WO1992009739A1 - Coated fabric for weather protection - Google Patents
Coated fabric for weather protection Download PDFInfo
- Publication number
- WO1992009739A1 WO1992009739A1 PCT/AU1991/000555 AU9100555W WO9209739A1 WO 1992009739 A1 WO1992009739 A1 WO 1992009739A1 AU 9100555 W AU9100555 W AU 9100555W WO 9209739 A1 WO9209739 A1 WO 9209739A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filler
- fabric
- coating
- high density
- acrylate copolymer
- Prior art date
Links
- 239000004744 fabric Substances 0.000 title claims abstract description 43
- 230000004224 protection Effects 0.000 title claims abstract description 8
- 238000000576 coating method Methods 0.000 claims abstract description 19
- 239000011248 coating agent Substances 0.000 claims abstract description 17
- 239000000945 filler Substances 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 239000011256 inorganic filler Substances 0.000 claims abstract description 7
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims abstract description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 6
- 239000011707 mineral Substances 0.000 claims abstract description 6
- 229920006225 ethylene-methyl acrylate Polymers 0.000 claims abstract description 5
- 230000005484 gravity Effects 0.000 claims abstract description 5
- QYMGIIIPAFAFRX-UHFFFAOYSA-N butyl prop-2-enoate;ethene Chemical compound C=C.CCCCOC(=O)C=C QYMGIIIPAFAFRX-UHFFFAOYSA-N 0.000 claims abstract description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims abstract description 4
- 229920006245 ethylene-butyl acrylate Polymers 0.000 claims abstract description 4
- 239000000155 melt Substances 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims abstract description 4
- 150000002739 metals Chemical class 0.000 claims abstract description 4
- 150000004760 silicates Chemical class 0.000 claims abstract description 4
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims abstract description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000004411 aluminium Substances 0.000 claims abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910052788 barium Inorganic materials 0.000 claims abstract description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 231100000053 low toxicity Toxicity 0.000 claims abstract description 3
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 3
- 239000011777 magnesium Substances 0.000 claims abstract description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 3
- 239000010936 titanium Substances 0.000 claims abstract description 3
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 3
- 239000011701 zinc Substances 0.000 claims abstract description 3
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 3
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical group [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 abstract description 8
- 229920001684 low density polyethylene Polymers 0.000 description 12
- 239000004702 low-density polyethylene Substances 0.000 description 12
- 229920001903 high density polyethylene Polymers 0.000 description 7
- 239000004700 high-density polyethylene Substances 0.000 description 7
- 238000005336 cracking Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229920001038 ethylene copolymer Polymers 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- CSSYLTMKCUORDA-UHFFFAOYSA-N barium(2+);oxygen(2-) Chemical class [O-2].[Ba+2] CSSYLTMKCUORDA-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000005043 ethylene-methyl acrylate Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 239000002316 fumigant Substances 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000012462 polypropylene substrate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 239000000326 ultraviolet stabilizing agent Substances 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/0056—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
- D06N3/0063—Inorganic compounding ingredients, e.g. metals, carbon fibres, Na2CO3, metal layers; Post-treatment with inorganic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/30—Fillers, e.g. particles, powders, beads, flakes, spheres, chips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/712—Weather resistant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2333/00—Polymers of unsaturated acids or derivatives thereof
- B32B2333/04—Polymers of esters
- B32B2333/08—Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2410/00—Agriculture-related articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2419/00—Buildings or parts thereof
Definitions
- This invention relates to a flexible fabric suitable for weather protection purposes. It more specifically relates to such a fabric comprising a woven synthetic substrate with a melt extruded coating over the substrate.
- an application for which the invention is particularly suited is as a temporary on-ground agricultural grain storage cover tarpaulin. It can be used also in other weather protection cover applications such as in the building industry.
- Cover tarpaulins made from synthetic resins are already well known. However, very large tarpaulins suitable for covering large objects or areas out of doors have specific requirements. Firstly, their mass per unit area needs to be appropriate for the way in which they are handled and the size of the object to be covered. It has been found through long experience that a so-called medium weight fabric having a mass per unit area of 400-500 grams per square metre is particularly suited. In grain storage cover applications, at this mass per unit area the covers sit neatly on the stack and yet are not too heavy for the manual handling involving the fitting and removing of the cover.
- these fabrics have a high surface co-efficient of friction. They must not be slippery so preventing walking upon when covering a sloping sided object.
- the fabric must have good resistance against cracking, particularly cracking relating to repeated flexing.
- the fabrics must also have good weather resistance, particularly in respect of the ultraviolet component of sunlight and also to rain, hail and wind. They require strength classified as medium, namely tensile strength of 1000 Newtons per 50mm and 80 Newtons for wing tear strength. Being required generally in the form of extremely large tarpaulins, these fabrics require excellent weldability to enable multiple widths and lengths to be joined. They also require excellent adhesion of the coating to the substrate since this underlies the required weld strength and wind flap resistance to delamination. Particularly when used in an agricultural environment an economical cost is most important, since production of staple farm commodities generally demands lowest possible costs.
- LDPE low density polyethylene
- the PVC coatings are generally applied to substrates of polyester, polyvinyl alcohol and nylon.
- the LDPE family of fabrics generally involve a low density polyethylene (LDPE) coating a woven high density polyethylene (HDPE) substrate.
- the P C coated fabrics generally meet mechanical strength requirements well but have only fair weatherability and are of relatively high cost, particularly when formulated for food contact purposes.
- the LDPE coated fabrics are relatively low in cost (including food contact formulations) and can be formulated to have good weatherability. However, they have only fair crack and flex crack resistance and are often too low in mass per unit area to be easily handled in the application involving very large covers over grain storage.
- the present invention discloses a fabric based on a filled ethylene copolymer coated woven HDPE (although a woven polypropylene substrate would also be satisfactory) which meets all the application requirements by combining the best characteristics of both the PVC coated and HDPE coated fabric types already known, to a surprisingly effective extent.
- the invention consists of a flexible fabric suitable for weather protection purposes comprising a woven synthetic substrate and a melt extruded coating where the coating comprises a blend of an olefin copolymer and a high loading of an anhydrous, high density, insoluble, low toxicity inorganic filler.
- the high density filler is chosen from the group consisting of abundantly available naturally occurring minerals having a specific gravity of 3.5 or more.
- those minerals include the non-hydrated forms of oxides, carbonates, sulphates and silicates of metals including aluminium, barium, iron, manganese, magnesium, titanium or zinc.
- the olefin copolymer is selected from the group consisting of ethylene methyl acrylate copolymer and ethylene butyl acrylate copolymer.
- the high loading of inorganic filler involves inclusion of 10-20% of the filler with respect to the mass of the coating.
- Two examples were produced comprising a base fabric woven HDPE substrate having masses of 150 grams per square metre and 190 grams per square metre. If such a base fabric were to be coated with extrusion coated LDPE on each side in order to reach a total mass of 400 grams per square metre for the coated fabric, this would require thicknesses of typically 114 micrometres (urn) for LDPE. This would be much too thick to make an effective cover for the purpose as the overall fabric would be too stiff and very prone to cracking and flex cracking associated with higher forces required for bending. Using an ethylene copolymer as the coating resin, a required thickness of perhaps 112 urn would be more flexible than the LDPE but would be much stiffer than, for example, a PVC coated fabric.
- HALS ultraviolet stabilisers
- the fabric is also economical in price, between that of LDPE and PVC coated fabrics and is able to be welded very readily. It also has good strength and excellent cut and abrasion resistance. In overall properties it compares extremely favourably with PVC coated fabrics at a substantially lower price.
- HALS as UV stabiliser needs to be balanced in terms of the degree of protection improvement available with increasing concentration (against sunlight) versus the reduction in food contact acceptability attendant with increasing concentration of HALS.
- the use of an opaque dense filler increases opacity and adds to the UV protection.
- barium sulphate examples include barium oxides, iron oxides, manganese dioxide, magnesium oxide, aluminium oxide, titanium dioxide or zinc carbonate or mixtures of these.
- magnesium oxide with a specific gravity of about 3.5 is considered to be the least dense of the possibly suitable fillers which would be satisfactory in providing the required mass per unit area and flexibility properties of the coated fabric.
- the oxides, carbonates, sulphates and silicates of metals abundantly available in the earth's crust would be satisfactory for the purpose without entailing excessive cost of the resultant fabric.
- a dense filler is regarded as one which has a specific gravity of 3.5 or more.
- a high loading of this filler which would not cause deterioration of the properties of the resultant coated fabric would be regarded as not more than 20% on a weight basis.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Laminated Bodies (AREA)
Abstract
A flexible fabric suitable for weather protection purposes particularly adapted for example to covering agricultural grains in outdoor storage including a woven synthetic substrate with a melt extruded coating where the coating is a blend of an olefin copolymer and a high loading of an anhydrous, high density, insoluble, low toxicity inorganic filler. The high density filler is selected from abundantly available naturally occurring minerals having a specific gravity of 3.5 or more. Particularly suitable minerals may be non-hydrated forms of oxides, carbonates, sulphates and silicates of metals including aluminium, barium, iron, manganese, magnesium, titanium or zinc. A particularly suitable filler is barium sulphate. The high loading of inorganic filler involves inclusion of 10-20 % of the filler with respect to the mass of the coating. A suitable olefin copolymer is ethylene methyl acrylate copolymer or ethylene butyl acrylate copolymer.
Description
COATED FABRIC FOR WEATHER PROTECTION
BACKGROUND
This invention relates to a flexible fabric suitable for weather protection purposes. It more specifically relates to such a fabric comprising a woven synthetic substrate with a melt extruded coating over the substrate.
Although not a limitation an application for which the invention is particularly suited is as a temporary on-ground agricultural grain storage cover tarpaulin. It can be used also in other weather protection cover applications such as in the building industry.
Cover tarpaulins made from synthetic resins are already well known. However, very large tarpaulins suitable for covering large objects or areas out of doors have specific requirements. Firstly, their mass per unit area needs to be appropriate for the way in which they are handled and the size of the object to be covered. It has been found through long experience that a so-called medium weight fabric having a mass per unit area of 400-500 grams per square metre is particularly suited. In grain storage cover applications, at this mass per unit area the covers sit neatly on the stack and yet are not too heavy for the manual handling involving the fitting and removing of the cover.
It is also highly desirable in such applications that these fabrics have a high surface co-efficient of friction. They must not be slippery so preventing walking upon when covering a sloping sided object. The fabric must have good resistance against cracking, particularly cracking relating to repeated flexing. These requirements derive from the fact that the covers are folded and stored when not in use and that in the outdoors they are subjected to repeated flexing due to flapping caused by the wind.
The fabrics must also have good weather resistance, particularly in respect of the ultraviolet component of sunlight and also to rain, hail and wind. They require strength classified as medium, namely tensile strength of 1000 Newtons per 50mm and 80 Newtons for wing tear strength.
Being required generally in the form of extremely large tarpaulins, these fabrics require excellent weldability to enable multiple widths and lengths to be joined. They also require excellent adhesion of the coating to the substrate since this underlies the required weld strength and wind flap resistance to delamination. Particularly when used in an agricultural environment an economical cost is most important, since production of staple farm commodities generally demands lowest possible costs.
In the application relating to grain coverage, another important property is resistance to fumigants used to treat the stored grain and the ability for the fabric as a whole to be produced in formulations approvable for food contact. This applies at least in respect of the side of the fabric which is to make contact with the grain.
Known fabrics already in use for this purpose fall into two categories, those based on polyvϊnyl chloride (PVC) coated fabrics or those based on low density polyethylene (LDPE) coated fabrics. The PVC coatings are generally applied to substrates of polyester, polyvinyl alcohol and nylon. The LDPE family of fabrics generally involve a low density polyethylene (LDPE) coating a woven high density polyethylene (HDPE) substrate.
The P C coated fabrics generally meet mechanical strength requirements well but have only fair weatherability and are of relatively high cost, particularly when formulated for food contact purposes. On the other hand, the LDPE coated fabrics are relatively low in cost (including food contact formulations) and can be formulated to have good weatherability. However, they have only fair crack and flex crack resistance and are often too low in mass per unit area to be easily handled in the application involving very large covers over grain storage.
Attempts to provide a heavier weight more crack and flex crack resistant fabric based on polyolefins have met with only very limited success hitherto. Any attempt to increase the mass per unit area by increasing either the woven substrate mass or the coating mass have led to fabrics which tend to be too stiff and have poor crack resistance. However, the present invention discloses a fabric based on a filled ethylene copolymer coated woven HDPE (although a woven polypropylene substrate would also be satisfactory) which meets all the application requirements by
combining the best characteristics of both the PVC coated and HDPE coated fabric types already known, to a surprisingly effective extent.
SUMMARY OF THE INVENTION.
The invention consists of a flexible fabric suitable for weather protection purposes comprising a woven synthetic substrate and a melt extruded coating where the coating comprises a blend of an olefin copolymer and a high loading of an anhydrous, high density, insoluble, low toxicity inorganic filler.
Preferably the high density filler is chosen from the group consisting of abundantly available naturally occurring minerals having a specific gravity of 3.5 or more.
Preferably those minerals include the non-hydrated forms of oxides, carbonates, sulphates and silicates of metals including aluminium, barium, iron, manganese, magnesium, titanium or zinc.
Preferably the olefin copolymer is selected from the group consisting of ethylene methyl acrylate copolymer and ethylene butyl acrylate copolymer.
Preferably the high loading of inorganic filler involves inclusion of 10-20% of the filler with respect to the mass of the coating.
DETAILED DESCRIPTION.
The invention is further described with respect to a particularly preferred example of a formulation suitable for the application as above described and possible variations thereof.
Two examples were produced comprising a base fabric woven HDPE substrate having masses of 150 grams per square metre and 190 grams per square metre. If such a base fabric were to be coated with extrusion coated LDPE on each side in order to reach a total mass of 400 grams per square metre for the coated fabric, this would require thicknesses of typically 114 micrometres (urn) for LDPE. This would be much too thick to make an effective cover for the purpose as the overall fabric would be too stiff and very prone to cracking and flex cracking associated with higher forces required for bending. Using an ethylene copolymer as the coating resin, a required thickness of perhaps 112 urn would be more flexible than the LDPE but would be much stiffer than, for example, a PVC coated fabric.
Using what is referred to herein as a high loading of dense inorganic filler, namely barium sulphate, at 15% concentration, blended in with the extrusion coating resin which is ethylene methyl acrylate copolymer (EMAC) a coating of 105 gsm on both sides of the substrate as referred to in the previous paragraph at a thickness of 80 urn was found to provide a fabric which was not excessively stiff. The fabric so formulated has excellent resistance to delamination of the coating and possesses the required medium mass per unit area of around 410 gsm. It also has very good crack and flex crack resistance, much better than LDPE although perhaps not quite as good as the PVC coated fabrics. It has excellent weatherability, superior to - LDPE coated fabrics, particularly with the inclusion of ultraviolet stabilisers such as HALS. The fabric is also economical in price, between that of LDPE and PVC coated fabrics and is able to be welded very readily. It also has good strength and excellent cut and abrasion resistance. In overall properties it compares extremely favourably with PVC coated fabrics at a substantially lower price. The inclusion of HALS as UV stabiliser needs to be balanced in terms of the degree of protection improvement available with increasing concentration (against sunlight) versus the reduction in food contact acceptability attendant with increasing concentration of HALS. The use of an opaque dense filler increases opacity and adds to the UV protection.
Further experiments using a different ethylene copolymer, namely ethylene butyl acrylate copolymer (EBAC) show that this is probably satisfactory for the purpose. The inclusion of up to 30% of a dense filler, namely barium sulphate with EBAC, showed a substantial deterioration of coating adhesion strength to a substrate of woven HDPE. Thus a 20% loading was thought to represent an indication of the upper limit of a "high" loading of dense filler.
Other dense fillers which may be equally satisfactory to barium sulphate include barium oxides, iron oxides, manganese dioxide, magnesium oxide, aluminium oxide, titanium dioxide or zinc carbonate or mixtures of these. Of these, magnesium oxide with a specific gravity of about 3.5 is considered to be the least dense of the possibly suitable fillers which would be satisfactory in providing the required mass per unit area and flexibility properties of the coated fabric. Subject to ready availability at a low enough cost, it is believed that the oxides, carbonates, sulphates and silicates of metals abundantly available in the earth's crust would be satisfactory for the purpose without entailing excessive cost of the
resultant fabric. Thus, in this context a dense filler is regarded as one which has a specific gravity of 3.5 or more. Also a high loading of this filler which would not cause deterioration of the properties of the resultant coated fabric would be regarded as not more than 20% on a weight basis.
It is to be noted that the inclusion of 3-4% of a dense filler in the HDPE or polypropylene of the substrate woven tapes causes unacceptable loss of strength together with poor adhesion to coatings of other olefins.
Claims
1. A flexible fabric suitable for weather protection purposes comprising a woven synthetic substrate and a melt extruded coating where the coating comprises a blend of an olefin copolymer and a high loading of an anhydrous, high density, insoluble, low toxicity inorganic filler.
2. A fabric as claimed in claim 1 in which the high density filler is chosen from the group consisting of abundantly available naturally occurring minerals having a specific gravity of 3.5 or more.
3. A fabric as claimed in claim 2 in which the minerals are selected from the group consisting of the non-hydrated forms of oxides, carbonates, sulphates and silicates of metals including aluminium, barium, iron, manganese, magnesium, titanium or zinc.
4. A fabric as claimed in any one of the previous claims in which the olefin copolymer is selected from the group consisting of ethylene methyl acrylate copolymer and ethylene butyl acrylate copolymer.
5. A fabric as claimed in any one of the previous claims in which the high loading of inorganic filler involves inclusion of 10-20% of the filler with respect to the mass of the coating.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPK3611 | 1990-11-29 | ||
AUPK361190 | 1990-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992009739A1 true WO1992009739A1 (en) | 1992-06-11 |
Family
ID=3775112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU1991/000555 WO1992009739A1 (en) | 1990-11-29 | 1991-11-28 | Coated fabric for weather protection |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1992009739A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210301123A1 (en) * | 2020-03-27 | 2021-09-30 | Salamander Industrie-Produkte Gmbh | Extrusion profile for a door component and/or window component as well as a manufacturing method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3814623A (en) * | 1970-02-16 | 1974-06-04 | Du Pont | Polyester fabrics coated with ethylene copolymer dispersions |
US3819466A (en) * | 1973-06-18 | 1974-06-25 | Care Inc | Reinforced and insulating building panel |
US4262051A (en) * | 1978-10-12 | 1981-04-14 | Basf Aktiengesellschaft | Laminates comprising filled polyolefins and a thermoplastic decorative layer, their preparation and use |
US4297408A (en) * | 1978-12-29 | 1981-10-27 | Imperial Chemical Industries Limited | Laminates of cloth and filled crystalline polypropylene and a method for making them |
GB2122110A (en) * | 1982-06-24 | 1984-01-11 | Pirelli | Camouflage covering for use on snow-covered terrain |
GB2154899A (en) * | 1984-02-10 | 1985-09-18 | Degussa | Stiffening materials, a process for their production and the use thereof |
JPS61201087A (en) * | 1985-03-02 | 1986-09-05 | Hiraoka & Co Ltd | Tile carpet |
EP0346762A2 (en) * | 1988-06-14 | 1989-12-20 | Toray Industries, Inc. | Heat-resistant flock sheet |
JPH02216272A (en) * | 1988-06-13 | 1990-08-29 | Daiso Co Ltd | Finished cloth for medical use |
-
1991
- 1991-11-28 WO PCT/AU1991/000555 patent/WO1992009739A1/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3814623A (en) * | 1970-02-16 | 1974-06-04 | Du Pont | Polyester fabrics coated with ethylene copolymer dispersions |
US3830768A (en) * | 1970-02-16 | 1974-08-20 | Du Pont | Ethylene copolymer dispersions containing a halogenated alkyl phosphate |
US3819466A (en) * | 1973-06-18 | 1974-06-25 | Care Inc | Reinforced and insulating building panel |
US4262051A (en) * | 1978-10-12 | 1981-04-14 | Basf Aktiengesellschaft | Laminates comprising filled polyolefins and a thermoplastic decorative layer, their preparation and use |
US4297408A (en) * | 1978-12-29 | 1981-10-27 | Imperial Chemical Industries Limited | Laminates of cloth and filled crystalline polypropylene and a method for making them |
GB2122110A (en) * | 1982-06-24 | 1984-01-11 | Pirelli | Camouflage covering for use on snow-covered terrain |
GB2154899A (en) * | 1984-02-10 | 1985-09-18 | Degussa | Stiffening materials, a process for their production and the use thereof |
JPS61201087A (en) * | 1985-03-02 | 1986-09-05 | Hiraoka & Co Ltd | Tile carpet |
JPH02216272A (en) * | 1988-06-13 | 1990-08-29 | Daiso Co Ltd | Finished cloth for medical use |
EP0346762A2 (en) * | 1988-06-14 | 1989-12-20 | Toray Industries, Inc. | Heat-resistant flock sheet |
Non-Patent Citations (2)
Title |
---|
DERWENT ABSTRACT, Accession No. 90-307955/41, Class P31 P32 P34; & JP,A,2 216 272 (DAISO CO LTD), 29 August 1990. * |
PATENT ABSTRACTS OF JAPAN, C-400. page 97; & JP,A,61 201 087 (HIRAOKA & CO LTD), 5 September 1986. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210301123A1 (en) * | 2020-03-27 | 2021-09-30 | Salamander Industrie-Produkte Gmbh | Extrusion profile for a door component and/or window component as well as a manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3012943B2 (en) | High oxygen barrier burst resistance film | |
US5328743A (en) | Reinforced shrink wrap | |
US5334450A (en) | Weatherable styrenic film structures with intermediate tie layer and laminates thereof | |
US5994242A (en) | Coated woven material | |
US20180195215A9 (en) | Antislip sheet material having tapes and monofilaments | |
NZ231425A (en) | Multilayer film with heat-seal layer of vldpe and a core oxygen-barrier layer | |
US4636423A (en) | Dock shelter fabric | |
KR20140007329A (en) | Waterborne coating system with improved adhesion to a wide range of coated and uncoated substrates, including muffler grade stainless steel | |
EP1578601B1 (en) | Multi-layer structure with potassium ionomer | |
US20140150960A1 (en) | Roofing membranes and methods for constructing | |
US5681637A (en) | Microorganism resistant pile weatherstripping | |
AU763193B2 (en) | High barrier multi-layer film | |
EP0460262A1 (en) | Hinged rigid or semirigid product | |
WO1992009739A1 (en) | Coated fabric for weather protection | |
US4592941A (en) | Reinforced laminate of co-extruded film | |
NZ240792A (en) | Woven synthetic fabric coated with an olefin copolymer/heavy inorganic filler mixture | |
US5731042A (en) | Protectively coated outdoor fixtures | |
JPH05193078A (en) | Barrier film without metal layer | |
EP1161591B1 (en) | Canvasses reinforced with metal members | |
CA1169749A (en) | Self-adhesive roofing laminate having self-edge sealing properties | |
AU705437B2 (en) | Coated woven material | |
CA2155543A1 (en) | Thermoplastic olefinic compositions | |
JP3372599B2 (en) | Silver multi film | |
KR102268434B1 (en) | Polyethylene laminated sheet for sacks and manufacturing method of sacks using the laminated sheet | |
US20240116344A1 (en) | Truck bucket covers, method of use, and method of manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |