WO1994003937A1 - Brennstoffzelle und verfahren zur befeuchtung des elektrolyten - Google Patents
Brennstoffzelle und verfahren zur befeuchtung des elektrolyten Download PDFInfo
- Publication number
- WO1994003937A1 WO1994003937A1 PCT/DE1992/000661 DE9200661W WO9403937A1 WO 1994003937 A1 WO1994003937 A1 WO 1994003937A1 DE 9200661 W DE9200661 W DE 9200661W WO 9403937 A1 WO9403937 A1 WO 9403937A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- air
- cathode
- exhaust gas
- electrolyte
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04097—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04029—Heat exchange using liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
- H01M8/04156—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04291—Arrangements for managing water in solid electrolyte fuel cell systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to a fuel cell, in particular a PEM fuel cell, and a method for moistening the electrolyte of the fuel cell.
- a fuel cell generally consists of an electrically conductive current transfer plate, a cathode, an ion-conductive intermediate layer, an anode and a further electrically conductive current transfer plate, which are stacked on top of one another in the order mentioned as flat plates.
- Fuel cells of this construction are, inter alia, by the "Fuel Cell Handbook” by Appleby and Foulkes, New York, 1989, and by the article by K. Strasser "Fuel cells for electrical traction", VDI reports No. 912, 1992, pages 125 to 145 , previously known.
- the fuel cell can convert chemically bound energy directly into electrical energy, it makes it possible to convert fuels, such as hydrogen, natural gas, biogas, into electrical energy with higher efficiency and with less pollution for the environment than the previously known conventional ones Thermal power plants whose efficiency is limited by the so-called Carnot 1 process can do.
- a polymer electrolyte membrane fuel cell (PEM fuel cell) is preferred in connection with an electric drive.
- PEM fuel cell polymer electrolyte membrane fuel cell
- This type of fuel cell can be operated with technically pure gases as well as with CO 2 -containing gases and air.
- the low operating temperature ( ⁇ 100 ° C.), the high power density, for example, are particularly advantageous for use in a vehicle, the favorable long-term behavior and the lack of a corrosive, liquid electrolyte.
- Corrosive liquid electrolytes are used, for example, in acidic or alkaline fuel cells.
- a particular problem with the fuel cells mentioned is the water balance in the electrolyte during operation of the fuel cells.
- the functionality of the fuel cell is closely linked to the water content in the fuel cell, and in particular in the electrolyte.
- a too high water content in the electrolyte leads to a decrease in the available power of the fuel cell due to its too high dilution.
- the electrical power of the fuel cell also drops due to an increase in the internal resistance.
- a gas breakthrough and thus the formation of flammable gas mixtures can occur even when the electrolyte partially dries out. In the worst case, this leads to damage or destruction of the fuel cell when the gas mixture burns off.
- a PEM fuel cell which is preferably operated with hydrogen and air, requires an evaporator arrangement to adjust the water content in the proton-conducting membrane.
- the evaporator arrangement must look lent their dimensions to the lowest system pressure, because in this case the greatest volume flows have to be humidified at constant temperature and the largest mass transfer areas are therefore required.
- the disadvantages are the relatively large construction volume, which can reach the size of the actual fuel cell block, and the associated high investment costs.
- the invention is therefore based on the object of specifying a fuel cell and a method for moistening the electrolyte which make it possible to avoid the disadvantages mentioned to such an extent that the fuel cell can be used from an economic point of view.
- this object is achieved in that exhaust gas from the fuel cell that is produced on the cathode side is at least partially recirculated into the cathode of the fuel cell.
- part of the water (product water) formed in the electrochemical reaction in the fuel cell is initially carried away with the remaining exhaust gas from the cathode of the fuel cell and then at least partially recirculated into the cathode of the fuel cell, as a result of which the degree of humidification of the oxidizing agent flowing into the cathode is raised and a better moistening of the electrolyte of the fuel cell is ensured.
- a recirculation line is connected to an exhaust line connected to the fuel cell on the cathode side, via which at least a part of the exhaust gas accumulating on the cathode side can be recirculated into the cathode of the fuel cell, the recirculation line being a one-part element assigned.
- the recirculated part of the exhaust gas can be adjusted proportionally to the power output of the fuel cell by means of the adjusting element.
- the power output of the fuel cell can be determined simply by measuring the current and voltage, the output of the fuel cell also increasing proportionally to the power output as the power output of the fuel cell increases.
- the recirculated part of the exhaust gas can be adjusted accordingly.
- the recirculation line opens into an air supply line connected to the cathode side via a gas compressor.
- the gas compressor only has a relatively small pressure difference between cathode equalize entry and exit and compress relatively small amounts of air.
- FIG. 1 shows a schematic illustration of a PEM fuel cell according to the invention with a recirculation line for exhaust gas from the fuel cell which is produced on the cathode side, and
- FIG. 2 shows a detail of the opening of the recirculation line into the air supply line, as modified from FIG. 1.
- the fuel cell 2 shown schematically in FIG. 1 comprises a cooling space 4, a spacer 6 on the cooling water side, an air gas space 8, a plate of carbon paper 10 on the cathode side, a platinum cathode 12, a PEM membrane 14 (commercially available, for example, under the name "Nafion 117""available), a platinum anode 16, an anode-side plate 18 made of carbon paper, a hydrogen gas space 20, a cooling water-side spacer 22 and a cooling space 24, which are stacked in this order as flat plates.
- the cathode-side cooling space 4 and the anode-side cooling space 24 can be connected to a cooling water circuit, not shown.
- An air supply line 26 is connected to the air gas space 8 on the input side and an exhaust gas line 28 is connected on the output side, the latter leading to the outside via an adjusting member 30 and an expansion turbine 32.
- a recirculation line 34 is connected to the input member 30 and opens into the air supply line 26 via a gas compressor 36.
- an air compressor 38 is connected in the air supply line 26.
- Part of the drive power of the air compressor 36 and the further air compressor 38 is applied by the exhaust gas expansion turbine 32 via a connection 40, which is only indicated schematically here. The remaining drive power must be provided by a motor 41, not shown here.
- a hydrogen supply line 42 is connected on the input side to the hydrogen gas space 20. This leads from a hydrogen source 44 via a valve 46 and a gas humidifier 48 into the hydrogen gas space 20. On the output side, a return line 50 for hydrogen is connected to the hydrogen space 20, which leads via a gas compressor 52 between the air humidifier 48 and the hydrogen gas space 20 into the hydrogen supply ⁇ line 42 opens.
- the hydrogen gas space 20 is subjected to a hydrogen partial pressure of approximately 2 bar.
- Air is applied to the air gas space 8 by means of the gas compressor 36 and the air compressor 38, the static air pressure in the exemplary embodiment being approximately 1.3-4 bar a.
- the atmospheric oxygen molecules are converted catalytically into two doubly negatively charged oxygen ions with the inclusion of four electrons.
- the oxygen ions reach the boundary layer between cathode 12 and PEM 14.
- the electrons required to reduce the oxygen are generated catalytically in the anode, where two hydrogen molecules are split into four hydrogen ions and four electrons.
- a voltage U ßZ of approximately 0.5-1 V is applied to a contact 54 connected to the cathode-side carbon paper plate 10 and to a contact 56 connected to the anode-side carbon paper plate 18, depending on the set load current.
- the electrons released in the anode flow to the cathode 12 via an ammeter 58 and an external electrical consumer (not shown).
- the fuel cell 2 then begins its intended operation and achieves a specific power of up to approx. 700 mW / cm 2 and a current density of 1000 mA / cm 2 .
- the working temperature is approximately 80 ° C.
- the hydrogen gas that flows in via the hydrogen supply line 42 to the anode 16 and is previously passed into the humidifier 48 and humidified there is partly consumed in the fuel cell with the release of the electrons and subsequent formation of water.
- the unused part of the hydrogen gas is introduced into the hydrogen return line 50.
- the hydrogen gas moistened with the product water is then fed back into the hydrogen supply line 50 via the gas compressor 52 and prevents the PEM 14 from drying out at the boundary layer PEM 14 - anode 16 by its subsequent introduction into the anode 16.
- the used part of the hydrogen gas thereby becomes supplemented from the hydrogen source 44 and moistened by means of the gas humidifier 48.
- the gas humidifier 48 can be supplied with condensed water, which is obtained in a manner not shown here from the exhaust gas on the cathode side.
- the product water formed on the cathode side is removed with the air flow from the air gas space 8 by introducing it into the exhaust gas line 28 from the fuel cell 2.
- part of the exhaust gas is introduced into the recirculation line 34 by means of the adjusting element 30 and from there it is fed back into the air supply line 26 via the gas compressor 36.
- part of the water formed in the electrochemical reaction at the interface between cathode 12 and PEM 14 is recirculated into cathode 12, thereby preventing the PEM 14 from drying out and thus preventing the fuel cell 2 from malfunctioning.
- the recirculated air quantity at full load of the fuel cell 2 is approximately half of the exhaust gas 5 air quantity. This also ensures adequate moistening of the PEM 14 on the side of the cathode 12.
- the air ratio m is defined as the ratio of the amount of oxygen in the 5 air to the oxygen requirement (stoichiometric).
- the Gasverdich ⁇ 36 has to compensate only a small difference in air pressure ter to the recirculated exhaust gas back to the input Q air pressure of the air gas space to condense.
- FIG. 2 shows an alternative possibility of introducing the recirculated air into the air supply line 26 and thereby compensating for the pressure difference.
- an air jet compressor 63 is installed on the mouth parts for the recirculation line 34 in such a way that its intake 60 is connected to the recirculation line 34 and its compressed air supply connection 62 to the air compressor 38. This ensures that the recirculated gas mixture is sucked in by the compressed air flowing into the fuel cell 2 in accordance with the current setting of the setting member 30.
- the inventive recirculation of exhaust gas generated on the cathode side saves a voluminous and expensive air humidifier with little effort and thus creates a prerequisite for reducing the production costs for fuel cells 2 on the basis of a PEM 14.
- a structure which is only slightly changed compared to FIG. 1 can also be used in the case of an alkaline or an acid firing save the use of separate humidifiers on the cathode side of the fuel cell.
- the measures proposed according to the invention would also lead to an improvement in the overall efficiency of the fuel cell in these fuel cells.
- the overall efficiency of the exemplary embodiment described in FIG. 1 is over 60% in partial load operation, for example at a load factor of 20%.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE59205882T DE59205882D1 (de) | 1992-08-10 | 1992-08-10 | Brennstoffzelle und verfahren zur befeuchtung des elektrolyten |
PCT/DE1992/000661 WO1994003937A1 (de) | 1992-08-10 | 1992-08-10 | Brennstoffzelle und verfahren zur befeuchtung des elektrolyten |
JP6504867A JPH08500931A (ja) | 1992-08-10 | 1992-08-10 | 燃料電池及びその電解質の加湿方法 |
CA002142090A CA2142090A1 (en) | 1992-08-10 | 1992-08-10 | Fuel cell and method for moistening the electrolyte |
EP92917913A EP0654182B1 (de) | 1992-08-10 | 1992-08-10 | Brennstoffzelle und verfahren zur befeuchtung des elektrolyten |
US08/383,721 US5543238A (en) | 1992-08-10 | 1995-02-03 | Fuel cell and method for moistening the electrolyte of the fuel cell |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/DE1992/000661 WO1994003937A1 (de) | 1992-08-10 | 1992-08-10 | Brennstoffzelle und verfahren zur befeuchtung des elektrolyten |
CA002142090A CA2142090A1 (en) | 1992-08-10 | 1992-08-10 | Fuel cell and method for moistening the electrolyte |
US08/383,721 US5543238A (en) | 1992-08-10 | 1995-02-03 | Fuel cell and method for moistening the electrolyte of the fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1994003937A1 true WO1994003937A1 (de) | 1994-02-17 |
Family
ID=27169951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1992/000661 WO1994003937A1 (de) | 1992-08-10 | 1992-08-10 | Brennstoffzelle und verfahren zur befeuchtung des elektrolyten |
Country Status (3)
Country | Link |
---|---|
US (1) | US5543238A (de) |
CA (1) | CA2142090A1 (de) |
WO (1) | WO1994003937A1 (de) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5853910A (en) * | 1996-03-29 | 1998-12-29 | Kabushikikaisha Equos Research | Fuel cell power generating apparatus and operation method therefor |
WO1999028985A1 (en) * | 1997-12-01 | 1999-06-10 | Ballard Power Systems Inc. | Method and apparatus for distributing water to an ion-exchange membrane in a fuel cell |
EP1025602A1 (de) * | 1997-07-25 | 2000-08-09 | Emprise Corporation | Brennstoffzellengas-management-system |
WO2001041243A1 (de) * | 1999-11-29 | 2001-06-07 | Forschungszentrum Jülich GmbH | Brennstoffzelle mit kreislauf des oxidationsmittels |
WO2003028137A2 (de) | 2001-09-21 | 2003-04-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und vorrichtung zum betrieb einer brennstoffzelle |
EP1526597A1 (de) * | 2003-10-25 | 2005-04-27 | P 21-Power for the 21st Century GmbH | Befeuchtungsvorrichtung für Medienströme in Brennstoffzellen |
DE102007042787A1 (de) | 2007-09-07 | 2009-03-12 | Daimler Ag | Modifizierte Gasdiffusionsschicht in Brennstoffzellen |
DE10251878C5 (de) * | 2001-11-09 | 2010-02-11 | Honda Giken Kogyo K.K. | Brennstoffzellensystem mit einem Brennstoffkreislauf |
US7824815B2 (en) | 2004-04-08 | 2010-11-02 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
GB2508817A (en) * | 2012-12-11 | 2014-06-18 | Afc Energy Plc | Fuel Cell System |
EP3304627B1 (de) | 2015-05-28 | 2018-11-07 | ThyssenKrupp Marine Systems GmbH | Brennstoffzelle mit befeuchter |
Families Citing this family (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3203150B2 (ja) * | 1995-05-18 | 2001-08-27 | 三洋電機株式会社 | 固体高分子型燃料電池及び固体高分子型燃料電池システム |
JP3553210B2 (ja) * | 1995-06-26 | 2004-08-11 | 本田技研工業株式会社 | 燃料電池を搭載した移動体における燃料電池システム |
US5830593A (en) * | 1996-01-11 | 1998-11-03 | Nielson; Jay P. | Rotating electrode fuel cell for vehicle propulsion |
USRE38493E1 (en) * | 1996-04-24 | 2004-04-13 | Questair Technologies Inc. | Flow regulated pressure swing adsorption system |
DE19718970A1 (de) * | 1997-05-05 | 1998-11-12 | Zsw | Integraler PEM-Brennstoffzellen-Heizungsmodul und dessen Verwendung sowie PEM-Brennstoffzellenstapel |
US6106964A (en) * | 1997-06-30 | 2000-08-22 | Ballard Power Systems Inc. | Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream |
US6416895B1 (en) | 2000-03-09 | 2002-07-09 | Ballard Power Systems Inc. | Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream |
US5998054A (en) * | 1997-07-23 | 1999-12-07 | Plug Power, L.L.C. | Fuel cell membrane hydration and fluid metering |
US6015634A (en) * | 1998-05-19 | 2000-01-18 | International Fuel Cells | System and method of water management in the operation of a fuel cell |
DE69931171T2 (de) * | 1998-09-14 | 2007-02-22 | Questair Technologies, Inc. | Stromerzeugungssystem |
US6921597B2 (en) * | 1998-09-14 | 2005-07-26 | Questair Technologies Inc. | Electrical current generation system |
US6638654B2 (en) * | 1999-02-01 | 2003-10-28 | The Regents Of The University Of California | MEMS-based thin-film fuel cells |
US6268074B1 (en) | 1999-04-05 | 2001-07-31 | General Motors Corporation | Water injected fuel cell system compressor |
DE19918850C2 (de) * | 1999-04-19 | 2002-10-24 | Vodafone Ag | Befeuchtungsvorrichtung für Brennstoffzelle, Verfahren zur Befeuchtung einer Brennstoffzellenmembran und Verwendung der Befeuchtungsvorrichtung in einer Brennstoffzelle |
US6329090B1 (en) | 1999-09-03 | 2001-12-11 | Plug Power Llc | Enthalpy recovery fuel cell system |
US6284399B1 (en) | 1999-09-17 | 2001-09-04 | Plug Power Llc | Fuel cell system having humidification membranes |
US6322917B1 (en) | 1999-09-27 | 2001-11-27 | Plug Power L.L.C. | Diagnostic method and control of preferential oxidation of carbon monoxide |
DE10001717C1 (de) * | 2000-01-18 | 2001-04-26 | Xcellsis Gmbh | Brennstoffzellensystem |
DE10110419A1 (de) * | 2000-03-08 | 2003-10-23 | Honda Motor Co Ltd | Brennstoffzellensystem |
JP4575551B2 (ja) | 2000-05-30 | 2010-11-04 | 本田技研工業株式会社 | 燃料電池用ガス供給装置 |
JP4843147B2 (ja) * | 2000-05-30 | 2011-12-21 | 本田技研工業株式会社 | 燃料電池暖機システム |
US6436563B1 (en) | 2000-06-13 | 2002-08-20 | Hydrogenics Corporation | Water recovery, primarily in the cathode side, of a proton exchange membrane fuel cell |
US6434943B1 (en) | 2000-10-03 | 2002-08-20 | George Washington University | Pressure exchanging compressor-expander and methods of use |
US6953635B2 (en) | 2000-10-04 | 2005-10-11 | Honda Giken Kogyo Kabushiki Kaisha | Humidifier for fuel cell |
JP5132857B2 (ja) * | 2000-10-05 | 2013-01-30 | 本田技研工業株式会社 | 燃料電池システム |
AU2002214858A1 (en) * | 2000-10-27 | 2002-05-06 | Questair Technologies, Inc. | Systems and processes for providing hydrogen to fuel cells |
US7097925B2 (en) * | 2000-10-30 | 2006-08-29 | Questair Technologies Inc. | High temperature fuel cell power plant |
CA2325072A1 (en) | 2000-10-30 | 2002-04-30 | Questair Technologies Inc. | Gas separation for molten carbonate fuel cell |
AU2002215752A1 (en) * | 2000-12-08 | 2002-06-18 | Denis Connor | Methods and apparatuses for gas separation by pressure swing adsorption with partial gas product feed to fuel cell power source |
CA2329475A1 (en) * | 2000-12-11 | 2002-06-11 | Andrea Gibbs | Fast cycle psa with adsorbents sensitive to atmospheric humidity |
US20020112479A1 (en) * | 2001-01-09 | 2002-08-22 | Keefer Bowie G. | Power plant with energy recovery from fuel storage |
US7077187B2 (en) * | 2001-08-30 | 2006-07-18 | Hydrogenics Corporation | Apparatus for exchanging energy and/or mass |
US6630260B2 (en) | 2001-07-20 | 2003-10-07 | General Motors Corporation | Water vapor transfer device for a fuel cell power plant |
US6875246B2 (en) * | 2001-07-20 | 2005-04-05 | General Motors Corporation | Water vapor transfer device for fuel cell reformer |
US6979506B2 (en) * | 2001-08-31 | 2005-12-27 | Plug Power Inc. | Fuel cell system |
US7387849B2 (en) * | 2002-03-14 | 2008-06-17 | Questair Technologies Inc. | Hydrogen recycle for solid oxide fuel cell |
CA2477262A1 (en) * | 2002-03-14 | 2003-09-18 | Questair Technologies Inc. | Gas separation by combined pressure swing and displacement purge |
US7285350B2 (en) * | 2002-09-27 | 2007-10-23 | Questair Technologies Inc. | Enhanced solid oxide fuel cell systems |
WO2004049478A2 (en) * | 2002-11-27 | 2004-06-10 | Hydrogenics Corporation | Fuel cell power system with external humidification and reactant recirculation and method of operating the same |
US6989209B2 (en) * | 2002-12-27 | 2006-01-24 | General Electric Company | Power generation method |
WO2004076017A2 (en) * | 2003-02-26 | 2004-09-10 | Questair Technologies Inc. | Hydrogen recycle for high temperature fuel cells |
US20040247967A1 (en) * | 2003-06-06 | 2004-12-09 | Gennady Resnick | Maintaining PEM fuel cell performance with sub-freezing boot strap starts |
US6979508B2 (en) * | 2003-11-12 | 2005-12-27 | Ener 1 Inc. | Fuel cell with integrated feedback control |
KR100529079B1 (ko) * | 2004-03-25 | 2005-11-15 | 삼성에스디아이 주식회사 | 연료 전지 시스템 |
US7189280B2 (en) * | 2004-06-29 | 2007-03-13 | Questair Technologies Inc. | Adsorptive separation of gas streams |
US7828877B2 (en) * | 2004-11-05 | 2010-11-09 | Xebec Adsorption, Inc. | Separation of carbon dioxide from other gases |
US20060134495A1 (en) * | 2004-12-17 | 2006-06-22 | Gallagher Emerson R | Fuel cell system with cathode stream recirculation |
US20090325012A1 (en) * | 2004-12-17 | 2009-12-31 | Astris Energi Inc. | Alkaline fuel cell system |
JP2007048507A (ja) * | 2005-08-08 | 2007-02-22 | Nippon Soken Inc | 燃料電池システム |
US20070087240A1 (en) * | 2005-10-18 | 2007-04-19 | General Hydrogen Corporation | Fuel cell fluid dissipater |
US7521146B2 (en) * | 2005-12-27 | 2009-04-21 | Plug Power Inc. | Switching modes of operation of a fuel cell |
US8101320B2 (en) * | 2006-02-21 | 2012-01-24 | GM Global Technology Operations LLC | Fuel cell integrated humidification |
US20070218326A1 (en) * | 2006-03-17 | 2007-09-20 | Honeywell International, Inc. | Approach of solving humidification device turndown ratio for proton exchange membrane fuel cells |
JP5154026B2 (ja) * | 2006-04-14 | 2013-02-27 | 本田技研工業株式会社 | 燃料電池システム |
AT502009B1 (de) * | 2006-05-09 | 2007-09-15 | Avl List Gmbh | Brennstoffzellensystem, sowie verfahren zum betrieb eines brennstoffzellensystems |
AT501963B1 (de) * | 2006-05-09 | 2007-09-15 | Avl List Gmbh | Brennstoffzellensystem, sowie verfahren zum betrieb eines brennstoffzellensystems |
WO2008007689A1 (fr) * | 2006-07-13 | 2008-01-17 | Toyota Jidosha Kabushiki Kaisha | Système de pile à combustible et véhicule à pile à combustible |
KR100821034B1 (ko) * | 2007-04-24 | 2008-04-08 | 삼성에스디아이 주식회사 | 습도조절장치 겸용 캐소드 엔드 플레이트 및 이를 채용한공기호흡형 연료전지 스택 |
US8026020B2 (en) | 2007-05-08 | 2011-09-27 | Relion, Inc. | Proton exchange membrane fuel cell stack and fuel cell stack module |
US9293778B2 (en) | 2007-06-11 | 2016-03-22 | Emergent Power Inc. | Proton exchange membrane fuel cell |
US8003274B2 (en) | 2007-10-25 | 2011-08-23 | Relion, Inc. | Direct liquid fuel cell |
EP2403926B1 (de) * | 2009-03-05 | 2019-10-02 | G4 Insights Inc. | Verfahren zur thermochemischen umwandlung von biomasse |
CA2781204C (en) | 2009-11-18 | 2018-05-01 | G4 Insights Inc. | Sorption enhanced methanation of biomass |
WO2011060539A1 (en) | 2009-11-18 | 2011-05-26 | G4 Insights Inc. | Method and system for biomass hydrogasification |
ITTO20091026A1 (it) | 2009-12-22 | 2011-06-23 | Electro Power Systems Spa | Gestione del funzionamento di un generatore elettrico di back-up a celle a combustibile pem impilate |
US8383871B1 (en) | 2010-09-03 | 2013-02-26 | Brian G. Sellars | Method of hydrogasification of biomass to methane with low depositable tars |
JP5476408B2 (ja) | 2012-03-14 | 2014-04-23 | 本田技研工業株式会社 | 燃料電池システム |
US9806356B2 (en) * | 2014-09-24 | 2017-10-31 | GM Global Technology Operations LLC | Systems and methods for controlling oxygen concentration in a cathode of a fuel cell system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2533215B2 (de) * | 1975-07-25 | 1979-12-06 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Verfahren zur Konstanthaltung der Betriebstemperatur und Elektrolytkonzentration einer für Rohgas/Luft-Betrieb ausgebildeten Brennstoffzellenbatterie mit festgelegtem sauren Elektrolyten |
US4362789A (en) * | 1981-09-21 | 1982-12-07 | Westinghouse Electric Corp. | Fuel cell cooling and recirculation system |
US4859545A (en) * | 1988-05-05 | 1989-08-22 | International Fuel Cells Corporation | Cathode flow control for fuel cell power plant |
DE4021097A1 (de) * | 1990-07-02 | 1992-01-09 | Siemens Ag | Brennstoffzellen-kraftwerk |
WO1992013365A1 (en) * | 1991-01-15 | 1992-08-06 | Ballard Power Systems Inc. | Method and apparatus for removing water from electrochemical fuel cells |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4769297A (en) * | 1987-11-16 | 1988-09-06 | International Fuel Cells Corporation | Solid polymer electrolyte fuel cell stack water management system |
-
1992
- 1992-08-10 CA CA002142090A patent/CA2142090A1/en not_active Abandoned
- 1992-08-10 WO PCT/DE1992/000661 patent/WO1994003937A1/de active IP Right Grant
-
1995
- 1995-02-03 US US08/383,721 patent/US5543238A/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2533215B2 (de) * | 1975-07-25 | 1979-12-06 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Verfahren zur Konstanthaltung der Betriebstemperatur und Elektrolytkonzentration einer für Rohgas/Luft-Betrieb ausgebildeten Brennstoffzellenbatterie mit festgelegtem sauren Elektrolyten |
US4362789A (en) * | 1981-09-21 | 1982-12-07 | Westinghouse Electric Corp. | Fuel cell cooling and recirculation system |
US4859545A (en) * | 1988-05-05 | 1989-08-22 | International Fuel Cells Corporation | Cathode flow control for fuel cell power plant |
DE4021097A1 (de) * | 1990-07-02 | 1992-01-09 | Siemens Ag | Brennstoffzellen-kraftwerk |
WO1992013365A1 (en) * | 1991-01-15 | 1992-08-06 | Ballard Power Systems Inc. | Method and apparatus for removing water from electrochemical fuel cells |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5853910A (en) * | 1996-03-29 | 1998-12-29 | Kabushikikaisha Equos Research | Fuel cell power generating apparatus and operation method therefor |
EP1025602A4 (de) * | 1997-07-25 | 2009-11-25 | Emprise Corp | Brennstoffzellengas-management-system |
EP1025602A1 (de) * | 1997-07-25 | 2000-08-09 | Emprise Corporation | Brennstoffzellengas-management-system |
WO1999028985A1 (en) * | 1997-12-01 | 1999-06-10 | Ballard Power Systems Inc. | Method and apparatus for distributing water to an ion-exchange membrane in a fuel cell |
WO2001041243A1 (de) * | 1999-11-29 | 2001-06-07 | Forschungszentrum Jülich GmbH | Brennstoffzelle mit kreislauf des oxidationsmittels |
WO2003028137A2 (de) | 2001-09-21 | 2003-04-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und vorrichtung zum betrieb einer brennstoffzelle |
WO2003028137A3 (de) * | 2001-09-21 | 2004-01-29 | Fraunhofer Ges Forschung | Verfahren und vorrichtung zum betrieb einer brennstoffzelle |
DE10251878C5 (de) * | 2001-11-09 | 2010-02-11 | Honda Giken Kogyo K.K. | Brennstoffzellensystem mit einem Brennstoffkreislauf |
EP1526597A1 (de) * | 2003-10-25 | 2005-04-27 | P 21-Power for the 21st Century GmbH | Befeuchtungsvorrichtung für Medienströme in Brennstoffzellen |
US7824815B2 (en) | 2004-04-08 | 2010-11-02 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
DE102007042787A1 (de) | 2007-09-07 | 2009-03-12 | Daimler Ag | Modifizierte Gasdiffusionsschicht in Brennstoffzellen |
GB2508817A (en) * | 2012-12-11 | 2014-06-18 | Afc Energy Plc | Fuel Cell System |
EP3304627B1 (de) | 2015-05-28 | 2018-11-07 | ThyssenKrupp Marine Systems GmbH | Brennstoffzelle mit befeuchter |
Also Published As
Publication number | Publication date |
---|---|
US5543238A (en) | 1996-08-06 |
CA2142090A1 (en) | 1994-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1994003937A1 (de) | Brennstoffzelle und verfahren zur befeuchtung des elektrolyten | |
DE19857398B4 (de) | Brennstoffzellensystem, insbesondere für elektromotorisch angetriebene Fahrzeuge | |
EP0907979B1 (de) | Direkt-methanol-brennstoffzelle (dmfc) | |
DE102007026331B4 (de) | Brennstoffzellensystem mit verbessertem Feuchtemanagement und dessen Verwendung in einem Fahrzeug | |
DE69810841T2 (de) | Verfahren zum Betrieb einer Polymerelektrolyt-Brennstoffzelle mit innerer Befeuchtung | |
DE102007034239B4 (de) | Verfahren zum herstellen superhydrophiler und elektrisch leitender oberelächen für bipolarplatten von brennstoffzellen und brennstoffzellen mit solchen bipolarplatten | |
EP0654182B1 (de) | Brennstoffzelle und verfahren zur befeuchtung des elektrolyten | |
DE102006019114A1 (de) | Brennstoffzellenbetriebsverfahren zur verbesserten Wasserstoff- und Sauerstoffverwendung | |
DE102015202089A1 (de) | Brennstoffzellensystem sowie Fahrzeug mit einem solchen | |
DE102007024838A1 (de) | Steuerung mehrerer Druckregimes, um RF-Abweichungen bei Übergängen zu minimieren | |
DE19637207C2 (de) | Anlage und Verfahren zur Energieerzeugung | |
DE102012222816A1 (de) | Voraktivierungsverfahren für einen brennstoffzellenstapel | |
WO1999057773A1 (de) | Elektrode mit für ein fluid durchgängigen poren und brennstoffzelle | |
DE112020005094T5 (de) | Konditionierungsverfahren einer brennstoffzelle | |
WO1998050975A1 (de) | Integraler pem-brennstoffzellen-heizungsmodul und dessen verwendung sowie pem-brennstoffzellenstapel | |
DE102017215574A1 (de) | Verfahren zum Betreiben einer Brennstoffzelle und Brennstoffzellensystem | |
DE102006054795B4 (de) | Wassermanagement von PEM-Brennstoffzellenstapeln unter Verwendung von oberflächenaktiven Stoffen | |
EP1368847A2 (de) | Verfahren zur verbesserung des wasserhaushalts von brennstoffzellen | |
DE102010041465B4 (de) | Brennstoffzellensystem mit Direktmethanolbrennstoffzelle und Verfahren zu dessen Betrieb | |
DE102020128127A1 (de) | Verfahren zum Betreiben eines Brennstoffzellensystems und Brennstoffzellensystem | |
DE102019133091A1 (de) | Brennstoffzellenvorrichtung, Kraftfahrzeug mit einer Brennstoffzellenvorrichtung und Verfahren zum Betreiben einer Brennstoffzellenvorrichtung | |
WO2020030346A1 (de) | Befeuchter, brennstoffzellenvorrichtung mit befeuchter sowie kraftfahrzeug | |
DE102021127197B3 (de) | Anordnung für eine Brennstoffzellenvorrichtung | |
EP4037812B1 (de) | Befeuchter, brennstoffzellenvorrichtung sowie kraftfahrzeug mit einer brennstoffzellenvorrichtung | |
WO2001033654A1 (de) | Optimierung der betriebsparameter eines direkt-methanol-brennstoffzellensystems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1992917913 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 08383721 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2142090 Country of ref document: CA |
|
WWP | Wipo information: published in national office |
Ref document number: 1992917913 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1992917913 Country of ref document: EP |