, New York, 1989, and by the article by K. Strasser "Fuel cells for electrical traction", VDI reports No. 912, 1992, pages 125 to 145 , previously known.
  • the fuel cell can convert chemically bound energy directly into electrical energy, it makes it possible to convert fuels, such as hydrogen, natural gas, biogas, into electrical energy with higher efficiency and with less pollution for the environment than the previously known conventional ones Thermal power plants whose efficiency is limited by the so-called Carnot 1 process can do.
  • a polymer electrolyte membrane fuel cell (PEM fuel cell) is preferred in connection with an electric drive.
  • PEM fuel cell polymer electrolyte membrane fuel cell
  • This type of fuel cell can be operated with technically pure gases as well as with CO 2 -containing gases and air.
  • the low operating temperature ( ⁇ 100 ° C.), the high power density, for example, are particularly advantageous for use in a vehicle, the favorable long-term behavior and the lack of a corrosive, liquid electrolyte.
  • Corrosive liquid electrolytes are used, for example, in acidic or alkaline fuel cells.
  • a particular problem with the fuel cells mentioned is the water balance in the electrolyte during operation of the fuel cells.
  • the functionality of the fuel cell is closely linked to the water content in the fuel cell, and in particular in the electrolyte.
  • a too high water content in the electrolyte leads to a decrease in the available power of the fuel cell due to its too high dilution.
  • the electrical power of the fuel cell also drops due to an increase in the internal resistance.
  • a gas breakthrough and thus the formation of flammable gas mixtures can occur even when the electrolyte partially dries out. In the worst case, this leads to damage or destruction of the fuel cell when the gas mixture burns off.
  • a PEM fuel cell which is preferably operated with hydrogen and air, requires an evaporator arrangement to adjust the water content in the proton-conducting membrane.
  • the evaporator arrangement must look lent their dimensions to the lowest system pressure, because in this case the greatest volume flows have to be humidified at constant temperature and the largest mass transfer areas are therefore required.
  • the disadvantages are the relatively large construction volume, which can reach the size of the actual fuel cell block, and the associated high investment costs.
  • the invention is therefore based on the object of specifying a fuel cell and a method for moistening the electrolyte which make it possible to avoid the disadvantages mentioned to such an extent that the fuel cell can be used from an economic point of view.
  • this object is achieved in that exhaust gas from the fuel cell that is produced on the cathode side is at least partially recirculated into the cathode of the fuel cell.
  • part of the water (product water) formed in the electrochemical reaction in the fuel cell is initially carried away with the remaining exhaust gas from the cathode of the fuel cell and then at least partially recirculated into the cathode of the fuel cell, as a result of which the degree of humidification of the oxidizing agent flowing into the cathode is raised and a better moistening of the electrolyte of the fuel cell is ensured.
  • a recirculation line is connected to an exhaust line connected to the fuel cell on the cathode side, via which at least a part of the exhaust gas accumulating on the cathode side can be recirculated into the cathode of the fuel cell, the recirculation line being a one-part element assigned.
  • the recirculated part of the exhaust gas can be adjusted proportionally to the power output of the fuel cell by means of the adjusting element.
  • the power output of the fuel cell can be determined simply by measuring the current and voltage, the output of the fuel cell also increasing proportionally to the power output as the power output of the fuel cell increases.
  • the recirculated part of the exhaust gas can be adjusted accordingly.
  • the recirculation line opens into an air supply line connected to the cathode side via a gas compressor.
  • the gas compressor only has a relatively small pressure difference between cathode equalize entry and exit and compress relatively small amounts of air.
  • FIG. 1 shows a schematic illustration of a PEM fuel cell according to the invention with a recirculation line for exhaust gas from the fuel cell which is produced on the cathode side, and
  • FIG. 2 shows a detail of the opening of the recirculation line into the air supply line, as modified from FIG. 1.
  • the fuel cell 2 shown schematically in FIG. 1 comprises a cooling space 4, a spacer 6 on the cooling water side, an air gas space 8, a plate of carbon paper 10 on the cathode side, a platinum cathode 12, a PEM membrane 14 (commercially available, for example, under the name "Nafion 117""available), a platinum anode 16, an anode-side plate 18 made of carbon paper, a hydrogen gas space 20, a cooling water-side spacer 22 and a cooling space 24, which are stacked in this order as flat plates.
  • the cathode-side cooling space 4 and the anode-side cooling space 24 can be connected to a cooling water circuit, not shown.
  • An air supply line 26 is connected to the air gas space 8 on the input side and an exhaust gas line 28 is connected on the output side, the latter leading to the outside via an adjusting member 30 and an expansion turbine 32.
  • a recirculation line 34 is connected to the input member 30 and opens into the air supply line 26 via a gas compressor 36.
  • an air compressor 38 is connected in the air supply line 26.
  • Part of the drive power of the air compressor 36 and the further air compressor 38 is applied by the exhaust gas expansion turbine 32 via a connection 40, which is only indicated schematically here. The remaining drive power must be provided by a motor 41, not shown here.
  • a hydrogen supply line 42 is connected on the input side to the hydrogen gas space 20. This leads from a hydrogen source 44 via a valve 46 and a gas humidifier 48 into the hydrogen gas space 20. On the output side, a return line 50 for hydrogen is connected to the hydrogen space 20, which leads via a gas compressor 52 between the air humidifier 48 and the hydrogen gas space 20 into the hydrogen supply ⁇ line 42 opens.
  • the hydrogen gas space 20 is subjected to a hydrogen partial pressure of approximately 2 bar.
  • Air is applied to the air gas space 8 by means of the gas compressor 36 and the air compressor 38, the static air pressure in the exemplary embodiment being approximately 1.3-4 bar a.
  • the atmospheric oxygen molecules are converted catalytically into two doubly negatively charged oxygen ions with the inclusion of four electrons.
  • the oxygen ions reach the boundary layer between cathode 12 and PEM 14.
  • the electrons required to reduce the oxygen are generated catalytically in the anode, where two hydrogen molecules are split into four hydrogen ions and four electrons.
  • a voltage U ßZ of approximately 0.5-1 V is applied to a contact 54 connected to the cathode-side carbon paper plate 10 and to a contact 56 connected to the anode-side carbon paper plate 18, depending on the set load current.
  • the electrons released in the anode flow to the cathode 12 via an ammeter 58 and an external electrical consumer (not shown).
  • the fuel cell 2 then begins its intended operation and achieves a specific power of up to approx. 700 mW / cm 2 and a current density of 1000 mA / cm 2 .
  • the working temperature is approximately 80 ° C.
  • the hydrogen gas that flows in via the hydrogen supply line 42 to the anode 16 and is previously passed into the humidifier 48 and humidified there is partly consumed in the fuel cell with the release of the electrons and subsequent formation of water.
  • the unused part of the hydrogen gas is introduced into the hydrogen return line 50.
  • the hydrogen gas moistened with the product water is then fed back into the hydrogen supply line 50 via the gas compressor 52 and prevents the PEM 14 from drying out at the boundary layer PEM 14 - anode 16 by its subsequent introduction into the anode 16.
  • the used part of the hydrogen gas thereby becomes supplemented from the hydrogen source 44 and moistened by means of the gas humidifier 48.
  • the gas humidifier 48 can be supplied with condensed water, which is obtained in a manner not shown here from the exhaust gas on the cathode side.
  • the product water formed on the cathode side is removed with the air flow from the air gas space 8 by introducing it into the exhaust gas line 28 from the fuel cell 2.
  • part of the exhaust gas is introduced into the recirculation line 34 by means of the adjusting element 30 and from there it is fed back into the air supply line 26 via the gas compressor 36.
  • part of the water formed in the electrochemical reaction at the interface between cathode 12 and PEM 14 is recirculated into cathode 12, thereby preventing the PEM 14 from drying out and thus preventing the fuel cell 2 from malfunctioning.
  • the recirculated air quantity at full load of the fuel cell 2 is approximately half of the exhaust gas 5 air quantity. This also ensures adequate moistening of the PEM 14 on the side of the cathode 12.
  • the air ratio m is defined as the ratio of the amount of oxygen in the 5 air to the oxygen requirement (stoichiometric).
  • the Gasverdich ⁇ 36 has to compensate only a small difference in air pressure ter to the recirculated exhaust gas back to the input Q air pressure of the air gas space to condense.
  • FIG. 2 shows an alternative possibility of introducing the recirculated air into the air supply line 26 and thereby compensating for the pressure difference.
  • an air jet compressor 63 is installed on the mouth parts for the recirculation line 34 in such a way that its intake 60 is connected to the recirculation line 34 and its compressed air supply connection 62 to the air compressor 38. This ensures that the recirculated gas mixture is sucked in by the compressed air flowing into the fuel cell 2 in accordance with the current setting of the setting member 30.
  • the inventive recirculation of exhaust gas generated on the cathode side saves a voluminous and expensive air humidifier with little effort and thus creates a prerequisite for reducing the production costs for fuel cells 2 on the basis of a PEM 14.
  • a structure which is only slightly changed compared to FIG. 1 can also be used in the case of an alkaline or an acid firing save the use of separate humidifiers on the cathode side of the fuel cell.
  • the measures proposed according to the invention would also lead to an improvement in the overall efficiency of the fuel cell in these fuel cells.
  • the overall efficiency of the exemplary embodiment described in FIG. 1 is over 60% in partial load operation, for example at a load factor of 20%.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Bei Brennstoffzellen mit einem sauerstoffionen-, oder hydroxidionen-, oder protonen leitenden Elektrolyten besteht grundsätzlich das Problem der Luftbefeuchtung der Brenngase, um ein Austrocknen oder Verdünnen des Elektrolyten und damit eine Funktionsstörung der Brennstoffzelle bei Luftbetrieb zu verhindern. Dabei stört insbesondere der konstruktive und finanzielle Aufwand für die Luftbefeuchtung. Um diesen Nachteil zu vermeiden, ist erfindungsgemäß vorgesehen, daß kathodenseitig anfallendes Abgas der Brennstoffzelle zumindest teilweise in die Kathode der Brennstoffzelle rezirkuliert wird. Hierdurch ist der Wassergehalt des Elektrolyten durch eine einfache Einstellung der rezirkulierten Abgasmenge in weiten Grenzen einstellbar. Hierdurch wird ein ökonomischer Einsatz der PEM-Brennstoffzelle möglich. Die Erfindung ist prinzipiell bei allen Brennstoffzellen mit einem sauerstoffionen- oder hydroxidionen- oder protonenleitenden Elektrolyten einsetzbar.

Description

Brennstoffzelle und Verfahren zur Befeuchtung des Elektrolyten
Die Erfindung bezieht sich auf eine Brennstoffzelle, ins- besondere eine PEM-Brennstoffzelle, und ein Verfahren zur Befeuchtung des Elektrolyten der Brennstoffzelle.
Eine Brennstoffzelle besteht im allgemeinen aus einer elektrisch leitenden Stromübertragerplatte, einer Kathode, einer ionenleitenden Zwischenschicht, einer Anode und einer weiteren elektrisch leitenden Stromübertragerplatte, die in der genannten Reihenfolge als ebene Platten aufein- andergestapelt sind. Brennstoffzellen dieses Aufbaus sind unter anderem durch das "Fuel Cell Handbook" von Appleby and Foulkes, New York, 1989, sowie durch den Aufsatz von K. Strasser "Brennstoffzellen für Elektrotraktion", VDI- Berichte Nr. 912, 1992, Seiten 125 bis 145, vorbekannt. Weil die Brennstoffzelle chemisch gebundene Energie un¬ mittelbar in elektrische Energie umsetzen kann, ermöglicht sie es, Brennstoffe, wie z.B. Wasserstoff, Erdgas, Biogas, mit höherem Wirkungsgrad und mit geringerer Belastung für die Umwelt in elektrische Energie umzuwandeln, als es die bisher bekannten konventionellen Wärmekraftwerke, deren Wirkungsgrad durch den sogenannten Carnot1 sehen Prozeß begrenzt ist, zu tun vermögen.
Den vorgenannten Druckschriften zufolge wird im Zusammen¬ hang mit einem elektrischen Antrieb eine Polymer- Elektrolyt-Membran-Brennstoffzelle (PEM-Brennstoffzelle) favorisiert. Dieser Brennstoffzellentyp kann sowohl mit technisch reinen Gasen als auch mit C02-haltigen Gasen und Luft betrieben werden. Besonders vorteilhaft für die An¬ wendung in einem Fahrzeug sind beispielsweise die niedrige Betriebstemperatur (< 100° C), die hohe Leistungsdichte, das günstige Langzeitverhalten sowie das Fehlen eines korrosiven, flüssigen Elektrolyten. Korrosive flüssige Elektrolyte werden beispielsweise in der sauern oder alkalischen Brennstoffzelle eingesetzt.
Ein besonderes Problem bei den genannten Brennstoffzellen stellt die Wasserbilanz im Elektrolyten beim Betrieb der Brennstoffzellen dar. Mit dem Wassergehalt in der Brenn¬ stoffzelle, und im besonderen im Elektrolyten, ist die Funktionsfähigkeit der Brennstoffzelle eng verbunden. Ein zu hoher Wassergehalt im Elektrolyten führt infolge seiner zu hohen Verdünnung zu einem Rückgang der verfügbaren Leistung der Brennstoffzelle. Ein zu geringer Wassergehalt des Elektrolyten führt ebenfalls zu einem Rückgang der elektrischen Leistung der Brennstoffzelle durch Erhöhung des Innenwiderstandes. Darüber hinaus kann es bereits bei partieller Austrocknung des Elektrolyten zu einem Gas¬ durchbruch und damit zur Bildung brennbarer Gasgemische kommen. Im schlimmsten Fall führt dies beim Abbrennen des Gasgegemisches zur Beschädigung oder Zerstörung der Brennstoffzelle.
Zur Einstellung des Wassergehaltes des Elektrolyten in einer sauren oder alkalischen Brennstoffzelle ist daher bereits eine relativ aufwendige Verdampfer-Kondensator- Anordnung vorgeschlagen worden, bei der zumindest eines der in die Brennstoffzelle einströmenden Gase zum Wasser¬ dampftransport eingesetzt und zu diesem Zweck auch über eine temperierte Wasseroberfläche geleitet wird.
Eine PEM-Brennstoffzelle, die vorzugsweise mit Wasserstoff und Luft betrieben wird, benötigt eine Verdampfer-Anord¬ nung zur Einstellung des Wassergehaltes in der protonen¬ leitenden Membran. Die Verdampfer-Anordnung muß hinsieht- lieh ihrer Dimensionierung an den niedrigsten Systemdruck angepaßt sein, weil in diesem Fall bei konstanter Tempera¬ tur die größten Volumenströme zu befeuchten sind und somit die größten Stoffaustauschflächen erforderlich sind. Bei der Verwendung einer solchen Verdampfer-Anordnung sind als Nachteile das relativ große Bauvolumen, das die Größe des eigentlichen Brennstoffzellenblocks erreichen kann und die damit verbundenen hohen Investitionskosten in Kauf zu nehmen. Diese Nachteile sind bei dem Einsatz einer PEM-Brennstoffzelle so gravierend, daß sie dem Einsatz, insbesondere dem mobilen Einsatz, und damit einer breite¬ ren Anwendung solcher Brennstoffzellen entgegenstehen.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Brennstoffzelle und ein Verfahren zur Befeuchtung des Elektrolyten anzugeben, die es erlauben, die genannten Nachteile so weit zu vermeiden, daß ein Einsatz der Brennstoffzelle unter wirtschaftlichen Gesichtspunkten erfolgen kann.
Bezüglich des Verfahrens wird diese Aufgabe dadurch gelöst, daß kathodenseitig anfallendes Abgas der Brennstoffzelle zumindest teilweise in die Kathode der Brennstoffzelle rezirkuliert wird. Hierdurch wird ein Teil des bei der elektrochemischen Reaktion in der Brennstoff¬ zelle entstehenden Wassers (Produktwasser) zunächst mit dem übrigen Abgas von der Kathode der Brennstoffzelle weggeführt und dann zumindest teilweise in die Kathode der Brennstoffzelle rezirkuliert, wodurch der Befeuchtungsgrad des in die Kathode einströmenden Oxidationsmittels ange¬ hoben wird und eine bessere Befeuchtung des Elektrolyten der Brennstoffzelle gewährleistet wird. Unter der Zufuhr des Oxidationsmittels zur Kathode der Brennstoffzelle wird hierbei neben der Zufuhr des Luftsauerstoffs der Umge- bungsluft auch alternativ die Zufuhr von technisch reinem Sauerstoff verstanden.
Bezüglich der Brennstoffzelle wird diese Aufgabe erfin- dungsgemäß dadurch gelöst, daß an eine kathodenseitig an der Brennstoffzelle angeschlossene Abgasleitung eine Re- zirkulationsleitung angeschlossen ist, über die zumindest ein Teil des kathodenseitig anfallenden Abgases in die Kathode der Brennstoffzelle rezirkulierbar ist, wobei der Rezirkulationsleitung ein Einsteilglied zugeordnet ist.
Hierdurch ist es möglich, daß ein Teil des aus der Kathode der Brennstoffzelle ausgetragenen Wassers und der Wärme wieder in die Kathode zurückgeführt wird. Mittels des Ein- Stellgliedes ist der rezirkulierte Teil des Abgases ein¬ stellbar.
In besonders vorteilhafter Weise kann hierbei der rezirku¬ lierte Teil des Abgases mittels des Einsteilgliedes pro- portional zur Leistungsabgabe der Brennstoffzelle einge¬ stellt werden. Die Leistungsabgabe der Brennstoffzelle kann dabei einfach durch Strom- und Spannungsmessung ermittelt werden, wobei mit steigender Leistuπgsabgabe der Brennstoffzelle auch der Stoffumsatz der Brennstoffzelle proportional zur Leistungsabgabe ansteigt. Mit dem
Einsteilglied kann der rezirkulierte Teil des Abgases entsprechend eingestellt werden.
Um den rezirkulierten Teil des Abgases wieder auf den kathodenseitigen Eintrittsluftdruck zu verdichten, ist es vorteilhaft, wenn die Rezirkulationsleitung über einen Gasverdichter in eine kathodenseitig angeschlossene Luft¬ zuführungsleitung mündet. Dabei hat der Gasverdichter nur einen relativ kleinen Druckunterschied zwischen Kathoden- ein- und Austritt auszugleichen und relativ kleine Luft¬ mengen zu verdichten.
Zwei Ausführungsbeispiele der Erfindung werden anhand einer Zeichnung näher erläutert. Dabei zeigen:
Figur 1 eine schematische Darstellung einer erfindungs¬ gemäßen PEM-Brennstoffzelle mit einer Rezirkula¬ tionsleitung für kathodenseitig anfallendes Abgas der Brennstoffzelle, und
Figur 2 einen Ausschnitt der gegenüber Figur 1 abge¬ wandelten Einmündung der Rezirkulationsleitung in die Luftzuführungsleitung.
Die in Figur 1 schematisch dargestellte Brennstoffzelle 2 umfaßt einen Kühlraum 4, einen kühlwasserseitigen Abstand¬ halter 6, einen Luftgasraum 8, eine kathodenseitige Platte aus Kohlepapier 10, eine Platinkathode 12, eine PEM- Membran 14 (im Handel z.B. unter dem Namen "Nafion 117" erhältlich), eine Platinanode 16, eine anodenseitige Platte 18 aus Kohlepapier, einen Wasserstoffgasraum 20, einen kühlwasserseitigen Abstandshalter 22 und einen Kühlraum 24, die in dieser Reihenfolge als ebene Platten aufeinandergestapelt sind. Der kathodenseitige Kühlraum 4 und der anodenseitige Kühlraum 24 sind an einen nicht weiter dargestellten Kühlwasserkreislauf anschließbar. An den Luftgasraum 8 ist eingangsseitig eine Luftzuführungs¬ leitung 26 und ausgangsseitig eine Abgasleitung 28 ange- schlössen, wobei letztere über ein Einsteilglied 30 und eine Entspannungsturbine 32 ins Freie führt. An das Ein¬ steilglied 30 ist eine Rezirkulationsleitung 34. ange¬ schlossen, die über einen Gasverdichter 36 in die Luftzu¬ führungsleitung 26 mündet. In Strömungsrichtung der Luft vor der Einmündung der Rezirkulationsleitung 34 in die Luftzuführungsleitung 26 ist in der Luftzuführungsleitung 26 ein Luftverdichter 38 angeschlossen. Ein Teil der Antriebsleistung des Luftverdichters 36 und des weiteren Luftverdichters 38 wird über eine hier nur schematisch angedeutete Verbindung 40 von der Abgasentspannungsturbine 32 aufgebracht. Die restliche Antriebsleistung muß von einem hier nicht weiter dargestellten Motor 41 bereitge¬ stellt werden.
An den Wasserstoffgasraum 20 ist eingangsseitig eine Wasserstoffzuführungsleitung 42 angeschlossen. Diese führt von einer Wasserstoffquelle 44 über ein Ventil 46 und einen Gasbefeuchter 48 in den Wasserstoffgasraum 20. Ausgangsseitig ist an den Wasserstoffraum 20 eine Rück¬ führungsleitung 50 für Wasserstoff angeschlossen, die über einen Gasverdichter 52 zwischen dem Luftbefeuchter 48 und dem Wasserstoffgasraum 20 in die Wasserstoffzuführungs¬ leitung 42 mündet.
Beim Betrieb der Brennstoffzelle 2 wird im Ausführungsbei¬ spiel der Wasserstoffgasraum 20 mit einem Wasserstoff- partialdruck von etwa 2 bar beaufschlagt. Mittels des Gasverdichters 36 und des Luftver-dichters 38 wird der Luftgasraum 8 mit Luft beaufschlagt, wobei der statische Luftdruck im Ausführungsbeispiel etwa 1,3 - 4 bar a beträgt. In der Kathode werden die Luftsauerstoffmoleküle jeweils unter Aufnahme von vier Elektronen katalytisch in zwei zweifach negativ geladene Sauerstoffionen umgesetzt. Die Sauerstoffionen gelangen an die Grenzschicht zwischen Kathode 12 und PEM 14. Die zur Reduktion des Sauerstoffs benötigten Elektronen werden katalytisch in der Anode erzeugt, an der jeweils zwei Wasserstoffmoleküle in vier Wasserstoffionen und vier Elektronen aufgespalten werden. Dabei liegt an einer an der kathodenseitigen Kohlepapier¬ platte 10 angeschlossenen Kontakt 54 und an einem an der anodenseitigen Kohlepapierplatte 18 angeschlossene Kontakt 56 eine Spannung UßZ von etwa 0,5 - 1 V an, je nach eingestelltem Laststrom.
Wird zwischen die Kontakte 54 und 56 ein elektrischer Ver¬ braucher geschaltet, fließen die in der Anode freiwerden¬ den Elektronen über ein Ampέremeter 58 und einen nicht weiter dargestellten externen elektrischen Verbraucher zur Kathode 12. Die Brennstoffzelle 2 nimmt dann ihren bestim¬ mungsgemäßen Betrieb auf und erreicht dabei eine spezifi¬ sche Leistung bis ca. 700 mW/cm2 sowie eine Stromdichte von 1000 mA/cm2. Die Arbeitstemperatur liegt dabei bei etwa 80βC. Das über die Wasserstoffzuführungsleitung 42 der Anode 16 zuströmende, zuvor in den Gasbefeuchter 48 geleitete und dort befeuchtete Wasserstoffgas wird zu einem Teil in der Brennstoffzelle unter Freisetzung der Elektronen und anschließender Bildung von Wasser ver- braucht. Da dieses Wasser, auch Produktwasser genannt, fast ausschließlich an der Grenzfläche zwischen Kathode 12 und PEM 14 gebildet wird, wird der nicht verbrauchte Teil des Wasserstoffgases in die Wasserstoffrückführungsleitung 50 eingeleitet. Das mit dem Produktwasser befeuchtete Wasserstoffgas wird anschließend über den Gasverdichter 52 wieder in die Wasserstoffzuführungsleitung 50 geführt und verhindert durch seine nachfolgende Einleitung in die Anode 16 ein Austrocknen der PEM 14 an der Grenzschicht PEM 14 - Anode 16. Der verbrauchte Teil des Wasserstoff gases wird dabei aus der Wasserstoffquelle 44 ergänzt und mittels des Gasbefeuchters 48 befeuchtet. Der Gasbefeuch- ter 48 kann mit Kondenswasser versorgt werden, das in hier nicht weiter dargestellter Weise aus dem kathodenseitigen Abgas gewonnen wird. 1 Das kathodenseitig entstehende Produktwasser wird mit dem Luftstrom aus dem Luftgasraum 8 unter Einleitung in die Abgasleitung 28 aus der Brennstoffzelle 2 entfernt. In Abhängigkeit von der abgegebenen Leistung der Brennstoff- 5 zelle wird mittels des Einsteilgliedes 30 ein Teil des Abgases in die Rezirkulationsleitung 34 eingeleitet und von dort über den Gasverdichter 36 wieder in die Luftzu¬ führungsleitung 26 eingespeist. Hierdurch wird auch ein Teil des bei der elektrochemischen Reaktion an der Grenz- 0 schicht Kathode 12 - PEM 14 entstehenden Wassers in die Kathode 12 rezirkuliert, wodurch ein Austrocknen der PEM 14 und damit eine Funktionsstörung der Brennstoffzelle 2 vermieden wird. Die rezirkulierte Luftmenge beträgt bei Vollast der Brennstoffzelle 2 etwa die Hälfte der Abgas- 5 luftmenge. Damit ist auch eine ausreichende Befeuchtung der PEM 14 auf der Seite der Kathode 12 gewährleistet.
Bei einem erforderlichen Luftverhältnis m > 2,5 und bei der Rückführung der halben Abluftmenge erhöht sich die Q insgesamt durch den Luftgasraum beförderte Luftmenge um etwa 20% und damit der Druckabfall im Luftweg durch die Brennstoffzelle 2 und folglich auch der Leistungsbedarf für die Luftkompression. Das Luftverhältnis m ist dabei definiert als das Verhältnis der Sauerstoffmenge in der 5 Luft zum Sauerstoffbedarf (stöchiometrisch) . Hinzu kommt auch noch der Leistungsbedarf des Gasverdichters 36 für die rezirkulierte Abgasmenge, wobei der Gasverdich¬ ter 36 nur eine geringe Luftdruckdifferenz auszugleichen hat, um das rezirkulierte Abgas wieder auf den Eingangs- Q luftdruck des Luftgasraums 8 zu verdichten. Ein Teil der vom Luftverdichter 38 aufgenommenen Leistung wird dabei mittels der von der übrigen Abgasmenge betriebenen Abgasentspannungsturbine 32 aufgebracht. Ohne diese Rezirkulation der Abgasluft wäre dem Luftver¬ dichter 38 ein hier nicht dargestellter Gasbefeuchter vorzuschalten, um ein kathodenseitiges Austrocknen der PEM zu vermeiden. Hierbei hat die Dimensionierung dieses soge- nannten Membran-Befeuchters nach dem niedrigsten System¬ druck, d.h. angepaßt an die größtmögliche Luftmenge, zu erfolgen. Ein solcher Membranbefeuchter ist technisch rea¬ lisierbar, besitzt aber ein Vielfaches des Volumens einer Stapelanordnung von Brennstoffzellen 2 und einen relativ hohen Herstellungspreis. Damit würden die Nachteile, die mit dem Eins-atz eines Membranbefeuchters verbunden sind, der Verwendung einer PEM-Brennstoffzelle 2 entgegenstehen.
Die Figur 2 zeigt eine alternative Möglichkeit, die rezir- kulierte Luft in die Luftzuführungsleitung 26 einzuleiten und dabei die Druckdifferenz auszugleichen. Hierzu wird an der Einmündungssteile für die Rezirkulationsleitung 34 ein Luftstrahlverdichter 63 so eingebaut, daß sein Ansaug¬ stutzen 60 an die Rezirkulationsleitung 34 und sein Druck- luftzuführstutzen 62 an den Luftverdichter 38 angeschlos¬ sen wird. Hierdurch wird erreicht, daß durch die der Brennstoffzelle 2 zuströmenden, verdichteten Luft das rezirkulierte Gasgemisch entsprechend der momentanen Ein¬ stellung des Einsteilglieds 30 angesaugt wird.
Durch die erfindungsgemäße Rezirkulation von kathodensei¬ tig anfallendem Abgas wird mit geringem Aufwand ein volu¬ minöser und kostspieliger Luftbefeuchter eingespart und damit eine Voraussetzung geschaffen, die Herstellungs- kosten für Brennstoffzellen 2 auf der Basis einer PEM 14 zu verringern.
Ein gegenüber der Figur 1 nur gering veränderter Aufbau kann auch bei einer alkalischen oder einer sauren Brenn- stoffzelle den Einsatz von separaten Luftbefeuchtern auf der Kathodenseite der Brennstoffzelle einsparen. Insgesamt würden die erfindungsgemäß vorgeschlagenen Maßnahmen auch bei diesen Brennstoffzellen zu einer Verbesserung des Ge¬ samtwirkungsgrads der Brennstoffzelle führen. Der Gesamt¬ wirkungsgrad des in Figur 1 beschriebenen Ausführungsbei¬ spiels liegt im Teillastbetrieb, z.B. bei einem Lastfaktor von 20%, bei über 60%.

Claims

Patentansprüche
1. Verfahren zur Befeuchtung des Elektrolyten einer Brenn¬ stoffzelle, d a d u r c h— g e k e n n z e i c h n e t, daß kathodenseitig anfallendes Abgas der Brennstoffzelle (2) zumindest teilweise in die Kathode (12) der Brenn¬ stoffzelle (2) rezirkuliert wird.
2. Brennstoffzelle zur Durchführung des Verfahrens nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß an eine kathodenseitig an der Brennstoffzelle (2) an¬ geschlossene Abgasleitung (28) eine Rezirkulationsleitung (34) angeschlossen ist, über die zumindest ein Teil des kathodenseitig anfallenden Abgases in die Kathode (12) der Brennstoffzelle (2) rezirkulierbar ist, wobei der Rezirku¬ lationsleitung (34) ein Einsteilglied (30) zugeordnet ist.
3. Brennstoffzelle nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, daß der mittels des Einsteilglieds (30) rezirkulierte Teil des Abgases propor¬ tional zur Leistungsabgabe der Brennstoffzelle (2) ein¬ stellbar ist.
4. Brennstoffzelle nach Anspruch 2 oder 3, d a d u r c h g e k e n n z e i c h n e t, daß die Rezirkulationslei¬ tung (34) über einen Gasverdichter (36) in eine kathoden¬ seitig angeschlossene Luftzuführungsleitung (26) mündet.
5. Brennstoffzelle nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, daß in der Luftzuführungs¬ leitung (26) in Strömungsrichtung der Luft vor der Ein¬ mündung der Rezirkulationsleitung (34) ein Luftverdichter (38) eingebaut ist.
6. Brennstoffzelle nach Anspruch 2 oder 3, d a d u r c h g e k e n n z e i c h n e t, daß in der Luftzuführungsleitung in Strömungsrichtung der Luft nach der Einmündung der Rezirkulationsleitung ein Gasverdichter und vor der Einmündung eine Drosselstelle eingebaut ist.
7. Brennstoffzelle nach Anspruch 2 oder 3, d a d u r c h g e k e n n z e i c h n e t, daß die Rezirkulationsleitung (34) in den Ansaugstutzen (60) eines Luftstrahlverdichters (63) mündet, der von einem in der
Luftzuführungsleitung (26) angeschlossenen Luftverdichter (38) mit Druckluft versorgbar ist und an der Brennstoff¬ zelle (2) kathodenseitig angeschlossen ist.
8. Brennstoffzelle nach einem der Ansprüche 2 bis 7, g e k e n n z e i c h n e t d u r c h eine Polymer- Elektrolyt-Membran-Brennstoffzelle (PEM) (2).
9. Brennstoffzelle nach einem der Ansprüche 2 bis 7, g e k e n n z e i c h n e t d u r c h eine alkalische Brennstoffzelle.
10. Brennstoffzelle nach einem der Ansprüche 2 bis 7, g e k e n n z e i c h n e t d u r c h eine saure Brennstoffzelle.
PCT/DE1992/000661 1992-08-10 1992-08-10 Brennstoffzelle und verfahren zur befeuchtung des elektrolyten WO1994003937A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE59205882T DE59205882D1 (de) 1992-08-10 1992-08-10 Brennstoffzelle und verfahren zur befeuchtung des elektrolyten
PCT/DE1992/000661 WO1994003937A1 (de) 1992-08-10 1992-08-10 Brennstoffzelle und verfahren zur befeuchtung des elektrolyten
JP6504867A JPH08500931A (ja) 1992-08-10 1992-08-10 燃料電池及びその電解質の加湿方法
CA002142090A CA2142090A1 (en) 1992-08-10 1992-08-10 Fuel cell and method for moistening the electrolyte
EP92917913A EP0654182B1 (de) 1992-08-10 1992-08-10 Brennstoffzelle und verfahren zur befeuchtung des elektrolyten
US08/383,721 US5543238A (en) 1992-08-10 1995-02-03 Fuel cell and method for moistening the electrolyte of the fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/DE1992/000661 WO1994003937A1 (de) 1992-08-10 1992-08-10 Brennstoffzelle und verfahren zur befeuchtung des elektrolyten
CA002142090A CA2142090A1 (en) 1992-08-10 1992-08-10 Fuel cell and method for moistening the electrolyte
US08/383,721 US5543238A (en) 1992-08-10 1995-02-03 Fuel cell and method for moistening the electrolyte of the fuel cell

Publications (1)

Publication Number Publication Date
WO1994003937A1 true WO1994003937A1 (de) 1994-02-17

Family

ID=27169951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1992/000661 WO1994003937A1 (de) 1992-08-10 1992-08-10 Brennstoffzelle und verfahren zur befeuchtung des elektrolyten

Country Status (3)

Country Link
US (1) US5543238A (de)
CA (1) CA2142090A1 (de)
WO (1) WO1994003937A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853910A (en) * 1996-03-29 1998-12-29 Kabushikikaisha Equos Research Fuel cell power generating apparatus and operation method therefor
WO1999028985A1 (en) * 1997-12-01 1999-06-10 Ballard Power Systems Inc. Method and apparatus for distributing water to an ion-exchange membrane in a fuel cell
EP1025602A1 (de) * 1997-07-25 2000-08-09 Emprise Corporation Brennstoffzellengas-management-system
WO2001041243A1 (de) * 1999-11-29 2001-06-07 Forschungszentrum Jülich GmbH Brennstoffzelle mit kreislauf des oxidationsmittels
WO2003028137A2 (de) 2001-09-21 2003-04-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und vorrichtung zum betrieb einer brennstoffzelle
EP1526597A1 (de) * 2003-10-25 2005-04-27 P 21-Power for the 21st Century GmbH Befeuchtungsvorrichtung für Medienströme in Brennstoffzellen
DE102007042787A1 (de) 2007-09-07 2009-03-12 Daimler Ag Modifizierte Gasdiffusionsschicht in Brennstoffzellen
DE10251878C5 (de) * 2001-11-09 2010-02-11 Honda Giken Kogyo K.K. Brennstoffzellensystem mit einem Brennstoffkreislauf
US7824815B2 (en) 2004-04-08 2010-11-02 Toyota Jidosha Kabushiki Kaisha Fuel cell system
GB2508817A (en) * 2012-12-11 2014-06-18 Afc Energy Plc Fuel Cell System
EP3304627B1 (de) 2015-05-28 2018-11-07 ThyssenKrupp Marine Systems GmbH Brennstoffzelle mit befeuchter

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203150B2 (ja) * 1995-05-18 2001-08-27 三洋電機株式会社 固体高分子型燃料電池及び固体高分子型燃料電池システム
JP3553210B2 (ja) * 1995-06-26 2004-08-11 本田技研工業株式会社 燃料電池を搭載した移動体における燃料電池システム
US5830593A (en) * 1996-01-11 1998-11-03 Nielson; Jay P. Rotating electrode fuel cell for vehicle propulsion
USRE38493E1 (en) * 1996-04-24 2004-04-13 Questair Technologies Inc. Flow regulated pressure swing adsorption system
DE19718970A1 (de) * 1997-05-05 1998-11-12 Zsw Integraler PEM-Brennstoffzellen-Heizungsmodul und dessen Verwendung sowie PEM-Brennstoffzellenstapel
US6106964A (en) * 1997-06-30 2000-08-22 Ballard Power Systems Inc. Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
US6416895B1 (en) 2000-03-09 2002-07-09 Ballard Power Systems Inc. Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
US5998054A (en) * 1997-07-23 1999-12-07 Plug Power, L.L.C. Fuel cell membrane hydration and fluid metering
US6015634A (en) * 1998-05-19 2000-01-18 International Fuel Cells System and method of water management in the operation of a fuel cell
DE69931171T2 (de) * 1998-09-14 2007-02-22 Questair Technologies, Inc. Stromerzeugungssystem
US6921597B2 (en) * 1998-09-14 2005-07-26 Questair Technologies Inc. Electrical current generation system
US6638654B2 (en) * 1999-02-01 2003-10-28 The Regents Of The University Of California MEMS-based thin-film fuel cells
US6268074B1 (en) 1999-04-05 2001-07-31 General Motors Corporation Water injected fuel cell system compressor
DE19918850C2 (de) * 1999-04-19 2002-10-24 Vodafone Ag Befeuchtungsvorrichtung für Brennstoffzelle, Verfahren zur Befeuchtung einer Brennstoffzellenmembran und Verwendung der Befeuchtungsvorrichtung in einer Brennstoffzelle
US6329090B1 (en) 1999-09-03 2001-12-11 Plug Power Llc Enthalpy recovery fuel cell system
US6284399B1 (en) 1999-09-17 2001-09-04 Plug Power Llc Fuel cell system having humidification membranes
US6322917B1 (en) 1999-09-27 2001-11-27 Plug Power L.L.C. Diagnostic method and control of preferential oxidation of carbon monoxide
DE10001717C1 (de) * 2000-01-18 2001-04-26 Xcellsis Gmbh Brennstoffzellensystem
DE10110419A1 (de) * 2000-03-08 2003-10-23 Honda Motor Co Ltd Brennstoffzellensystem
JP4575551B2 (ja) 2000-05-30 2010-11-04 本田技研工業株式会社 燃料電池用ガス供給装置
JP4843147B2 (ja) * 2000-05-30 2011-12-21 本田技研工業株式会社 燃料電池暖機システム
US6436563B1 (en) 2000-06-13 2002-08-20 Hydrogenics Corporation Water recovery, primarily in the cathode side, of a proton exchange membrane fuel cell
US6434943B1 (en) 2000-10-03 2002-08-20 George Washington University Pressure exchanging compressor-expander and methods of use
US6953635B2 (en) 2000-10-04 2005-10-11 Honda Giken Kogyo Kabushiki Kaisha Humidifier for fuel cell
JP5132857B2 (ja) * 2000-10-05 2013-01-30 本田技研工業株式会社 燃料電池システム
AU2002214858A1 (en) * 2000-10-27 2002-05-06 Questair Technologies, Inc. Systems and processes for providing hydrogen to fuel cells
US7097925B2 (en) * 2000-10-30 2006-08-29 Questair Technologies Inc. High temperature fuel cell power plant
CA2325072A1 (en) 2000-10-30 2002-04-30 Questair Technologies Inc. Gas separation for molten carbonate fuel cell
AU2002215752A1 (en) * 2000-12-08 2002-06-18 Denis Connor Methods and apparatuses for gas separation by pressure swing adsorption with partial gas product feed to fuel cell power source
CA2329475A1 (en) * 2000-12-11 2002-06-11 Andrea Gibbs Fast cycle psa with adsorbents sensitive to atmospheric humidity
US20020112479A1 (en) * 2001-01-09 2002-08-22 Keefer Bowie G. Power plant with energy recovery from fuel storage
US7077187B2 (en) * 2001-08-30 2006-07-18 Hydrogenics Corporation Apparatus for exchanging energy and/or mass
US6630260B2 (en) 2001-07-20 2003-10-07 General Motors Corporation Water vapor transfer device for a fuel cell power plant
US6875246B2 (en) * 2001-07-20 2005-04-05 General Motors Corporation Water vapor transfer device for fuel cell reformer
US6979506B2 (en) * 2001-08-31 2005-12-27 Plug Power Inc. Fuel cell system
US7387849B2 (en) * 2002-03-14 2008-06-17 Questair Technologies Inc. Hydrogen recycle for solid oxide fuel cell
CA2477262A1 (en) * 2002-03-14 2003-09-18 Questair Technologies Inc. Gas separation by combined pressure swing and displacement purge
US7285350B2 (en) * 2002-09-27 2007-10-23 Questair Technologies Inc. Enhanced solid oxide fuel cell systems
WO2004049478A2 (en) * 2002-11-27 2004-06-10 Hydrogenics Corporation Fuel cell power system with external humidification and reactant recirculation and method of operating the same
US6989209B2 (en) * 2002-12-27 2006-01-24 General Electric Company Power generation method
WO2004076017A2 (en) * 2003-02-26 2004-09-10 Questair Technologies Inc. Hydrogen recycle for high temperature fuel cells
US20040247967A1 (en) * 2003-06-06 2004-12-09 Gennady Resnick Maintaining PEM fuel cell performance with sub-freezing boot strap starts
US6979508B2 (en) * 2003-11-12 2005-12-27 Ener 1 Inc. Fuel cell with integrated feedback control
KR100529079B1 (ko) * 2004-03-25 2005-11-15 삼성에스디아이 주식회사 연료 전지 시스템
US7189280B2 (en) * 2004-06-29 2007-03-13 Questair Technologies Inc. Adsorptive separation of gas streams
US7828877B2 (en) * 2004-11-05 2010-11-09 Xebec Adsorption, Inc. Separation of carbon dioxide from other gases
US20060134495A1 (en) * 2004-12-17 2006-06-22 Gallagher Emerson R Fuel cell system with cathode stream recirculation
US20090325012A1 (en) * 2004-12-17 2009-12-31 Astris Energi Inc. Alkaline fuel cell system
JP2007048507A (ja) * 2005-08-08 2007-02-22 Nippon Soken Inc 燃料電池システム
US20070087240A1 (en) * 2005-10-18 2007-04-19 General Hydrogen Corporation Fuel cell fluid dissipater
US7521146B2 (en) * 2005-12-27 2009-04-21 Plug Power Inc. Switching modes of operation of a fuel cell
US8101320B2 (en) * 2006-02-21 2012-01-24 GM Global Technology Operations LLC Fuel cell integrated humidification
US20070218326A1 (en) * 2006-03-17 2007-09-20 Honeywell International, Inc. Approach of solving humidification device turndown ratio for proton exchange membrane fuel cells
JP5154026B2 (ja) * 2006-04-14 2013-02-27 本田技研工業株式会社 燃料電池システム
AT502009B1 (de) * 2006-05-09 2007-09-15 Avl List Gmbh Brennstoffzellensystem, sowie verfahren zum betrieb eines brennstoffzellensystems
AT501963B1 (de) * 2006-05-09 2007-09-15 Avl List Gmbh Brennstoffzellensystem, sowie verfahren zum betrieb eines brennstoffzellensystems
WO2008007689A1 (fr) * 2006-07-13 2008-01-17 Toyota Jidosha Kabushiki Kaisha Système de pile à combustible et véhicule à pile à combustible
KR100821034B1 (ko) * 2007-04-24 2008-04-08 삼성에스디아이 주식회사 습도조절장치 겸용 캐소드 엔드 플레이트 및 이를 채용한공기호흡형 연료전지 스택
US8026020B2 (en) 2007-05-08 2011-09-27 Relion, Inc. Proton exchange membrane fuel cell stack and fuel cell stack module
US9293778B2 (en) 2007-06-11 2016-03-22 Emergent Power Inc. Proton exchange membrane fuel cell
US8003274B2 (en) 2007-10-25 2011-08-23 Relion, Inc. Direct liquid fuel cell
EP2403926B1 (de) * 2009-03-05 2019-10-02 G4 Insights Inc. Verfahren zur thermochemischen umwandlung von biomasse
CA2781204C (en) 2009-11-18 2018-05-01 G4 Insights Inc. Sorption enhanced methanation of biomass
WO2011060539A1 (en) 2009-11-18 2011-05-26 G4 Insights Inc. Method and system for biomass hydrogasification
ITTO20091026A1 (it) 2009-12-22 2011-06-23 Electro Power Systems Spa Gestione del funzionamento di un generatore elettrico di back-up a celle a combustibile pem impilate
US8383871B1 (en) 2010-09-03 2013-02-26 Brian G. Sellars Method of hydrogasification of biomass to methane with low depositable tars
JP5476408B2 (ja) 2012-03-14 2014-04-23 本田技研工業株式会社 燃料電池システム
US9806356B2 (en) * 2014-09-24 2017-10-31 GM Global Technology Operations LLC Systems and methods for controlling oxygen concentration in a cathode of a fuel cell system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2533215B2 (de) * 1975-07-25 1979-12-06 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zur Konstanthaltung der Betriebstemperatur und Elektrolytkonzentration einer für Rohgas/Luft-Betrieb ausgebildeten Brennstoffzellenbatterie mit festgelegtem sauren Elektrolyten
US4362789A (en) * 1981-09-21 1982-12-07 Westinghouse Electric Corp. Fuel cell cooling and recirculation system
US4859545A (en) * 1988-05-05 1989-08-22 International Fuel Cells Corporation Cathode flow control for fuel cell power plant
DE4021097A1 (de) * 1990-07-02 1992-01-09 Siemens Ag Brennstoffzellen-kraftwerk
WO1992013365A1 (en) * 1991-01-15 1992-08-06 Ballard Power Systems Inc. Method and apparatus for removing water from electrochemical fuel cells

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769297A (en) * 1987-11-16 1988-09-06 International Fuel Cells Corporation Solid polymer electrolyte fuel cell stack water management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2533215B2 (de) * 1975-07-25 1979-12-06 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zur Konstanthaltung der Betriebstemperatur und Elektrolytkonzentration einer für Rohgas/Luft-Betrieb ausgebildeten Brennstoffzellenbatterie mit festgelegtem sauren Elektrolyten
US4362789A (en) * 1981-09-21 1982-12-07 Westinghouse Electric Corp. Fuel cell cooling and recirculation system
US4859545A (en) * 1988-05-05 1989-08-22 International Fuel Cells Corporation Cathode flow control for fuel cell power plant
DE4021097A1 (de) * 1990-07-02 1992-01-09 Siemens Ag Brennstoffzellen-kraftwerk
WO1992013365A1 (en) * 1991-01-15 1992-08-06 Ballard Power Systems Inc. Method and apparatus for removing water from electrochemical fuel cells

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853910A (en) * 1996-03-29 1998-12-29 Kabushikikaisha Equos Research Fuel cell power generating apparatus and operation method therefor
EP1025602A4 (de) * 1997-07-25 2009-11-25 Emprise Corp Brennstoffzellengas-management-system
EP1025602A1 (de) * 1997-07-25 2000-08-09 Emprise Corporation Brennstoffzellengas-management-system
WO1999028985A1 (en) * 1997-12-01 1999-06-10 Ballard Power Systems Inc. Method and apparatus for distributing water to an ion-exchange membrane in a fuel cell
WO2001041243A1 (de) * 1999-11-29 2001-06-07 Forschungszentrum Jülich GmbH Brennstoffzelle mit kreislauf des oxidationsmittels
WO2003028137A2 (de) 2001-09-21 2003-04-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und vorrichtung zum betrieb einer brennstoffzelle
WO2003028137A3 (de) * 2001-09-21 2004-01-29 Fraunhofer Ges Forschung Verfahren und vorrichtung zum betrieb einer brennstoffzelle
DE10251878C5 (de) * 2001-11-09 2010-02-11 Honda Giken Kogyo K.K. Brennstoffzellensystem mit einem Brennstoffkreislauf
EP1526597A1 (de) * 2003-10-25 2005-04-27 P 21-Power for the 21st Century GmbH Befeuchtungsvorrichtung für Medienströme in Brennstoffzellen
US7824815B2 (en) 2004-04-08 2010-11-02 Toyota Jidosha Kabushiki Kaisha Fuel cell system
DE102007042787A1 (de) 2007-09-07 2009-03-12 Daimler Ag Modifizierte Gasdiffusionsschicht in Brennstoffzellen
GB2508817A (en) * 2012-12-11 2014-06-18 Afc Energy Plc Fuel Cell System
EP3304627B1 (de) 2015-05-28 2018-11-07 ThyssenKrupp Marine Systems GmbH Brennstoffzelle mit befeuchter

Also Published As

Publication number Publication date
US5543238A (en) 1996-08-06
CA2142090A1 (en) 1994-02-17

Similar Documents

Publication Publication Date Title
WO1994003937A1 (de) Brennstoffzelle und verfahren zur befeuchtung des elektrolyten
DE19857398B4 (de) Brennstoffzellensystem, insbesondere für elektromotorisch angetriebene Fahrzeuge
EP0907979B1 (de) Direkt-methanol-brennstoffzelle (dmfc)
DE102007026331B4 (de) Brennstoffzellensystem mit verbessertem Feuchtemanagement und dessen Verwendung in einem Fahrzeug
DE69810841T2 (de) Verfahren zum Betrieb einer Polymerelektrolyt-Brennstoffzelle mit innerer Befeuchtung
DE102007034239B4 (de) Verfahren zum herstellen superhydrophiler und elektrisch leitender oberelächen für bipolarplatten von brennstoffzellen und brennstoffzellen mit solchen bipolarplatten
EP0654182B1 (de) Brennstoffzelle und verfahren zur befeuchtung des elektrolyten
DE102006019114A1 (de) Brennstoffzellenbetriebsverfahren zur verbesserten Wasserstoff- und Sauerstoffverwendung
DE102015202089A1 (de) Brennstoffzellensystem sowie Fahrzeug mit einem solchen
DE102007024838A1 (de) Steuerung mehrerer Druckregimes, um RF-Abweichungen bei Übergängen zu minimieren
DE19637207C2 (de) Anlage und Verfahren zur Energieerzeugung
DE102012222816A1 (de) Voraktivierungsverfahren für einen brennstoffzellenstapel
WO1999057773A1 (de) Elektrode mit für ein fluid durchgängigen poren und brennstoffzelle
DE112020005094T5 (de) Konditionierungsverfahren einer brennstoffzelle
WO1998050975A1 (de) Integraler pem-brennstoffzellen-heizungsmodul und dessen verwendung sowie pem-brennstoffzellenstapel
DE102017215574A1 (de) Verfahren zum Betreiben einer Brennstoffzelle und Brennstoffzellensystem
DE102006054795B4 (de) Wassermanagement von PEM-Brennstoffzellenstapeln unter Verwendung von oberflächenaktiven Stoffen
EP1368847A2 (de) Verfahren zur verbesserung des wasserhaushalts von brennstoffzellen
DE102010041465B4 (de) Brennstoffzellensystem mit Direktmethanolbrennstoffzelle und Verfahren zu dessen Betrieb
DE102020128127A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems und Brennstoffzellensystem
DE102019133091A1 (de) Brennstoffzellenvorrichtung, Kraftfahrzeug mit einer Brennstoffzellenvorrichtung und Verfahren zum Betreiben einer Brennstoffzellenvorrichtung
WO2020030346A1 (de) Befeuchter, brennstoffzellenvorrichtung mit befeuchter sowie kraftfahrzeug
DE102021127197B3 (de) Anordnung für eine Brennstoffzellenvorrichtung
EP4037812B1 (de) Befeuchter, brennstoffzellenvorrichtung sowie kraftfahrzeug mit einer brennstoffzellenvorrichtung
WO2001033654A1 (de) Optimierung der betriebsparameter eines direkt-methanol-brennstoffzellensystems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1992917913

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08383721

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2142090

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1992917913

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992917913

Country of ref document: EP