WO1993020612A2 - Automatic device for the photometric analysis of liquid samples - Google Patents
Automatic device for the photometric analysis of liquid samples Download PDFInfo
- Publication number
- WO1993020612A2 WO1993020612A2 PCT/EP1993/000804 EP9300804W WO9320612A2 WO 1993020612 A2 WO1993020612 A2 WO 1993020612A2 EP 9300804 W EP9300804 W EP 9300804W WO 9320612 A2 WO9320612 A2 WO 9320612A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- cuvette
- cuvettes
- template
- samples
- Prior art date
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 27
- 238000005375 photometry Methods 0.000 title claims abstract description 6
- 239000000523 sample Substances 0.000 claims abstract description 127
- 238000000034 method Methods 0.000 claims abstract description 70
- 238000012360 testing method Methods 0.000 claims abstract description 53
- 238000012545 processing Methods 0.000 claims abstract description 29
- 238000011534 incubation Methods 0.000 claims abstract description 27
- 238000005259 measurement Methods 0.000 claims abstract description 24
- 230000008569 process Effects 0.000 claims abstract description 17
- 238000004458 analytical method Methods 0.000 claims abstract description 12
- 239000003153 chemical reaction reagent Substances 0.000 claims description 60
- 230000033001 locomotion Effects 0.000 claims description 22
- 230000008859 change Effects 0.000 claims description 7
- 238000006073 displacement reaction Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000010790 dilution Methods 0.000 claims description 5
- 239000012895 dilution Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 238000000691 measurement method Methods 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 5
- 230000001276 controlling effect Effects 0.000 claims description 4
- 210000002381 plasma Anatomy 0.000 claims description 4
- 238000007865 diluting Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 claims description 2
- 239000003085 diluting agent Substances 0.000 claims 4
- 239000012470 diluted sample Substances 0.000 claims 2
- 241001465754 Metazoa Species 0.000 claims 1
- 210000001124 body fluid Anatomy 0.000 claims 1
- 239000010839 body fluid Substances 0.000 claims 1
- 238000000151 deposition Methods 0.000 claims 1
- 230000007935 neutral effect Effects 0.000 claims 1
- 230000002123 temporal effect Effects 0.000 claims 1
- 230000008901 benefit Effects 0.000 abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000015271 coagulation Effects 0.000 description 4
- 238000005345 coagulation Methods 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 230000023555 blood coagulation Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 230000007723 transport mechanism Effects 0.000 description 2
- BCHLTFOMLWCYIS-UHFFFAOYSA-N 4-amino-5-chloro-n-[2-(diethylamino)ethyl]-2-methoxybenzamide;n-(4-hydroxyphenyl)acetamide;hydrochloride Chemical compound Cl.CC(=O)NC1=CC=C(O)C=C1.CCN(CC)CCNC(=O)C1=CC(Cl)=C(N)C=C1OC BCHLTFOMLWCYIS-UHFFFAOYSA-N 0.000 description 1
- 206010010219 Compulsions Diseases 0.000 description 1
- 208000036829 Device dislocation Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000011533 pre-incubation Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000006226 wash reagent Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/508—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
- B01L3/5085—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
- B01L3/50851—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates specially adapted for heating or cooling samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/251—Colorimeters; Construction thereof
- G01N21/253—Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/0092—Scheduling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/0092—Scheduling
- G01N35/0095—Scheduling introducing urgent samples with priority, e.g. Short Turn Around Time Samples [STATS]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/0099—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor comprising robots or similar manipulators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00346—Heating or cooling arrangements
- G01N2035/00356—Holding samples at elevated temperature (incubation)
- G01N2035/00376—Conductive heating, e.g. heated plates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00346—Heating or cooling arrangements
- G01N2035/00425—Heating or cooling means associated with pipettes or the like, e.g. for supplying sample/reagent at given temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/0092—Scheduling
- G01N2035/0093—Scheduling random access not determined by physical position
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0496—Other details
- G01N2035/0498—Drawers used as storage or dispensing means for vessels or cuvettes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/314—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/028—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having reaction cells in the form of microtitration plates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N35/1081—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices characterised by the means for relatively moving the transfer device and the containers in an horizontal plane
- G01N35/109—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices characterised by the means for relatively moving the transfer device and the containers in an horizontal plane with two horizontal degrees of freedom
Definitions
- the invention relates to a versatile device for processing samples with different incubation time requirements, capable of adding a number of intermediate and / or final (start) reagents and measuring photometric and turbidimetric variables at any time.
- the invention relates to a device for automatic photometric blood coagulation analysis.
- the devices can run only a few different types of tests simultaneously or in quick succession, all z. B. are coagulation tests.
- Test B If Test B is to be run, Test A's reagents in the reagent holders must be replaced.
- Another object of this invention is to be able to carry out any determination in the event of an emergency request without additional manipulation by the user.
- the invention relates to a device for the photometric analysis of liquid samples according to claim 1.
- a further object of the invention is a gripping device as defined in the claims.
- Another object of the invention is an analysis method as defined in the corresponding claims.
- Another object of the invention is a method for performing measurement methods on samples as defined in the corresponding claims.
- the device according to the invention is capable at any time of processing a number of samples which require different working steps (different incubation times and measuring times). Therefore, it is with this device z. B. possible to perform more than twenty different types of tests in a relatively short time.
- any coagulation test e.g., quick test, aPTT test, etc.
- any chromogenic test can be performed in one measuring station because the two wavelengths used for this type of test are available all at once in a preferred two-channel photometer .
- a preferred version of the device has at least five photometer channels, preferably at least ten photometer channels. Because each sample has an individual identity in the work chain, a cuvette that requires four minutes of incubation time can be adjacent to a cuvette that only needs one minute of incubation time, without slowing down the entire sample processing method.
- Another Ai-ts Operationssfo ⁇ n of the present invention relates to a method for performing measurement methods on samples. This. Process is defined in more detail in the claims. A plurality of measurement methods are preferably carried out with a large number of samples. So each sample can have one or more Measurement procedures to be assigned. Processing is initially based on a procedural priority list. During the implementation of the individual stages, the selection of the cuvettes and the respective processing takes place on the basis of a status priority list, regardless of the process priority.
- the sample template is subdivided into at least two sample template inserts, one of the sample template inserts serving as an emergency insert. Doing so
- sample template inserts are placed in the cuvettes.
- the samples from the emergency insert also have priority over the others if they relate to methods of lower priority than those of the other samples (routine samples).
- the described method has the advantage that a very high degree of flexibility is achieved with relatively simple means and one and the same device can be used for new measuring methods simply by the device operator changing few specifications in the software controlling the device.
- the preferred batch function in which each of the
- the computer controlling the method stores information for each cuvette of a cuvette holder, which preferably has a rectangular, structured grid structure for holding the cuvettes, and is preferably stored in a thermostatted ARRAY (incubation rack array).
- the position of the cuvette in question is also stored in the sample processing control memory (IDA) in this incubation rack array.
- IDA sample processing control memory
- the computer can automatically determine whether empty cuvettes in the cuvette holder for further sample material The method can then be transferred to another cuvette holder with empty cuvettes and the first cuvette holder can be disposed of and replaced by a new cuvette holder with nothing but empty cuvettes.
- Fig. 1 is an overall perspective view, partially schematic
- FIG. 2 is a schematic plan view, showing the drive of the working head 40.
- FIG. 3 is a front view, schematically showing the drive of the
- the gripping device has gripped the cuvette 5c the gripping device removes the cuvette from the
- Template 5d Reset the cuvette into the template
- FIG. 6 tempering device of the cuvette template
- FIG. 7 heatable reagent master block in perspective view.
- FIG. 8 the optical measuring device in a horizontal longitudinal section
- the device comprises an identification device 1 which allows: a) patient identification, b) localization of the sample in a sample template and c) selection of the test methods to be carried out.
- the "bar-coded" patient number is read by means of a bar code scanner ("bar code scanner”).
- the sample identification process can also be carried out with a computer keyboard 32 alone.
- the position of the sample in the sample template is identified by placing the template on a platform 14 of the aforementioned device, "push buttons" making contact when a sample container is depressed.
- the desired test method (s) is / are then carried out using the above-mentioned device keyboards 16 or by loading a patient list through a host computer 4 which is connected to the system in combination with a conventional one bidirectional interface and the software is connected.
- the sample container 20 is placed in a sample drawer 22 in the automatic analysis device 2.
- the device is available with various reagent templates 24a / b / c with enough space for reagents for a large number equipped by various tests.
- the device is operated under PC control 3.
- a special feature of this device is that it can carry the same reagent at different reagent positions, as required by the user. This prevents the compulsion to stop a run to replace an empty reagent bottle.
- the main actuator of the automatic analysis device is an x-y-z driven manipulator or arm 40, which consists of a gripping device 41 and a pipetting device 42.
- the manipulator travels to the washing station 120a or 120b, where the inside and outside of the pipette 6 are washed before entering a new sample or reagent.
- the manipulator then goes to the sample template selected by the user, where the pipette 6 pulls up the first sample in an amount which is defined in a work list.
- the manipulator then moves to the cuvette template 50a or 50b, where the sample is placed in a cuvette 5.
- the exact amount of liquid, preferably plasma or reagent, which is sucked in or released by the pipette is regulated by a valve-nozzle pump unit 80, 81, 82. Using this unit, the amount of water used to wash the pipette can also be regulated.
- the water for washing the pipette is brought into the pipette via a flexible plastic hose 86, which is connected to the pipette at the top.
- the manipulator "intermediate reagents", if necessary, begins to pipette. During the necessary incubation period for each sample expires (if this is the case), the manipulator can process other samples that require the same test.
- the device is also capable of carrying out any other type of test at this time without additional changes.
- the manipulator 40 moves to the cuvette template and the gripping device 41 grips the cuvette 5 containing the sample and transfers it to a free position in the measuring station 60. Then the manipulator 40 moves to the starting reagent position in the reagent template 24c and sucks in the starting reagent by means of the pipette 6, which is then added to the cuvette. After the measurement (clumping time, absorption change per minute, etc.) has been carried out in the photometer, the cuvette 5 is gripped by the gripping device 41 and is preferably returned to its old position in the cuvette template. The position of the cuvette used is blocked in the work list for further use.
- the device 2 has at least two cuvette template units 50a, 50b.
- the manipulator 40 automatically uses the cuvettes of the next possible cuvette template.
- the cuvette tray 51 used can be thrown away while the automatic analysis device 2 continues the measuring operation, because the cuvette tray 51 is mounted on a drawer 52 which can be removed at any time during the sample processing without the device being closed to stop. This allows an immediate exchange for a new cuvette tray 51, which should preferably be preheated.
- the pipette 6 is washed in the washing station 120a or 120b.
- the cycle of placing cuvettes in the cuvette template, adding samples and reagents, transporting the cuvettes to the measuring station, etc. continues until all samples in the work list have been processed.
- the driven manipulator 40 runs on a guide rail (FIGS. 1 and 2, 100), which permits right / left movement of the mampulator (X axis).
- This X guide rail is mounted on a second guide rail, which enables the manipulator's Y movement and forward and backward movement (Figs. 2, 102).
- Both guide rails are controlled by a system of drive belts, drive gears, ball bearings and deflection rollers 104, 106, 108, 110 and driven independently of one another by two motors 112a, 112b.
- the displacement of the drive belt 104 is controlled by means of a rotary pulse generator 112c, 112d.
- Light sensors 111 determine the position of the manipulator in the device.
- X and Y interfaces 116a, 116b provide information between a microprocessor 118 that controls the manipulator position and the X and Y motors, respectively back.
- 3 shows in detail a cross-sectional view of the pipetting device 42 and the gripping device 41 and which part is regulated by a microprocessor 119.
- the microprocessor 119 controls the movement of the gripping device up and down, opens and closes the gripping tongs and regulates the pipette position, a level sensor 132 and a heating element 134 of the pipette 6.
- the microprocessor 119 communicates with the PC via the Microprocessor 118.
- the up and down movement (Z) of the gripping device 41 is carried out by a gripper step motor 41a, which drives a crank 121, which is connected to the gripping device 41 via a connecting rod 124.
- a light sensor 122a transmits its Z position to the microprocessor 119.
- the Z position of the pipette 6 is regulated in a similar manner by means of a stepper motor 42a and a light sensor 122b.
- the stepper motor 42a drives a belt drive 140, which is located on the support base 142 of the pipette 6.
- a level sensor 132 detects the surface of the liquid and passes the information on to the microprocessor 119, which regulates the Z movement of the pipette 6.
- Level sensor 132 is responsive to a change in capacitance when the pipette contacts the surface of a liquid. During the aspiration of liquid, the pipette 42 moves down and stops at a certain distance below the meniscus.
- This distance is determined by the diameter of the reagent bottles or sample tubes and by the amount of liquid to be pipetted, as specified in the work list. It is preferred that the tip of the pipette 6 is not immersed too deeply in the liquid; on the other hand, it is also expedient that the pipette 6 is immersed deep enough to suck in the desired amount of liquid without air bubbles. If 1 ml of liquid is to be aspirated from a sample tube (small diameter) or from a reagent bottle (large diameter), the level sensor 132 detects the liquid surface. In the case of the sample tube, the pipette 6 sinks lower than in the case of the reagent bottle. Fig.
- FIGS. 5a to 5e also shows that the microprocessor 119 transmits the signal to operate a magnet 123 which controls the opening of the gripping device 41 at the moment when a cuvette 5 is to be placed.
- the operation of the gripping device 41 is described in more detail in FIGS. 5a to 5e.
- Fig. 3 also shows the internal structure of the pipette 6, i. H. the heating device.
- the pipette 6 is heated to temperatures of 20-50 ° C., preferably 30-40 ° C., in particular 37 ° C., via a heating element 134.
- the current temperature within the pipette is determined via a thermosensitive element 136, which is connected to a temperature regulator 138.
- FIG. 4 shows a cross-sectional view of the pipette.
- the pipette 6 consists of a long stainless steel tube 43 which is covered with a material which acts as a heating element.
- the upper part of the stainless steel tube 43 is connected to a plastic tube 86, which in turn is connected to one end of the valve 80 of the dilutor 81.
- 5a is a detailed illustration of the gripping device 41 and pipetting device 42 on the manipulator 40
- Rotation of a crank 121 becomes a cycle from gripping to
- a connecting rod 124 connected to the crank 121 transmits the motion to the
- Gripping device 4L which slides vertically along two slide rods 125 When gripping a cuvette 5, the gripping device 41 moves down and when the gripping tongs 130 come in contact with side projections H 5a of the cuvette 5, the gripping tongs open in the opposite direction
- the spring 128 can close the gripping tongs 130, hook projections 130a of the gripping tongs underside the side projections 5a of the cuvette 5. to grab.
- a pressure piece 131 which is loaded in the direction of the cuvette 5 by means of spring 131a, secures the gripped cuvette in the gripping tongs 130.
- the settling cycle requires an additional mechanism.
- Figures 5b-5e show in sequence how this cycle is carried out.
- the first step (FIG. 5c) is the transfer (X-Y, 40) of the cuvette 5 in the desired position (possible position in the cuvette template or in the measuring station). If the gripping device 42 is exactly at the desired position, the second step is to lower the cuvette (Z) (the gripping device 42 slides along two sliding bars 125. During this time, the magnet 123 is activated and a transverse lifting bar 123a comes into it Path of movement of a head 126a of the plunger 126. The third step (FIG. 5d) takes place when the transverse rod 123a touches the head 126a of the plunger 126.
- the device comprises various sample templates (Fig. 1, 20). Most are identical to one another with space for different sample containers or sample tubes 21.
- a sample template 20a has, for example a smaller number of sample tubes 21 and can be used in emergency situations (STAT template). If a template is not the current work template, this template can be removed from the test machine at any time because the templates are arranged in a drawer 22.
- STAT template emergency situations
- the advantage of using multiple sample and cuvette templates is that new samples and cuvettes can be inserted into the system at any time without interrupting the process.
- the sample templates can be cooled to 5 - 20 ° C, preferably 10 - 15 ° C.
- the temperature of the templates is adjusted using a closed zululating system (not shown) which allows a liquid, preferably cold water, to circulate in metal parts below the template (not shown) and which cools the sample templates to the desired temperature.
- the thermostatting can also about electrical elements, preferably Peltier elements.
- Two cuvette templates each contain different cuvettes 5.
- the cuvettes 5 are lined up in a polystyrene tray (FIGS. 6, 51), which the user places in the cuvette drawer 52.
- the cuvette tray 51 is adapted to the cuvette drawer 52 so that the tray does not move when the gripping device grips a cuvette.
- the cuvette templates show a series of "rails" 54 which support the tray. The spaces between two adjacent rails 54 are shaped in this way that the cuvettes have as large a contact surface as possible with the heatable part of the drawer 52, which is heated to 25-45 ° C., preferably 30-40 ° C., more preferably 37 ° C.
- the device contains various reagent templates (Fig. 7,
- Photometer (Fig. L 24c) preferably contains starting reagents.
- Template 24b is aligned, preferably to take up intermediate reagents, and lies between the sample and cuvette templates.
- Template 24a is located behind the sample templates and preferably contains "deficiency" - and
- reagents for preferably turbidimetric immunological tests can be stored there.
- the design of the device also allows other photometric or turbidimetric tests from 5 other areas of clinical laboratory operations, e.g. B. clinical chemistry.
- the diameter of the reagent holder is selected so that the laboratory staff can place the original reagent bottle 23 directly in the holder (see 0 Fig. 7).
- Concentric rings 26 are used to adapt other bottles with different diameters to the device. So that the reagents do not heat up, the reagent templates are cooled to 5-20 ° C., preferably 10-15 ° C., preferably using the above-mentioned closed water system 5b 5. Here too, Peltier elements can preferably be used for thermostatization become. At the end of the day (or a sample run) there are still residues in the reagent bottles, so that it makes sense that the reagent template can be removed from the device by moving the screws 27a and 27b and in a refrigerator for future use can be kept. The operating personnel need not connect or disconnect pumps or wash reagent reservoirs, which of course saves labor costs and time.
- the measuring station comprises a photometer with various independent optical channels.
- Each optical channel is constructed in the same way with no general parts or components between the channels. This design allows sample processing to continue uninterrupted in the event of a breakdown of one of the channels.
- Figure 8 shows in detail one of the optical channels.
- the light beam emitted by the light source (halogen lamp, 220) is collected by means of a converging lens 222 and directed onto an entry slit 224 in the direction of an intermediate slit 226.
- the light beam then passes through an input lens 228 and is focused into the sample in the cuvette shaft 230 by means of an output slit 232.
- the light beam leaving the cuvette shaft is split into two beams (50% of the total transmitted light) using a beam splitter 233.
- the beam splitter can be made of any common material, e.g. B. fiber optics.
- Each secondary light beam is directed to a filter unit which has a lower 234 and an upper filter 236.
- the lower filter has a transmission peak of a particular wavelength and the upper filter one at a wavelength different from the lower. In this way it is possible to carry out bichromatic measurements of samples at two different wavelengths simultaneously.
- Each filtered light beam is then focused with a Sarnmell lens 238a, 238b.
- the focused light beam is used measured by ordinary photodetection means (photocell, 240a or 240b) and the resulting signal is amplified with a suitable amplifier 242a, 242b.
- the advantage of the design mentioned above is that it is possible to take two different types of measurements, e.g. B. in two channels (z. B. turbidimetric and chromogenic measurement) because the channels preferably do not require a separate filter, like other devices of the prior art. There is no need to reserve part of the channels for one type of measurement and the rest for another type. With this feature it is possible to achieve completely random access possibilities because two wavelengths are present at the same time. Instead of using a two-wavelength photometer, it is also possible to use a "diode array photometer" which also offers the possibility of measuring at several wavelengths simultaneously.
- the cuvette shaft (FIGS. 8, 230) is embedded in a metal block which can be heated to a desired temperature via a closed system 56 of circulating water.
- a thermosensitive element 250 detects any change in the desired temperature and a thermal resistor 252 brings the temperature to the average desired temperature.
- This mechanism consists of a pressure roller 254 which is connected to a pressure spring 256. Because all steps in sample processing require the use of the manipulator (eg pipetting of sample and reagents, transport of the cuvettes), it is preferred to rationalize the work flow with the purpose of a maximum number of samples per hour by minimizing the time when the manipulator has nothing to do.
- the device according to the present invention is capable of executing any type of test method at any time, and since these different test types have different requirements with regard to incubation time, dilution steps, etc., a software program can be used to check the status Each sample is checked and recorded in a short period of time up to a maximum of 5 msec, preferably every 2nd msec.
- the advantage of such a software program is to monitor those samples whose incubation time is close to being exceeded. In this case, it is advisable to first process samples that are in critical condition (the incubation period has been exceeded). Only then should less urgent steps in the work chain, such as dilution of a sample, be carried out, which in principle is a step that is independent of time
- Another purpose of such software control is to provide a quick transition between routine and emergency samples. At the time when emergency samples (STAT samples) are to be processed, it is advisable:
- the software should ensure that sample processing of the interrupted "routme line” starts again exactly at the point where it was interrupted. This can be done after all STAT samples have reached a certain level of sample processing and there is now enough time to start new samples. This prevents any loss of time between the "routine" and STAT work.
- a waiting list containing status values is drawn up.
- This waiting list is preferably stored in a sample processing memory (IDA).
- a simple matrix is used to compile the waiting list.
- One step for optimizing the work flow is that as many samples as possible are collected in one run that require the same test type (method type). However, not all samples that require the same test type are processed at the same time, but depending on the batch size, a number of samples to be processed are combined into batches.
- the batch size is recorded in a work list (method list) entered into the computer, which, among other things, pipettes the - the amount of liquid, incubation time, etc., for each test type.
- the software program enables batches with the same Run test type 1 one below the other, for example if 25 samples require test "A” and 10 samples require test “B” and the batch size for both tests is "5", 5 batches of test "A 'run (in the example, the process priority is higher than Test "B” have one after the other, then 2 batches of test "B.”
- the advantage of this is to save pipetting time: For example, it is more efficient that the pipette takes up a large amount of reagent and then dispenses it in different aliquots than For each sample, for example, measure the reagent and add it individually to the cuvette, for example to the plasma.
- 9a and 9b show an exemplary flow diagram which summarizes how state values are generated and how they increase.
- the reservation of a cuvette in the cuvette template also runs via the software program. If the test type requires dilution steps of the sample, then at least two cuvettes are reserved in the cuvette template for performing this step.
- the software program uses the data from the work list to check whether a certain step is necessary, e.g. B. diluting a sample. If a step in a test is not necessary, the state value jumps to the next method-dependent state. If an error happens during sample processing, e.g. B. the incubation time has expired and the start response was not added immediately afterwards, the state value for this approach automatically jumps to state number 70 (FIG. 9b), i. that is, this approach is repeated from the beginning.
- Another aspect of sample processing that can occur is that at a given moment there are more tests to be processed than there is free space in the measuring station. Therefore, removing the cuvette from the measuring station as soon as the measurement of a sample has been carried out (state 61) is a step that requires intensive monitoring. State 61 is therefore at the top of the following priority list. In this way it is ensured that as soon as a sample is ready for measurement, a place in the measuring station is free for it. As soon as the measured sample is removed from the measuring station, the cuvette is preferably returned to its starting position in the cuvette template. This position is then declared as "garbage" so that the cuvette used is skipped if a cuvette in the cuvette template (state 1) is to be reserved. If there is an aborted test at this time (has a status value of 70), this has a higher priority than adding a new test to the waiting list.
- the first row contains the state with the highest priority. If more than two states are in the same row, the first state has priority over the second etc.
- the last row contains the group with the lowest priority.
- a scanning program (loop) scans this priority list and matches it with the status values available at the moment for all tests in the waiting list.
- the waiting list not only reserves a place for sample processing, but also shows the current status value for each sample at any moment. If the scanning program finds a test with the state number 61, the manipulator will carry out the step which is associated with this number, ie remove a cuvette from the photometer and preferably place it in the cuvette template in the intended place and immediately again Bring a cuvette from the cuvette template with state value 40 into the photometer (rational coupling of states). If none of the samples state 61 or 5L, the program jumps to the next priority state and checks all states in the waiting list to this value, etc. If there is nothing to do with higher priority and there is enough space in the waiting list, the manipulator starts one new sample too to edit. This is done until all desired tests have been completed.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Description
Automatische Vorrichtung zur photometrischen Analyse von flüssigen Proben Automatic device for the photometric analysis of liquid samples
Die Erfindung betrifft eine vielseitige Vorrichtung zur Bearbeitung von Proben mit verschiedenen Inkubationszeit-Erfordernissen, die fähig ist, eine Anzahl von Zwischen- und/oder End-(Start-)Reagenzien hinzuzufügen und photometrische und turbidimetrische Variablen zu jedem Zeitpunkt zu messen. Insbesondere betrifft die Erfindung eine Vorrichtung zur automatischen photometrischen Blutgerinnungs-Analyse.The invention relates to a versatile device for processing samples with different incubation time requirements, capable of adding a number of intermediate and / or final (start) reagents and measuring photometric and turbidimetric variables at any time. In particular, the invention relates to a device for automatic photometric blood coagulation analysis.
Schon bekannte Vorrichtungen für die automatische klinische Labor¬ analyse verarbeiten eine Anzahl von Proben pro Stunde unter Verwen¬ dung von automatischer Probeneinfüllung, Verdünnung der Probe und automatischem Zusatz des Reagenzes. Die Proben werden in Küvetten eingefüllt, welche manuell (eine nach der anderen) oder durch einen Transportmechanismus weiter transportiert werden. Dieser Transportme¬ chanismus kann z. B. ein Förderband sein, das die Küvetten in die Inkubations-Zonen und schließlich zu der bzw. den Photometerstation (en), wo die Messung der gewünschten Variablen stattfindet, bringt. Diese Vorrichtungen erfordern starre Zyklus-Zeiten für die Präinkubation, Inkubation und Meßzeit, um eine Synchronisation zwischen den verschie¬ denen mechanischen und elektronischen Teilen, die bei der Probenvor- bereiturig, beim Transport und der Messung auftauchen, zu sichern. Als Stand der Technik sei "Paramax" (Baxter, Vorrichtung für die Analy¬ se in klinischer Chemie) und ΕlectralOOOc" (MLA, Vorrichtung zur Blutgerinnungsanalyse) sowie "ACL300" Laboratory, Vorrichtung zur Blutgerinnungsanalyse) genannt. Diese Vorrichtungen sind zwar erfolgreich im Einsatz, jedoch besteht ein Bedürfnis, diese weiter zu verbessern, insbesondere was die Flexibilität anbelangt.Already known devices for automatic clinical laboratory analysis process a number of samples per hour using automatic sample filling, dilution of the sample and automatic addition of the reagent. The samples are filled into cuvettes, which are transported manually (one after the other) or by a transport mechanism. This transport mechanism can e.g. B. be a conveyor belt that brings the cuvettes into the incubation zones and finally to the photometer station (s) where the measurement of the desired variables takes place. These devices require rigid cycle times for the preincubation, incubation and measuring time in order to ensure synchronization between the various mechanical and electronic parts which appear in the preparation of the sample, during transport and measurement. The state of the art is "Paramax" (Baxter, device for analysis in clinical chemistry) and ΕlectralOOOc "(MLA, device for blood coagulation analysis) and" ACL300 " Laboratory, device for blood coagulation analysis). While these devices have been used successfully, there is a need to further improve them, particularly in terms of flexibility.
Die Vorrichtungen des Standes der Technik haben mehr oder wemger alle die folgenden Nachteile:The devices of the prior art more or less all have the following disadvantages:
a) Die Vorrichtungen können nur wenige verschiedene Typen von Tests gleichzeitig oder kurz hintereinander ausführen, wobei alle z. B. Gerinnungstests sind.a) The devices can run only a few different types of tests simultaneously or in quick succession, all z. B. are coagulation tests.
b) Die Vorrichtungen haben nur eine begrenzte Anzahl von Rea¬ genzienhaltern. Wenn ein Test B ausgeführt werden soll, müssen die Reagenzien von Test A in den Reagenzienhalterungen ersetzt werden.b) The devices have only a limited number of reagent holders. If Test B is to be run, Test A's reagents in the reagent holders must be replaced.
c) Die zwei Wellenlängen für Gerinnungs- (z. B. 548 um) tmd chromogene (405 um) Test sind nicht gleichzeitig verfügbar.c) The two wavelengths for coagulation (e.g. 548 µm) and chromogenic (405 µm) tests are not available at the same time.
d) Die Bearbeitung der Proben folgt starren Zyklus-Zeiten, die es nicht erlauben, flexibel Tests mit verschiedenen Zyklus-Kennzei- chen dazwischen zu schieben.d) The processing of the samples follows rigid cycle times, which do not allow flexible tests with different cycle symbols to be put in between.
e) "STAT-Proben (Notfall-Proben) mit verschiedenen Test-Erforder¬ nissen sind schwierig in einem Routineablauf zu integrieren, wenn jederzeit ein unterschiedlicher Test gemacht werden soll d. h. das Bedienungspersonal muß die Reagenzien wechseln und die Test-Variablen abändern.e) "STAT samples (emergency samples) with different test requirements are difficult to integrate into a routine process if a different test is to be carried out at any time ie the operating personnel must change the reagents and change the test variables.
f) Wenn ein neuer Test auf dem Markt erscheint, ist es für den Benutzer äußerst selten, diesen direkt an die Vorrichtung adap¬ tieren zu können. Die einzige Möglichkeit für den Benutzer besteht darin, eine Anfrage bei dem Produzenten des Tests zu machen. Dieses Verfahren benötigt gewöhnlich viel Zeit, bevor der Benutzer die Hardware und/oder die Software bekommt, um den Test durchzuführen.f) When a new test appears on the market, it is extremely rare for the user to be able to adapt it directly to the device. The only way for the user is to make a request to the producer of the test. This procedure usually takes a long time before the user gets the hardware and / or software to perform the test.
Um die vorher genannten Nachteile zu überwinden, ist es eine Aufgabe dieser Erfindung, eine Vorrichtung bereitzustellen, die Flexibilität zeigt und dem Anwender erlaubt, im wesentlichen jede Art von photome- trischen bzw. turbidimetrischen Tests, vorzugsweise jede Art Gerinnungs- Tests oder chromogene Tests, jederzeit durchzuführen. Eine weitere Aufgabe dieser Erfindung ist, jede Bestimmung bei Notfall-Nachfrage ohne zusätzliche Manipulation durch den Anwender ausführen zu können.In order to overcome the aforementioned disadvantages, it is an object of this invention to provide a device which shows flexibility and allows the user to carry out essentially any type of photometric or turbidimetric test, preferably any type of coagulation test or chromogenic test. to perform at any time. Another object of this invention is to be able to carry out any determination in the event of an emergency request without additional manipulation by the user.
Gegenstand der Erfindung ist eine Vorrichtung zur photometrischen Analyse von flüssigen Proben gemäß Anspruch 1. Ein weiterer Gegen¬ stand der Erfindung ist eine Greifeinrichtung, wie sie in den Ansprüchen definiert ist. Ein weiterer Gegenstand der Erfindung ist ein Analysever- fahren wie es in den entsprechenden Ansprüchen definiert ist. Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Durchführung von Meßverfahren an Proben wie es in den entsprechenden Ansprüchen definiert ist. Die erfindungsgemäße Vorrichtung ist jederzeit fähig, eine Anzahl von Proben, die verschiedene Arbeitsschritte (verschiedene Inkubationszeiten und Meßzeiten) erfordern, zu bearbeiten. Deshalb ist es mit dieser Vor¬ richtung z. B. möglich, mehr als zwanzig verschiedene Arten von Tests in einer relativ kurzen Zeit durchzuführen. Zum Beispiel können in einer Meßstation jegliche Gerinnungstests (z. B. Quick-Test, aPTT-Test usw.) oder jegliche chromogene Tests ausgeführt werden, weil die zwei für diesen Typ von Tests verwendeten Wellenlängen auf einmal in einem bevorzugten Zweikanal-Photometer verfügbar sind. Eine bevorzugte Version der Vorrichtung hat mindestens fünf Photometer-Kanäle, bevor¬ zugt mindestens zehn Photometer-Kanäle. Weil jede Probe eine indivi¬ duelle Identität in der Arbeitskette hat, kann eine Küvette, die vier Minuten Inkubationszeit benötigt, benachbart zu einer Küvette sein, die nur eine Minute Likubatioπszeit benötigt, ohne das gesamte Proben- bearbeitungs-Verfahren zu bremsen. Zum Beispiel kann man sich einfach vorstellen, daß in der Meßstation Proben zur Durchführung eines Quick- Tests vermessen werden, während sich in der Zwischenzeit Proben, die einem aPTT-Test unterworfen werden sollen, in einer Küvettenvorlage bzw. Inkubationsvorlage befinden und darauf warten, in die Meßstation zur Messung überführt zu werden. Weil die Vorrichtung unter Computer- Kontrolle arbeitet (Personal Computer), ist es ein weiterer Gegenstand dieser Erfindung eine Anwender-freundliche PC-Umgebung zu schaffen, die es erlaubt, Vorrichtung und Verfahren an neue (zukünftige) Tests schnell und einfach anzupassen.The invention relates to a device for the photometric analysis of liquid samples according to claim 1. A further object of the invention is a gripping device as defined in the claims. Another object of the invention is an analysis method as defined in the corresponding claims. Another object of the invention is a method for performing measurement methods on samples as defined in the corresponding claims. The device according to the invention is capable at any time of processing a number of samples which require different working steps (different incubation times and measuring times). Therefore, it is with this device z. B. possible to perform more than twenty different types of tests in a relatively short time. For example, any coagulation test (e.g., quick test, aPTT test, etc.) or any chromogenic test can be performed in one measuring station because the two wavelengths used for this type of test are available all at once in a preferred two-channel photometer . A preferred version of the device has at least five photometer channels, preferably at least ten photometer channels. Because each sample has an individual identity in the work chain, a cuvette that requires four minutes of incubation time can be adjacent to a cuvette that only needs one minute of incubation time, without slowing down the entire sample processing method. For example, one can easily imagine that samples are measured in the measuring station in order to carry out a quick test, while in the meantime samples which are to be subjected to an aPTT test are in a cuvette template or incubation template and are waiting for in the measuring station to be transferred to the measurement. Because the device operates under computer control (personal computer), it is a further object of this invention to provide a user-friendly PC environment which allows the device and method to be adapted quickly and easily to new (future) tests.
Eine weitere Ai-tsführungsfoπn der vorliegenden Erfindung bezieht sich auf ein Verfahren zur Durchführung von Meßverfahren an Proben. Dieses. Verfahren ist in den Ansprüchen näher definiert. Dabei werden vorzugsweise mit einer Vielzahl von Proben eine Mehrzahl von Meßver- fahren durchgeführt. Es können also jeder Probe ein oder mehrere Meßverfahren zur Durchführung zugeordnet werden. Die Abarbeitung erfolgt dabei zu Beginn aufgrund einer Verfahrensprioritätsliste. Während der Durchführung der einzelnen Stufen erfolgt die Auswahl der Küvetten und die jeweilige Bearbeitung aufgrund einer Statusprioritätsliste unabhän- s gig von der Verfahrenspriorität.Another Ai-tsführungsfoπn of the present invention relates to a method for performing measurement methods on samples. This. Process is defined in more detail in the claims. A plurality of measurement methods are preferably carried out with a large number of samples. So each sample can have one or more Measurement procedures to be assigned. Processing is initially based on a procedural priority list. During the implementation of the individual stages, the selection of the cuvettes and the respective processing takes place on the basis of a status priority list, regardless of the process priority.
Bei einer bevorzugten Ausführungsform der Erfindung ist die Probenvor¬ lage in mindestens zwei Probenvorlage-Ei schübe unterteilt, wobei einer der Probenvorlage-Einschübe als ein Notfall-Einschub dient. Dabei wirdIn a preferred embodiment of the invention, the sample template is subdivided into at least two sample template inserts, one of the sample template inserts serving as an emergency insert. Doing so
10 in dem vom Rechner automatisch gesteuerten Verfahren immer dann, wenn die Übertragung von Probenmaterial in eine Küvette ermöglicht werden soll, zunächst automatisch festgestellt, ob eine oder mehrere Proben in dem Notfall-Einschub vorhanden sind, und, falls dies der Fall ist, diese Proben mit Priorität, d.h. vor den Proben aus den anderenIn the method automatically controlled by the computer, whenever the transfer of sample material to a cuvette is to be made possible, it is first automatically determined whether one or more samples are present in the emergency insert and, if this is the case, these samples with priority, ie before the samples from the others
15 Probevorlage-Einschüben in die Küvetten eingebracht werden. Dabei haben die Proben aus dem Notfall-Einschub auch dann Priorität gegen¬ über den anderen, wenn sie Verfahren niedrigerer Verfahrenspriorität als die der anderen Proben (Routine-Proben) betreffen.15 sample template inserts are placed in the cuvettes. The samples from the emergency insert also have priority over the others if they relate to methods of lower priority than those of the other samples (routine samples).
20 Das beschriebene Verfahren hat den Vorteil, daß mit relativ einfachen Mitteln eine sehr hohe Flexibilität erreicht wird und ein und dasselbe Gerät einfach dadurch für neue Meßverfahren einsetzbar wird, daß der Gerätebetreiber wenige Vorgaben in der das Gerät steuernden Software ändert. Mit der bevorzugten Batch-Funktion, bei der jedem der Ver-20 The described method has the advantage that a very high degree of flexibility is achieved with relatively simple means and one and the same device can be used for new measuring methods simply by the device operator changing few specifications in the software controlling the device. With the preferred batch function, in which each of the
25 fahren eine optimale Batch-Größe eingesetzt werden, die gegenwärtig in den meisten Fällen 3, 4 oder 5 beträgt. Es kann bei großer Effizienz und Geschwindigkeit der Verlust von Probenmaterial in Küvetten (etwa weil eine Inkubationszeit überschritten wird, ohne daß ein Meßplatz frei wird) vermieden werden.25 drive an optimal batch size, which is currently 3, 4 or 5 in most cases. With great efficiency and speed, the loss of sample material in cuvettes (for example because an incubation time is exceeded without a measuring station being free) can be avoided.
'3fl Bei einer bevorzugten Ausführungsform des Verfahrens wird in dem das Verfahren steuernden Rechner Ihfoπnation zu jeder Küvette einer Küvet- tenhalterung, die vorzugsweise eine rechteckig angeordnete theπnostatisier- te Gitterstπiktur zur Halterung der Küvetten hat und vorzugsweise in einem thermostatisierten ARRAY (Inkubationsrackarray) gespeichert. In diesem Inkubationsrackarray wird außerdem die Position der betreffenden Küvette in dem Probenbearbeitungs-Steuerspeicher (IDA) gespeichert. Der Zustand der Küvette kann dabei vorzugsweise eine von vier Möglichkei¬ ten annehmen, nämlich "Leer", "In Bearbeitung", "Müll", ΕRROR". Aufgrand dieser Moπnation kann der Rechner automatisch feststellen, ob in der Küvettenhalterung leere Küvetten für weiteres Probenmaterial zur Verfügung stehen oder nicht. Entsprechend der gewonnenen Information kann das Verfahren dann auf einem anderen Küvettenhalter mit leeren Küvetten übergehen und der erste Küvettenhalter kann entsorgt und durch einen neuen Küvettenhalter mit lauter leeren Küvetten ersetzt werden. ' 3fl In a preferred embodiment of the method, the computer controlling the method stores information for each cuvette of a cuvette holder, which preferably has a rectangular, structured grid structure for holding the cuvettes, and is preferably stored in a thermostatted ARRAY (incubation rack array). The position of the cuvette in question is also stored in the sample processing control memory (IDA) in this incubation rack array. The state of the cuvette can preferably assume one of four possibilities, namely "empty", "in progress", "garbage", ΕRROR. ”On the basis of this modification, the computer can automatically determine whether empty cuvettes in the cuvette holder for further sample material The method can then be transferred to another cuvette holder with empty cuvettes and the first cuvette holder can be disposed of and replaced by a new cuvette holder with nothing but empty cuvettes.
Es zeigen:Show it:
Fig. 1 eine perspektivische Gesamtdarstellung, teilweise schematischFig. 1 is an overall perspective view, partially schematic
Fig. 2 eine schematische Aufsicht, zeigend den Antrieb des Ar¬ beitskopfes 40 Fig. 3 eine Vorderansicht, schematisch zeigend den Antrieb derFIG. 2 is a schematic plan view, showing the drive of the working head 40. FIG. 3 is a front view, schematically showing the drive of the
Greif-einrichtung 41 und der Pipettiereinrichtung 42 Fig. 4 die Kanüle mit HekeinrichtungGripping device 41 and the pipetting device 42 Fig. 4, the cannula with Hekeinrichtung
Fig. 5a in Perspektive, Greif- und Hpettiereinrichtung auf demFig. 5a in perspective, gripping and Hpettiereinrichtung on the
Arbeitskopf Fig. 5b bis 5e vier Arbeitsschritte, nämlich:Working head Fig. 5b to 5e four work steps, namely:
5b die Greifeinrichtung hat die Küvette ergriffen 5c die Greifeinrichtung entnimmt die Küvette aus der5b the gripping device has gripped the cuvette 5c the gripping device removes the cuvette from the
Vorlage 5d Zurücksetzen der Küvette in die VorlageTemplate 5d Reset the cuvette into the template
5e Lösen der Greifeinrichtung von der Küvette Fig. 6 Temperiereinrichtung der Küvettenvorlage5e detaching the gripping device from the cuvette. FIG. 6 tempering device of the cuvette template
Fig. 7 beheizbare Reagenzvorlagenblock in perspektivische Dar¬ stellung Fig. 8 die optische Meßeinrichtung im HorizontallängsschnittFIG. 7 heatable reagent master block in perspective view. FIG. 8 the optical measuring device in a horizontal longitudinal section
Fig. 9a uπά 9b Beispiel für ein FließschemaFig. 9a uπά 9b example of a flow diagram
Die Vorrichtung (Fig. 1) umfaßt eine Identffizienmgseinrichtung 1, die erlaubt: a) Patienten-Identifikation, b) Lokalisation der Probe in einer Probenvorlage und c) Auswählen der auszuführenden Test-Verfahren. Mittels eines Strich-Code-Abtasters ("Bar-Code-Scanner") wird die "strich- codierte" Patientennummer gelesen. Das Proben-Identifikations-Verfahren kann auch mit einem Computer-Keyboard 32 allein ausgeführt werden. Die Position der Probe in der Probenvorlage wird durch Stellen der Vor¬ lage auf eine Plattform 14 der vorher erwähnten Einrichtung identifiziert, wobei "Druckknöpfe" einen Kontakt schließen, wenn ein Probenbehälter niedergedrückt wird. Das bzw. die gewünschte(n) Test-Verfahren wird bzw. werden dann unter Verwendung der vorher erwähnten Einrichtungs- Keyboards 16 oder durch Einladen einer Patienten-Liste durch einen Host-Computer 4, der mit dem System in Kombination mit einer übli¬ chen bidirektionalen Schnittstelle und der Software verbunden ist, einge- geben.The device (FIG. 1) comprises an identification device 1 which allows: a) patient identification, b) localization of the sample in a sample template and c) selection of the test methods to be carried out. The "bar-coded" patient number is read by means of a bar code scanner ("bar code scanner"). The sample identification process can also be carried out with a computer keyboard 32 alone. The position of the sample in the sample template is identified by placing the template on a platform 14 of the aforementioned device, "push buttons" making contact when a sample container is depressed. The desired test method (s) is / are then carried out using the above-mentioned device keyboards 16 or by loading a patient list through a host computer 4 which is connected to the system in combination with a conventional one bidirectional interface and the software is connected.
Sobald der (Patienten)-Probenbehälter identifiziert ist, wird die Proben¬ vorlage 20 in einer Probenschublade 22 in der automatischen Analysevor¬ richtung 2 gebracht. Die Vorrichtung ist mit verschiedenen Reageπzien- vorlagen 24a/b/c mit genügend Platz für Reagenzien für eine Vielzahl von verschiedenen Tests ausgestattet. Sobald der Anwender geprüft hat, daß alle Reagenzien sich an ihrem reservierten Platz befinden und, daß genug Flüssigkeit zum Waschen einer Pipette vorhanden ist, wird die Vorrichtung unter PC-Kontrolle 3 betrieben. Ein spezielles Kennzeichen dieser Vorrichtung ist, daß sie, gemäß den Erfordernissen des Anwenders, an verschiedenen Reagenzien-Positionen das gleiche Reagenz tragen kann. Dies beugt dem Zwang vor, einen Lauf zu stoppen, um eine leere Reagenzienflasche zu ersetzen.As soon as the (patient) sample container is identified, the sample container 20 is placed in a sample drawer 22 in the automatic analysis device 2. The device is available with various reagent templates 24a / b / c with enough space for reagents for a large number equipped by various tests. As soon as the user has checked that all reagents are in their reserved place and that there is enough liquid for washing a pipette, the device is operated under PC control 3. A special feature of this device is that it can carry the same reagent at different reagent positions, as required by the user. This prevents the compulsion to stop a run to replace an empty reagent bottle.
Das Haupt-Stellglied der automatischen Analyse-Vorrichtung ist ein x-y-z getriebener Manipulator bzw. Arm 40, der aus einer Greifeinrichtung 41 und einer Pipettiereinrichtung 42 besteht. Zu Beginn des Laufs fährt der Manipulator zur Wasch-Station 120a oder 120b, wo das Innere und Äußere der Pipette 6 vor Eintritt in eine neue Probe oder ein neues Reagenz gewaschen wird. Dann geht der Manipulator zu der vom An¬ wender ausgewählten Probenvorlage, wo die Pipette 6 die erste Probe in einer Menge hochzieht, die in einer Arbeitsliste festgelegt ist. Dann wandert der Manipulator zu der Küvettenvorlage 50a oder 50b, wo die Probe in eine Küvette 5 hineingegeben wird.The main actuator of the automatic analysis device is an x-y-z driven manipulator or arm 40, which consists of a gripping device 41 and a pipetting device 42. At the start of the run, the manipulator travels to the washing station 120a or 120b, where the inside and outside of the pipette 6 are washed before entering a new sample or reagent. The manipulator then goes to the sample template selected by the user, where the pipette 6 pulls up the first sample in an amount which is defined in a work list. The manipulator then moves to the cuvette template 50a or 50b, where the sample is placed in a cuvette 5.
Die exakte Menge von Flüssigkeit, vorzugsweise Plasma oder Reagenz, die durch die Pipette angesaugt oder wieder freigelassen wird, wird durch eine Ventil-Düutor-Pumpeneinheit 80, 81, 82 reguliert. Unter Verwendung dieser Einheit kann auch die für das Waschen der Pipette verwendete Menge Wasser reguliert werden. Das Wasser zum Waschen der Pipette wird über einen flexiblen Plastikschlauch 86, der oben mit der Pipette verbunden ist, in die Pipette gebracht. Sobald alle Proben, die auf einmal, bearbeitet werden sollen, in die Küvetten verteilt worden sind, beginnt der Manipulator "Zwischenreagenzien", falls diese nötig sind, zu pipettieren. Während die notwendige Inkubationszeit für jede Probe abläuft (falls dies der Fall ist) kann der Manipulator andere Proben bearbeiten, die denselben Test benötigen. Darüber hinaus ist die Vor¬ richtung zu diesem Moment aber auch fähig, jeden anderen Typ von Test ohne zusätzliche Veränderungen auszuführen.The exact amount of liquid, preferably plasma or reagent, which is sucked in or released by the pipette is regulated by a valve-nozzle pump unit 80, 81, 82. Using this unit, the amount of water used to wash the pipette can also be regulated. The water for washing the pipette is brought into the pipette via a flexible plastic hose 86, which is connected to the pipette at the top. As soon as all samples to be processed in one go have been distributed into the cuvettes, the manipulator "intermediate reagents", if necessary, begins to pipette. During the necessary incubation period for each sample expires (if this is the case), the manipulator can process other samples that require the same test. In addition, the device is also capable of carrying out any other type of test at this time without additional changes.
Wenn die Inkubationszeit für eine Probe abgelaufen ist, bewegt sich der Manipulator 40 zu der Küvettenvorlage und die Greifeinrichtung 41 ergreift die die Probe enthaltende Küvette 5 und überführt sie auf eine freie Position in der Meßstation 60. Dann bewegt sich der Manipulator 40 zur Startreagenzien-Position in der Reagenzienvorlage 24c und saugt mittels der Pipette 6 das Startreagenz an, welches dann in die Küvette gegeben wird. Nachdem die Messung (Verklumpungszeit, Absorptions- änderung pro Minute usw.) in dem Photometer ausgeführt worden ist, wird die Küvette 5 von der Greifeinrichtung 41 ergriffen und vorzugs- weise auf ihre alte Position in der Küvettenvorlage zurückgebracht. Die Position der verwendeten Küvette wird in der Arbeitsliste für die weitere Verwendung gesperrt.When the incubation time for a sample has expired, the manipulator 40 moves to the cuvette template and the gripping device 41 grips the cuvette 5 containing the sample and transfers it to a free position in the measuring station 60. Then the manipulator 40 moves to the starting reagent position in the reagent template 24c and sucks in the starting reagent by means of the pipette 6, which is then added to the cuvette. After the measurement (clumping time, absorption change per minute, etc.) has been carried out in the photometer, the cuvette 5 is gripped by the gripping device 41 and is preferably returned to its old position in the cuvette template. The position of the cuvette used is blocked in the work list for further use.
Die Vorrichtung 2 hat mindestens zwei Küvettenvorlagen-Einheiten 50a, 50b. Sobald eine Küvettenvorlage mit verwendeten Küvetten 5 voll ist, verwendet der Manipulator 40 automatisch die Küvetten der nächstmögli¬ chen Küvettenvorlage. Das verwendete Küvettentablett 51 kann weggewor¬ fen werden, während die automatische Analyse-Vorrichtung 2 den Meßbe¬ trieb fortführt, weil das Küvettentablett 51 auf eine Schublade 52 mon- tiert ist, die zu jedem Moment der Probenbearbeitung herausgenommen werden kann, ohne die Vorrichtung zu stoppen. Dies erlaubt einen sofortigen Austausch gegen ein neues Küvettentablett 51, das vorzugs¬ weise vorgewärmt sein sollte. So sind zu dem Zeitpunkt, an dem die Küvetten 5 mit Flüssigkeit gefüllt werden, diese schon auf die gewünsch- te Inkubationstemperatur gebracht worden. Um Ven-iireinigungen zu vermeiden, wird die Pipette 6 in der Wasch¬ station 120a oder 120b gewaschen. Der Zyklus Küvetten in die Küvet¬ tenvorlage zu stellen, Proben und Reagenzien hmeinzufüllen, die Küvet¬ ten zur Meßstation befördern usw., setzt sich bis zu dem Moment fort, wo alle Proben in der Arbeitsliste bearbeitet worden sind.The device 2 has at least two cuvette template units 50a, 50b. As soon as a cuvette template with used cuvettes 5 is full, the manipulator 40 automatically uses the cuvettes of the next possible cuvette template. The cuvette tray 51 used can be thrown away while the automatic analysis device 2 continues the measuring operation, because the cuvette tray 51 is mounted on a drawer 52 which can be removed at any time during the sample processing without the device being closed to stop. This allows an immediate exchange for a new cuvette tray 51, which should preferably be preheated. By the time the cuvettes 5 are filled with liquid, they have already been brought to the desired incubation temperature. In order to avoid cleaning, the pipette 6 is washed in the washing station 120a or 120b. The cycle of placing cuvettes in the cuvette template, adding samples and reagents, transporting the cuvettes to the measuring station, etc. continues until all samples in the work list have been processed.
Der angetriebene Manipulator 40 läuft an einer Führungsschiene (Fig. 1 und Fig. 2, 100), der eine Rechts-/Links-Bewegung des Mampulators (X- Achse) erlaubt Diese X-Führungsschiene ist auf eine zweite Führungs- schiene montiert, welche die Y-Bewegung des Manipulators und die Vorwärts- und Rückwärts-Bewegung ermöglicht (Fig. 2, 102). Beide Führungsschienen werden durch ein System von Antriebsriemen, Antriebs¬ getrieben, Kugellagern und Umlenkrollen 104, 106, 108, 110 kontrolliert und durch zwei Motoren unabhängig voneinander angetrieben 112a, 112b. Die Verschiebung des Antriebsriemens 104 wird mittels eines Drehim¬ pulsgebers 112c, 112d gesteuert.The driven manipulator 40 runs on a guide rail (FIGS. 1 and 2, 100), which permits right / left movement of the mampulator (X axis). This X guide rail is mounted on a second guide rail, which enables the manipulator's Y movement and forward and backward movement (Figs. 2, 102). Both guide rails are controlled by a system of drive belts, drive gears, ball bearings and deflection rollers 104, 106, 108, 110 and driven independently of one another by two motors 112a, 112b. The displacement of the drive belt 104 is controlled by means of a rotary pulse generator 112c, 112d.
Lichtsensoren 111 bestimmen die Position des Manipulators in der Vorrichtung.Light sensors 111 determine the position of the manipulator in the device.
Für jeden Treiber 114a, 114b, der die X- und Y-Motoren kontrolliert, stellen X- und Y-Schnittstellen 116a, 116b Information zwischen einem Mikroprozessor 118, der die Manipulator-Position regelt und dem X- bzw. Y-Motor vor und zurück. Fig. 3 zeigt im Detail eine C_uerschnitts- ansicht der Pipettiereinrichtung 42 und der Greifeinrichtung 41 und welcher Part durch einen Mikroprozessor 119 geregelt wird. Der Mikro¬ prozessor 119 kontrolliert die Bewegung der Gretfeinrichtung hoch und runter, öffnet und schließt die Greifzange und regelt die Pipetten-Posi¬ tion, einen Level-Sensor 132 und ein Heizelement 134 der Pipette 6. Der Mikroprozessor 119 kommuniziert mit dem PC über den Mikroprozessor 118. Die Hoch- und Runter-Bewegung (Z) der Greifeinrichtung 41 wird durch einen Greiferschrittmotor 41a ausgeführt, der eine Kurbel 121,welche über ein Pleuel 124 mit der Greifeinrichtung 41 verbunden ist, antreibt. Oben an der Greifeinrichtung 41 gibt ein Lichtsensor 122a deren Z- Position an den Mikroprozessor 119 weiter.For each driver 114a, 114b that controls the X and Y motors, X and Y interfaces 116a, 116b provide information between a microprocessor 118 that controls the manipulator position and the X and Y motors, respectively back. 3 shows in detail a cross-sectional view of the pipetting device 42 and the gripping device 41 and which part is regulated by a microprocessor 119. The microprocessor 119 controls the movement of the gripping device up and down, opens and closes the gripping tongs and regulates the pipette position, a level sensor 132 and a heating element 134 of the pipette 6. The microprocessor 119 communicates with the PC via the Microprocessor 118. The up and down movement (Z) of the gripping device 41 is carried out by a gripper step motor 41a, which drives a crank 121, which is connected to the gripping device 41 via a connecting rod 124. At the top of the gripping device 41, a light sensor 122a transmits its Z position to the microprocessor 119.
In ähnlicher Weise wird die Z-Position der Pipette 6 über einen Schritt¬ motor 42a und einen Lichtsensor 122b geregelt. Der Schrittmotor 42a treibt einen Riementrieb 140 an, welcher sich an der Stützbasis 142 der Pipette 6 befindet. Wenn sich der Level der in den Reagenzienflaschen und Probenbehältern enthaltenden Flüssigkeit ändert, detektiert ein Level- Sensor 132 die Oberfläche der Flüssigkeit und gibt die Information an den Mikroprozessor 119 weiter, der die Z-Bewegung der Pipette 6 regelt. Der Level-Sensor 132 spricht auf eine Änderung der Kapazität, wenn die Pipette der Oberfläche einer Flüssigkeit berührt, an. Während dem Ansaugen von Flüssigkeit bewegt sich die Pipette 42 herunter und hält bei einem bestimmten Abstand unterhalb des Meniskus an. Dieser Ab¬ stand wird durch den Durchmesser der Reagenzienflaschen bzw. Proben- röhrchen und durch die zu pipettierende Menge von Flüssigkeit, wie sie in der Arbeitsliste näher angegeben ist, bestimmt. Es ist vorzugsweise, daß die Spitze der Pipette 6 nicht zu tief in die Flüssigkeit eintaucht; andererseits ist es aber auch zweckmäßig, daß die Pipette 6 tief genug eintaucht, um die gewünschte Menge von Flüssigkeit ohne Luftblasen anzusaugen. Soll 1 ml Flüssigkeit aus einem Probenröhrchen (kleiner Durchmesser) oder aus einer Reagenzienflasche (großer Durchmesser) angesaugt werden, detektiert der Level-Sensor 132 die Flüssigkeitsober- fläche. Im Fall des Probenröhrchens senkt sich die Pipette 6 tiefer, als im Fall der Reagenzienflasche. Fig. 3 zeigt auch, daß der Mikroprozessor 119 das Signal zur Bedienung eines Magneten 123 überträgt, der das Öffnen der Greifeinrichtung 41 regelt, in dem Moment, wo eine Küvette 5 absetzt werden soll. Die Funktionsweise der Greifeinrichtung 41 wird näher in den Fig. 5a bis 5e beschrieben.The Z position of the pipette 6 is regulated in a similar manner by means of a stepper motor 42a and a light sensor 122b. The stepper motor 42a drives a belt drive 140, which is located on the support base 142 of the pipette 6. When the level of the liquid contained in the reagent bottles and sample containers changes, a level sensor 132 detects the surface of the liquid and passes the information on to the microprocessor 119, which regulates the Z movement of the pipette 6. Level sensor 132 is responsive to a change in capacitance when the pipette contacts the surface of a liquid. During the aspiration of liquid, the pipette 42 moves down and stops at a certain distance below the meniscus. This distance is determined by the diameter of the reagent bottles or sample tubes and by the amount of liquid to be pipetted, as specified in the work list. It is preferred that the tip of the pipette 6 is not immersed too deeply in the liquid; on the other hand, it is also expedient that the pipette 6 is immersed deep enough to suck in the desired amount of liquid without air bubbles. If 1 ml of liquid is to be aspirated from a sample tube (small diameter) or from a reagent bottle (large diameter), the level sensor 132 detects the liquid surface. In the case of the sample tube, the pipette 6 sinks lower than in the case of the reagent bottle. Fig. 3 also shows that the microprocessor 119 transmits the signal to operate a magnet 123 which controls the opening of the gripping device 41 at the moment when a cuvette 5 is to be placed. The operation of the gripping device 41 is described in more detail in FIGS. 5a to 5e.
Fig. 3 zeigt auch den inneren Aufbau der Pipette 6, d. h. die Heizvor¬ richtung. Die Pipette 6 wird auf Temperaturen von 20 - 50 °C, vorzugs¬ weise auf 30 - 40 °C, insbesondere auf 37 °C über ein Heizelement 134 aufgeheizt. Die aktuelle Temperatur innerhalb der Pipette wird über ein thermosensitives Element 136 bestimmt, welches mit einem Temperatur- Regulator 138 verbunden ist Fig. 4 zeigt eine Querschnittsansicht der Pipette. Die Pipette 6 besteht aus einer langen rostfreien Stahlröhre 43, die mit einem Material bedeckt ist, das als Heizelement wirkt. Der obere Teil der rostfreien Stahl-Röhre 43 ist mit einem Plastikschlauch 86 verbunden, der wiederum mit einem Ende des Ventils 80 des Dilutors 81 verbunden ist.Fig. 3 also shows the internal structure of the pipette 6, i. H. the heating device. The pipette 6 is heated to temperatures of 20-50 ° C., preferably 30-40 ° C., in particular 37 ° C., via a heating element 134. The current temperature within the pipette is determined via a thermosensitive element 136, which is connected to a temperature regulator 138. FIG. 4 shows a cross-sectional view of the pipette. The pipette 6 consists of a long stainless steel tube 43 which is covered with a material which acts as a heating element. The upper part of the stainless steel tube 43 is connected to a plastic tube 86, which in turn is connected to one end of the valve 80 of the dilutor 81.
Fig. 5a ist eine detaillierte Darstellung der Greifeinrichtung 41 und Pipettiereinrichtuπg 42 auf dem Manipulator 40. Über eine komplette5a is a detailed illustration of the gripping device 41 and pipetting device 42 on the manipulator 40
Drehung einer Kurbel 121 wird ein Zyklus vom Ergreifen bis zumRotation of a crank 121 becomes a cycle from gripping to
Absetzen einer Küvette ausgeführt (Fig. 5b - 5e). Eine Pleuelstange 124, die mit der Kurbel 121 verbunden ist, überträgt die Bewegung an dieSet down a cuvette (Fig. 5b - 5e). A connecting rod 124 connected to the crank 121 transmits the motion to the
Greifeinrichtung 4L welche vertikal entlang zweier Gleitstäbe 125 gleitet Beim Ergreifen einer Küvette 5 bewegt sich die Greifeinrichtung 41 herunter und wenn die Greifzange 130 üi Xontakt mit "Seiten-Vorsprün- genH 5a der Küvette 5 kommt, öffnet sich die Greifzange entgegen derGripping device 4L which slides vertically along two slide rods 125 When gripping a cuvette 5, the gripping device 41 moves down and when the gripping tongs 130 come in contact with side projections H 5a of the cuvette 5, the gripping tongs open in the opposite direction
Kraft einer Feder 128. Am unteren Totpunkt der Greifeinrichtung 41 kann die Feder 128 die Greifzange 130 schließen, wobei Hakenvorsprün- ge 130a der Greifzange die Seitenvorsprünge 5a der Küvette 5 unter- greifen. Ein mittels Feder 131a in Richtung Küvette 5 belastetes Druck¬ stück 131 sichert die ergriffene Küvette in der Greifzange 130.Force of a spring 128. At the bottom dead center of the gripping device 41, the spring 128 can close the gripping tongs 130, hook projections 130a of the gripping tongs underside the side projections 5a of the cuvette 5. to grab. A pressure piece 131, which is loaded in the direction of the cuvette 5 by means of spring 131a, secures the gripped cuvette in the gripping tongs 130.
Der Absetz-Zyklus erfordert einen zusätzlichen Mechanismus. Fig. 5b - 5e zeigt in Abfolge, wie dieser Zyklus ausgeführt wird. Der erste Schritt (Fig. 5c) ist der Transfer (X-Y, 40) der Küvette 5 in der gewünschten Position (mögliche Position in der Küvettenvorlage oder in der Me߬ station). Wenn die Greifeinrichtung 42 exakt an der gewünschten Position ist, besteht der zweite Schritt darin, die Küvette herunterzulassen (Z) (die Greifeinrichtung 42 gleitet entlang zweier Gleitstäbe 125. Während¬ dessen wird ist der Magnet 123 aktiviert und ein transversaler Hubstab 123a kommt in die Bewegungsbahn eines Kopfes 126a des Stößels 126. Der dritte Schritt (Fig. 5d) findet statt, wenn der transversale Stab 123a auf den Kopf 126a des Stößels 126 berührt. Sowie die Greifeinrichtung 42 weiter nach unten gleitet, wird der Stößel daran gehindert, aufgrund der Anwesenheit des transversalen Stabes 123a weiter mit der Greifein¬ richtung nach unten zu fahren. Der runde Teil des Stößels 126 drückt die Innenseiten 130b der Greifzange 130 auseinander, öffnet diese und entläßt in diesem Moment die Küvette 5 (Fig. 5e). Sobald die Küvette 5 abgesetzt worden ist, drückt die Feder 131a das Druckstück 131 in seine Ruheposition zurück. Wenn sich die nun offene Greifeinrichtung 42 nach oben bewegt, kommt ein "Schließer" 129 mit dem oberen Teil des Kopfes 126a des Stößels 126 in Kontakt, bringt ihn in seine Anfangs¬ position zwischen den abgerundeten Wänden 130b der Greifzange 130 zurück (siehe Position des Stößels in Fig. 5c Schritt 1), wobei die Feder 128 die Greifzange 130 schließt.The settling cycle requires an additional mechanism. Figures 5b-5e show in sequence how this cycle is carried out. The first step (FIG. 5c) is the transfer (X-Y, 40) of the cuvette 5 in the desired position (possible position in the cuvette template or in the measuring station). If the gripping device 42 is exactly at the desired position, the second step is to lower the cuvette (Z) (the gripping device 42 slides along two sliding bars 125. During this time, the magnet 123 is activated and a transverse lifting bar 123a comes into it Path of movement of a head 126a of the plunger 126. The third step (FIG. 5d) takes place when the transverse rod 123a touches the head 126a of the plunger 126. As the gripping device 42 slides further down, the plunger is prevented from doing so because of the The round part of the plunger 126 presses the inner sides 130b of the gripping tongs 130 apart, opens the latter and at this moment releases the cuvette 5 (FIG. 5e) 5 has been set down, the spring 131a presses the pressure piece 131 back into its rest position, when the now open gripping device Moved upward 42, a "closer" 129 comes into contact with the upper part of the head 126a of the plunger 126, brings it back into its initial position between the rounded walls 130b of the gripping pliers 130 (see position of the plunger in FIG. 5c Step 1), wherein the spring 128 closes the gripper 130.
Die Vorrichtung umfaßt verschiedene Probenvorlagen (Fig. 1, 20). Die meisten sind identisch zueinander mit Platz für verschiedene Probenbehäl- ter bzw. Probenröhrchen 21. Eine Probenvorlage 20a hat beispielsweise eine geringere Anzahl von Probenröhrchen 21 und kann in Notfallsitua¬ tionen (STAT-Vorlage) verwendet werden. Falls eine Vorlage nicht die laufende Arbeitsvorlage ist, kann diese Vorlage aus dem Test-Automat jederzeit herausgenommen werden, weil die Vorlagen in einer Schublade 22 angeordnet sind. Wie vorher erwähnt, ist der Vorteil der Verwendung von mehreren Proben- und Küvettenvorlagen die, daß neue Proben und Küvetten jederzeit in das System eingeführt werden können, ohne den Prozeßablauf zu unterbrechen. Die Probenvorlagen können auf 5 - 20 °C, vorzugsweise auf 10 - 15 °C abgekühlt werden. Die Temperatur der Vorlagen wird unter Verwendung eines geschlossenen z kulierenden Systems (nicht gezeigt) eingestellt, welches eine Flüssigkeit, vorzugsweise kaltes Wasser, in Metallteilen unterhalb der Vorlage (nicht gezeigt) zirkulieren läßt und welches die Probenvorlagen auf die gewünschte Temperatur abkühlt Die Thermostatisierung kann auch über elektrische Elemente, vorzugsweise Peltierelementen, geschehen.The device comprises various sample templates (Fig. 1, 20). Most are identical to one another with space for different sample containers or sample tubes 21. A sample template 20a has, for example a smaller number of sample tubes 21 and can be used in emergency situations (STAT template). If a template is not the current work template, this template can be removed from the test machine at any time because the templates are arranged in a drawer 22. As previously mentioned, the advantage of using multiple sample and cuvette templates is that new samples and cuvettes can be inserted into the system at any time without interrupting the process. The sample templates can be cooled to 5 - 20 ° C, preferably 10 - 15 ° C. The temperature of the templates is adjusted using a closed zululating system (not shown) which allows a liquid, preferably cold water, to circulate in metal parts below the template (not shown) and which cools the sample templates to the desired temperature. The thermostatting can also about electrical elements, preferably Peltier elements.
Zwei Küvettenvorlagen (Fig. L 50a und 50b) beinhalten jeweüs verschie¬ dene Küvetten 5. Die Küvetten 5 sind in einem Polystyrol-Tablett (Fig. 6, 51) aufgereiht, welches der Anwender in die Küvettenschublade 52 stellt. Das Küvettentablett 51 ist an die Küvettenschublade 52 angepaßt, so daß sich das Tablett nicht bewegt, wenn die Greifeinrichtung eine Küvette ergreift Zusätzlich zeigen die Küvettenvorlagen eine Serie von "Schienen" 54, welche das Tablett unterstützen Die Zwischenräume zwischen zweier benachbarter Schienen 54 sind so geformt, daß die Küvetten eine möglichst große Kontaktoberfläche mit dem beheizbaren Teil der Schublade 52, die auf 25 - 45 °C, vorzugsweise 30 - 40 °C, weiter bevorzugt auf 37 °C unter Verwendung eines geschlossenen Was- sersystems 56 aufgeheizt ist, haben Die Temperatureiπstellung ist vor¬ zugsweise, um die Probe in den Küvetten bzw. die noch ungefüllten Küvetten zu inkubieren. Wenn alle Küvetten in dem Polystyrol-Tablett verwendet worden sind, wird das Tablett mit den Küvetten per Hand aus der Vorrichtung genommen und weggeworfen.Two cuvette templates (FIGS. L 50a and 50b) each contain different cuvettes 5. The cuvettes 5 are lined up in a polystyrene tray (FIGS. 6, 51), which the user places in the cuvette drawer 52. The cuvette tray 51 is adapted to the cuvette drawer 52 so that the tray does not move when the gripping device grips a cuvette. In addition, the cuvette templates show a series of "rails" 54 which support the tray. The spaces between two adjacent rails 54 are shaped in this way that the cuvettes have as large a contact surface as possible with the heatable part of the drawer 52, which is heated to 25-45 ° C., preferably 30-40 ° C., more preferably 37 ° C. using a closed water system 56 Temperature setting is preferred in order to incubate the sample in the cuvettes or the still unfilled cuvettes. When all the cuvettes in the polystyrene tray have been used, the tray with the cuvettes is removed from the device by hand and thrown away.
Weil die verschiedenen Test-Verfahren verschiedene Reagenzien erfor-Because the different test procedures require different reagents
5 dem, enthält die Vorrichtung verschiedene Reagenzienvorlagen (Fig. 7,5, the device contains various reagent templates (Fig. 7,
24) mit konischen Reagenzienhaltern 25. Die Vorlage gegenüber dem24) with conical reagent holders 25. The template opposite the
Photometer (Fig. L 24c) enthält vorzugsweise Startreagenzien. VorlagePhotometer (Fig. L 24c) preferably contains starting reagents. template
24b ist ausgerichtet, vorzugsweise Zwischenreagenzien aufzunehmen und liegt zwischen den Proben- und Küvettenvorlagen. Vorlage 24a befindet 0 sich hinter den Probenvorlagen und enthält vorzugsweise "Mangel"- und24b is aligned, preferably to take up intermediate reagents, and lies between the sample and cuvette templates. Template 24a is located behind the sample templates and preferably contains "deficiency" - and
Kontrollplasmen und vorzugsweise Reagenzien für chromogene Tests.Control plasmas and preferably reagents for chromogenic tests.
Zusätzlich können dort Reagenzien für vorzugsweise turbidimetrische immunologische Tests aufbewahrt werden. Das Design der Vorrichtung erlaubt auch andere photometrische oder turbidimetrische Tests aus 5 anderen Bereichen des klinischen Laborbetriebs, z. B. klinische Chemie, auszuführen.In addition, reagents for preferably turbidimetric immunological tests can be stored there. The design of the device also allows other photometric or turbidimetric tests from 5 other areas of clinical laboratory operations, e.g. B. clinical chemistry.
Die Durchmesser der Reagenzienhalter sind so gewählt, daß das Labor- Personal die Original-Reagenzienflasche 23 direkt in den Halter (siehe 0 Fig. 7) stellen kann. Konzentrische Ringe 26 werden dazu verwendet, andere Flaschen mit anderen Durchmessern an die Vorrichtung anzupas¬ sen. Damit sich die Reagenzien nicht aufwärmen, werden die Reagen¬ zienvorlagen auf 5 - 20 °C, vorzugsweise auf 10 - 15 °C, unter vorzugs¬ weiser Verwendung des oben erwähnten geschlossenen Wassersystems 5b 5 abgekühlt Auch hier können vorzugsweise Peltierelemente zur Thermo- statisierung eingesetzt werden. Am Ende des Tages (oder eines Proben¬ laufs) gibt es noch Reste in den Reagenzienflaschen, so daß es sinnvoll ist, daß die Reagenzienvorlage aus der Vorrichtung unter Bewegung der Schrauben 27a und 27b herausgenommen werden kann und in einem θ Kühlschrank für eine zukünftige Verwendung aufbewahrt werden kann. Das Bedienungspersonal braucht keine Pumpen anzuschließen oder abzuklemmen oder Reageπzienreservoirs zu waschen, was natürlich Ar¬ beitskosten und Zeit spart.The diameter of the reagent holder is selected so that the laboratory staff can place the original reagent bottle 23 directly in the holder (see 0 Fig. 7). Concentric rings 26 are used to adapt other bottles with different diameters to the device. So that the reagents do not heat up, the reagent templates are cooled to 5-20 ° C., preferably 10-15 ° C., preferably using the above-mentioned closed water system 5b 5. Here too, Peltier elements can preferably be used for thermostatization become. At the end of the day (or a sample run) there are still residues in the reagent bottles, so that it makes sense that the reagent template can be removed from the device by moving the screws 27a and 27b and in a refrigerator for future use can be kept. The operating personnel need not connect or disconnect pumps or wash reagent reservoirs, which of course saves labor costs and time.
Die Meßstation umfaßt ein Photometer mit verschiedenen unabhängigen optischen Kanälen. Jeder optischer Kanal ist in der gleichen Weise mit keinen allgemeinen Teilen oder Komponenten zwischen den Kanälen konstruiert Dieses Design erlaubt im Fall von Funktionsausfall von einem der Kanäle, daß die Probenbearbeitung ohne Unterbrechung weitergeht Fig. 8 zeigt im Detail einen der optischen Kanäle.The measuring station comprises a photometer with various independent optical channels. Each optical channel is constructed in the same way with no general parts or components between the channels. This design allows sample processing to continue uninterrupted in the event of a breakdown of one of the channels. Figure 8 shows in detail one of the optical channels.
Der von der Lichtquelle (Halogenlampe, 220) emittierte Lichtstrahl wird mittels einer Sammellinse 222 gesammelt und auf einen Eintrittschlitz 224 in Richtung eines Zwischenschlitzes 226 geleitet. Der Lichtstrahl tritt dann durch eine Eingangslinse 228 und wird in die Probe im Küvetten- schacht 230 mittels eines Ausgangsschlitzes 232 fokusiert Der den Küvet- tenschacht verlassende Lichtstrahl wird in zwei Strahlen (50 % des gesamten transmittierten Lichts) aufgespalten unter Verwendung eines Strahlenteilers 233 aufgespalten. Der Strahlenteiler kann aus irgendeinem üblichen Material, z. B. Faseroptik, hergestellt sein.The light beam emitted by the light source (halogen lamp, 220) is collected by means of a converging lens 222 and directed onto an entry slit 224 in the direction of an intermediate slit 226. The light beam then passes through an input lens 228 and is focused into the sample in the cuvette shaft 230 by means of an output slit 232. The light beam leaving the cuvette shaft is split into two beams (50% of the total transmitted light) using a beam splitter 233. The beam splitter can be made of any common material, e.g. B. fiber optics.
Jeder sekundäre Lichtstrahl wird auf eine Filter-Einheit geleitet, die einen unteren 234 und einen oberen Filter 236 hat Der untere Filter hat einen Transmissions-Peak einer speziellen Wellenlänge und der obere Filter einen bei einer von der unteren verschiedenen Wellenlänge. Auf diese Weise ist es möglich, bichromatische Messungen von Proben bei zwei verschiedenen Wellenlängen gleichzeitig vorzunehmen.Each secondary light beam is directed to a filter unit which has a lower 234 and an upper filter 236. The lower filter has a transmission peak of a particular wavelength and the upper filter one at a wavelength different from the lower. In this way it is possible to carry out bichromatic measurements of samples at two different wavelengths simultaneously.
Jeder gefilterte Lichtstrahl wird dann mit einer Sarnmellinse 238a, 238b fokusiert. Schließlich wird der fokusierte Lichtstrahl unter Verwendung von gewöhnlichen Fotodetektionsmitteln (Fotozelle, 240a bzw. 240b) gemessen und das resultierende Signal wird mit einem geeigneten Ver¬ stärker 242a, 242b verstärkt.Each filtered light beam is then focused with a Sarnmell lens 238a, 238b. Finally, the focused light beam is used measured by ordinary photodetection means (photocell, 240a or 240b) and the resulting signal is amplified with a suitable amplifier 242a, 242b.
Der Vorteil des oben erwähnte Designs ist, daß es möglich ist, zwei verschiedene Arten von Messungen, z. B. in zwei Kanälen (z. B. turbidi¬ metrische und chromogene Messung) durchzuiuhren, weil die Kanäle vorzugsweise keinen separaten Filter benötigen, wie andere Geräte des Standes der Technik. Es besteht keine Notwendigkeit, einen Teil der Kanäle für einen Typ der Messung und den Rest für einen anderen Typ zu reservieren Mit diesem Merkmal ist es möglich, völlig zufällige Zugangsmöglichkeiten zu erreichen, weil zwei Wellenlängen gleichzeitig vorhanden sind. Anstelle der Benutzung eines Zwei-Wellenlängen-Photo¬ meters ist es auch möglich ein "Diode Array Photometer" zu verwenden, das auch die Möghchkeit der Messung bei mehreren Wellenlängen gleichzeitig bietet.The advantage of the design mentioned above is that it is possible to take two different types of measurements, e.g. B. in two channels (z. B. turbidimetric and chromogenic measurement) because the channels preferably do not require a separate filter, like other devices of the prior art. There is no need to reserve part of the channels for one type of measurement and the rest for another type. With this feature it is possible to achieve completely random access possibilities because two wavelengths are present at the same time. Instead of using a two-wavelength photometer, it is also possible to use a "diode array photometer" which also offers the possibility of measuring at several wavelengths simultaneously.
Der Küvettenschacht (Fig. 8, 230) ist in einen Metallblock eingelassen, der auf eine gewünschte Temperatur über ein geschlossenes System 56 von zirkulierendem Wasser temperiert werden kann. Ein thermosensitives Element 250 detektiert jede Veränderung der gewünschten Temperatur und ein thermaler Widerstand 252 bringt die Temperatur auf die durch¬ schnittliche gewünschte Temperatur.The cuvette shaft (FIGS. 8, 230) is embedded in a metal block which can be heated to a desired temperature via a closed system 56 of circulating water. A thermosensitive element 250 detects any change in the desired temperature and a thermal resistor 252 brings the temperature to the average desired temperature.
Um die Küvette 5 im Küvetteπschacht 230 des Photometers zu halten, wurde ein spezieller Mechanismus erdacht. Dieser Mechanismus besteht aus einer Andruckrolle 254, die mit einer Andrückfeder 256 verbunden ist. Weil alle Schritte bei der Probenbearbeitung die Verwendung des Mani¬ pulators erfordern (z. B. Pipettieren von Probe und Reagenzien, Trans¬ port der Küvetten) ist es bevorzugt, den Arbeitsfluß zu rationalisieren, mit dem Zweck, eine maximale Anzahl von Proben pro Stunde durch Muiimierung der Zeit, wo der Manipulator nichts zu tun hat, zu be¬ arbeiten.In order to hold the cuvette 5 in the cuvette shaft 230 of the photometer, a special mechanism was devised. This mechanism consists of a pressure roller 254 which is connected to a pressure spring 256. Because all steps in sample processing require the use of the manipulator (eg pipetting of sample and reagents, transport of the cuvettes), it is preferred to rationalize the work flow with the purpose of a maximum number of samples per hour by minimizing the time when the manipulator has nothing to do.
Andererseits ist die Vorrichtung gemäß der vorliegenden Erfindung fähig, jederzeit jeden Typen von Test-Verfahren auszuführen und da diese ver- schiedenen Test-Typen unterschiedliche Erfordernisse bezüglich Inkuba¬ tionszeit, Verdünnungsschritte usw. haben, kann ein Software-Programm eingesetzt werden, das den Zustand jeder Probe kontrolliert und in einem kurzen Zeitraum bis maximal 5 msec, vorzugsweise jede 2. msec, aufzuzeichnen. Der Vorteil eines solchen Software-Programms besteht darin, solche Proben zu überwachen, deren Inkubations-Zeit nahe am Überschreiten ist. In diesem Fall ist es angebracht, zuerst solche Proben abzuarbeiten, die in einem kritischen Zustand sind (Überschreiten der Inkubationszeit). Erst dann sollen weniger dringende Schritte in der Ar¬ beitskette, wie Verdünnung einer Probe, ausgeführt werden, was im Prinzip ein von der Zeit unabhängiger Schritt istOn the other hand, the device according to the present invention is capable of executing any type of test method at any time, and since these different test types have different requirements with regard to incubation time, dilution steps, etc., a software program can be used to check the status Each sample is checked and recorded in a short period of time up to a maximum of 5 msec, preferably every 2nd msec. The advantage of such a software program is to monitor those samples whose incubation time is close to being exceeded. In this case, it is advisable to first process samples that are in critical condition (the incubation period has been exceeded). Only then should less urgent steps in the work chain, such as dilution of a sample, be carried out, which in principle is a step that is independent of time
Ein anderer Zweck einer solchen Software-Kontrolle ist die Bereitstellung eines schnellen Übergangs zwischen Routine- und Notfall-Proben. Zu dem Zeitpunkt, wo Notfall-Proben (STAT-Proben) abgearbeitet werden sollen, ist es zweckmäßig:Another purpose of such software control is to provide a quick transition between routine and emergency samples. At the time when emergency samples (STAT samples) are to be processed, it is advisable:
a) die Bearbeitung von neuen Proben aus der "Routine-Iinie" stoppen zu können b) die Bearbeitung von schon inkubierenden Proben aus der "Rou- tme-Linie" fortsetzen zu können, während die Notfall-Proben be¬ arbeitet werden. Eine vorzeitige Unterbrechung des "Routine- Arbeitsflusses" kann zu einem Verlust von Probe und Reagen- zien führen, der sich bei optimaler Arbeitsplanung verhindern läßt.a) to be able to stop the processing of new samples from the "routine line" b) to be able to continue the processing of already incubating samples from the "routine line" while the emergency samples are being processed. A premature interruption of the "routine workflow" can lead to a loss of sample and reagents, which can be prevented with optimal work planning.
Zusätzlich sollte die Software darüber wachen, daß die Probenbearbeitung der unterbrochenen "Routme-Linie" exakt an dem Punkt wieder beginnt, wo sie unterbrochen worden ist. Das kann getan werden, nachdem alle STAT-Proben einen bestimmten Stand der Probenbearbeitung erreicht haben und jetzt genügend Zeit besteht, neue Proben zu beginnen. Dies verhindert jeglichen Zeitverlust zwischen der "Routine-" und STAT-Arbeit.In addition, the software should ensure that sample processing of the interrupted "routme line" starts again exactly at the point where it was interrupted. This can be done after all STAT samples have reached a certain level of sample processing and there is now enough time to start new samples. This prevents any loss of time between the "routine" and STAT work.
Zu Beginn eines normalen Laufs wird eine Warteliste, die Zustandswerte enthält, aufgestellt. Diese Warteliste wird vorzugsweise in einem Proben¬ bearbeitungsspeicher (IDA) abgelegt.At the beginning of a normal run, a waiting list containing status values is drawn up. This waiting list is preferably stored in a sample processing memory (IDA).
Eine einfache Matrix wird zur Aufstellung der Warteliste verwendet.A simple matrix is used to compile the waiting list.
Ein Schritt zur Optimierung des Arbeitsflusses ist, daß in einem Durch¬ lauf so viele Proben wie möglich gesammelt werden, die denselben Testtyp (Verfahrenstyp) benötigen. Jedoch werden nicht alle Proben, die denselben Testtyp benötigen, gleichzeitig bearbeitet, sondern je nach Batchgrδße werden eine Anzahl von zu bearbeitenden Proben zu Batches zusammengefaßt Die Batchgröße ist in einer in den Computer eingege¬ benen Arbeitsliste (Methodenliste) verzeichnet, die u.a. die zu pipettieren- den Flüssigkeitsmenge, die Inkubationszeit, u.s.w., für jeden Testtyp enthält. Das Software-Programm ermöglicht, daß Batches mit gleichem Testtyp 1- ntereinander ablaufen, z.B. wenn 25 Proben Test "A" und 10 Proben Test "B" benötigen und die Batchgröße für beide Tests "5" ist, laufen 5 Batches von Test "A' (soll im Beispiel höhere Verfahrenspriori¬ tät als Test "B" haben) hintereinander ab, dann 2 Batches von Test "B". Der Vorteil davon ist, Pipettierzeit zu sparen: Zum Beispiel ist es effizienter, daß die Pipette einmal eine große Menge Reagenz aufnimmt und dann in verschiedenen Aliquots abgibt, als für jede Probe z. B. das Reagenz abzumessen und einzeln in die Küvette zu z. B. dem Plasma zu geben.One step for optimizing the work flow is that as many samples as possible are collected in one run that require the same test type (method type). However, not all samples that require the same test type are processed at the same time, but depending on the batch size, a number of samples to be processed are combined into batches. The batch size is recorded in a work list (method list) entered into the computer, which, among other things, pipettes the - the amount of liquid, incubation time, etc., for each test type. The software program enables batches with the same Run test type 1 one below the other, for example if 25 samples require test "A" and 10 samples require test "B" and the batch size for both tests is "5", 5 batches of test "A 'run (in the example, the process priority is higher than Test "B" have one after the other, then 2 batches of test "B." The advantage of this is to save pipetting time: For example, it is more efficient that the pipette takes up a large amount of reagent and then dispenses it in different aliquots than For each sample, for example, measure the reagent and add it individually to the cuvette, for example to the plasma.
Fig. 9a und 9b zeigen ein beispielhaftes Fließdiagramm, das zusammen¬ faßt, wie Zustandswerte erzeugt werden und wie sie anwachsen.9a and 9b show an exemplary flow diagram which summarizes how state values are generated and how they increase.
Über das Software-Programm läuft auch die Reservierung einer Küvette in der Küvettenvorlage. Sollte der Test-Typ Verdünnungsschritte der Probe erfordern, dann sind mindestens zwei Küvetten zum Ausführen dieses Schrittes in der Küvettenvorlage reserviert. Das Software-Programm prüft anhand der Daten aus der Arbeitsliste nach, ob ein bestimmter Schritt notwendig ist, z. B. das Verdünnen einer Probe. Falls ein Schritt in einem Test nicht notwendig ist, springt der Zustandswert zum näch¬ sten methodenabhängigen Zustand. Falls ein Fehler während der Proben¬ bearbeitung passiert, z. B. die Inkubationszeit ist abgelaufen und Startrea- geπz wurde nicht sofort danach hinzugefügt, so springt der Zustandswert für diesen Ansatz automatisch zur Zustands-Zahl 70 (Fig. 9b) , d. h., daß dieser Ansatz von Beginn an wiederholt wird.The reservation of a cuvette in the cuvette template also runs via the software program. If the test type requires dilution steps of the sample, then at least two cuvettes are reserved in the cuvette template for performing this step. The software program uses the data from the work list to check whether a certain step is necessary, e.g. B. diluting a sample. If a step in a test is not necessary, the state value jumps to the next method-dependent state. If an error happens during sample processing, e.g. B. the incubation time has expired and the start response was not added immediately afterwards, the state value for this approach automatically jumps to state number 70 (FIG. 9b), i. that is, this approach is repeated from the beginning.
Ein allgemeiner Schritt für alle Tests ist der Zusatz des StartreagenzesA general step for all tests is the addition of the start reagent
(letztes Reagenz). Zwischen Zustand 20 und 40 gibt es verschiedene kritische Zustände (nicht in dem Fließdiagramm enthalten), die im Auge behalten werden sollten, z. B. inwieweit die Inkubationszeit abgelaufen sein muß, bevor das letzte Reagenz hinzugefügt werden soll. Diese Kontrolle erfolgt, weil die Küvette in der Meßstation sein soll, bevor die Inkubationszeit abgelaufen ist. Wenn Zustand 40 erreicht ist (Fig. 9b) wird die Küvette in die Meßstation gebracht und der Rest der Inkuba- tionszeit läuft dort ab. Sobald Zustand 51 erreicht ist, wird das Startrea¬ genz ohne Verzögerung hinzugefügt.(last reagent). Between states 20 and 40 there are various critical states (not included in the flow diagram) that should be kept in mind, e.g. B. To what extent the incubation period has expired must be before the last reagent is to be added. This check is done because the cuvette should be in the measuring station before the incubation period has expired. When state 40 is reached (FIG. 9b), the cuvette is brought into the measuring station and the rest of the incubation period expires there. As soon as state 51 is reached, the start reagent is added without delay.
Ein anderer Aspekt der Probenbearbeitung, der eintreten kann, ist, daß zu einem bestimmten Moment mehr Tests zur Bearbeitung anstehen, als Platz in der Meßstation frei ist. Deshalb ist das Entfernen der Küvette aus der Meßstation, sobald die Messung einer Probe ausgeführt ist (Zustand 61), ein überwachungsintensiver Schritt. Zustand 61 steht daher in der folgenden Prioritätsliste ganz oben. In dieser Weise wird gesichert, daß sobald eine Probe zur Vermessung ansteht, ein Platz in der Meß- Station für sie frei ist. Sobald die vermessene Probe aus der Meßstation entfernt ist, wird die Küvette vorzugsweise in ihre Anfangsposition in der Küvettenvorlage zurückgebracht. Diese Position wird dann als "Müll" deklariert, so daß diese verwendete Küvette übersprungen wird, wenn eine Küvette in der Küvettenvorlage (Zustand 1) reserviert werden soll. Existiert zu diesem Zeitpunkt ein abgebrochener Test (hat Zustandswert 70), so hat dieser eine höhere Priorität als die Aufnahme eines neuen Tests in die Warteliste.Another aspect of sample processing that can occur is that at a given moment there are more tests to be processed than there is free space in the measuring station. Therefore, removing the cuvette from the measuring station as soon as the measurement of a sample has been carried out (state 61) is a step that requires intensive monitoring. State 61 is therefore at the top of the following priority list. In this way it is ensured that as soon as a sample is ready for measurement, a place in the measuring station is free for it. As soon as the measured sample is removed from the measuring station, the cuvette is preferably returned to its starting position in the cuvette template. This position is then declared as "garbage" so that the cuvette used is skipped if a cuvette in the cuvette template (state 1) is to be reserved. If there is an aborted test at this time (has a status value of 70), this has a higher priority than adding a new test to the waiting list.
Es ist keine ungewöhnliche Situation, daß mehrere Proben parallel be- arbeitet werden müssen Zum Beispiel kann die Situation entstehen, daß gleichzeitig eine Probe den Zusatz von Startreagenz benötigt (Zustand 51), eine andere Probe zu der Meßstation transportiert werden soll (Zustand 40) und eine dritte Probe von der Meßstation zur Küvettenvor¬ lage (Zustand 61) transportiert werden soll. Welcher Schritt soll zuerst mit dem Manipulator ausgeführt werden? Aus diesem Grund existiert eine Prioritätsliste. Die Prioritätsliste (Statusprioritätsliste) sieht in verein¬ fachter Weise wie folgt aus:It is not an unusual situation that several samples have to be processed in parallel. For example, the situation can arise that one sample requires the addition of start reagent at the same time (state 51), another sample should be transported to the measuring station (state 40) and a third sample is to be transported from the measuring station to the cuvette template (state 61). Which step should be carried out first with the manipulator? Because of this, it exists a priority list. The priority list (status priority list) looks in a simplified manner as follows:
Prioritätsliste 61 51Priority list 61 51
3434
08 06 05 04 ....0108 06 05 04 .... 01
Die erste Reihe enthält den Zustand mit höchster Priorität Wenn mehr als zwei Zustände in derselben Reihe sind, hat der erste Zustand Priori¬ tät über den zweiten usw. Die letzte Reihe enthält die Gruppe mit Zuständen geringster Priorität.The first row contains the state with the highest priority. If more than two states are in the same row, the first state has priority over the second etc. The last row contains the group with the lowest priority.
Ein Abtast-Programm (loop) tastet diese Prioritätsliste ab und stimmt sie mit den zu diesem Moment für alle Tests in der Warteliste vorhandenen Zustandswerten ab. Die Warteliste reserviert nicht nur einen Platz zur Probenbearbeitung, sondern gibt auch zu jedem Moment für jede Probe den aktuellen Zustandwert wieder. Falls das Abtast-Programm einen Test mit der Zustands-Nummer 61 findet, wird der Manipulator den Schritt ausführen, der mit dieser Nummer verbunden ist, d.h eine Küvette aus dem Photometer entfernen und vorzugsweise in der Küvettenvorlage auf dem vorgesehenen Platz absetzen und dabei gleich wieder eine Küvette aus der Küvettenvorlage mit Zustandswert 40 ins Photometer bringen (rationelle Kopplung von Zuständen). Hat keine der Proben Zustand 61 oder 5L springt das Programm zum Zustand nächster Priorität und checkt, alle Zustände in der Warteliste auf diesen Wert, u.s.w. Falls es nichts mit hδcherer Priorität zu tun gibt und genügend Platz in der Warteliste vorhanden ist, beginnt der Manipulator eine neue Probe zu bearbeiten. In dieser Weise wird verfahren bis alle gewünschten Tests abgeschlossen sind. A scanning program (loop) scans this priority list and matches it with the status values available at the moment for all tests in the waiting list. The waiting list not only reserves a place for sample processing, but also shows the current status value for each sample at any moment. If the scanning program finds a test with the state number 61, the manipulator will carry out the step which is associated with this number, ie remove a cuvette from the photometer and preferably place it in the cuvette template in the intended place and immediately again Bring a cuvette from the cuvette template with state value 40 into the photometer (rational coupling of states). If none of the samples state 61 or 5L, the program jumps to the next priority state and checks all states in the waiting list to this value, etc. If there is nothing to do with higher priority and there is enough space in the waiting list, the manipulator starts one new sample too to edit. This is done until all desired tests have been completed.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP4210963.9 | 1992-04-02 | ||
DE19924210963 DE4210963A1 (en) | 1992-04-02 | 1992-04-02 | Automatic device for the photometric analysis of liquid samples |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1993020612A2 true WO1993020612A2 (en) | 1993-10-14 |
WO1993020612A3 WO1993020612A3 (en) | 1993-12-23 |
Family
ID=6455811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1993/000804 WO1993020612A2 (en) | 1992-04-02 | 1993-04-01 | Automatic device for the photometric analysis of liquid samples |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU3950693A (en) |
DE (1) | DE4210963A1 (en) |
WO (1) | WO1993020612A2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994014074A1 (en) * | 1992-12-04 | 1994-06-23 | Eurogenetics N.V. | Method and automated device for performing immunological tests |
EP0563891A3 (en) * | 1992-04-03 | 1995-05-10 | Toa Medical Electronics | Automated immunochemical analyzer |
EP0569215A3 (en) * | 1992-05-04 | 1995-05-24 | Wallac Oy | Clinical chemical analyzer. |
WO1997019339A1 (en) * | 1995-11-17 | 1997-05-29 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | A photometric measuring system and a holder for such a system |
DE19854919A1 (en) * | 1998-11-27 | 2000-06-15 | Luigs & Neumann Feinmechanik U | Work place for microbiological tests |
DE10006846A1 (en) * | 2000-02-16 | 2001-09-06 | Macherey Nagel Gmbh & Co Hg | Process for measuring the photometric chemical oxygen requirement of liquid samples comprises using several cuvettes in a holder located or inserted in a dosing device |
DE10133857C2 (en) * | 2000-07-13 | 2003-06-12 | Suzuki Motor Co | Sample analysis apparatus |
US6678577B1 (en) | 1997-05-16 | 2004-01-13 | Vertex Pharmaceuticals Incorporated | Systems and methods for rapidly identifying useful chemicals in liquid samples |
WO2004003569A3 (en) * | 2002-06-28 | 2004-04-15 | Pasteur Institut | Robotized platform for cell cultures in miniature reactor batteries, equipped with a system for real time measurement of cellular turbidity or other optical properties |
WO2004098764A2 (en) | 2003-04-30 | 2004-11-18 | Aurora Discovery, Inc. | Multi-well plate providing a high-density storage and assay platform |
US6823041B2 (en) | 2001-09-07 | 2004-11-23 | Bruker Axs Gmbh | Grasping system for automated exchange of elongated samples in an X-ray analysis apparatus |
US6826253B2 (en) | 2001-09-07 | 2004-11-30 | Bruker Axs Gmbh | X-ray analysis apparatus |
WO2005012329A2 (en) | 2003-07-29 | 2005-02-10 | Invitrogen Corporation | Kinase and phosphatase assays |
CN103364574A (en) * | 2013-08-06 | 2013-10-23 | 济南华天恒达科技有限公司 | Automatic leukorrhea analyzer |
CN108732135A (en) * | 2017-11-20 | 2018-11-02 | 重庆中元汇吉生物技术有限公司 | A kind of blood cell and analysis of protein device |
CN110412302A (en) * | 2019-07-30 | 2019-11-05 | 香港大德昌龙生物科技有限公司 | Single-serve chemical analysis device and method for analyzing samples |
CN110849701A (en) * | 2019-11-04 | 2020-02-28 | 山东见微生物科技有限公司 | Sample processing apparatus |
CN111157751A (en) * | 2020-01-03 | 2020-05-15 | 香港大德昌龙生物科技有限公司 | A kit device and kit loading device |
CN112698046A (en) * | 2015-06-22 | 2021-04-23 | 深圳迈瑞生物医疗电子股份有限公司 | Sample analyzer and control method thereof |
WO2021135366A1 (en) * | 2019-12-31 | 2021-07-08 | 科美诊断技术股份有限公司 | Arrangement method for sample testing items, and apparatus |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3228645B2 (en) * | 1994-09-21 | 2001-11-12 | 株式会社日立製作所 | Immune analyzer |
DE19549559C2 (en) * | 1994-09-21 | 2000-10-12 | Hitachi Ltd | Device for analyzing human blood or urine |
DE29720432U1 (en) * | 1997-11-19 | 1999-03-25 | Heimberg, Wolfgang, Dr., 85560 Ebersberg | robot |
JP3426540B2 (en) * | 1999-07-12 | 2003-07-14 | 理学電機工業株式会社 | Analysis system with sample changer |
DE10018876A1 (en) * | 2000-04-14 | 2001-10-25 | Mettler Toledo Gmbh | Analyzer and analyzer |
US7198924B2 (en) | 2000-12-11 | 2007-04-03 | Invitrogen Corporation | Methods and compositions for synthesis of nucleic acid molecules using multiple recognition sites |
WO2002066991A2 (en) * | 2001-02-16 | 2002-08-29 | Aventis Pharmaceuticals Inc. | Automated semi-solid matrix assay and liquid handler apparatus for the same |
JP3740428B2 (en) | 2002-03-29 | 2006-02-01 | アロカ株式会社 | Sample pretreatment system |
JP3985665B2 (en) | 2002-11-18 | 2007-10-03 | 日立工機株式会社 | Automatic dispensing device |
US7619059B2 (en) | 2003-07-29 | 2009-11-17 | Life Technologies Corporation | Bimolecular optical probes |
JP2007512838A (en) | 2003-12-01 | 2007-05-24 | インヴィトロジェン コーポレーション | Nucleic acid molecules containing recombination sites and methods of use thereof |
US20080020467A1 (en) * | 2006-07-20 | 2008-01-24 | Lawrence Barnes | Fluid metering in a metering zone |
US20080020469A1 (en) | 2006-07-20 | 2008-01-24 | Lawrence Barnes | Method for scheduling samples in a combinational clinical analyzer |
EP2078961B1 (en) * | 2008-01-08 | 2020-04-08 | Liconic Ag | Device for manipulating laboratory samples |
EP2172780A1 (en) * | 2008-10-01 | 2010-04-07 | Bayer Technology Services GmbH | Apparatus for automatically performing analyses |
DE102010037084A1 (en) * | 2010-08-20 | 2012-02-23 | LCTech GmbH | Sample conditioning system and a method for processing a sample |
CN108802416B (en) * | 2017-05-05 | 2024-06-25 | 北京迈瑞医疗器械有限公司 | Sample analyzer and sample adding device thereof |
CN108061708A (en) * | 2017-12-14 | 2018-05-22 | 青岛顺昕电子科技有限公司 | Urea content analysis system and its control system, control method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4005782A (en) * | 1974-03-04 | 1977-02-01 | Engineered Metal Products Company, Inc. | Picker |
FI64468C (en) * | 1982-05-26 | 1983-11-10 | Orion Yhtymae Oy | Analysator |
US4738825A (en) * | 1985-02-27 | 1988-04-19 | Fisher Scientific Company | Cuvette handling |
US4927545A (en) * | 1988-10-06 | 1990-05-22 | Medical Automation Specialties, Inc. | Method and apparatus for automatic processing and analyzing of blood serum |
US5166889A (en) * | 1989-01-10 | 1992-11-24 | Medical Robotics, Inc. | Robotic liquid sampling system |
DE3921393A1 (en) * | 1989-06-29 | 1991-01-10 | Lre Relais & Elektronik Gmbh | Appts. for automatic photometric analysis of e.g. blood - contains liq. specimen and reagent transfer devices and cuvette transport mechanism |
IL94212A0 (en) * | 1989-07-24 | 1991-01-31 | Tri Tech Partners And Triton B | Automated analytical apparatus and method |
WO1991016675A1 (en) * | 1990-04-06 | 1991-10-31 | Applied Biosystems, Inc. | Automated molecular biology laboratory |
-
1992
- 1992-04-02 DE DE19924210963 patent/DE4210963A1/en not_active Withdrawn
-
1993
- 1993-04-01 WO PCT/EP1993/000804 patent/WO1993020612A2/en active Application Filing
- 1993-04-01 AU AU39506/93A patent/AU3950693A/en not_active Abandoned
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0563891A3 (en) * | 1992-04-03 | 1995-05-10 | Toa Medical Electronics | Automated immunochemical analyzer |
EP0569215A3 (en) * | 1992-05-04 | 1995-05-24 | Wallac Oy | Clinical chemical analyzer. |
WO1994014074A1 (en) * | 1992-12-04 | 1994-06-23 | Eurogenetics N.V. | Method and automated device for performing immunological tests |
US6239875B1 (en) * | 1995-11-17 | 2001-05-29 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk | Photometric measuring system and a holder for such a system |
WO1997019339A1 (en) * | 1995-11-17 | 1997-05-29 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | A photometric measuring system and a holder for such a system |
US6678577B1 (en) | 1997-05-16 | 2004-01-13 | Vertex Pharmaceuticals Incorporated | Systems and methods for rapidly identifying useful chemicals in liquid samples |
US6685884B2 (en) | 1997-05-16 | 2004-02-03 | Vertex Pharmaceuticals, Inc. | Methods for rapidly identifying useful chemicals in liquid sample |
US7105132B2 (en) | 1997-05-16 | 2006-09-12 | Aurora Discovery, Inc. | Liquid chemical distribution method and apparatus |
US6890485B1 (en) | 1997-05-16 | 2005-05-10 | Aurora Discovery, Inc. | High throughput chemical handling system |
DE19854919A1 (en) * | 1998-11-27 | 2000-06-15 | Luigs & Neumann Feinmechanik U | Work place for microbiological tests |
DE10006846A1 (en) * | 2000-02-16 | 2001-09-06 | Macherey Nagel Gmbh & Co Hg | Process for measuring the photometric chemical oxygen requirement of liquid samples comprises using several cuvettes in a holder located or inserted in a dosing device |
DE10006846C2 (en) * | 2000-02-16 | 2002-03-07 | Macherey Nagel Gmbh & Co Hg | Process for photometric COD measurement |
DE10133857C2 (en) * | 2000-07-13 | 2003-06-12 | Suzuki Motor Co | Sample analysis apparatus |
US6826253B2 (en) | 2001-09-07 | 2004-11-30 | Bruker Axs Gmbh | X-ray analysis apparatus |
US6823041B2 (en) | 2001-09-07 | 2004-11-23 | Bruker Axs Gmbh | Grasping system for automated exchange of elongated samples in an X-ray analysis apparatus |
WO2004003569A3 (en) * | 2002-06-28 | 2004-04-15 | Pasteur Institut | Robotized platform for cell cultures in miniature reactor batteries, equipped with a system for real time measurement of cellular turbidity or other optical properties |
US8652829B2 (en) | 2002-06-28 | 2014-02-18 | Institut Pasteur | Robotized platform for cell cultures in miniature reactor batteries, equipped with a system for real time measurement of cellular turbidity or other optical properties |
WO2004098764A2 (en) | 2003-04-30 | 2004-11-18 | Aurora Discovery, Inc. | Multi-well plate providing a high-density storage and assay platform |
WO2005012329A2 (en) | 2003-07-29 | 2005-02-10 | Invitrogen Corporation | Kinase and phosphatase assays |
CN103364574A (en) * | 2013-08-06 | 2013-10-23 | 济南华天恒达科技有限公司 | Automatic leukorrhea analyzer |
CN112698046A (en) * | 2015-06-22 | 2021-04-23 | 深圳迈瑞生物医疗电子股份有限公司 | Sample analyzer and control method thereof |
CN112698046B (en) * | 2015-06-22 | 2024-01-30 | 深圳迈瑞生物医疗电子股份有限公司 | Sample analyzer and control method thereof |
CN108732135A (en) * | 2017-11-20 | 2018-11-02 | 重庆中元汇吉生物技术有限公司 | A kind of blood cell and analysis of protein device |
CN110412302A (en) * | 2019-07-30 | 2019-11-05 | 香港大德昌龙生物科技有限公司 | Single-serve chemical analysis device and method for analyzing samples |
CN110849701A (en) * | 2019-11-04 | 2020-02-28 | 山东见微生物科技有限公司 | Sample processing apparatus |
CN110849701B (en) * | 2019-11-04 | 2023-02-28 | 山东见微生物科技有限公司 | Sample processing apparatus |
WO2021135366A1 (en) * | 2019-12-31 | 2021-07-08 | 科美诊断技术股份有限公司 | Arrangement method for sample testing items, and apparatus |
CN111157751A (en) * | 2020-01-03 | 2020-05-15 | 香港大德昌龙生物科技有限公司 | A kit device and kit loading device |
Also Published As
Publication number | Publication date |
---|---|
AU3950693A (en) | 1993-11-08 |
DE4210963A1 (en) | 1993-10-07 |
WO1993020612A3 (en) | 1993-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1993020612A2 (en) | Automatic device for the photometric analysis of liquid samples | |
AT401581B (en) | AUTOMATIC ANALYZER FOR PATIENT SAMPLES | |
DE69224685T2 (en) | Automatic analyzer for samples | |
DE2755334C3 (en) | System for the automatic analysis of liquid samples | |
EP2283368B1 (en) | Analysis apparatus | |
DE69635760T2 (en) | Analyzer with disposable reaction vessels | |
DE69333090T2 (en) | Automatic chemical analysis arrangement | |
DE60207499T2 (en) | Transfer unit as well as this containing automatic analysis device | |
DE69735176T2 (en) | Analyzer for multiple analyzes with multiple test modules | |
DE3717907C2 (en) | ||
DE69109802T2 (en) | LIQUID DELIVERY DEVICE WITH POSITION SENSOR. | |
DE69214048T2 (en) | LOCKING DEVICE FOR OPENING AN INCUBATOR IN AN AUTOMATIC ANALYSIS SYSTEM | |
DE69835795T2 (en) | Device for the automatic performance of laboratory tests | |
DE60300734T2 (en) | Arrangements for the pretreatment of samples | |
DE69904726T2 (en) | AUTOMATIC IMMUNOASSAY DEVICE WITH FLEXIBLE LIFTING ARM | |
DE60208381T2 (en) | SAMPLE ENTER THE PURITY | |
DE69202735T2 (en) | CALIBRATION METHOD FOR AN AUTOMATIC ANALYZER. | |
DE69429840T2 (en) | Transport system for an analyzer for liquids | |
DE112009003793B4 (en) | Automatic analyzer | |
EP1877752B1 (en) | Apparatus for handling and classifying microtomized tissue samples | |
DE19742160A1 (en) | Automatic and continuous analysis apparatus for several different types of samples | |
DE2433411B2 (en) | METHOD AND ANALYSIS MACHINE FOR INDEPENDENT AND SIMULTANEOUSLY CARRYING OUT A VARIETY OF ANALYZES ON A VARIETY OF SUCCESSIVE SAMPLES | |
CH701163B1 (en) | System for manipulating liquid samples as well as apparatus and method for arranging pipette or dispenser tips in such a system. | |
EP2730927A1 (en) | Reagent station for an automatic analyzer | |
DE69031482T2 (en) | Automatic analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AU CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AU CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |