[go: up one dir, main page]

WO1991004518A1 - Printing press using charge retaining medium, its manufacturing method and stripping system using charge retaining medium - Google Patents

Printing press using charge retaining medium, its manufacturing method and stripping system using charge retaining medium Download PDF

Info

Publication number
WO1991004518A1
WO1991004518A1 PCT/JP1990/001198 JP9001198W WO9104518A1 WO 1991004518 A1 WO1991004518 A1 WO 1991004518A1 JP 9001198 W JP9001198 W JP 9001198W WO 9104518 A1 WO9104518 A1 WO 9104518A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
layer
image
charge holding
toner
Prior art date
Application number
PCT/JP1990/001198
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Obata
Original Assignee
Dai Nippon Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP29916889A external-priority patent/JPH03158867A/en
Application filed by Dai Nippon Printing Co., Ltd. filed Critical Dai Nippon Printing Co., Ltd.
Publication of WO1991004518A1 publication Critical patent/WO1991004518A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/26Electrographic processes using a charge pattern for the production of printing plates for non-xerographic printing processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/26Electrographic processes using a charge pattern for the production of printing plates for non-xerographic printing processes
    • G03G13/28Planographic printing plates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers

Definitions

  • the present invention relates to a printing plate formed of a charge holding medium, a manufacturing method for manufacturing a printing plate with the charge holding medium, and a document directly printed at a predetermined magnification on a predetermined position on the printing plate formed of the charge holding medium.
  • the present invention relates to a plate collection system using a charge holding medium that forms a plate by forming an electrostatic latent image of the image.
  • the manufacturing method of the printing plate shown in FIG. 17 is roughly as follows. First, a photosensitive resin layer 101 is formed on a so-called grained aluminum plate 100 by a known polishing method such as ball polishing or brush polishing to form a printed substrate. A film 102 for forming a plate is placed opposite to the resin layer 101, pattern exposure is performed by ultraviolet rays 103 (FIG. 17 (a) :), development and drying are performed. Thus, a printing plate having an image portion formed of the resin layer 101 is manufactured as shown in FIG. 17 (b). The film 102 is called a layout scanner or a page make-up scanner. It goes without saying that the film is a page make-up film such as the one output from a color scanner. The same applies to the following.
  • printing plates In the case of color printing, printing plates must be manufactured for each of the four colors: yellow (Y :), magenta (M :), cyan (C), and black (K). Naturally, by using the film for each of the above four colors as the film 102 in FIG. 17 (a), four color printing plates of Y, M, C, and K were manufactured. can do.
  • a photosensitive layer formed on a grained aluminum plate is called a PS plate (presensitized * plate) and is widely marketed.
  • the PS plate is expensive, but the workability is good because the photosensitive layer has already been applied.
  • the photosensitive layer is actually coated on an aluminum plate grained as described above.
  • the plate produced in this way is called a wipe-on plate.
  • the wipe-on plate can be manufactured at a lower price and can be manufactured with higher sensitivity than the PS plate, but the workability is inferior to the PS plate due to the necessity of a coating process.
  • the wipe-on plate has a short shelf life from application to use, and it is necessary to start the exposure process immediately after forming the photosensitive layer, which also imposes operational restrictions.
  • the wipe-on version is rarely used, and the PS version is the mainstream.
  • the PS plate has excellent workability, but the sensitivity of the photosensitive layer is not high because it must withstand long-term storage with the photosensitive layer applied.
  • the higher the sensitivity the easier it is to react to heat, and the capri due to the thermal reaction is generated during storage. It is very difficult to increase the sensitivity of the PS version, since it will be more likely to be lost.
  • FIG. 18 shows that a photosensitive resin layer 106 is formed on a grained aluminum plate 105 and a silver emulsion layer 107 is further formed thereon.
  • a printing plate can be manufactured by subjecting the printed substrate to pattern exposure, development and drying in the same manner as shown in FIG. This was developed to capture the disadvantage of the low sensitivity of the PS plate described above.
  • a silver emulsion layer was provided on the PS plate, and the primary exposure was performed with low energy using the high sensitivity of the silver emulsion.
  • a silver particle pattern developed by developing a silver emulsion is used as an original to perform uniform exposure (secondary exposure) over the entire surface, and then developed to form a printing plate. The aim is to use it for low energy exposure such as laser scanning exposure and projection exposure.
  • Exposure of the printing plate by laser scanning involves sending information over a communication line to a remote printing factory and printing, as seen in the production of printing plates in the U.S. newspaper, ⁇ All Street Journal. This is a very important technology. Also, with projection exposure, a plate can be produced as soon as a reflective original is made, eliminating the need for a conventional film-making machine to make film originals.
  • the printing plate manufacturing method shown in FIG. 19 is a method using electrophotography. First, a uniform electrostatic charge is applied to a photoreceptor 110 made of a photoconductive material by corona charging to form a film 111. Are arranged and exposed to a pattern with light 112 having a predetermined wavelength (FIG. 19 (a) :), and toner 113 is applied (FIG. 19 (b)). As a result, the toner 113 adheres only to the unexposed portion of the light 112. After that, the toner 113 is transferred to a grained aluminum plate 1U and fixed, whereby a printing plate having the toner 113 as an image portion can be obtained. (Fig. 19 (c) :).
  • the printing plate manufacturing method shown in FIG. 20 is another method using electrophotography.
  • a photoconductor 123 composed of a photoconductive material layer 122 and a grained aluminum plate 121 is used.
  • a uniform electrostatic charge is given by corona charging, a film 124 is arranged, and pattern exposure is performed by light 125 having a predetermined wavelength (FIG. 20 (a)), and toner 12B is applied.
  • the toner 126 adheres only to the unexposed portion of the light 125.
  • the toner 12B is fixed (FIG.
  • the conventional manufacturing method has the following problems. That is, the product shown in FIG. In the fabrication method, a resin with high sensitivity is required for exposure to ultraviolet light, but a material that is highly sensitive to ultraviolet light generally has poor thermal stability and is susceptible to so-called heat cover. In addition, since a high-sensitivity resin has a relatively small molecular weight, there is a problem that the printing durability, that is, the mechanical strength required for a printing plate is low. Very difficult.
  • the sensitivity can be increased by using a silver emulsion, and the resin layer 106 that is conventionally used is used. Yes, but it is expensive.
  • the relative speed at which the toner image formed on the photoreceptor 105 is transferred to the aluminum plate 1U must be zero, and the relative speed must be zero. If it is not zero, the printing will be misaligned or the pattern will be distorted, which is particularly noticeable in the case of large-area printing plates. In addition, the toner may be disintegrated during the transfer, which causes deterioration in resolution.
  • the method shown in FIG. 20 has an advantage over the method shown in FIG. 19 in that the toner image is not disturbed at the time of toner transfer in that toner transfer is not performed.
  • the photoconductive material layer is used as an image portion, it is necessary that the photoconductive material layer has both sensitivity and mechanical strength.
  • the photoconductive material layer is formed by dispersing a photoconductive pigment such as zinc oxide in a polymer material. -B- To obtain sufficient sensitivity, it is necessary to add about 80% by weight of zinc oxide. As a result, the photoconductive material layer is brittle and printing durability cannot be obtained.
  • the exposed surface of the photoconductive material layer 122 is exposed to phosphoric acid or the like while the toner is fixed on the photosensitive plate 123 as shown in FIG. 20 (b).
  • the hydrophilicity of the photoconductive surface is not limited to the lipophilicity of the photoconductive pigment such as zinc oxide, and the polymer material as the binder is lipophilic.
  • the photoconductive material layer when used as an image portion, the photoconductive property and the mechanical strength characteristic required for the image portion cannot be compatible. Conversely, when the photoconductive material layer is used as a non-image portion, the hydrophilicity required for the non-image portion is not sufficient. Therefore, if the toner is transferred to another grained aluminum or the like without fixing the toner on the photoconductor, the toner image is disturbed and the resolution cannot be maintained.
  • dupe assembly In the former method, the resolution of the color scanner must be set for each point of the document, and the input magnification and color separation conditions must be set. The setting of the conditions depends on the experience of the operator, and requires a lot of skill. In the end, it was impossible to improve the operation rate of expensive color scanners. Furthermore, in order to collect a large amount of data input and created for each manuscript in accordance with the layout instructions, arithmetic processing on a computer is required, and the processing time becomes longer. As a result, not only the color scanner, but also the operation rate of the computer for printing will be reduced.
  • the disassembly conditions of the color scanner need only be set once, but there is a problem that it takes a very long time and cost to make a duplicate.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to form a toner image directly on a charge holding medium, thereby eliminating the need for transfer and improving printing durability. It is an object of the present invention to provide a printing plate and a method for manufacturing the same, and to improve the work efficiency of the plate collection by directly collecting a plate on a charge holding medium by a voltage application exposure method. It is intended to provide a plate collection system using a charge holding medium that can be used. Disclosure of the invention
  • a printing plate using the charge holding medium of the present invention is characterized by having an image portion formed of a charge holding layer and a toner layer on a conductive substrate.
  • the printing plate using the charge holding medium of the present invention has the following effects because it has an image area formed of a charge holding layer and a toner layer on a conductive substrate.
  • the charge holding layer material itself does not need to have photosensitivity or photoconductivity, and only has to hold charge for a short period of time until development, so that printing durability and resolution can be selected from a wide range of materials. It is possible to select materials with excellent properties, and it is easy to select materials. In addition, materials that do not have photosensitivity or photoconductivity generally have high mechanical strength, and therefore have good printing durability.
  • the base metal material of general lithographic printing plates with excellent hydrophilicity can be used, so that sufficient water retention is obtained and the dampening solution can be easily controlled during printing. Workability is good.
  • the image area is covered with the toner layer, it has sufficient lipophilicity, has good print-out inking property, and provides high-quality printed matter immediately after printing is started. Furthermore, even if a part of the toner is worn due to continuous printing, since the charge retaining layer is provided under the toner layer, high printing durability can be obtained without causing a chipped image area or the like.
  • a method of manufacturing a printing plate using the charge holding medium of the present invention comprises: a charge holding medium comprising a conductive substrate and a charge holding layer; A first step of forming a static latent image having a predetermined pattern on the charge holding layer by applying a predetermined voltage between the photoreceptor and exposing a predetermined pattern from the photoreceptor side; A second step of developing and fixing the electrostatic latent image on the charge holding layer obtained in the first step with toner, and a charge holding of a portion other than the toner image obtained in the second step And a third step of removing the layer.
  • the toner image is formed directly on the charge holding layer of the charge holding medium by the voltage application exposure method, so that it is not necessary to transfer the toner image as in the conventional manufacturing method, and therefore, the resolution is low. It is possible to form a high image area.
  • the photosensitivity at the time of exposure can be borne by the photoreceptor, and the printing ability can be borne by the charge holding layer, so that the photosensitive function and the printing durability function can be separated.
  • the range of choice of materials to be used is expanded.
  • the voltage application exposure method has high sensitivity, and it is possible to give the spectral sensitivity to the wavelength of the laser light by selecting the type of photoreceptor, so that low-energy exposure becomes possible.
  • a scanning exposure method using the light can be adopted. For the same reason, there is an advantage that an inexpensive light source such as a tungsten lamp can be used.
  • the photoreceptor and the charge holding medium are arranged to face each other, and By exposing an image of a printed document to a predetermined position at a predetermined magnification and direction from the photoreceptor side while applying a predetermined voltage between the photoreceptor and the charge holding medium, It is characterized in that an electrostatic latent image of the image of the printed document is formed, and the charge of the electrostatic latent image is read by a reading sensor.
  • an image of a document is directly exposed to a photoreceptor at a specified position at a specified magnification, and a latent image formed on a charge holding medium is read. All trimming and other processing can be performed electrically. Therefore, unlike the conventional plate collection work, it is not necessary to set the color separation conditions of the color scanner for each manuscript, and it is not necessary to perform the dupe assembly. Furthermore, the plate collecting work can be easily performed, and the operation rates of the color scanner and the computer can be improved. As a result, the printing plate making process can be efficiently performed. .
  • FIG. 1 is a cross-sectional view showing one embodiment of a method of manufacturing a printing plate using a charge holding medium according to the present invention
  • FIG. 2 is a cross-sectional view showing one configuration example of the conductive substrate
  • FIG. 3 is a cross-sectional view for explaining an image recording method using a charge holding medium
  • FIG. 4 is a cross-sectional view for explaining a color image recording method using a charge holding medium
  • Figure 5 shows the reading of an electrostatic latent image recorded on a charge storage medium. Diagram for explaining the method
  • FIG. 6 is a diagram showing a configuration of a color separation optical system
  • FIG. 7 is a diagram for explaining the formation of a color electrostatic latent image
  • FIG. 8 is a diagram showing an example of a fine color filter
  • Figure 9 shows an example of combining a fine color filter and a Fresnel lens.
  • Fig. 10 is a diagram showing the three-plane division by the combined use of the ND filter and the R, G, and B filters.
  • FIG. 11 is a diagram for explaining the exposure of a document image in a plate collection system using a charge holding medium
  • FIG. 12 is a diagram showing an example in which the electrostatic latent images of R, G, and ⁇ are formed on separate charge holding media.
  • FIG. 13 is a diagram showing an example in which the R, G, and B electrostatic latent images are formed on one charge holding medium.
  • FIG. 14 is a diagram showing an example of an image data processing process
  • FIG. 15 is a diagram for explaining halftone dot processing
  • FIG. 16 is a diagram for explaining a halftone dot forming method
  • FIG. 17 is a sectional view showing a first example of a conventional printing plate manufacturing method
  • FIG. 18 is a cross-sectional view showing a second example of a conventional printing plate manufacturing method.
  • FIG. 19 is a sectional view showing a third example of a conventional printing plate manufacturing method.
  • FIG. 20 is a sectional view showing a fourth example of the conventional printing plate manufacturing method.
  • 1 is a photoreceptor
  • 2 is a charge holding medium
  • 3 is a photoreceptor support
  • 4 is a photoreceptor electrode
  • 5 is a photoconductive layer
  • 6 is a charge holding layer
  • 7 is a conductive substrate
  • 8 is a power supply. Is shown.
  • the method of manufacturing a printing plate using the charge holding medium according to the present invention utilizes an image recording method by a voltage application exposure method.
  • an electrostatic latent image is formed on the charge holding layer 6 by a voltage application exposure method.
  • An image is formed. Specifically, it is as follows. As shown in FIG. 1 (a), a photoconductive layer 5 of a photoconductor 1 formed by forming a photoconductor electrode 4 and a photoconductive layer 5 on a photoconductor support 3 in this order, A charge holding layer 6 of a charge holding medium 2 formed by depositing a charge holding layer 6 on a substrate 7 is arranged facing a charge holding layer 6 at a predetermined distance d.
  • FIG. 1 (a) a photoconductive layer 5 of a photoconductor 1 formed by forming a photoconductor electrode 4 and a photoconductive layer 5 on a photoconductor support 3 in this order
  • a charge holding layer 6 of a charge holding medium 2 formed by depositing a charge holding layer 6 on a substrate 7
  • the power supply 8 is connected so that the photoconductor electrode 4 is on the positive side and the conductive substrate 7 is on the negative side, and light 9 of a predetermined wavelength is irradiated from the photoconductor 1 side. Perform more exposure. In a dark place, there is no change between the electrodes because the photoconductive layer 5 is a high resistance material, but when light enters from the photoconductor 1 side, the photoconductive layer 5 in the portion where the light enters is The photocarriers exhibiting conductivity and generated inside are accumulated as image charges on the charge holding layer 6 by discharging. Thus, a desired electrostatic latent image can be formed on the charge holding layer 6 of the charge holding medium 2 as shown in FIG. 1 (b). In the exposure, as shown in FIG.
  • a predetermined pattern was formed at an appropriate distance from the photoconductor support 3 or in close contact with the photoconductor support 3.
  • the pattern exposure may be performed by disposing a film 10 and irradiating a predetermined light 11 onto the entire surface of the film, or as shown in FIG. Exposure may be performed by scanning in the direction indicated by arrow 13 with.
  • the laser light 12 is modulated by image data made up by a color scanner without using the film original 10, and the modulated laser It goes without saying that exposure can also be performed by irradiating light.
  • the photosensitive member 1 formed in the same size as the charge holding medium 2 is charged as shown in FIGS. 1 (b) to (d).
  • a predetermined value d such as when printing a large area.
  • the photoconductor 1 is formed in a substantially semi-cylindrical shape, and scanning (main scanning) by the laser light source 17 is performed along a straight line indicated by U in the figure.
  • the photosensitive member 1 is moved at a predetermined speed while maintaining a predetermined distance d in a direction indicated by an arrow 15 in the drawing or in a direction opposite to the direction, thereby performing sub-scanning. What is necessary is to do.
  • the charge holding medium 2 is disconnected from the power supply 8,
  • the toner is applied to the charge holding layer 6 for development, and subsequently heated to fix the toner.
  • the electrostatic latent image formed on the charge holding layer 6 appears as a toner image 16.
  • etching is performed by an appropriate method to remove a portion of the charge holding layer 6 where the toner 16 is not attached.
  • a printing plate having an image portion formed by the toner 16 and the charge retaining layer 6 on the conductive substrate 7 as shown in FIG. 1 (g) can be obtained.
  • the above is one embodiment of a method of manufacturing a printing plate using a charge holding medium. Next, each of the above materials and manufacturing conditions will be described.
  • the photoreceptor support 3 examples include transparent glass such as ordinary glass, quartz glass, non-alkali glass, and pyrex glass (trade name), acrylic, and polycarbonate.
  • Light such as transparent thermoplastic resin such as polystyrene, polystyrene, polystyrene, polyethylene, and polypropylene, and transparent thermosetting resin such as epoxy resin and polyimide resin.
  • transparent material that transmits active light to the conductive layer 5 can be used.
  • the thickness should be in the range of 10 ⁇ m to 10ma, especially for glass and plates such as acrylic and polycarbonate. ⁇ LOmm should be fine.
  • the thickness of the support may be selected from the range of 10 to 500 // m.
  • the shape may be a substantially semi-cylindrical shape such as 1 in FIG. 1 (e) in addition to the flat plate shape.
  • the radius of the semicircle in that case is in the range of 1 to 50 MI -You can choose from 1B-.
  • the rigidity of the support and the photoconductive material layer, or on the radius of the semicircle but is relatively rigid, such as a plate of glass, acrylic, or polycarbonate with a thickness of 1
  • the electrodes and the photoconductive layer may be formed in a state of being deformed into a cylindrical shape, or the electrodes and the photoconductive layer may be formed in a flat or wound shape. After forming, it may be held in a semi-cylindrical shape by cutting out to an appropriate size or the like.
  • those mainly composed of an organic material generally have flexibility. Therefore, when combined with a support such as a polyester, which has a lithographic property, a planographic shape is obtained. After forming the electrode and the photoconductive layer in a wound shape, it is easy to deform into a semi-cylindrical shape.
  • photoconductors such as amorphous silicon photoconductors and amorphous silicon photoconductors are made of inorganic material film by CVD or vacuum evaporation without using a binder. Is usually formed, but in these cases, the flexibility of the photoconductive layer is not so good, so that the photoconductive layer may be formed on a flexible support such as a polyimide film or a polyester film.
  • the thickness of the photoconductive layer is preferably set to m or less.
  • inorganic powders such as cadmium sulfide and zinc oxide are mixed with an organic binder, and coated and formed.
  • the flexibility in the case of the formed photosensitive layer is the portability between the above-described organic photoreceptor and the amorphous silicon or the amorphous selenium photosensitive member. Deformation into a semi-cylindrical shape with a radius of 2 m or more can be performed without any practical problems without reducing the thickness.
  • the photosensitive member electrode 4 for example, Te preparative La shea ⁇ Bruno onboard di meta emissions, organic conductive films such as Po Li acetylene les down, I T0, Zn O, S n0 2 , etc. of the metal oxide transparent electrode, Transparent electrodes formed of thin films of metals such as Au, Pt, and Pd can be used.
  • the thickness may be about 100 to 100 ⁇ , and the sheet resistance may be in the range of 100 to 1000 ⁇ / port.
  • the formation method may be a conventional method such as plating, sputtering, vapor deposition, CVD, and firing after coating.
  • the photoreceptor electrode may be any as long as it can transmit the active light of the photoconductive layer 5.
  • the photoconductive layer 5 When the photoconductive layer 5 is irradiated with light, the photoconductive layer 5
  • the material is composed of an inorganic photoconductive material, an organic photoconductive material, an organic-inorganic hybrid type photoconductive material and the like.
  • Inorganic photoreceptor materials include amorphous silicon, amorphous selenium, cadmium sulfide, and zinc oxide.
  • carbon C and nitrogen N are included during formation.
  • B, A 1, Ga, In, T 1, etc. are made P-type (hole transport type) by doping.
  • silane gas, an impurity gas together such as hydrogen gas was introduced into the low vacuum (1 0_ 2 ⁇ 1 T or r ), sedimentary for heating, or heating and no electrode on a substrate by glow one discharge
  • Either a single layer or a stacked layer is formed by depositing a solid raw material by vapor deposition or sputtering, or by simply forming a thermochemical reaction on a heated electrode substrate.
  • the thickness is 1 to 50 m.
  • a charge injection prevention layer may be provided on the surface of the photoreceptor electrode 4. it can.
  • the charge injection preventing layer an a-SiN layer, an a-SiC layer, or a Si0 It is preferable to provide two insulating layers, such as an Al 2 O 3 layer. If this insulating layer is too thick, no current will flow when exposed, so it needs to be at least 1 000 or less, and about 400 to 500 A is desirable in consideration of ease of fabrication.
  • a charge transport layer having a charge transporting ability of a polarity opposite to the polarity of the electrode substrate may be provided on the electrode substrate by using a rectifying effect, and when the electrode is negative, hole transport is performed. If the layers and electrodes are positive, an electron transport layer is provided.
  • aSH (n + ), in which Si is doped with boron, has an improved hole transporting property and a rectifying effect, and functions as a charge injection preventing layer.
  • Photoreceptor This deposition, to prepare Ri by the sputter coater method, also Si0 2, A 1 2 0 3 , SiC as electrostatic charge injection blocking layer, depositing a SiN layer, the electrode substrate by sputtering coater, glow one discharge method Provided above. Combining the above 1 to 4 to form a stacked photoreceptor Good.
  • the thickness of the photoconductor layer is the same as that of the amorphous silicon photoconductor- ⁇ 0
  • This photoreceptor is manufactured by a coating, vapor deposition, or sputtering method.
  • vapor deposition solid particles of CdS are placed on a tungsten board, and vapor deposition is performed by resistance heating or EB (electron beam) vapor deposition.
  • EB electron beam
  • a CdS target is deposited on the substrate in an argon plasma.
  • CdS is usually deposited in an amorphous state, but a crystalline alignment film (oriented in the film thickness direction) can be obtained by selecting sputtering conditions.
  • coating CdS particles (particle diameter m) may be dispersed in a binder, and a solvent may be added to coat on the substrate.
  • silicone resin styrene-butadiene copolymerized resin, epoxy resin, acryl resin, saturated or unsaturated poly- ol may be used as the binder.
  • Steal resin polycarbonate resin, polybutylacetal resin, X-nor resin, polymethylmethacrylate (PMMA) resin, melamine resin, polyimide resin, etc. Should be used.
  • a method such as dip coating or casting can be applied, and blade coating using a blade having a semi-cylindrical shape and an appropriate gap can be applied. Go You may.
  • the film thickness may be in the range of 3 to 100 Wm.
  • This photoreceptor is manufactured by a coating method or a CVD method.
  • the coating method is obtained by dispersing ⁇ particles (particle size: 0.1 to ljtzm) in a binder, adding a solvent, and coating the substrate.
  • binders silicone resin, styrene-butadiene copolymer resin, epoxy resin, acryl resin, saturated or unsaturated polyester resin, poly A carbonate resin, a polyacetal resin, a phenol resin, a PMMA resin, a melamine resin, a polyimide resin, or the like may be used.
  • the film thickness may be in the range of 3 to 100 / zm.
  • the coating method on the semi-cylindrical substrate may be performed in the same manner as in the case of the sulfur doping.
  • the CVD method also, di- E chill zinc, an organic metal and oxygen gas, such as dimethyl chill zinc mixed with low-true air (10_ 2 ⁇ 1 Torr), heated electrode substrate (150
  • Organic photoconductors include single-layer photoconductors and function-separated photoconductors.
  • Single-layer photoreceptors consist of a mixture of a charge generating material and a charge transport material.
  • azo pigments it is a substance that absorbs light and easily generates electric charge.
  • disazo pigments trisazo pigments, phthalocyanine pigments, perylene pigments, and pyridine pigments.
  • Lime dyes, cyanine dyes, and methine dyes are used.
  • a charge transfer complex may be formed by forming a complex with a charge generation material and a charge transport material.
  • photoconductors have photosensitivity determined by the light absorption properties of the charge-generating substance.
  • the charge-generating substance is mixed with the charge transport substance to form a complex, the light-absorption properties change, for example, polycarbazole ( (PVK) only feels in the ultraviolet region, and Trinitrofluorenone (TNF) only feels near the 400 nm wavelength, while the PVK-TNF complex feels up to the 650 nm wavelength range.
  • PVK polycarbazole
  • TNF Trinitrofluorenone
  • the thickness of such a single-layer type photoreceptor is preferably from 10 to 50 // m.
  • the charge-generating substance easily absorbs light, but has a property of trapping light.
  • the charge-transporting substance has good charge-transporting properties, but not good light-absorbing properties. For this reason, they are separated from each other, and the characteristics of each are fully exploited. This is a type in which a charge generation layer and a charge transport layer are stacked.
  • Examples of the substance that forms the charge generation layer include azo-based, disazo-based, trisazo-based, phthalocyanine-based, acidic xanthane dye-based, cyanine-based, styrene-based dyes, and the like.
  • Examples of the substance forming the charge transport layer include hydrazone-based, pyrazoline-based, PVK-based, carbazole-based, oxazole-based, triazole-based, aromatic amine-based, and amine-based substances. , Triphenyl methane, and polycyclic aromatic compounds.
  • a charge generating substance is dispersed or dissolved in a binder together with a solvent, and then spin-coated, rono-recording, wireless coating, and brazing. Apply it on the electrode by do coating, spray coating, dip coating, etc., and then dissolve the charge transport layer together with the solvent in the binder. It is preferred that the charge generation layer is applied to a thickness of 0.1 to 5 jtzm and the charge transport layer is applied to a thickness of 2 to 50 ⁇ m.
  • the binders are silicone resin, styrene-butadiene copolymer resin, epoxy resin, acrylic resin, saturated or unsaturated polyester resin, and polycarbonate resin. , Polyvinyl acetate resin, phenol resin, polymethylmethacrylate (PMMA) resin, melamine resin, polyimide resin, etc. And 10 parts of Q.l to 10 parts of each charge transport material to facilitate adhesion.
  • a dry coating method such as an evaporation method, a sputtering method, and a CVD method can be used.
  • the charge retaining layer and the charge transport layer may be stacked in any order on the transparent electrode.
  • the charge transport layer having low transparency to active light for exposure it is preferable to first provide a charge generation layer on the electrode side.
  • the charge injection prevention layer is not exposed to at least one or both surfaces of the photoconductive layer 5, that is, dark current (charge injection from the electrode) when a voltage is applied to the photoconductive layer 5, that is, not exposed. Nevertheless, it can be provided to prevent a phenomenon in which charges move in the photosensitive layer as if exposed.
  • This charge injection prevention layer has two types, a layer using an insulating thin film and a layer using a rectifying effect.
  • a layer using an insulating thin film current flows to the photoconductive layer or the resin layer surface by the charge injection prevention layer only by applying voltage.
  • a high electric field is applied to the charge injection prevention layer corresponding to the incident part because one of the charges (electrons or holes) generated in the photoconductive layer is present, and charge injection occurs.
  • the current flows through the prevention layer.
  • Such a charge injection prevention layer is formed of a single layer such as an inorganic insulating film, an organic insulating polymer film, an insulating monomolecular film, or the like, or is formed by laminating them.
  • this layer is formed TiN, VN, ZrN, SiC, TiC, ffC, AI4C3 like glow one discharge, vapor deposition, the spatter Li in g etc. .
  • the thickness of this layer is determined depending on the material to be used in consideration of the insulating property for preventing charge injection, but is usually in the range of 0.01 to 10 m, preferably 0.05 to l / zm. Selected.
  • the charge injection preventing layer utilizing the rectifying effect is provided with a charge transporting layer having a charge transporting ability having a polarity opposite to the polarity of the electrode substrate utilizing the rectifying effect. That is, such a charge injection preventing layer is formed of an inorganic photoconductive layer, an organic photoconductive layer, and an organic-inorganic hybrid photoconductive layer, and has a thickness of about 0.01 to 10 / zm.
  • An amorphous silicon photoconductive layer, a ZnO photoconductive layer, and the like doped with Si, Bi, etc. are formed by a method such as glow discharge, vapor deposition, sputtering, CVD, and coating.
  • the conductive substrate 7 needs to function as an electrode during voltage application exposure, and since it is used as a lithographic printing plate, at least the surface must have a hydrophilic property, so that it is 0.3 mm.
  • a grained aluminum plate of moderate thickness can be used.
  • the use of a directly grained aluminum plate as the conductive substrate 7 is particularly advantageous for large-area printing, but in the case of printing having a small area such as a postcard printing.
  • an aluminum substrate 13 having a thickness of 1,000 A to lm is formed on an insulating substrate 18 such as a glass by vapor deposition or the like.
  • Zinc can be used in addition to aluminum.
  • the requirement for the charge retention layer 6 is that the charge retention layer 6 has not only charge retention properties, but also can be removed by appropriate etching, and has lipophilicity because it forms the image area of the printing plate.
  • the material must have printing durability, that is, have mechanical strength. For example, the following materials can be used.
  • the thickness may be about 2 to 10 tm.
  • the charge retention layer 6 Since the charge retention layer 6 records information on the surface or inside thereof as a distribution of static charges, it needs to have high insulation properties to suppress the movement of charges, and the specific resistance is 10 14 It is required to have an insulating property of ⁇ 'cm or more.
  • Such a charge retaining layer 6 may be formed by dissolving a resin or rubber in a solvent and coating or dating, or by vapor deposition or sputtering. Can be.
  • resin and rubber for example, polyethylene, polypropylene, bur resin, styrene resin, acrylic resin, nylon 66, nylon 6, poly Carbonate, acetate resin, fluorine resin, cellulose resin, phenol resin, urine resin, polyester resin, epoxy resin, portable epoxy resin, Min resin, silicone resin, phenoxy resin, aromatic polyamide, PP0, polysulfone, etc., as well as polyisoprene, polybutadiene, and polybutadiene.
  • resin and rubber for example, polyethylene, polypropylene, bur resin, styrene resin, acrylic resin, nylon 66, nylon 6, poly Carbonate, acetate resin, fluorine resin, cellulose resin, phenol resin, urine resin, polyester resin, epoxy resin, portable epoxy resin, Min resin, silicone resin, phenoxy resin, aromatic polyamide, PP0, polysulfone, etc., as well as polyisoprene, polybutadiene, and polybutadiene.
  • Recycling plane isobutylene, extra-high trill, polyacrylic rubber, chlorosulfonidai polyethylene, ethylene propylene wrapper, Fluoro rubber, silicon wrapper, polysulfide synthetic rubber, c
  • a simple substance or a mixture of rubber such as tan rubber is used.
  • cellulose acetate succinic acid semi-ester and polyvinylpyrridine used as eluent
  • Dilute aqueous alkali solution can be used, hereinafter, the parentheses indicate the eluate), partially genated polyvinyl acetate (water), partially genated polyvinyl acetate adduct and polyvinyl alcohol N is 6 or more such as poly (ethylene glycol) / adipic acid / fumaric acid polycondensate, poly (ethylene glycol) / polyurethane tampon (dilute aqueous alkali solution) Unsaturated polyesters such as polystyrene and polyester modified with polyethylene glycol, such as phenylenediocyanate and phenylenediocyanate.
  • Aqueous alcoholic solution alcohol-soluble polyamides (alcohols), such as polycondensates of ⁇ -capillary hexamethylenediamine / adipinate ), ⁇ —force pro- gram ⁇ , ⁇ '—Cathion-type water-soluble polyamide (water), such as polycondensate of bis (-aminopropyl) piperazine and adipic acid, and polyamide-methylene Diamin * Water-soluble anion-type polyamides (water), such as polycondensates of terephthalate and sodium isophthalate sulfonate, water Polyethylene glycol and adipic acid are reacted with a medium, followed by glycidyl methacrylate.
  • alcohol-soluble polyamides such as polycondensates of ⁇ -capillary hexamethylenediamine / adipinate
  • water such as polycondensate of bis (-aminopropyl) piperazine and adipic acid
  • Polyether amide (water), styrene-isoprene-styrene block polymer, styrene-butadiene-styrene block polymer, nitrile rubber, syn-1 , 2-—Polybutadiene and other thermoplastic polymers (halogenated hydrocarbons) Ternary block polymer (aqueous sodium carbonate solution), such as crylonitrile butadiene acrylate block polymer, polystyrene Sop Block polymers such as styrene block polymers (halogenated hydrocarbons), Asahi Glass Co., Ltd.
  • solvent-soluble fluorine resin (trade name: CYTOP) (special solvent), Polycarbonate resin (1-1-2 trichlorethane), silicone varnish such as TSR144 (Xylene) manufactured by Toshiba Silicone Corp. can be used. It is. After elution, baking at 150 ° C. for about 30 minutes may be performed to improve the printing durability.
  • the voltage of the power supply 8 only needs to be DC 1500 1500 volts. For example, if a positive voltage is applied to the electrode 4 as shown in FIG. 1, a positive charge pattern is formed on the charge holding layer, and It can be developed with charged toner particles.
  • Laser light and ultraviolet light can be used as the exposure light source.
  • Visible light such as a tungsten lamp or a halogen lamp may be used.
  • the color temperature is about 4000. It is sufficient to expose the light of the K tungsten lamp to about 50 lux for 0.1 second.
  • the toner can be used with either a dry toner or a wet toner, but the dry toner has a relatively large particle size of about 10 to 30 / zm and is inferior in resolution, but the wet toner has a particle size of 0.1 to As small as about 3 m, it is possible to obtain sufficient resolution.
  • the temperature for fixing the toner may be a wet type toner disclosed in Japanese Patent Publication No. 58-2851. In this case, the temperature is 100, and the fixing condition is about 2 to 5 minutes. Good. Sufficient fixing is performed under the same conditions in the case of a general dry toner.
  • the fixed toner image is used as a resist, and the charge holding layer other than the toner image is removed by etching.
  • Etching can be performed by using a solvent that dissolves the charge-retaining layer material, eluting and removing the charge-retaining layer in portions other than the toner image, or by using a plasma incinerator to cover the toner in the charge-retaining layer.
  • a photo-decomposable resin for example, a positive photo resist
  • Irradiation for example, ultraviolet rays
  • further development may be employed to remove any portion of the charge retaining layer that is not covered with the toner, such as a method of removing the portion.
  • the electrode 7 is exposed, and further, if necessary, a processing such as a touching process or a rubber coating is performed. Is also good.
  • the surface of a 0.3-dragon-thick aluminum plate was grained by ball polishing, and the surface was washed with the following surface-regulating liquid and washed with water.
  • a transparent conductive film was obtained by forming an IT0 film having a thickness of 500 A on a glass plate having a thickness of 3 urn by a sputtering method.
  • the sheet resistance was 1000 ⁇ / ⁇ .
  • an a-SeTe charge generation layer having a thickness of 5000 A was formed by a vacuum deposition method.
  • the Te content was U.5 wt%.
  • an a-Se layer having a thickness of 30 m was similarly formed as a charge transport layer by a vacuum evaporation method to obtain a photoreceptor.
  • a gap was formed and the photosensitive member was pressed on the above-described plate by partially forming a 3 mm-thick polyester film.
  • the measured gap was 12 m.
  • a 150-line / inch net positive film was placed on the photoreceptor and brought into close contact. +800 V was applied to the transparent electrode on the photosensitive plate side, and the aluminum plate side was grounded.
  • An electrostatic latent image of +170 V was formed on the plate. This latent image is subjected to inversion development with a wet toner disclosed in JP-A-58-2851, and after drying, fixed in an oven at 100 ° C for 5 minutes. went.
  • elution was carried out with a 5% aqueous solution of sodium carbonate, followed by washing with water and drying to form a lithographic printing plate.
  • Offset printing was performed using an offset proof press while supplying dampening water.As a result, it was confirmed that 3 to 9 B% of 150 lines / inch was printed. Was done.
  • the plate prepared in the same manner as in Example 1 was mounted on an offset rotary printing press to print 100,000 sheets. No damage was found on the printing plate.
  • the printing plate is for color printing
  • the printing plate for M the printing plate for M
  • the printing plate for C are printed in the same manner as described above. It is natural that it is necessary to manufacture four types of printing plates, a printing plate and a printing plate for K.
  • FIG. 3 is a diagram for explaining an image recording method using a charge holding medium.
  • 21 denotes a charge holding medium
  • 22 denotes a photoconductor
  • E denotes a power source.
  • the charge holding medium 21 is formed, for example, by depositing a 1,000-layer thick A 1 film on an insulating layer support 21 c made of a 1-M thick glass by vapor deposition to form a charge holding medium electrode 21 b, Furthermore, the charge storage medium electrode 2 1 It is formed by forming an insulating layer 21a having a thickness of 10 tz on b.
  • the photoreceptor 22 includes a photoreceptor support 22a, a photoreceptor electrode 22b, and a photoconductive layer 22c as in the case of the photoreceptor 1 in FIG.
  • a transparent photoreceptor electrode 22b made of IT0 having a thickness of 1000 A is formed on the support 22a, and a photoconductive layer 22c having a thickness of about 10 / zm is further formed thereon.
  • FIG. 3 shows an embodiment in which exposure is performed from the photoreceptor 22 side.
  • the charge holding medium is spaced from the photoreceptor 22 through a gap of about 10 ⁇ m.
  • a predetermined voltage is applied between the photoreceptor electrode 22b and the charge holding medium electrode 21b by the power source E as shown in FIG.
  • the photoconductive layer 22c is a high-resistance material, so that no change occurs between these two electrodes.
  • the conductive layer 22c exhibits conductivity, discharge occurs between the conductive layer 22c and the insulating layer 21a, and electric charges are accumulated in the insulating layer 21a. This is exposure.
  • the power supply E is disconnected as shown in FIG. 3 (c), and then the charge holding medium 21 is taken out as shown in FIG. 3 (d), thereby forming the electrostatic latent image.
  • the formation ends.
  • the photoreceptor 22 and the charge holding medium 21 do not need to be in non-contact as shown in FIG. 3, and may be a contact type. Positive or negative charges are injected into the exposed portion of the layer 22c, and the charges are drawn by the electrode 21b on the charge holding medium 21 side, pass through the photoconductive layer 22c, and become When the charge reaches the surface, the charge transfer stops, and the injected charge accumulates at that position. Then, when the photoconductor 22 and the charge holding medium 21 are separated from each other, the insulating layer 21a is separated in a state where the charge is accumulated.
  • the charge storage period on the insulating layer 2ia is determined by environmental conditions and the properties of the insulator, and is affected by the charge trapping characteristics of the insulator in addition to the insulating properties of air.
  • charges are described as surface charges.However, injected charges may simply accumulate on the surface, and microscopically penetrate into the vicinity of the insulator surface, causing electrons or electrons to enter the structure of the substance. In some cases, holes are trapped, so long-term preservation takes place.
  • the surface of the insulating layer 2ia may be covered with an insulating film or the like in order to prevent physical damage to the charge holding medium or discharge when the humidity is high.
  • Color filter 2B has three components: red (R :), green (G :), and blue (B). This is moved horizontally to select R, G, and B, and the recording of one color image information is completed with one set of three charge holding media.
  • FIG. 4 (b) is the same as that of FIG. 4 (a) except that a rotary color filter 27 is used and R, G, B are selected by rotation of the color filter 27.
  • FIG. 5 (a) is a diagram showing an example of a potential reading method, and the same components as those in FIG. 3 are denoted by the same reference numerals.
  • 30 is a potential reading section
  • 31 is a detection electrode
  • 32 is a guard electrode
  • 33 is a capacitor
  • 34 is a voltmeter.
  • the detection electrode 31 is grounded around the detection electrode 31.
  • Guard electricity The pole 32 may be arranged.
  • the lines of electric force are directed perpendicular to the surface, so that the lines of electric force only act on the portion facing the detection electrode 31, and the area of the detection electrode 31 is substantially reduced.
  • the potential of the same part can be read. Since the accuracy and resolution of potential reading vary greatly depending on the shape and size of the detection electrode 31 and guard electrode 32 and the distance between the electrode and the charge retention medium 21, the optimal conditions are designed to meet the required performance. There is a need to.
  • FIG. 5 (b) shows another example of the potential reading method, in which the detection electrode 31 and the guard electrode 32 are provided on the insulating protective film 35, and the potential is detected via the insulating protective film 35. It is the same as the case of Fig. 5 (a) except that is detected. According to this method, since the detection can be performed by contacting the charge holding medium 21, the distance from the detection electrode 31 can be made constant.
  • FIG. 5 (C) shows another example of the potential reading method, in which the needle electrode 3B is brought into direct contact with the charge holding medium 21 to detect the potential at that portion, and the detection area is small. High resolution can be obtained. The reading speed can be improved by providing a plurality of needle electrodes 36 for detection.
  • the above is a DC amplification type in which a DC signal is detected in a contact or non-contact manner.
  • an example of an AC amplification type will be described.
  • FIG. 5 (d) is a diagram showing a method of reading the potential of the vibrating electrode type, wherein 37 is a detection electrode, 38 is an amplifier, and 39 is a meter.
  • the detection electrode 37 vibrates and contacts the charged surface of the charge holding medium 21. Vibration is performed so that the distance changes over time. As a result, the potential of the detection electrode 37 changes over time with an amplitude corresponding to the electrostatic potential of the charged surface. This temporal potential change is taken out as a voltage change across the impedance Z, the AC component is amplified by the amplifier 38 through the capacitor C, and read by the meter 33 to measure the electrostatic potential of the charged surface. be able to.
  • Fig. 5 (e) shows an example of a rotary detector, in which 40 indicates a rotating blade.
  • a conductive rotating blade 40 is provided between the detection electrode 37 and the charged surface of the charge holding medium 21 and is rotationally driven by vibration means (not shown). As a result, the space between the detection electrode 37 and the charge holding medium 21 is periodically electrically shielded. Therefore, a potential signal whose amplitude changes periodically according to the electrostatic potential of the charged surface is detected at the detection electrode 37, and this AC component is amplified by the amplifier 38 and read.
  • Fig. 5 (f) shows an example of a vibration capacitance type detector, in which 41 is a drive circuit and 42 is a resonator element.
  • the drive circuit 41 vibrates the vibrating reed 42 of one of the electrodes forming the capacitor to change the capacitor capacity.
  • the DC potential signal detected by the detection electrode 37 is modulated, and the AC component is amplified and detected.
  • This detector converts DC to AC and can measure potential with high sensitivity and stability.
  • Fig. 5 (g) shows an example of a current-collecting detector, in which 43 is a grounded metal cylinder, 44 is an insulator, and 45 is a current collector.
  • the current collector 45 contains a radioactive substance, from which radiation is emitted.
  • air is ionized in the metal cylinder to form positive and negative ion pairs.
  • these ions disappear by recombination and diffusion, and remain in an equilibrium state.However, when an electric field is present, the ions repeatedly impact with air molecules due to thermal motion and statistically move in the direction of the electric field. It plays the role of moving forward and carrying charges.
  • the air is made conductive by the ions, and it can be considered that an equivalent electric resistance path exists between the surrounding objects including the current collector 45.
  • the resistance between the charged surface of the charge holding medium 21 and the grounded metal cylinder 43, the charged surface and the current collector, and the resistance between the current collector 45 and the grounded metal cylinder 43 are respectively R 0 , Ri, R 2 , and the potential of the charged body.
  • the potential of the charge holding medium 21 can be obtained by reading the potential of the current collector 45.
  • FIG. 5 (h) is a diagram showing an example of an electron beam type potential reader, wherein 4B is an electron gun, 47 is an electron beam, 48 is a first dynode, and 49 is a secondary electron multiplier.
  • Electrons emitted from the electron gun 46 are deflected by an electrostatic deflecting device or an electromagnetic deflecting device (not shown) to scan the charged surface. A part of the scanning electron beam is combined with the charge on the charged surface, and the charging current flows, and the potential on the charged surface drops to the flat street potential. The remaining modulated electron beam returns to the direction of the electron gun 48, strikes the first dynode 48, and the secondary electrons are amplified in the secondary electron multiplier 49, and the signal is output from the anode as the signal output. Taken out. This Use reflected electrons or secondary electrons as the returning electron beam.
  • FIG. 5 (i) is a diagram showing another example of the potential reading method, in which the charge holding medium 21 on which the electrostatic latent image is formed is developed with toner, and the colored surface is irradiated with a light beam and scanned. The reflected light is converted into an electric signal by the photoelectric converter 50.By reducing the light beam diameter, high resolution can be achieved, and optically simple operation is achieved. Then, the electrostatic potential can be detected in a short time.
  • FIG. 5 (j) is a diagram showing another example of the potential reading method, in which the R, G, and B separation images formed by a fine color filter as described later are developed with toner and colored.
  • the figure shows an example of irradiating a laser beam with a light beam and obtaining Y, M, and C signals from the reflected light.
  • 51 is a scanning signal generator
  • 52 is a laser
  • 53 is a reflecting mirror
  • 54 is a half mirror
  • 58 is a photoelectric converter
  • 55, 5B, and 57 are gate circuits.
  • the scanning signal from the scanning signal generator 51 applies the laser beam from the laser 52 to the colored surface via the reflecting mirror 53 and the half mirror 54. Scan normally.
  • the reflected light from the colored surface enters the photoelectric converter 58 via the half mirror 54 and is converted into an electric signal. If the gate circuits 55, 56, 57 are controlled to open and close in synchronization with the signal from the scanning signal generator 51, the gate circuits 55, 56, 57 are controlled to open and close in synchronization with the pattern of the fine filter. Therefore, Y, M, and C signals can be obtained without coloring Y, M, and C.
  • the Y, M, and C signals can be obtained in exactly the same manner.
  • the Y, M, and C signals need not be colored. The same is true.
  • the toner image needs to have seven characteristics corresponding to the charge amount of the electrostatic latent image, and therefore, the It is necessary to have no threshold value for the analog change of quantity. As long as the measures are taken, even if the characteristics do not match, it is sufficient to carry out the correction of 7 by electrical processing.
  • FIG. 5 (k) shows another example of the potential reading method. That is, the method is such that the lines of electric force generated by the electrostatic charge act on the electro-optic material 130, and the change generated in the electro-optic material 130 is read by the light sensor 131 with the light 132.
  • the electro-optic material 130 it is that you use LiNbO 3, a liquid crystal or the like.
  • the light 132 uses polarized light as needed, and the optical sensor 131 also incorporates a polarizing plate as needed.
  • FIG. 5 (k) the case where the charge holding medium 21 is transparent is illustrated, but the reflected light is converted using the same optical system as in FIGS. 5 (i) and (j). Needless to say, it can be detected. Further, the light 132 and the optical sensor 131 may be fixed and the charge holding medium 21 may be scanned, or the light 132 and the optical sensor 131 may be scanned conversely. Alternatively, an image sensor may be used as the optical sensor 131, and an image may be formed on the image sensor using a lens. Next, a color filter used for forming a color image will be described.
  • Fig. 6 shows a color separation optical system 68 using a prism.
  • 80, 61, and 62 are prism blocks
  • 63, 64, and 65 are filters
  • B6 and B7 are reflection mirrors. It is.
  • the color separation optical system 68 is composed of three prism blocks B0, 61, and B2.
  • the light information incident from the a surface of the prism block B0 is partially reflected on the b surface, and is further reflected on the a surface.
  • the B color light component is extracted from the filter 63.
  • the remaining light information is incident on the prism block 61, travels to the c-plane, and is partially reflected and separated, and the G color component from the filter 64 and the other goes straight to the R color component from the filter 65.
  • the G, B light components are reflected by the reflecting mirrors 66, 67, so that the R, G, B light can be extracted as parallel light.
  • FIG. 7 (b) By arranging the color separation optical system B8 as shown in FIG. 6 and photographing it in front of the photoreceptor 22 as shown in FIG. 7 (a), the image as shown in FIG. 7 (b) is obtained.
  • One frame is formed by three sets of the R, G, and B decomposed charge holding media.
  • Fig. 7 (c) one set of R, G, and B images is arranged on one plane.
  • Each frame can be one frame.
  • FIG. 8 is a diagram showing an example of a fine color filter. For example, a mask obtained by coating a register with a mask. The pattern is formed by exposing in turns to form R, G, B stripe patterns and dyeing them by R, G, B, respectively, or the light separated by the method shown in Fig.
  • a pattern is formed, this is developed by toner, transferred three times, and then color-combined to form a toner stripe.
  • One pixel is formed by a set of filters R, G, and B formed by such a method, and one pixel is made as fine as about 10 m.
  • a color electrostatic latent image can be formed by using this filter as the color separation optical system 68 in FIG. In this case, the filter may be disposed separately from the photoconductor, or may be formed on the photoconductor.
  • Fig. 9 shows an example in which a fine color filter and a Fresnel lens are combined.
  • the R, G, and B patterns can be reduced and recorded by the Fresnel lens 63.
  • a thin and compact lens design is possible compared to a normal lens.
  • Fig. 10 shows an example of three-plane division using a half mirror and R, G, and B filters together.
  • the incident light is split by half mirrors 71 and 72 and reflection mirror 73.
  • R, G, and B light can be extracted as parallel light by splitting and passing through R filter 74, G filter 75, and B filter 76, respectively.
  • a method for erasing the electrostatic latent image formed on the charge holding medium there is the following method.
  • Heating by appropriate heating means such as infrared heating, resistance heating, microwave heating, and thermal head heating.
  • electrostatic latent image can be erased by these methods, when erasing the electrostatic latent image formed on a part of the charge holding medium, other parts other than the part to be erased are used. And can be erased by any of the above methods.
  • the charge holding medium 21 and the photoreceptor 22 are prepared. Then, as shown in Fig. 11, the image of the original Is exposed from the photoreceptor 22 side as a magnification specified by the appropriate lens system 81 on the layout sheet, for example, an original size. Thus, an electrostatic latent image of the image of the document 80 is formed at a predetermined position of the charge holding medium 21. If this operation is performed for all the originals assigned to the page, the originals used for the page can be collected. At this time, the size of the charge holding medium 21 and the photoreceptor 22 may be any size as long as the image of the document can be exposed to a designated size, in this case, that is, an original size.
  • the original size image data is taken into the image processing device to perform density adjustment, color tone adjustment, trimming, etc., and finally input to the color scanner and output to the film
  • the same size as the layout sheet because the image of the document used for the page can be allocated and exposed at the position specified on the layout sheet. . It is recommended that the exposure of the original image be made larger than the trimming range specified on the layout sheet.
  • the size of the original image to be exposed is arbitrary. For example, it is possible to reduce the size of the original image to 1/2 of the designated size and expose the original image.
  • the designated magnification value may be used as it is, but when reducing and exposing, the magnification value must be reduced by 1/2 each time. It is easy to cause a setting error. This is particularly remarkable when the electrostatic latent image obtained by the exposure is erased and the exposure is repeated.
  • the image data can be used as it is when exposing the output film with a color scanner, as well as image processing described later.
  • the original image needs to be separated into three colors of R, G, and B.
  • the method shown in FIG. 6 or FIG. ), (B) and (c) the three charge storage media 21 R , 2 ⁇ ⁇ , 21B -4B-
  • An electrostatic latent image of a red image, a green image, and a blue image may be formed, or the electrostatic latent image may be formed using a color stripe filter by the method shown in FIG. It may be. If a color strip filter is used, the amount of misregistration between the color separation images is equal to the relative misregistration between the colors of the strip filter and the stripe filter. Depends on the positional accuracy of This means that if the strip filter is neat, no color shift will occur in principle. On the other hand, according to the method shown in FIG. 12, it is necessary to perform mechanical alignment with high accuracy.
  • the R, G, and B color stripe pitch must be set to the required resolution. You only need to make it fine. For example, it is said that the resolution at which a halftone image of 175 line inches can be output is 500 line inches or more, so the size of one side of one pixel composed of R, G, and B colors is The length should be 50 m or less. In the case of reading color characters, a higher resolution is required than the image, and a 1200 to 2400-line Z-inch is required.
  • the pitch of the power strip filter should be determined so that the pixel size is about 20 to 10 jcz m.c
  • the position specified on the layout sheet is An electrostatic latent image of a document image of the specified size can be formed.
  • the R, G, and B electrostatic latent images can be formed adjacent to each other.
  • the first 2 view, in the first 3 Figure 85, 86, 87, 88, 83 each represent a document, 85 R, 85 G, 85 B, it respectively, the red image of the document 85, green image , Indicates a blue image.
  • exposing the image of each document it is sufficient to expose only a predetermined position on the charge holding medium, and it is natural that the other parts should not be affected by the covering or the like.
  • exposure may be performed using a mask outside the exposure range.
  • a predetermined voltage may be applied only to the portion.
  • the electrostatic latent image is temporarily erased using any of the above-described electrostatic latent image erasing methods, and the alignment is performed again to perform exposure. It is good.
  • FIG. 5 shows an example of a configuration for that purpose.
  • the reading device 30 reads an electrostatic latent image recorded on the charge holding medium 21.
  • the electrostatic latent image recorded on the charge holding medium 21 is read by the reading head 32 using the above-described electrostatic latent image reading method.
  • the read analog data is amplified by the amplifier 33 and output to the image processing device 31.
  • the image processing device 91 first, the R, G, and B analog data supplied from the reading device 90 is converted into digital data of a predetermined number of bits by the digital conversion 34, and then trimming, Processing such as color conversion is performed. In FIG. 14, processing is performed in the order of trimming, color conversion, and blur correction.
  • Trimming 35 is a process for extracting only the range specified by the layout sheet from the image data of each document.For example, displaying the captured image on a CRT or the like and specifying the range to be extracted Can be done with
  • the color conversion 3B converts the data of R, G, B into data of C, M, Y, K.
  • the data of C, ⁇ , ⁇ , ⁇ obtained by the color conversion 36 is Next, dust correction is performed by dust detection 97, and the data of C, M, Y, and K are converted into C ', ⁇ ', ⁇ ', and ⁇ ⁇ ⁇ ' in consideration of ink smear. This makes it possible to prevent the print image from being smeared by ink smear.
  • the corrected image data is then subjected to halftone processing by halftone processing 98.
  • the halftone process is performed by changing the size of the halftone dot according to the image density as shown in FIG. 15, for example, and when it is whitish, the halftone dot as shown in FIG. In the case of gray, halftone dots are 50% as shown in Fig. 15 (b), and when they are dark, halftone dots are as shown in Fig. 15 (c). In this manner, the pitch of the halftone dots is not changed, but the size of the halftone dots is changed according to the image density.
  • a method using a dot generator as shown in FIG. 16 may be used to form the halftone dots.
  • the outline of this method is as follows. If one halftone dot is as shown in Fig. 16 (a), weighting is performed as shown in the figure, and the density level of the image corresponding to one halftone dot is calculated. If the value is 8 as shown in Fig. 16 (b), the weighting value is compared with the level 8 of the image.
  • the halftone-processed image data is subjected to an exposure process by an exposure process 99 based on the result of the halftone process, supplied to a color scanner (not shown), and wound around an output drum.
  • the exposed film is exposed.
  • FIG. 14 is a diagram showing only the flow of signal processing, and the device is configured to store digitally converted image data, image data obtained as a result of halftone dot processing, and the like.
  • Storage devices display devices such as color CRTs, keyboards and mice, etc. It is a matter of course that the device is provided with an input device and the like.
  • the calculation processing required for the layout part which deteriorated the cost performance is not required, and the cost of the electronic plate collection system for the monocro is eliminated. It can greatly improve the performance.
  • the printing plate using the charge holding medium, the method for producing the same, and the plate collection system using the charge holding medium of the present invention are widely applied to the fields of plate making and plate printing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

A photoconductive layer (5) of a photosensitive member (1) and a charge retaining layer (6) of a charge retain medium (2) are so disposed as to face each other with a predetermined distance (d). After a power source (8) is connected, light (9) having a predetermined wavelength is irradiated to the photosensitive member (1) to form an electrostatic latent image in the charge retaining layer (6) of the charge retaining medium (2). Next, the charge retaining medium (2) is disconnected from the power source (8), toner is applied onto the charge retaining layer (6) and development and fixing are carried out. Etching is then conducted using the resulting toner image (16) as a mask to remove the portions of the charge retaining layer (6) to which the toner (16) is not deposited. In this manner a printing plate having a scanned portion formed by the toner (16) and the charge retaining layer (6) on the conductive substrate (7) can be obtained. According to this plate, the toner image is formed directly on the charge retaining layer (6) of the charge retaining medium (2). Therefore, the toner image need not be transferred and a scanned portion having high resolution can be formed.

Description

明 細 書 電荷保持媒体を用いた印刷版、 その製造方法及び  Description Printing plate using charge retention medium, method for producing the same, and
電荷保持媒体を用いた集版システム 技 術 分 野  Plate collection system using charge retention media
本発明は、 電荷保持媒体で形成した印刷版、 電荷保持媒 体で印刷版を製造するための製造方法、 及び電荷保持媒体 で形成した印刷版上の所定の位置に所定の倍率で直接印刷 原稿の画像の静電潜像を形成することにより集版を行う電 荷保持媒体を用いた集版シ ステムに関する。  The present invention relates to a printing plate formed of a charge holding medium, a manufacturing method for manufacturing a printing plate with the charge holding medium, and a document directly printed at a predetermined magnification on a predetermined position on the printing plate formed of the charge holding medium. The present invention relates to a plate collection system using a charge holding medium that forms a plate by forming an electrostatic latent image of the image.
背 景 技 術  Background technology
従来、 印刷版の製造方法としては、 例えば、 第 1 7図、 第 1 8図あるいは第 1 9図に示すような方法が知られてい 。  Conventionally, as a printing plate manufacturing method, for example, a method as shown in FIG. 17, FIG. 18 or FIG. 19 is known.
第 1 7図に示す印刷版の製造方法は概略次のようである。 まず、 ボール研磨あるいはブラシ研磨等の周知の研磨方法 により、 いわゆる砂目立てがなされたアルミ ユウム板 1 00上 に感光性を有する樹脂層 1 01を形成して印刷基板を作成し、 次に、 該樹脂層 10 1に対向して版を作成するためのフ ィ ルム 1 02を配置し、 紫外線 1 03によ りパターン露光を行い (第 1 7図( a ):)、 現像、 乾燥を行う。 これによ り、 第 1 7図(b )に示すように樹脂層 1 01で形成された画線部を有する印刷 版が製造される。 なお、 フ ィ ルム 1 02は、 レ イ ア ウ ト スキ ヤ ナあるいはページ メークア ッ プスキャナ等と称されている カラースキャナから出力されたもの等のページ メークァ ッ プがなされたフ イ ルムであることは言うまでもない。 以下 においても同様である。 また、 カラー印刷の場合には、 印 刷版は黄 ( Y:)、 マゼ ン タ ( M:) 、 シア ン ( C ) およびブ ラ ッ ク (K ) の 4色についてそれぞれ製造する必要がある こ とは当然であり、 第 1 7図(a )のフ ィ ルム 102として上記 4色の各色用のフ イ ルムを使用することで Y ,M , C , Kの 4 色の印刷版を製造することができる。 The manufacturing method of the printing plate shown in FIG. 17 is roughly as follows. First, a photosensitive resin layer 101 is formed on a so-called grained aluminum plate 100 by a known polishing method such as ball polishing or brush polishing to form a printed substrate. A film 102 for forming a plate is placed opposite to the resin layer 101, pattern exposure is performed by ultraviolet rays 103 (FIG. 17 (a) :), development and drying are performed. Thus, a printing plate having an image portion formed of the resin layer 101 is manufactured as shown in FIG. 17 (b). The film 102 is called a layout scanner or a page make-up scanner. It goes without saying that the film is a page make-up film such as the one output from a color scanner. The same applies to the following. In the case of color printing, printing plates must be manufactured for each of the four colors: yellow (Y :), magenta (M :), cyan (C), and black (K). Naturally, by using the film for each of the above four colors as the film 102 in FIG. 17 (a), four color printing plates of Y, M, C, and K were manufactured. can do.
一般に砂目立てしたアル ミ ニゥム板に感光層を形成した ものが P S版 (プレセ ン シタイ ズ ド * プレー ト) と呼ばれ 広く市販されている。 P S版は価格が高いが、 既に感光層 が塗布形成されているので作業性が良い。  In general, a photosensitive layer formed on a grained aluminum plate is called a PS plate (presensitized * plate) and is widely marketed. The PS plate is expensive, but the workability is good because the photosensitive layer has already been applied.
また、 感光層塗布設備を有する印刷所では、 前記したよ うに砂目立てしたアル ミニゥム板に実際に感光層を塗布し ている。 このようにして作製した版をワイ プオン版と称す る。 ワ イ プオン版は低価格ででき、 P S版より高感度なも のも作製できるが、 塗布工程が必要なため作業性は P S版 より劣る。 また、 ワイ プオン版は塗布してから使用するま での保存可能期間が短く、 感光層を形成後、 すぐ露光工程 に入る必要があり、 この点でも作業上の制約がある。  In a printing shop having photosensitive layer coating equipment, the photosensitive layer is actually coated on an aluminum plate grained as described above. The plate produced in this way is called a wipe-on plate. The wipe-on plate can be manufactured at a lower price and can be manufactured with higher sensitivity than the PS plate, but the workability is inferior to the PS plate due to the necessity of a coating process. In addition, the wipe-on plate has a short shelf life from application to use, and it is necessary to start the exposure process immediately after forming the photosensitive layer, which also imposes operational restrictions.
現在、 ワイ プオン版は殆ど使用されておらず、 P S版が 主流である。 P S版は上述した通り、 作業性に優れるが、 感光層を塗布した状態での長期保管に耐える必要があるた め、 感光層の感度は高くない。 一般に、 感度を高めると熱 に対しても反応し易く、 保管中に熱反応によるカプリ を生 じてしまう こ とが多く なるため、 P S版の感度を高くする こ とは非常に難しい。 Currently, the wipe-on version is rarely used, and the PS version is the mainstream. As described above, the PS plate has excellent workability, but the sensitivity of the photosensitive layer is not high because it must withstand long-term storage with the photosensitive layer applied. In general, the higher the sensitivity, the easier it is to react to heat, and the capri due to the thermal reaction is generated during storage. It is very difficult to increase the sensitivity of the PS version, since it will be more likely to be lost.
また、 第 1 8図に示すものは、 砂目立てされたアル ミ 二 ゥム板 1 05上に感光性を有する樹脂層 1 0 6を形成し、 更にそ の上に銀乳剤からなる層 1 07を形成して得た印刷基板であり 当該印刷基板に対して第 1 7図に示すと同様にパターン露 光、 現像そして乾燥を行う こ とによって印刷版を製造する こ とができる。 このものは前述した P S版の低感度という 欠点を捕うべく 開発されたもので、 P S版の上に銀乳剤層 を設け、 銀乳剤の高感度を利用して一次露光を低エネルギ 一で行い、 銀乳剤を現像して黒化した銀粒子パターンを原 稿として全面均一露光 (二次露光) を行い、 現像して印刷 版とするものである。 その狙いは、 レーザ走査露光、 投影 露光のような低エネルギー露光に使用するためである。  FIG. 18 shows that a photosensitive resin layer 106 is formed on a grained aluminum plate 105 and a silver emulsion layer 107 is further formed thereon. A printing plate can be manufactured by subjecting the printed substrate to pattern exposure, development and drying in the same manner as shown in FIG. This was developed to capture the disadvantage of the low sensitivity of the PS plate described above.A silver emulsion layer was provided on the PS plate, and the primary exposure was performed with low energy using the high sensitivity of the silver emulsion. A silver particle pattern developed by developing a silver emulsion is used as an original to perform uniform exposure (secondary exposure) over the entire surface, and then developed to form a printing plate. The aim is to use it for low energy exposure such as laser scanning exposure and projection exposure.
印刷版の露光をレーザ走査で行うことは米国の新聞、 ゥ オールス ト リ ー ト ジ ャ一ナルの印刷版作製に見られるよ う に、 遠隔地の印刷工場に通信回線で情報を送り、 印刷する 場合に非常に重要な技術である。 また、 投影露光は、 反射 原稿さえ作ればすぐに版が作製できるこ とになり、 従来の ように製版力 メラで撮影してフ ィ ルム原稿を作る手間が不 要になるのである。  Exposure of the printing plate by laser scanning involves sending information over a communication line to a remote printing factory and printing, as seen in the production of printing plates in the U.S. newspaper, ゥ All Street Journal. This is a very important technology. Also, with projection exposure, a plate can be produced as soon as a reflective original is made, eliminating the need for a conventional film-making machine to make film originals.
これらのものは低エネルギー露光を可能とする点で大き なメ リ ッ トを有するが、 当然のこ とながら高価な銀乳剤を 積層してあることから、 P S版より高価なものとなってし ま うのである。 第 1 9図に示す印刷版の製造方法は、 電子写真法を用い た方法であり、 まず、 光導電性材料からなる感光体 110にコ ロナ帯電によって均一な静電荷を与え、 フ ィ ルム 111を配置 して所定の波長を有する光 112によりパター ン露光し (第 1 9図( a ):)、 トナー 113を塗布する (第 1 9図(b ))。 これ により光 112の未露光部のみに トナー 113が付着する。 その 後、 当該 トナー 113を砂目立てが施されたア ル ミ ニ ウ ム板 1 Uに転写し、 定着させるこ とによ り、 トナー 113を画線部と する印刷版を得るこ とができる (第 19図( c ):)。 These have great advantages in that they enable low-energy exposure, but they are naturally more expensive than PS plates due to the lamination of expensive silver emulsions. It is. The printing plate manufacturing method shown in FIG. 19 is a method using electrophotography. First, a uniform electrostatic charge is applied to a photoreceptor 110 made of a photoconductive material by corona charging to form a film 111. Are arranged and exposed to a pattern with light 112 having a predetermined wavelength (FIG. 19 (a) :), and toner 113 is applied (FIG. 19 (b)). As a result, the toner 113 adheres only to the unexposed portion of the light 112. After that, the toner 113 is transferred to a grained aluminum plate 1U and fixed, whereby a printing plate having the toner 113 as an image portion can be obtained. (Fig. 19 (c) :).
また、 第 2 0図に示す印刷版の製造方法は、 電子写真法 を用いた他の方法であり、 まず、 光導電性材料層 122と砂目 立てしたアル ミユウム板 121からなる感光体 123にコロナ帯 電によつて均一な静電荷を与え、 フ ィルム 124を配置して所 定の波長を有する光 125によりパターン露光し (第 2 0図( a )) , トナー 12Bを塗布する。 これによ り光 125の未露光部 のみに トナー 126が付着する。 その後、 当該 トナー 12Bを定 着させ (第 6図(b ):)、 当該 トナー 126をレ ジス ト として光 導電性材料層 122の露出部分を溶出し、 基板の砂目立てした ア ル ミ ニ ウ ム板 121を露出させる (第 6図(c ))。 こ う して、 残存した光導電性材料層 122および トナー 126を画線部とし、 砂目立てしたアル ミ二ゥム板 121の露出部分を非画線部とす る印刷版を得るこ とができる。  The printing plate manufacturing method shown in FIG. 20 is another method using electrophotography. First, a photoconductor 123 composed of a photoconductive material layer 122 and a grained aluminum plate 121 is used. A uniform electrostatic charge is given by corona charging, a film 124 is arranged, and pattern exposure is performed by light 125 having a predetermined wavelength (FIG. 20 (a)), and toner 12B is applied. As a result, the toner 126 adheres only to the unexposed portion of the light 125. After that, the toner 12B is fixed (FIG. 6 (b) :), and the exposed portion of the photoconductive material layer 122 is eluted with the toner 126 as a resist, and the grained aluminum of the substrate is eluted. Expose the rubber plate 121 (FIG. 6 (c)). In this way, it is possible to obtain a printing plate in which the remaining photoconductive material layer 122 and the toner 126 are used as an image area and the exposed portion of the grained aluminum plate 121 is used as a non-image area. it can.
以上述べたように印刷版の製造方法としては種々の方法 が知られているのであるが、 しかしながら、 従来の製造方 法には次のような問題があった。 即ち、 第 17図に示す製 造方法においては、 紫外線で露光するために、 樹脂として は高感度のものが要求されるが、 紫外線に対して高感度な 材料は一般的に熱的安定性も悪く、 いわゆる熱被りを生じ やすく、 また、 高感度な樹脂は分子量が比較的小さいので、 耐刷性、 即ち印刷版として要求される機械的強度が低いと いう問題があ り、 感度と耐刷性の双方を満足させるものは 非常に困難である。 As described above, various methods are known as a printing plate manufacturing method. However, the conventional manufacturing method has the following problems. That is, the product shown in FIG. In the fabrication method, a resin with high sensitivity is required for exposure to ultraviolet light, but a material that is highly sensitive to ultraviolet light generally has poor thermal stability and is susceptible to so-called heat cover. In addition, since a high-sensitivity resin has a relatively small molecular weight, there is a problem that the printing durability, that is, the mechanical strength required for a printing plate is low. Very difficult.
これに対して、 第 1 8図に示す印刷基板は、 感度は銀乳 剤の使用によ り高感度とする こ とができ、 しかも樹脂層 1 0 6としては従来使用されているものを使用できるがコス トが 高いという問題がある。  On the other hand, in the printed circuit board shown in Fig. 18, the sensitivity can be increased by using a silver emulsion, and the resin layer 106 that is conventionally used is used. Yes, but it is expensive.
また、 第 1 9図に示す方法においては、 感光体 105上に形 成した トナー像をアル ミ ニ ウ ム板 1 Uに転写する際の相対速 度が零である必要があり、 相対速度が零でない場合には印 刷の位置ずれ、 あるいはパターン の歪が生じてしまう こ と になり、 これは特に大面積の印刷版の場合に顕著である。 また、 転写の際に トナーの崩れが生じることがあり、 これ は解像力劣化の原因となるものであった。  In the method shown in FIG. 19, the relative speed at which the toner image formed on the photoreceptor 105 is transferred to the aluminum plate 1U must be zero, and the relative speed must be zero. If it is not zero, the printing will be misaligned or the pattern will be distorted, which is particularly noticeable in the case of large-area printing plates. In addition, the toner may be disintegrated during the transfer, which causes deterioration in resolution.
第 2 0図に示す方法は第 1 9図に示す方法に比べて、 ト ナ一の転写を行わない点で トナー転写時の トナー像の乱れ を生じない利点がある。 しかし、 光導電性材料層が画線部 として使われるため、 光導電性材料層が感度と機械的強度 の両方を兼ね備える必要がでてく る。  The method shown in FIG. 20 has an advantage over the method shown in FIG. 19 in that the toner image is not disturbed at the time of toner transfer in that toner transfer is not performed. However, since the photoconductive material layer is used as an image portion, it is necessary that the photoconductive material layer has both sensitivity and mechanical strength.
一般に光導電性材料層は、 酸化亜鉛などの光導電性を有 する顔料を高分子材料中に分散したものが使用されるが、 -B- 充分な感度を得るためには重量比で 80 %程度酸化亜鉛を入 れる必要があり、 その結果、 光導電性材料層はもろく、 耐 刷性が得られない。 Generally, the photoconductive material layer is formed by dispersing a photoconductive pigment such as zinc oxide in a polymer material. -B- To obtain sufficient sensitivity, it is necessary to add about 80% by weight of zinc oxide. As a result, the photoconductive material layer is brittle and printing durability cannot be obtained.
更に、 こう した問題点を解決するために、 第 2 0図(b ) に示すような感光板 123上に トナーを定着させた状態で光導 電性材料層 122の露光表面をリ ン酸などで親水化処理を行い、 光導電性材料層の溶出を行わずに、 トナー部分を画線部と し、 親水化された光導電性材料層の露出部を非画線部とす る印刷版を得るという方法も提案された。 しかし、 この方 法では、 光導電性表面の親水化が酸化亜鉛等の光導電性顔 料の親氷化にとどま り、 バイ ンダーである高分子材料は親 油性であるため、 充分な親水化は望めず、 地汚れなどの事 故を発生しやすく、 一旦非画線部にイ ンキが付着すると再 親水化ができないため版自体を交換せざるを得な くなると いう欠点がある。  Further, in order to solve such problems, the exposed surface of the photoconductive material layer 122 is exposed to phosphoric acid or the like while the toner is fixed on the photosensitive plate 123 as shown in FIG. 20 (b). A printing plate in which the toner portion is used as an image portion and the exposed portion of the hydrophilic photoconductive material layer is used as a non-image portion without performing elution of the photoconductive material layer by performing a hydrophilic treatment. A way to get it was also suggested. However, in this method, the hydrophilicity of the photoconductive surface is not limited to the lipophilicity of the photoconductive pigment such as zinc oxide, and the polymer material as the binder is lipophilic. There is a drawback that accidents such as background contamination are likely to occur, and once ink has adhered to the non-image area, it cannot be re-hydrophilized, so that the plate itself must be replaced.
以上のように、 これまで行われてきた電子写真方法は、 光導電性材料層を画線部として使おうとすると光導電特性 と画線部として要求される機械的強度特性との両立ができ ず、 また逆に、 光導電性材料層を非画線部として使おう と すると非画線部として要求される親水性が满足されない。 そこで トナーを感光体上に定着させずに他の砂目立てした アル ミ ニゥム扳などに転写しよう とすると、 トナー像の乱 れを生じ解像度が維持できない、 という問題点を有してい るのである。  As described above, according to the electrophotographic method that has been performed so far, when the photoconductive material layer is used as an image portion, the photoconductive property and the mechanical strength characteristic required for the image portion cannot be compatible. Conversely, when the photoconductive material layer is used as a non-image portion, the hydrophilicity required for the non-image portion is not sufficient. Therefore, if the toner is transferred to another grained aluminum or the like without fixing the toner on the photoconductor, the toner image is disturbed and the resolution cannot be maintained.
以上、 従来の印刷版、 印刷版の製造方法及びそれらの問 題点について説明したが、 従来の集版システムについては 次のようである。 The conventional printing plate, printing plate manufacturing method and their We have explained the issues, but the following is a description of the conventional plate collection system.
従来、 集版を行う場合、 原稿の点数が少ない場合には、 原稿を一点一点カラースキャナの入力ド ラムに貼付し、 分 解条件を設定して、 指定された通りの倍率で C , Μ , Υ , Κの 4色に色分解を行って集版装置により電子的に集版し、 原 稿点数が多い場合には、 1回のスキャニングで複数の異な る倍率の原稿の色分解が行えるように、  Conventionally, when performing plate collection, if the number of originals is small, attach the originals to the input drum of the point-by-point color scanner, set the disassembly conditions, and set C, at the specified magnification. Color separation into four colors of Μ, ,, and Κ is performed and electronically collected by a plate collecting device.If the number of originals is large, multiple scannings of different magnifications can be separated by one scanning. So that you can
中間複製倍率- (最終倍率) / (スキャニング倍率) の関係で求められる中間複製倍率でカラ一原稿の複製を作 ることが行われる。 このように、 中間処理としてカラー原 稿の複製を作るこ とにより、 スキヤユング倍率が統一され る。 そこで、 最終倍率の異なる原稿を、 この中間複製カラ —を使って同一のスキャニング ド ラムに貼り込み、 効率的 に色分解作業を進めることが行われている。  Intermediate duplication ratio-(final magnification) / (scanning magnification) The duplication of a blank original is performed at the intermediate duplication ratio determined by the relationship. In this way, by making a copy of the color original as an intermediate process, the scanning magnification is unified. Therefore, originals with different final magnifications are stuck on the same scanning drum using this intermediate copy color, and color separation work is proceeding efficiently.
更に、 一部の中間複製原稿については、 最終的なレイ ァ ゥ トを勘案して貼り込みを行い、 集版工程の合理化を図る こ とが行われている。  In addition, some intermediate duplicate manuscripts are pasted in consideration of the final layout to streamline the plate collection process.
これらの作業手法はデュープ組立てと呼ばれている。 しかしながら、 前者の方法においては、 カラースキャナ の分解条件を原稿の一点一点について、 入力の倍率および 色分解条件を設定しなければならないので非常に面倒で手 間がかかるものであり、 しかも分解条件の設定はォペレ一 タの経験に頼ると ころが大きいために熟練を要するもので あり、 結局、 高価なカ ラースキ ャ ナの稼働率を向上させる こ とができないものであった。 更に、 原稿毎に入力されて 作られた大量のデータを、 レ イ ア ウ ト指示に従って集版す るには、 コ ン ピュータ上での演算処理が必要であり、 処理 時間が長く なる。 結局、 カ ラースキ ャナばかりでなく、 集 版のためのコ ン ピュータの稼働率も低下させてしまうこ と になる。 These working techniques are called dupe assembly. However, in the former method, the resolution of the color scanner must be set for each point of the document, and the input magnification and color separation conditions must be set. The setting of the conditions depends on the experience of the operator, and requires a lot of skill. In the end, it was impossible to improve the operation rate of expensive color scanners. Furthermore, in order to collect a large amount of data input and created for each manuscript in accordance with the layout instructions, arithmetic processing on a computer is required, and the processing time becomes longer. As a result, not only the color scanner, but also the operation rate of the computer for printing will be reduced.
また、 後者のデュープ組立を行う場合には、 カラースキ ャ ナの分解条件の設定は 1回でよいが、 複製の作成に非常 な時間と費用を要するという問題がある。  In addition, when performing the latter duplication assembly, the disassembly conditions of the color scanner need only be set once, but there is a problem that it takes a very long time and cost to make a duplicate.
更に、 複製を作成することにより、 画質が硬調になるな ど画像の劣化が避け難いこと、 1回のスキ ャ ンを行うため、 複数の原稿が同一のセ ッ トア ップ条件で色分解されてしま い、 個々の原稿にとって必ずしも最適なセ ッ ト ア ッ プ条件 で色分解できないこと、 同様の理由によってセ ッ ト ア ッ プ 条件が大き く異なる原稿に対してはこの作業手法が使えな い等の問題があつた。  In addition, it is difficult to avoid image degradation such as high image quality by making duplicates.Since a single scan is performed, multiple originals are separated under the same setup conditions. This means that color separation cannot always be performed under the optimal setup conditions for each original document, and for the same reason, this work method cannot be used for documents whose setup conditions differ greatly. And other problems.
本発明はこのような事情に鑑みてなされたものであって、 その目的は、 電荷保持媒体上に直接トナー像を形成するこ とによって、 転写の必要がな く、 しかも耐刷性が良好な印 刷版及びその製造方法を提供することにあり、 更に本発明 の目的は、 電圧印加露光方法により電荷保持媒体上で直接 集版を行う こ とによって、 集版の作業効率を向上させるこ とができる電荷保持媒体を用いた集版システムを提供する と ある。 発 明 の 開 示 The present invention has been made in view of such circumstances, and an object of the present invention is to form a toner image directly on a charge holding medium, thereby eliminating the need for transfer and improving printing durability. It is an object of the present invention to provide a printing plate and a method for manufacturing the same, and to improve the work efficiency of the plate collection by directly collecting a plate on a charge holding medium by a voltage application exposure method. It is intended to provide a plate collection system using a charge holding medium that can be used. Disclosure of the invention
上記の目的を達成するために、 本発明の電荷保持媒体を 用いた印刷版は、 導電性基板上に電荷保持層と トナー層で 形成された画線部を有するこ とを特徴とする。  In order to achieve the above object, a printing plate using the charge holding medium of the present invention is characterized by having an image portion formed of a charge holding layer and a toner layer on a conductive substrate.
本発明の電荷保持媒体を用いた印刷版は、 導電性基板上 に電荷保持層と トナー層で形成された画線部を有するので、 以下の効果を有する。  The printing plate using the charge holding medium of the present invention has the following effects because it has an image area formed of a charge holding layer and a toner layer on a conductive substrate.
即ち、 電荷保持層材料自体は感光性または光導電性を有 する必要がな く、 現像までの間の短時間電荷を保持すれば よいため、 広い材料範囲の中から、 耐刷性、 解像性に優れ たものを選択でき、 材料選定が容易である。 また感光性ま たは光導電性を持たない材料は一般に機械強度を高くでき るため、 耐刷性がよい。  In other words, the charge holding layer material itself does not need to have photosensitivity or photoconductivity, and only has to hold charge for a short period of time until development, so that printing durability and resolution can be selected from a wide range of materials. It is possible to select materials with excellent properties, and it is easy to select materials. In addition, materials that do not have photosensitivity or photoconductivity generally have high mechanical strength, and therefore have good printing durability.
また、 非画線部は、 親水性に優れた、 一般の平版印刷版 のベース金属材料が使えるので、 十分な保水性が得られ、 印刷中の湿し水のコ ン ト ロールが容易になるなど作業性が よい。  In the non-image area, the base metal material of general lithographic printing plates with excellent hydrophilicity can be used, so that sufficient water retention is obtained and the dampening solution can be easily controlled during printing. Workability is good.
また、 画線部が トナー層で覆われているので、 十分な親 油性を持っため、 刷り出し着肉性が良好で、 印刷開始直後 から品質のよい印刷物が得られる。 更に印刷を続けて トナ 一部分が摩耗しても、 トナー層の下に電荷保持層を有する ので、 画線部の欠け等を生ずるこ となく、 高い耐刷性が得 られる。  In addition, since the image area is covered with the toner layer, it has sufficient lipophilicity, has good print-out inking property, and provides high-quality printed matter immediately after printing is started. Furthermore, even if a part of the toner is worn due to continuous printing, since the charge retaining layer is provided under the toner layer, high printing durability can be obtained without causing a chipped image area or the like.
また、 本発明の電荷保持媒体を用いた印刷版の製造方法 は、 導電性基板と電荷保持層とからなる電荷保持媒体と、 感光体との間に所定の電圧を印加し、 感光体側から所定の パターンを露光するこ とによつて前記電荷保持層に所定の パターンを有する静電潜像を形成する第 1 の工程と、 前記 第 1の工程により得られた電荷保持層上の静電潜像に対し て トナー現像、 定着を行う第 2の工程と、 前記第 2の工程 により得られた トナー像以外の部分の電荷保持層を除去す る第 3のェ'程とからなることを特徴とする。 Further, a method of manufacturing a printing plate using the charge holding medium of the present invention comprises: a charge holding medium comprising a conductive substrate and a charge holding layer; A first step of forming a static latent image having a predetermined pattern on the charge holding layer by applying a predetermined voltage between the photoreceptor and exposing a predetermined pattern from the photoreceptor side; A second step of developing and fixing the electrostatic latent image on the charge holding layer obtained in the first step with toner, and a charge holding of a portion other than the toner image obtained in the second step And a third step of removing the layer.
このような製造方法によれば、 電圧印加露光方式により、 電荷保持媒体の電荷保持層に直接 トナー像を形成するので、 従来の製造方法のように トナー像を転写する必要がなく、 従って解像力の高い画線部を形成するこ とが可能である。  According to such a manufacturing method, the toner image is formed directly on the charge holding layer of the charge holding medium by the voltage application exposure method, so that it is not necessary to transfer the toner image as in the conventional manufacturing method, and therefore, the resolution is low. It is possible to form a high image area.
また、 露光時の感光性は感光体に負担させ、 酎刷性は電 荷保持層に負担させることができるので、 感光性の機能と 耐刷性の機能とを分離させることができ、 これにより、 使 用する材料の選択の幅が広がることになる。  In addition, the photosensitivity at the time of exposure can be borne by the photoreceptor, and the printing ability can be borne by the charge holding layer, so that the photosensitive function and the printing durability function can be separated. However, the range of choice of materials to be used is expanded.
電圧印加露光方式は感度が高く、 感光体の種類を選択す るこ とによってレ一ザ光の波長に分光感度を持たせるこ と が可能であるため、 低エネルギーの露光が可能となり、 レ 一ザ光を使用した走査露光方法が採用できるものである。 また、 同様の理由により、 タ ングステンラ ンプ等の安価な 光源を用いることができるという利点がある。  The voltage application exposure method has high sensitivity, and it is possible to give the spectral sensitivity to the wavelength of the laser light by selecting the type of photoreceptor, so that low-energy exposure becomes possible. A scanning exposure method using the light can be adopted. For the same reason, there is an advantage that an inexpensive light source such as a tungsten lamp can be used.
更に、 投影露光も可能となるため、 小サイ ズの原版を拡 大投影でき、 原版の保管スペースも小さ く なる。  Furthermore, since projection exposure is also possible, a small-sized original can be enlarged and projected, and the storage space of the original can be reduced.
更に、 本発明の電荷保持媒体を用いた集版シ ステムは、 感光体と電荷保持媒体とを対向させて配置し、 且つ前記感 光体と前記電荷保持媒体との問に所定の電圧を印加した状 態で前記感光体側から印刷原稿の画像を所定の倍率および 方向で所定の位置に露光することによって、 前記電荷保持 媒体上に前記印刷原稿の画像の静電潜像を形成し、 前記静 電潜像の電荷を読み取りセンサによって読み取ることを特 徵とする。 Further, in the plate collection system using the charge holding medium of the present invention, the photoreceptor and the charge holding medium are arranged to face each other, and By exposing an image of a printed document to a predetermined position at a predetermined magnification and direction from the photoreceptor side while applying a predetermined voltage between the photoreceptor and the charge holding medium, It is characterized in that an electrostatic latent image of the image of the printed document is formed, and the charge of the electrostatic latent image is read by a reading sensor.
このような集版シ ス テムによれば、 原稿の画像を指定さ れた位置に指定された倍率で、 直接感光体に露光し、 電荷 保持媒体に形成された潜像を読み取るようにするので、 ト リ ミ ングその他の処理は全て電気的に行うこ とができる。 従って、 従来の集版作業のように、 原稿の一つ一つについ てカ ラ ースキ ャナの色分解条件を設定する必要がなく、 ま た、 デュープ組み立てを行う必要もない。 更に、 集版作業 を容易に行う ことが可能となり、 カラースキ ャ ナ及びコ ン ピュー夕の稼働率を向上させることができ、 結果的に印刷 製版の製造工程を効率よ く行う ことが可能となる。  According to such a plate collection system, an image of a document is directly exposed to a photoreceptor at a specified position at a specified magnification, and a latent image formed on a charge holding medium is read. All trimming and other processing can be performed electrically. Therefore, unlike the conventional plate collection work, it is not necessary to set the color separation conditions of the color scanner for each manuscript, and it is not necessary to perform the dupe assembly. Furthermore, the plate collecting work can be easily performed, and the operation rates of the color scanner and the computer can be improved. As a result, the printing plate making process can be efficiently performed. .
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明に係る電荷保持媒体を用いた印刷版の製 造方法の一実施例を示す断面図、  FIG. 1 is a cross-sectional view showing one embodiment of a method of manufacturing a printing plate using a charge holding medium according to the present invention,
第 2図は導電性基板の一構成例を示す断面図、  FIG. 2 is a cross-sectional view showing one configuration example of the conductive substrate,
第 3図は電荷保持媒体による画像記録方法を説明するた めの断面図、  FIG. 3 is a cross-sectional view for explaining an image recording method using a charge holding medium,
第 4図は電荷保持媒体によるカ ラー画像記録方法を説明 するための断面図、  FIG. 4 is a cross-sectional view for explaining a color image recording method using a charge holding medium,
第 5図は電荷保持媒体に記録された静電潜像の読み取り 方法を説明するための図、 Figure 5 shows the reading of an electrostatic latent image recorded on a charge storage medium. Diagram for explaining the method,
第 6図は色分解光学系の構成を示す図、  FIG. 6 is a diagram showing a configuration of a color separation optical system,
第 7図はカ ラー静電潜像の形成を説明するための図、 第 8図は微細カラーフ ィ ルタの例を示す図、  FIG. 7 is a diagram for explaining the formation of a color electrostatic latent image, FIG. 8 is a diagram showing an example of a fine color filter,
第 9図は微細カ ラーフ ィ ルタ と フ レネルレ ン ズを組み合 わせた例を示す図、  Figure 9 shows an example of combining a fine color filter and a Fresnel lens.
第 1 0図は N D フ イ ルク と R ,G ,B フ ィ ルタ の併用によ る 3面分割を示す図、  Fig. 10 is a diagram showing the three-plane division by the combined use of the ND filter and the R, G, and B filters.
第 1 1図は電荷保持媒体を用いた集版システムにおける 原稿画像の露光を説明するための図、  FIG. 11 is a diagram for explaining the exposure of a document image in a plate collection system using a charge holding medium,
第 1 2図は R ,G , Βの静電潜像を別個の電荷保持媒体に 形成する場合の例を示す図、  FIG. 12 is a diagram showing an example in which the electrostatic latent images of R, G, and Β are formed on separate charge holding media.
第 1 3図は R , G , Bの静電潜像を一つの電荷保持媒体に 形成する場合の例を示す図、  FIG. 13 is a diagram showing an example in which the R, G, and B electrostatic latent images are formed on one charge holding medium.
第 1 4図は画像データの処理工程の例を示す図、 第 1 5図は網点処理を説明するための図、  FIG. 14 is a diagram showing an example of an image data processing process, FIG. 15 is a diagram for explaining halftone dot processing,
第 1 6図は網点形成方法を説明するための図、  FIG. 16 is a diagram for explaining a halftone dot forming method,
第 1 7図は従来の印刷版の製造方法の第 1の例を示す断 面図、  FIG. 17 is a sectional view showing a first example of a conventional printing plate manufacturing method,
第 1 8図は従来の印刷版の製造方法の第 2の例を示す断 面図、  FIG. 18 is a cross-sectional view showing a second example of a conventional printing plate manufacturing method.
第 1 9図は従来の印刷版の製造方法の第 3の例を示す断 面図、  FIG. 19 is a sectional view showing a third example of a conventional printing plate manufacturing method.
第 2 0図は従来の印刷版の製造方法の第 4の例を示す断 面図である。 発明を実施するための最良の形態 FIG. 20 is a sectional view showing a fourth example of the conventional printing plate manufacturing method. BEST MODE FOR CARRYING OUT THE INVENTION
まず、 電荷保持媒体を用いた印刷版及びその製造方法に ついて説明する。  First, a printing plate using a charge holding medium and a method for manufacturing the printing plate will be described.
第 1図において、 1 は感光体、 2は電荷保持媒体、 3は 感光体支持体、 4は感光体電極、 5は光導電層、 6は電荷 保持層、 7は導電性基板、 8は電源を示す。  In FIG. 1, 1 is a photoreceptor, 2 is a charge holding medium, 3 is a photoreceptor support, 4 is a photoreceptor electrode, 5 is a photoconductive layer, 6 is a charge holding layer, 7 is a conductive substrate, and 8 is a power supply. Is shown.
本発明に係る電荷保持媒体を用いた印刷版の製造方法は、 電圧印加露光方式による画像記録方法を利用するものであ り、 まず、 電圧印加露光方式によ り電荷保持層 6に静電潜 像を形成させる。 具体的には次のようである。 第 1図( a ) に示すように、 感光体支持体 3上に感光体電極 4および光 導電層 5をこの順序に成膜して形成される感光体 1 の光導 電層 5 と、 導電性基板 7上に電荷保持層 6を成膜して形成 される電荷保持媒体 2の電荷保持層 6とを所定の距離 dを 隔てて対向させて配置し、 次に、 例えば、 第 1図(b )に示 すように、 感光体電極 4をプラス側、 導電性基板 7をマイ ナス側になるように電源 8を接続し、 所定の波長の光 9を 感光体 1側から照射するこ とによ り露光を行う。 暗所であ れば光導電層 5は高抵抗体であるため電極間には何の変化 も生じないが、 感光体 1側から光が入射すると、 光が入射 した部分の光導電層 5は導電性を示し、 その内部で発生し た光キャ リ アは放電により電荷保持層 6上に像電荷として 蓄積される。 このこ とによ り電荷保持媒体 2の電荷保持層 6には、 第 1図(b )に示すように所望の静電潜像を形成す る こ とができ る。 なお、 露光を行うについては、 第 1図( c )に示すように、 感光体支持体 3 と適当な距離を隔てて、 あるいは感光体支 持体 3に密着させて所定のパターンが形成されたフ ィ ルム 10を配置し、 所定の光 11をフ イルム全面に照射するこ とに よりパターン露光を行ってもよいし、 第 1図(d )に示すよ うに、 フ ィルム 10をレーザ光 12により矢印 13で示す方向に 走査するこ とによって露光を行ってもよい。 また、 例えば、 第 1図(d )において、 フ ィ ルム原稿 10を使わずに、 カラー スキャナでメーク ア ッ プされたィ メージデータによ り レー ザ光 12を変調し、 該変調されたレーザ光を照射することに よっても露光を行う ことができることは当然である。 また、 比較的小さいサイ ズの印刷を行ういわゆる軽印刷の場合に は、 電荷保持媒体 2と同じ大きさに形成された感光体 1 を 第 1図(b ) ~ ( d )に示すように電荷保持媒体 2と対向させ て露光を行う ことが可能であるが、 大面積の印刷を行う場 合等、 感光体 1 と電荷保持媒体 2の間隔を所定の値 dに保 持することが困難である場合には、 例えば、 第 1図( e )に 示すように、 感光体 1 を略半円筒状に形成し、 レーザ光源 17による走査 (主走査) を図中 Uで示す直線に沿って 0の 角度の範囲のみ行うようにし、 該感光体 1を図中矢印 15で 示す方向、 あるいはその逆方向に所定の間隔 dを保った状 態で所定の速度で移動させ、 これによつて副走査を行うよ うにすればよい。 The method of manufacturing a printing plate using the charge holding medium according to the present invention utilizes an image recording method by a voltage application exposure method. First, an electrostatic latent image is formed on the charge holding layer 6 by a voltage application exposure method. An image is formed. Specifically, it is as follows. As shown in FIG. 1 (a), a photoconductive layer 5 of a photoconductor 1 formed by forming a photoconductor electrode 4 and a photoconductive layer 5 on a photoconductor support 3 in this order, A charge holding layer 6 of a charge holding medium 2 formed by depositing a charge holding layer 6 on a substrate 7 is arranged facing a charge holding layer 6 at a predetermined distance d. Next, for example, FIG. ), The power supply 8 is connected so that the photoconductor electrode 4 is on the positive side and the conductive substrate 7 is on the negative side, and light 9 of a predetermined wavelength is irradiated from the photoconductor 1 side. Perform more exposure. In a dark place, there is no change between the electrodes because the photoconductive layer 5 is a high resistance material, but when light enters from the photoconductor 1 side, the photoconductive layer 5 in the portion where the light enters is The photocarriers exhibiting conductivity and generated inside are accumulated as image charges on the charge holding layer 6 by discharging. Thus, a desired electrostatic latent image can be formed on the charge holding layer 6 of the charge holding medium 2 as shown in FIG. 1 (b). In the exposure, as shown in FIG. 1 (c), a predetermined pattern was formed at an appropriate distance from the photoconductor support 3 or in close contact with the photoconductor support 3. The pattern exposure may be performed by disposing a film 10 and irradiating a predetermined light 11 onto the entire surface of the film, or as shown in FIG. Exposure may be performed by scanning in the direction indicated by arrow 13 with. Also, for example, in FIG. 1 (d), the laser light 12 is modulated by image data made up by a color scanner without using the film original 10, and the modulated laser It goes without saying that exposure can also be performed by irradiating light. In the case of so-called light printing in which printing is performed in a relatively small size, the photosensitive member 1 formed in the same size as the charge holding medium 2 is charged as shown in FIGS. 1 (b) to (d). Although it is possible to perform exposure while facing the holding medium 2, it is difficult to keep the distance between the photoconductor 1 and the charge holding medium 2 at a predetermined value d, such as when printing a large area. In some cases, for example, as shown in FIG. 1 (e), the photoconductor 1 is formed in a substantially semi-cylindrical shape, and scanning (main scanning) by the laser light source 17 is performed along a straight line indicated by U in the figure. The photosensitive member 1 is moved at a predetermined speed while maintaining a predetermined distance d in a direction indicated by an arrow 15 in the drawing or in a direction opposite to the direction, thereby performing sub-scanning. What is necessary is to do.
以上のようにして電荷保持層 6に所定のパターンの静電 潜像を形成した後、 電荷保持媒体 2を電源 8から切り離し、 電荷保持層 6上に トナーを塗布して現像を行い、 引き続い て加熱して トナーを定着させる。 これにより、 第 1図( f ) に示すように、 電荷保持層 6上に形成された静電潜像は ト ナー像 16として現れることになる。 次に、 トナー 18をマス ク として、 適当な方法により エ ッ チ ン グを行い、 電荷保持 層 6 の トナー 16が付着されていない部分を除去する。 これ により、 第 1図(g )に示すような、 導電性基板 7 の上に、 トナー 16および電荷保持層 6で形成された画線部を有する 印刷版を得る ことができる。 After forming an electrostatic latent image of a predetermined pattern on the charge holding layer 6 as described above, the charge holding medium 2 is disconnected from the power supply 8, The toner is applied to the charge holding layer 6 for development, and subsequently heated to fix the toner. Thereby, as shown in FIG. 1 (f), the electrostatic latent image formed on the charge holding layer 6 appears as a toner image 16. Next, using the toner 18 as a mask, etching is performed by an appropriate method to remove a portion of the charge holding layer 6 where the toner 16 is not attached. As a result, a printing plate having an image portion formed by the toner 16 and the charge retaining layer 6 on the conductive substrate 7 as shown in FIG. 1 (g) can be obtained.
以上が電荷保持媒体を用いた印刷版の製造方法の一実施 例であるが、 次に上記の各材料および製造条件について説 明する。  The above is one embodiment of a method of manufacturing a printing plate using a charge holding medium. Next, each of the above materials and manufacturing conditions will be described.
感光体支持体 3 としては、 例えば、 通常のガラ ス、 石英 ガラ ス、 無アルカ リ ガラ ス、 パイ レ ッ ク スガラ ス (商品名) 等の透明ガラ ス類、 ア ク リ ル、 ポ リ カーボネー ト、 ポ リ エ ス テル、 ポ リ スチ レ ン、 ポ リ エチレ ン、 ポ リ プロ ピレ ン等 の透明熱可塑性樹脂、 エポキシ樹脂、 ポ リ イ ミ ド樹脂等の 透明熱硬化性樹脂等、 光導電層 5に対する活性光を透過す る透明材料が使用できる。 厚さは 10〃 m~10maの範囲にあ ればよ く、 特にガラス類やア ク リ ルおよびポ リ カーボネー ト等の板では 0 ,3πιι!〜 lOmmあればよい。 また、 ポ リ エステル、 ポ リ イ ミ ド等のフ ィ ルム類を支持体とする場合、 支持体の 厚さは 10〜 500 // mの範囲から選択すればよい。  Examples of the photoreceptor support 3 include transparent glass such as ordinary glass, quartz glass, non-alkali glass, and pyrex glass (trade name), acrylic, and polycarbonate. Light, such as transparent thermoplastic resin such as polystyrene, polystyrene, polystyrene, polyethylene, and polypropylene, and transparent thermosetting resin such as epoxy resin and polyimide resin. A transparent material that transmits active light to the conductive layer 5 can be used. The thickness should be in the range of 10〃m to 10ma, especially for glass and plates such as acrylic and polycarbonate. ~ LOmm should be fine. When films such as polyester and polyimide are used as the support, the thickness of the support may be selected from the range of 10 to 500 // m.
形状としては、 平板状の他、 第 1図( e )の 1 のような略 半円筒状でもよい。 その場合の半円の半径は 1〜50MIの範囲 - 1B- から選択すれば良い。 支持体及び光導電性材料層の剛性に よって、 あるいは半円の半径によっても異なるが、 例えば、 厚さが 1 のガラス類、 アク リル、 ポ リ カーボネー ト等の板 のよ う に比較的剛性の高いものの場合は、 あらかじめ所望 の半円筒形状に加工しておく ことが好ましい。 ポ リ エ ステ ル等のフ ィ ルム類の場合には、 円筒状に変形させた状態で 電極および光導電層を形成してもよいし、 平板状あるいは 巻取状で電極および光導電層を形成した後に、 適当な大き さに切り出す等して半円筒状に保持してもよい。 The shape may be a substantially semi-cylindrical shape such as 1 in FIG. 1 (e) in addition to the flat plate shape. The radius of the semicircle in that case is in the range of 1 to 50 MI -You can choose from 1B-. Depends on the rigidity of the support and the photoconductive material layer, or on the radius of the semicircle, but is relatively rigid, such as a plate of glass, acrylic, or polycarbonate with a thickness of 1 In the case of a material having a high semi-cylindrical shape, it is preferable to previously process it into a desired semicylindrical shape. In the case of films such as polyester, the electrodes and the photoconductive layer may be formed in a state of being deformed into a cylindrical shape, or the electrodes and the photoconductive layer may be formed in a flat or wound shape. After forming, it may be held in a semi-cylindrical shape by cutting out to an appropriate size or the like.
特に、 後述する光導電層のうちで、 有機材料を主成分と するものは、 一般に可撓性を有するため、 ポ リ エ ステル等 の可撩性を有する支持体と組み合わせた場合に、 平版状あ るいは卷取状で電極及び光導電層を形成したあとで、 半円 筒状に変形させることが容易である。  In particular, among the photoconductive layers to be described later, those mainly composed of an organic material generally have flexibility. Therefore, when combined with a support such as a polyester, which has a lithographic property, a planographic shape is obtained. After forming the electrode and the photoconductive layer in a wound shape, it is easy to deform into a semi-cylindrical shape.
無機感光体のうち、 アモルフ ァ ス シ リ コ ン感光体、 ァモ ルフ ァ スセレ ン感光体などに代表される感光体はパイ ンダ 一を使わずに C V D法、 真空蒸着法などにより無機材料膜 が形成されることが通常であるが、 これらの場合は光導電 層の可撓性があま り良くないため、 ポリ イ ミ ドフ ィ ルム、 ポ リ ヱステルフ ィ ルムなどの可撓性支持体上に平板状ある いは巻取状で電極及び光導電層を形成したあとで半円筒状 に変形させる場合には、 光導電性層の膜厚を m以下にす ることが好ましい。  Among inorganic photoconductors, photoconductors such as amorphous silicon photoconductors and amorphous silicon photoconductors are made of inorganic material film by CVD or vacuum evaporation without using a binder. Is usually formed, but in these cases, the flexibility of the photoconductive layer is not so good, so that the photoconductive layer may be formed on a flexible support such as a polyimide film or a polyester film. When the electrode and the photoconductive layer are formed into a semi-cylindrical shape after forming the electrode and the photoconductive layer in a flat or wound shape, the thickness of the photoconductive layer is preferably set to m or less.
また、 無機感光体のうち、 硫化カ ド ミ ウ ム、 酸化亜鉛の ような無機粉体を有機バイ ン ダーと混合して、 塗布、 形成 された感光層の場合の可撓性は、 上記した有機感光体とァ モルフ ァ ス シ リ コ ンあるいはアモルフ ァ スセ レ ン感光体と の間の可携性であるため、 特に感光層の膜厚を薄く しな く ても半径 2 m 以上の半円筒形への変形であれば特に実用上 間題な く変形加工可能である。 In addition, of the inorganic photoreceptors, inorganic powders such as cadmium sulfide and zinc oxide are mixed with an organic binder, and coated and formed. The flexibility in the case of the formed photosensitive layer is the portability between the above-described organic photoreceptor and the amorphous silicon or the amorphous selenium photosensitive member. Deformation into a semi-cylindrical shape with a radius of 2 m or more can be performed without any practical problems without reducing the thickness.
感光体電極 4としては、 例えば、 テ ト ラ シ ァ ノ キ ノ ジ メ タ ン、 ポ リ アセチ レ ン等の有機導電膜、 I T0 , Zn O , S n02 等の金属酸化物透明電極、 Au , Pt , Pd 等の金属の薄膜 で形成した透明電極を使用するこ とができる。 厚さは、 1 0 0〜1 00 θ Λ程度、 面抵抗値は 1 0~ 1 000 Ω /口の範囲にあれば よい。 The photosensitive member electrode 4, for example, Te preparative La shea § Bruno onboard di meta emissions, organic conductive films such as Po Li acetylene les down, I T0, Zn O, S n0 2 , etc. of the metal oxide transparent electrode, Transparent electrodes formed of thin films of metals such as Au, Pt, and Pd can be used. The thickness may be about 100 to 100 θ〜, and the sheet resistance may be in the range of 100 to 1000 Ω / port.
形成方法は、 メ ツ キ、 スパ ッ タ、 蒸着、 C V D、 コ ーテ イ ン グ後焼成等常法に従えばよい。 感光体電極は光導電層 5の活性光を透過するものであればよい。  The formation method may be a conventional method such as plating, sputtering, vapor deposition, CVD, and firing after coating. The photoreceptor electrode may be any as long as it can transmit the active light of the photoconductive layer 5.
光導電層 5は、 光が照射されると照射部分で光キ ャ リ ア When the photoconductive layer 5 is irradiated with light, the photoconductive layer 5
(電子、 正孔) が発生し、 それらのキャ リ アが層幅を移動 するこ とができる導電性層であり、 特に電界が存在する場 合にその効果が顕著である層である。 材料は無機光導電材 料、 有機光導電材料、 有機無機複合型光導電材料等で構成 される。 (Electrons, holes) are generated, and their carriers are conductive layers that can move the layer width. Especially when there is an electric field, the effect is remarkable. The material is composed of an inorganic photoconductive material, an organic photoconductive material, an organic-inorganic hybrid type photoconductive material and the like.
以下、 これら光導電材料、 および光導電層の形成方法に ついて説明する。  Hereinafter, the photoconductive material and the method for forming the photoconductive layer will be described.
( A ) 無機感光体 (光導電体)  (A) Inorganic photoconductor (photoconductor)
無機感光体材料としてはア モル フ ァ ス シ リ コ ン、 ァモル フ ァ スセ レ ン、 硫化カ ド ミ ウ ム、 酸化亜鉛等がある。 (ィ ) アモルフ ァ スシ リ コ ン感光体 Inorganic photoreceptor materials include amorphous silicon, amorphous selenium, cadmium sulfide, and zinc oxide. (A) Amorphous silicone photoreceptor
ァモルフ ァ ス シ リ コ ン感光体としては、  As an amorphous silicon photoreceptor,
①氷素化アモルフ ァ ス シ リ コ ン ( a— Si: H)  1) Amorphous silicon (a-Si: H)
②フ ッ素化アモルフ ァ スシ リ コ ン ( a— S F)  ②Fluorinated amorphous silicon (a—SF)
また、 光導電層の電気抵抗をコ ン ト ロールしたり、 分光 感度特性をコ ン ト ロールするために、 炭素 Cや窒素 Nを組 成中に持つ、  In addition, in order to control the electric resistance of the photoconductive layer and to control the spectral sensitivity characteristics, carbon C and nitrogen N are included during formation.
③水素化アモルフ ァ ス炭化シ リ コ ン ( a— S iC: H)  ③ Hydrogenated amorphous silicon carbide (a—SiC: H)
④水素化ァモルフ ァ ス窒化シ リ コ ン (a— SiN : H)  ④Hydrogenated amorphous silicon nitride (a—SiN: H)
· これらに対して不純物を ドー ピングしないもの、  · Do not dope impurities to these,
• B , A 1 , Ga , I n , T 1 等を ドーピングによ り P型 (ホ 一ル輸送型) にしたも の、  • B, A 1, Ga, In, T 1, etc. are made P-type (hole transport type) by doping.
• P , Ag , Sb , B i 等を ドーピングによ り U型 (電子輸 送型) にしたも の、  • Doping of P, Ag, Sb, Bi, etc. into U type (electron transport type),
がある。  There is.
感光体層の形成方法としては、 シランガス、 不純物ガス を水素ガスなどと共に低真空中に導入し (1 0_ 2〜1 T or r)、 グロ一放電により加熱、 或いは加熱しない電極基板上に堆 積して成膜するか、 単に加熱した電極基板上に熱化学的に 反応形成するか、 或いは固体原料を蒸着、 スパッ ター法に よ り成膜し、 単層、 或いは積層で使用する。 膜厚は 1 ~ 50 mである。 As a method for forming the photoconductive layer, silane gas, an impurity gas together such as hydrogen gas was introduced into the low vacuum (1 0_ 2 ~1 T or r ), sedimentary for heating, or heating and no electrode on a substrate by glow one discharge Either a single layer or a stacked layer is formed by depositing a solid raw material by vapor deposition or sputtering, or by simply forming a thermochemical reaction on a heated electrode substrate. The thickness is 1 to 50 m.
また、 感光体電極 4から電荷が注入され、 露光してない のにもかかわらず恰も露光したような帯電を防止するため に、 感光体電極 4の表面に電荷注入防止層を設けることが できる。 こ の電荷注入防止層として、 電極基板上と感光体 最上層 (表面層) の一方或いは両方に、 グロ一放電、 蒸着、 ス パ ヅ ター法等により a-SiN 層、 a-SiC 層、 Si02 層、 Al2 03 層等の絶縁層を設けるとよい。 この絶縁層を余り厚く し すぎると露光したとき電流が流れないので、 少な く とも 1 000 以下とする必要があり、 作製し易さ等を考慮すると 400 ~ 500 A程度が望ましい。 In addition, in order to prevent charge from being injected from the photoreceptor electrode 4 and being exposed as if it were not exposed, a charge injection prevention layer may be provided on the surface of the photoreceptor electrode 4. it can. As the charge injection preventing layer, an a-SiN layer, an a-SiC layer, or a Si0 It is preferable to provide two insulating layers, such as an Al 2 O 3 layer. If this insulating layer is too thick, no current will flow when exposed, so it needs to be at least 1 000 or less, and about 400 to 500 A is desirable in consideration of ease of fabrication.
また、 電荷注入防止層として、 整流効果を利用して電極 基板上に電極基板における極性と逆極性の電荷輸送能を有 する電荷輸送層を設けるとよ く、 電極がマイ ナスの場合は ホール輸送層、 電極がプラ スの場合は電子輸送層を設ける。 例えば、 S iにボロ ンを ドープした a-S H (n+) は、 ホール の輸送特性が上がって整流効果が得られ、 電荷注入防止層 として機能する。 In addition, as a charge injection preventing layer, a charge transport layer having a charge transporting ability of a polarity opposite to the polarity of the electrode substrate may be provided on the electrode substrate by using a rectifying effect, and when the electrode is negative, hole transport is performed. If the layers and electrodes are positive, an electron transport layer is provided. For example, aSH (n + ), in which Si is doped with boron, has an improved hole transporting property and a rectifying effect, and functions as a charge injection preventing layer.
( 口) アモルフ ァ スセ レ ン感光体  (Mouth) Amorphous photoreceptor
ァモルフ 7 スセ レ ン感光体としては、 As amorph 7 selenium photoreceptor,
①アモルフ ァ スセ レ ン (a-Se )  ① Amorphous selen (a-Se)
②アモルフ ァ スセ レ ン テルル (a-Se-Te)  ②Amorphous selentellurium (a-Se-Te)
③ァモルフ ァ スひ素セ レ ン化合物 (a-As2Se3) ③Amorphous arsenic selenium compound (a-As 2 Se 3 )
④アモルフ ァ スひ素セ レ ン化合物 + Te モ ル Amorphous arsenic selenium compound + Te
がある。 There is.
こ の感光体は蒸着、 スパッ ター法によ り作製し、 また電 荷注入阻止層として Si02 , A 1203 , SiC , SiN 層を蒸着、 スパッ ター、 グロ一放電法等により電極基板上に設けられ る。 また上記①〜④を組み合わせ、 積層型感光体としても よい。 感光体層の膜厚はアモルフ ァ スシ リ コ ン感光体と同 様であ -© 0 Photoreceptor This deposition, to prepare Ri by the sputter coater method, also Si0 2, A 1 2 0 3 , SiC as electrostatic charge injection blocking layer, depositing a SiN layer, the electrode substrate by sputtering coater, glow one discharge method Provided above. Combining the above ① to ④ to form a stacked photoreceptor Good. The thickness of the photoconductor layer is the same as that of the amorphous silicon photoconductor-© 0
(ハ) 硫化カ ド ミ ウ ム (CdS )  (C) Cadmium sulfide (CdS)
こ の感光体は、 コ ーテ ィ ン グ、 蒸着、 スパ ッ タ リ ン グ法 により作製する。 蒸着の場合は Cd Sの固体粒をタングステン ボー ドにのせ、 抵抗加熱によ り蒸着するか、 EB (エレク ト ロ ン ビーム) 蒸着によ り行う。 またスパ ッ タ リ ン グの場合 は Cd Sターゲッ トを用いてアルゴンプラズマ中で基板上に堆 積させる。 この場合、 通常はアモルフ ァ ス状態で CdSが堆積 されるが、 スパッ タ リ ング条件を選択するこ とによ り結晶 性の配向膜 (膜厚方向に配向) を得ることもできる。 コ ー テ ィ ン グの場合は、 Cd S 粒子 (粒径 m ) をパイ ン ダ一中に分散させ、 溶媒を添加して基板上にコーティ ング するとよい。  This photoreceptor is manufactured by a coating, vapor deposition, or sputtering method. In the case of vapor deposition, solid particles of CdS are placed on a tungsten board, and vapor deposition is performed by resistance heating or EB (electron beam) vapor deposition. In the case of sputtering, a CdS target is deposited on the substrate in an argon plasma. In this case, CdS is usually deposited in an amorphous state, but a crystalline alignment film (oriented in the film thickness direction) can be obtained by selecting sputtering conditions. In the case of coating, CdS particles (particle diameter m) may be dispersed in a binder, and a solvent may be added to coat on the substrate.
この場合に、 ノ イ ン ダ一と してシ リ コ ーン樹脂、 スチ レ ン — ブタ ジ エ ン共重合対樹脂、 エ ポキシ樹脂、 ア ク リ ル樹 脂、 飽和又は不飽和ポ リ エ ステル樹脂、 ポ リ カーボネー ト 樹脂、 ポ リ ビュルァセタール樹脂、 フ X ノ ール樹脂、 ポ リ メ チル メ タ ァ ク リ レー ト ( P M M A ) 樹脂、 メ ラ ミ ン樹脂、 ポ リ イ ミ ド樹脂等を使用すれば良い。  In this case, silicone resin, styrene-butadiene copolymerized resin, epoxy resin, acryl resin, saturated or unsaturated poly- ol may be used as the binder. Steal resin, polycarbonate resin, polybutylacetal resin, X-nor resin, polymethylmethacrylate (PMMA) resin, melamine resin, polyimide resin, etc. Should be used.
CdSの添加量は重量比で、 バイ ン ダー: CdS = l : 3 - 1: 1 0とすれば良い。  The amount of CdS to be added is a weight ratio, and the binder: CdS = l: 3-1: 1: 10 may be used.
半円筒状基板へのコーテ ィ ン グは、 ディ ップコー ト、 か け流し等の方法が適用できるほか、 半円筒と適当なギヤ ッ プを有するブレー ドを用いたブレー ド コ ーテ ィ ン グを行つ ても よい。 For coating on a semi-cylindrical substrate, a method such as dip coating or casting can be applied, and blade coating using a blade having a semi-cylindrical shape and an appropriate gap can be applied. Go You may.
膜厚は 3~100 W mの範囲であれば良い。  The film thickness may be in the range of 3 to 100 Wm.
(二) 酸化亜鉛 (ΖηΟ)  (2) Zinc oxide ({η})
こ の感光体はコーテ ィ ン グ法、 或いは C V D法で作製さ れる。 コーテ ィ ン グ法としては、 ΖηΟ 粒子 (粒径 0.1〜ljtz m) をバイ ンダー中に分散させ、 溶媒を添加して基板上に コ ーテ ィ ン グを行って得られる。  This photoreceptor is manufactured by a coating method or a CVD method. The coating method is obtained by dispersing {η} particles (particle size: 0.1 to ljtzm) in a binder, adding a solvent, and coating the substrate.
この場合に、 パイ ンダ一としてシ リ コ ーン樹脂、 スチ レ ン ー ブタ ジ エ ン共重合対樹脂、 エ ポキシ樹脂、 ア ク リ ル樹 脂、 飽和又は不飽和ポ リ エステル樹脂、 ポ リ カーボネー ト 樹脂、 ポ リ ビュルァセ タール樹脂、 フヱ ノ ール樹脂、 PM MA樹脂、 メ ラ ミ ン樹脂、 ポ リ イ ミ ド樹脂等を使用すれば 良い。  In this case, as binders, silicone resin, styrene-butadiene copolymer resin, epoxy resin, acryl resin, saturated or unsaturated polyester resin, poly A carbonate resin, a polyacetal resin, a phenol resin, a PMMA resin, a melamine resin, a polyimide resin, or the like may be used.
ZnOの添加量は重量比で、 パイ ンダー: Ζη0 = 1 : 3—1: 1 0とすれば良い。  The amount of ZnO to be added is a weight ratio, and the binder: η0 = 1: 3—1: 1: 10 may be used.
また、 膜厚は 3~100/z mの範囲であれば良い。  Further, the film thickness may be in the range of 3 to 100 / zm.
半円筒状基板へのコーティ ング方法については、 硫化力 ド ミ ゥムと同様に行えばよい。 また C V D法としては、 ジ ェ チル亜鉛、 ジメ チル亜鉛等の有機金属と酸素ガスを低真 空中 (10_2~1 Torr) で混合し、 加熱した電極基板 (150The coating method on the semi-cylindrical substrate may be performed in the same manner as in the case of the sulfur doping. The CVD method also, di- E chill zinc, an organic metal and oxygen gas, such as dimethyl chill zinc mixed with low-true air (10_ 2 ~ 1 Torr), heated electrode substrate (150
〜 400 °C) 上で化学反応させ、 酸化亜鉛膜として堆積させ る。 この場合も膜厚方向に配向した膜が得られる。 (~ 400 ° C) and deposit as zinc oxide film. Also in this case, a film oriented in the film thickness direction can be obtained.
( B ) 有機感光体  (B) Organic photoreceptor
有機感光体としては、 単層系感光体、 機能分離型感光体 とがある。 (ィ) 単層系感光体 Organic photoconductors include single-layer photoconductors and function-separated photoconductors. (B) Single-layer photoreceptor
単層系感光体は電荷発生物質と電荷輪送物質の混合物か らなっている。  Single-layer photoreceptors consist of a mixture of a charge generating material and a charge transport material.
く電荷発生物質系〉 Charge generating substance system>
光を吸収して電荷を生じ易い物質であり、 例えば、 ァゾ 系顔料、 ジ スァゾ系顔料、 ト リ スァゾ系顔料、 フ タ ロ シ ア ニ ン系顔料、 ペ リ レ ン系顔料、 ピ リ リ ウ ム染料系、 シァ二 . ン染料系、 メ チン染料系が使用される。  It is a substance that absorbs light and easily generates electric charge. Examples of such materials include azo pigments, disazo pigments, trisazo pigments, phthalocyanine pigments, perylene pigments, and pyridine pigments. Lime dyes, cyanine dyes, and methine dyes are used.
く電荷輸送物質系〉  Charge transport material system>
電離した電荷の輪送特性がよい物質であり、 例えばヒ ド ラ ゾン系、 ビラゾリ ン系、 ポ リ ビュル力ルパゾール系、 力 ルバゾール系、 スチルベン系、 ア ン ト ラ セン系、 ナフ タ レ ン系、 ト リ ジフ ユ -ルメタ ン系、 アジン系、 ア ミ ン系、 芳 香族ァ ミ ン系等がある。  It is a substance that has good transport properties of ionized electric charges, such as hydrazone, virazoline, polybulphyrazole, tylazole, stilbene, anthracene, and naphthalene , Trifluoromethane, azine, amine, and aromatic amines.
また、 電荷発生系物質と電荷輪送系物質により錯体を形 成させ、 電荷移動錯体としてもよい。  Alternatively, a charge transfer complex may be formed by forming a complex with a charge generation material and a charge transport material.
通常、 感光体は電荷発生物質の光吸収特性で決まる感光 特性を有するが、 電荷発生物質と電荷輪送物質とを混ぜて 錯体をつく ると、 光吸収特性が変わり、 例えばポ リ ビュル カルパゾール (PVK) は紫外域でしか感ぜず、 ト リ ニ ト ロフ ルォレ ノ ン (TNF ) は 400 n m波長近傍しか感じないが、 P VK- TNF錯体は 650 n m波長域まで感じるようになる。  Normally, photoconductors have photosensitivity determined by the light absorption properties of the charge-generating substance. However, when the charge-generating substance is mixed with the charge transport substance to form a complex, the light-absorption properties change, for example, polycarbazole ( (PVK) only feels in the ultraviolet region, and Trinitrofluorenone (TNF) only feels near the 400 nm wavelength, while the PVK-TNF complex feels up to the 650 nm wavelength range.
このような単層系感光体の膜厚は、 1 0〜5 0 // mが好まし い。  The thickness of such a single-layer type photoreceptor is preferably from 10 to 50 // m.
(口) 機能分離型感光体 電荷発生物質は光を吸収し易いが、 光を ト ラ ッ プする性 質があり、 電荷輸送物質は電荷の輸送特性はよいが、 光吸 収特性はよ く ない。 そのため両者を分離し、 それぞれの特 性を十分に発揮させようとするも のであり、 電荷発生層と 電荷輸送層を積層したタイ プである。 (Mouth) Photoreceptor with separate function The charge-generating substance easily absorbs light, but has a property of trapping light. The charge-transporting substance has good charge-transporting properties, but not good light-absorbing properties. For this reason, they are separated from each other, and the characteristics of each are fully exploited. This is a type in which a charge generation layer and a charge transport layer are stacked.
く電荷発生層〉  Charge generation layer>
電荷発生層を形成する物質としては、 例えばァゾ系、 ジ スァゾ系、 ト リ スァゾ系、 フ タ ロ シアニ ン系、 酸性ザン セ ン染料系、 シ ァニ ン系、 スチ リ ル色素系、 ピ リ リ ウ ム色素 系、 ペ リ レ ン系、 メ チ ン系、 a-Se 、 a- Si 、 ァ ズレニ ウ ム 塩系、 ス ク ァ リ ウム塩系等がある。  Examples of the substance that forms the charge generation layer include azo-based, disazo-based, trisazo-based, phthalocyanine-based, acidic xanthane dye-based, cyanine-based, styrene-based dyes, and the like. There are a pyrium dye type, a perylene type, a methine type, a-Se, a-Si, an azulhenium salt type and a squarium salt type.
く電荷輸送層 >  Charge transport layer>
電荷輸送層を形成する物質としては、 例えばヒ ド ラ ゾン 系、 ピ ラ ゾ リ ン系、 P VK系、 カルパゾール系、 ォキサゾール 系、 ト リ ァゾール系、 芳香族ァ ミ ン系、 ア ミ ン系、 ト リ フ ニル メ タ ン系、 多環芳香族化合物系等がある。  Examples of the substance forming the charge transport layer include hydrazone-based, pyrazoline-based, PVK-based, carbazole-based, oxazole-based, triazole-based, aromatic amine-based, and amine-based substances. , Triphenyl methane, and polycyclic aromatic compounds.
機能分離型感光体の作製方法としては、 まず電荷発生物 質を溶剤と共にバイ ンダー中に分散または溶解して、 回転 塗布、 ローノレコ ーテ ィ ング、 ワ イ ヤーノ ーコ ーテ ィ ン グ、 ブレー ド コ ーテ ィ ン グ、 スプレ イ コ ーテ ィ ン グ、 デ ィ ッ プ コーテ ィ ン グ等により電極上に塗布し、 次に電荷輸送層を 溶剤と共にパイ ン ダ一中に溶かして同様に電荷発生層上に 塗布し、 電荷発生層を 0 . 1 〜 5 jtz m、 電荷輸送層を 2〜 5 0 〃 mの膜厚とするとよい。  As a method for producing a function-separated type photoreceptor, first, a charge generating substance is dispersed or dissolved in a binder together with a solvent, and then spin-coated, rono-recording, wireless coating, and brazing. Apply it on the electrode by do coating, spray coating, dip coating, etc., and then dissolve the charge transport layer together with the solvent in the binder. It is preferred that the charge generation layer is applied to a thickness of 0.1 to 5 jtzm and the charge transport layer is applied to a thickness of 2 to 50 μm.
なお、 単層系感光体、 機能分離型感光体の何れの場合に も、 パイ ンダ一としてシ リ コ ーン樹脂、 スチレ ン一ブタジ ェ ン共重合体樹脂、 エ ポキシ樹脂、 アク リ ル樹脂、 飽和又 は不飽和ポ リ エ ス テル樹脂、 ポ リ カーボネー ト樹脂、 ポ リ ビニルァセ タ ール樹脂、 フ ヱ ノ ール樹脂、 ポ リ メ チル メ タ ァ ク リ レー ト (PMMA) 樹脂、 メ ラ ミ ン樹脂、 ポ リ イ ミ ド樹 脂等を電荷発生材料と電荷輸送材料各 1部に対し、 Q . l ~ 10 部添加して付着し易いようにする。 コ ーテ ィ ング法と しては、 前記したウ エ ッ ト コ ーテ ィ ングの他に、 蒸着法、 スパッ ター法、 C V D法等の ドライ コーテ ィ ング法も使用 するこ とができる。 In the case of a single-layer type photoreceptor or a function-separated type photoreceptor, The binders are silicone resin, styrene-butadiene copolymer resin, epoxy resin, acrylic resin, saturated or unsaturated polyester resin, and polycarbonate resin. , Polyvinyl acetate resin, phenol resin, polymethylmethacrylate (PMMA) resin, melamine resin, polyimide resin, etc. And 10 parts of Q.l to 10 parts of each charge transport material to facilitate adhesion. As the coating method, in addition to the above-described wet coating, a dry coating method such as an evaporation method, a sputtering method, and a CVD method can be used.
機能分離型感光体の場合、 電荷保持層と電荷輸送層の積 層順序は、 どちらを先に透明電極上に積層してもかまわな い。 しかし、 露光を電極側から行うので、 露光を行う活性 光に対して透明性の低い電荷輪送層を用いる場合には、 電 極側に先に電荷発生層を設けるこ とが好ましい。  In the case of the function-separated type photoreceptor, the charge retaining layer and the charge transport layer may be stacked in any order on the transparent electrode. However, since exposure is performed from the electrode side, when a charge transport layer having low transparency to active light for exposure is used, it is preferable to first provide a charge generation layer on the electrode side.
次ぎに、 電荷注入防止層について詳述する。  Next, the charge injection preventing layer will be described in detail.
電荷注入防止層は、 光導電層 5の両表面の少なく とも一 方か、 両方の面に、 光導電層 5の電圧印加時の暗電流 (電 極からの電荷注入)、 すなわち露光していないにもかかわ らず恰も露光したように感光層中を電荷が移動する現象を 防止するために設けることができるものである。  The charge injection prevention layer is not exposed to at least one or both surfaces of the photoconductive layer 5, that is, dark current (charge injection from the electrode) when a voltage is applied to the photoconductive layer 5, that is, not exposed. Nevertheless, it can be provided to prevent a phenomenon in which charges move in the photosensitive layer as if exposed.
こ の電荷注入防止層は、 絶縁性薄膜を利用した層と整流 効果を利用した層との二種類のも のがある。 まず、 絶縁性 薄膜を利用したものは、 電圧印加のみではこ の電荷注入防 止層により、 光導電層、 あるいは樹脂層表面まで電流が流 れないが、 光を入射した場合には、 入射部分に相当する電 荷注入防止層には光導電層で発生した電荷の一方 (電子、 またはホール) が存在するため高電界が加わり、 電荷注入 防止層を通過して電流が流れるものである。 こ のよ う な電 荷注入防止層は無機絶縁性膜、 有機絶縁性高分子膜、 絶縁 性単分子膜等の単層、 あるいはこれらを積層して形成され、 無機絶縁性膜としては、 例えば As203 , B203 , Bi203 , CdS , CaO , Ce02 , Cr203 , CoO , Ge02 , Hf 02 , Fe203 , Las 03 , HgO , Mn02 , Nd203 , Nb206 , PbO , Sb203 , Si02 , Se02 , Ta205 , Ti02 , W03 , V205 , Y205 , Y 203 , Zr02 , BaTi03 , Al203 , Bi2Ti06 , CaO-SrO , Ca O-Y2 O3 , Cr-SiO , LiTaOa , PbTi03 , PbZr03 , Zr02 -CoThis charge injection prevention layer has two types, a layer using an insulating thin film and a layer using a rectifying effect. First, in the case of using an insulating thin film, current flows to the photoconductive layer or the resin layer surface by the charge injection prevention layer only by applying voltage. However, when light is incident, a high electric field is applied to the charge injection prevention layer corresponding to the incident part because one of the charges (electrons or holes) generated in the photoconductive layer is present, and charge injection occurs. The current flows through the prevention layer. Such a charge injection prevention layer is formed of a single layer such as an inorganic insulating film, an organic insulating polymer film, an insulating monomolecular film, or the like, or is formed by laminating them. As 2 0 3, B 2 0 3, Bi 2 0 3, CdS, CaO, Ce0 2, Cr 2 0 3, CoO, Ge0 2, Hf 0 2, Fe 2 0 3, La s 0 3, HgO, Mn0 2 , Nd 2 0 3, Nb 2 0 6, PbO, Sb 2 0 3, Si0 2, Se0 2, Ta 2 0 5, Ti0 2, W0 3, V 2 0 5, Y 2 0 5, Y 20 3, Zr0 2, BaTi0 3, Al 2 0 3, Bi 2 Ti0 6, CaO-SrO, Ca O-Y2 O3, Cr-SiO, LiTaOa, PbTi0 3, PbZr0 3, Zr0 2 -Co
, Zr02-Si02 , A1N , BN , NbN , SiaN^ , TaN , TiN , VN , ZrN , SiC , TiC , ffC , AI4C3 等をグロ一放電、 蒸 着、 スパッ タ リ ン グ等により形成される。 尚、 こ の層の膜 厚は電荷の注入を防止する絶縁性を考慮して、 使用される 材質ごとに決められるが、 通常 0.01~10 m、 好まし く は 0.05〜l/z mの範囲から選択される。 , Zr0 2 -Si0 2, A1N, BN, NbN, SiaN ^, TaN, is formed TiN, VN, ZrN, SiC, TiC, ffC, AI4C3 like glow one discharge, vapor deposition, the spatter Li in g etc. . The thickness of this layer is determined depending on the material to be used in consideration of the insulating property for preventing charge injection, but is usually in the range of 0.01 to 10 m, preferably 0.05 to l / zm. Selected.
次ぎに整流効果を利用した電荷注入防止層は、 整流効果 を利用して電極基板の極性と逆極性の電荷輸送能を有する 電荷輸送層を設ける。 即ち、 このような電荷注入防止層は 無機光導電層、 有機光導電層、 有機無機複合型光導電層で 形成され、 その膜厚は 0.01 ~ 10 /z m程度である。 具体 的には、 電極がマイナスの場合は、 B , A1 , Ga , In 等を ド ープしたア モル フ ァ ス シ リ コ ン光導電犀、 アモル フ ァ ス セ レ ン、 またはォキサジァゾ一ル、 ピラゾリ ン、 ポ リ ビニ ル カルノ ゾ一ノレ、 ス チルベ ン、 ア ン ト ラ セ ン、 ナ フ タ レ ン、 ト リ ジ フ ヱ ニル メ タ ン、 ト リ フ エ ニル メ タ ン、 ァ ジ ン、 ァ ミ ン、 芳香族ア ミ ン等を樹脂中に分散して形成した有機光 導電層、 電極がプラ スの場合は、 P , N , As , Sb , B i 等 を ドープしたアモル フ ァ ス シ リ コ ン光導電層、 ZnO 光導電 層等をグロ一放電、 蒸着、 スパッ タ リ ング、 C V D、 コー テ ィ ング等の方法により形成される。 Next, the charge injection preventing layer utilizing the rectifying effect is provided with a charge transporting layer having a charge transporting ability having a polarity opposite to the polarity of the electrode substrate utilizing the rectifying effect. That is, such a charge injection preventing layer is formed of an inorganic photoconductive layer, an organic photoconductive layer, and an organic-inorganic hybrid photoconductive layer, and has a thickness of about 0.01 to 10 / zm. More specifically, when the electrode is negative, amorphous silicon photoconductive rhinoceros with amorphous B, A1, Ga, In, etc., or amorphous Selenium, or oxaziazol, pyrazoline, polyvinyl carnosol, stilbene, anthracene, naphthalen, triphenylmethane, triphenyl Organic photoconductive layer formed by dispersing phenylmethane, azine, amine, aromatic amine, etc. in resin, and P, N, As, Sb when the electrode is positive An amorphous silicon photoconductive layer, a ZnO photoconductive layer, and the like doped with Si, Bi, etc. are formed by a method such as glow discharge, vapor deposition, sputtering, CVD, and coating.
距離 dは、 通常 1 0 jw m程度となされるが、 d = 0 即ち 光導電層 5 と電荷保持層 6 とを密着させてもよいものであ る。  The distance d is usually about 10 jwm, but d = 0, that is, the photoconductive layer 5 and the charge holding layer 6 may be in close contact.
導電性基板 7は、 電圧印加露光時には電極として機能す る必要があり、 更に、 平版印刷版として使用されるも ので あるから少な く とも表面が親水性を有する必要があるから、 0 . 3 mm 程度の厚さの砂目立てされたア ル ミ ニ ウ ム板を使用 するこ とができる。 このように導電性基板 7 として直接砂 目立てされたアル ミ ニ ウ ム板を使用することは、 特に大面 積の印刷に有利であるが、 葉書印刷程度の面積の小さい印 刷の場合には、 例えば、 第 2図に示すように、 ガ ラ ス等の 絶縁性基板 1 8に蒸着等によりアル ミ ニ ウ ム層 13を 1 000 A 〜l mの厚さに成膜したものを使用してもよいものである < アル ミ 二ゥ ム の他に亜鉛を使用することもできる。  The conductive substrate 7 needs to function as an electrode during voltage application exposure, and since it is used as a lithographic printing plate, at least the surface must have a hydrophilic property, so that it is 0.3 mm. A grained aluminum plate of moderate thickness can be used. The use of a directly grained aluminum plate as the conductive substrate 7 is particularly advantageous for large-area printing, but in the case of printing having a small area such as a postcard printing. For example, as shown in FIG. 2, an aluminum substrate 13 having a thickness of 1,000 A to lm is formed on an insulating substrate 18 such as a glass by vapor deposition or the like. Zinc can be used in addition to aluminum.
電荷保持層 6の要件としては、 帯電保持性を有するこ と は勿論、 適当なエ ッ チングにより除去可能であり、 且つ印 刷版の画線部を形成するものであるから親油性を有し、 更 に耐刷性、 即ち機械的強度を有するものである必要があり、 例えば、 次のような材料を使用することができる。 なお、 厚みは 2 ~ 1 0 t m程度でよい。 The requirement for the charge retention layer 6 is that the charge retention layer 6 has not only charge retention properties, but also can be removed by appropriate etching, and has lipophilicity because it forms the image area of the printing plate. , Update In addition, the material must have printing durability, that is, have mechanical strength. For example, the following materials can be used. The thickness may be about 2 to 10 tm.
電荷保持層 6は、 その表面、 もし く はその内部に情報を 静電荷の分布として記録するものであるから、 電荷の移動 を抑えるため高絶縁性が必要であり、 比抵抗で 1 0 1 4 Ω ' cm 以上の絶縁性を有することが要求される。 このよ うな電荷 保持層 6は、 樹脂、 ゴム類を溶剤に溶解させ、 コ ーテ ィ ン グ、 デイ ツ ビ ン グするか、 または蒸着、 スパ ッ タ リ ン グ法 により層形成させるこ とができる。 Since the charge retention layer 6 records information on the surface or inside thereof as a distribution of static charges, it needs to have high insulation properties to suppress the movement of charges, and the specific resistance is 10 14 It is required to have an insulating property of Ω'cm or more. Such a charge retaining layer 6 may be formed by dissolving a resin or rubber in a solvent and coating or dating, or by vapor deposition or sputtering. Can be.
こ こ で、 上記樹脂、 ゴム としては、 例えば、 ポ リ エチ レ ン、 ポ リ プロ ピレ ン、 ビュル樹脂、 スチロース樹脂、 ァ ク リ ル樹脂、 ナイ ロ ン 6 6、 ナイ ロ ン 6、 ポ リ カーボネー ト、 ァセ タ ールホ モポ リ マー、 弗素樹脂、 セルロ ース樹脂、 フ ノ ール樹脂、 ユ リ ア樹脂、 ポ リ エステル樹脂、 ヱポキ シ 樹脂、 可携性エポ キ シ樹脂、 メ ラ ミ ン樹脂、 シ リ コ ン樹脂、 フ エ ノ ォキシ樹脂、 芳香族ポ リ イ ミ ド、 P P 0、 ポ リ スル ホ ン等、 また ポ リ イ ソ プレ ン、 ポ リ ブタ ジ エ ン、 ポ リ ク ロ 口 プレ ン、 イ ソ プチレ ン、 極高- ト リ ル、 ポ リ ア ク リ ル ゴ ム、 ク ロ ロ スルホ ンィ匕ポ リ エチレ ン、 エ チレ ン · プロ ピ レ ン ラ パー、 弗素ゴム、 シ リ コ ン ラ パー、 多硫化系合成ゴム、 ウ レ タ ン ゴム等のゴム の単体、 あるいは混合物が使用され る。  Here, as the above resin and rubber, for example, polyethylene, polypropylene, bur resin, styrene resin, acrylic resin, nylon 66, nylon 6, poly Carbonate, acetate resin, fluorine resin, cellulose resin, phenol resin, urine resin, polyester resin, epoxy resin, portable epoxy resin, Min resin, silicone resin, phenoxy resin, aromatic polyamide, PP0, polysulfone, etc., as well as polyisoprene, polybutadiene, and polybutadiene. Recycling plane, isobutylene, extra-high trill, polyacrylic rubber, chlorosulfonidai polyethylene, ethylene propylene wrapper, Fluoro rubber, silicon wrapper, polysulfide synthetic rubber, c A simple substance or a mixture of rubber such as tan rubber is used.
その他に、 電荷保持層 6の材料としては、 酢酸セルロ ー ス コ ハ ク酸半エ ス テル と ポ リ ビュル ピ リ ジ ン (溶出液とし ては希アルカ リ水溶液が使用可能、 以下、 括弧内は溶出液 を示す) 、 部分ゲ ン化ポ リ酢酸ビニル (水)、 部分ゲ ン化 ポ リ酢酸ビュルエチレ ンォキシ ド付加体とポ リ ビニル ピ ロ リ ド ン (水) 、 ポ リ ウ レ タ ン ポ リ ェ ン (希アルカ リ水溶液) 、 ポ リ エチレ ング リ コール · ア ジ ピン酸 * フ マル酸重縮合 体のよ うな nが 6以上のポ リ エチレ ングリ コ ールを用いた 不飽和ポ リ エ ステルおよび ト ルエ ンジイ ソ シアナ一ト ゃ フ ェニレ ン ジィ ソ シアナー トのよ うなジ ソ シアナ一ト改良不 飽和ポ リ エス テル (希アルカ リ水溶液)、 ε—力プロ ラ ク タ ム一へキサ メ チレ ン ジァ ミ ン · ア ジ ピ ン酸塩の重縮合体 のようなアルコ ール溶性ポ リ ア ミ ド (アルコ ール) 、 ε— 力プロ ラ ク タ ム一 Ν , Ν ' —ビス ( ーァ ミ ノ プロ ピル) ピ ペラジ ン · ァジ ピン酸の重縮合体のようなカチォン型水溶 性ポ リ ア ミ ド (水) 、 ポ リ ア ミ ド一へキサ メ チレ ン ジア ミ ン * テ レ フ タ ル酸塩とイ ソ フ タ ル酸スルホ ン酸ナ ト リ ウ ム の重縮合体のようなァニオ ン型水溶性ポ リ ア ミ ド (水)、 ポ リ ア ミ ド に ポ リ エチレ ン グ リ コ ール、 ア ジ ピン酸を、 次 いでグ リ シ ジル メ タ ク リ レー トを反応させた末端に二重結 合を持つ重縮合体のようなポ リ エーテルエステルア ミ ド ( 水) 、 スチレ ン一イ ソ プレ ン一スチレ ンブロ ッ ク ポ リ マー、 スチレ ン一ブタ ジ エ ン一スチレ ンブロ ッ ク ポ リ マー、 ニ ト リ ルゴム、 syn— 1,2— ポ リ ブタ ジ ェ ン等の熱可塑性ヱ ラ ス ト マ一 (ハロ ゲン化炭化水素)、 ア ク リ ロ ニ ト リ ルー ブタ ジ ェ ン ーァ ク リ ル酸ブロ ッ ク ポ リ マーのよ う な三元ブロ ッ ク ポ リ マー (炭酸ナ ト リ ウ ム水溶液) 、 スチ レ ン一イ ソ プ レ ン一スチレ ンブロ ッ クポ リ マーのようなブロ ッ クポ リ マ 一 (ハロゲン化炭化水素)、 旭ガラス㈱製溶剤可溶性フ ッ 素榭脂 (商品名: サイ ト ップ) (専用溶媒)、 ポ リ カーボ ネー ト樹脂 (1-1-2 ト リ ク ロ ロェ タ ン) 、 シ リ コ ー ン ワ ニス, 例えば東芝シ リ コ ーン㈱製 TSR 144 (キ シ レ ン) 等が使用 可能である。 溶出後に、 耐刷性を向上させるために、 さ ら に 150°C30分程度のベ一キングを行っても良い。 In addition, as materials for the charge retention layer 6, cellulose acetate succinic acid semi-ester and polyvinylpyrridine (used as eluent) Dilute aqueous alkali solution can be used, hereinafter, the parentheses indicate the eluate), partially genated polyvinyl acetate (water), partially genated polyvinyl acetate adduct and polyvinyl alcohol N is 6 or more such as poly (ethylene glycol) / adipic acid / fumaric acid polycondensate, poly (ethylene glycol) / polyurethane tampon (dilute aqueous alkali solution) Unsaturated polyesters such as polystyrene and polyester modified with polyethylene glycol, such as phenylenediocyanate and phenylenediocyanate. Aqueous alcoholic solution), alcohol-soluble polyamides (alcohols), such as polycondensates of ε-capillary hexamethylenediamine / adipinate ), Ε—force pro- gram Ν, Ν '—Cathion-type water-soluble polyamide (water), such as polycondensate of bis (-aminopropyl) piperazine and adipic acid, and polyamide-methylene Diamin * Water-soluble anion-type polyamides (water), such as polycondensates of terephthalate and sodium isophthalate sulfonate, water Polyethylene glycol and adipic acid are reacted with a medium, followed by glycidyl methacrylate. Polyether amide (water), styrene-isoprene-styrene block polymer, styrene-butadiene-styrene block polymer, nitrile rubber, syn-1 , 2-—Polybutadiene and other thermoplastic polymers (halogenated hydrocarbons) Ternary block polymer (aqueous sodium carbonate solution), such as crylonitrile butadiene acrylate block polymer, polystyrene Sop Block polymers such as styrene block polymers (halogenated hydrocarbons), Asahi Glass Co., Ltd. solvent-soluble fluorine resin (trade name: CYTOP) (special solvent), Polycarbonate resin (1-1-2 trichlorethane), silicone varnish such as TSR144 (Xylene) manufactured by Toshiba Silicone Corp. can be used. It is. After elution, baking at 150 ° C. for about 30 minutes may be performed to improve the printing durability.
電源 8の電圧は直流 500 1500 ボル ト であればよ く、 例えば、 第 1図のように電極 4にプラスの電圧を印加すれ ば電荷保持層にはプラ スの電荷パターンが形成され、 マイ ナスに帯電した トナー粒子で現像できる。  The voltage of the power supply 8 only needs to be DC 1500 1500 volts. For example, if a positive voltage is applied to the electrode 4 as shown in FIG. 1, a positive charge pattern is formed on the charge holding layer, and It can be developed with charged toner particles.
露光光源としてはレーザ光、 紫外線を使用することがで き る。 タ ン グステ ン ラ ンプ、 ハロゲン ラ ン プ等の可視光線 でもよい。 例えば、 5000 Aの厚さの a-SeTe電荷発生層の上 に 30 mの a-Seを積層した a-Se系感光体を使用する場合、 色温度約 4000 。 Kの タ ン グステ ン ラ ン プの光を約 50 ル ク ス、 0.1 秒間露光すればよい。  Laser light and ultraviolet light can be used as the exposure light source. Visible light such as a tungsten lamp or a halogen lamp may be used. For example, when using an a-Se photoreceptor in which 30 m of a-Se is laminated on an a-SeTe charge generation layer with a thickness of 5000 A, the color temperature is about 4000. It is sufficient to expose the light of the K tungsten lamp to about 50 lux for 0.1 second.
ト ナーは乾式 トナーおよび湿式 トナーのいずれでも使用 可能であるが、 乾式 トナーは粒径が 10 〜 30 /z m程度と 比較的大き く、 解像力の点で劣るが、 湿式 トナーは粒径が 0.1 〜 3 m程度と小さ く十分な解像力を得ることがで The toner can be used with either a dry toner or a wet toner, but the dry toner has a relatively large particle size of about 10 to 30 / zm and is inferior in resolution, but the wet toner has a particle size of 0.1 to As small as about 3 m, it is possible to obtain sufficient resolution.
5 る 5
トナーを定着させる場合の温度は、 湿式 トナーとして特 開昭 58 -2851号公報に開示されているものを使用してもよ く、 この場合には 100 で、 2 - 5 分間程度の定着条件でよい。 一般の乾式トナーの場合にも同じ条件で十分な定着が行わ れる。 The temperature for fixing the toner may be a wet type toner disclosed in Japanese Patent Publication No. 58-2851. In this case, the temperature is 100, and the fixing condition is about 2 to 5 minutes. Good. Sufficient fixing is performed under the same conditions in the case of a general dry toner.
更に、 定着した トナー像をレ ジ ス ト にして、 トナー像以 外の部分の電荷保持層をエッ チング除去する。 エ ッチング の方法としては、 電荷保持層材料を溶解する溶媒を用いて、 トナー像以外の部分の電荷保持層を溶出除去する方法、 プ ラズマ灰化装置等により、 電荷保持層の トナーに覆われて いない部分を灰化除去する方法、 電荷保持層材料として、 例えば光分解型樹脂、 例えばポジ型フ ォ ト レ ジ ス トを用い ることも可能で、 トナー像を遮光像とし、 全面活性光 (例 えば紫外線) を照射し、 更に現像するこ とによって電荷保 持層の トナーに覆われていない部分を除去する方法などい ずれの方法に従つてもよい。  Further, the fixed toner image is used as a resist, and the charge holding layer other than the toner image is removed by etching. Etching can be performed by using a solvent that dissolves the charge-retaining layer material, eluting and removing the charge-retaining layer in portions other than the toner image, or by using a plasma incinerator to cover the toner in the charge-retaining layer. It is also possible to use a photo-decomposable resin, for example, a positive photo resist, as the charge retention layer material. Irradiation (for example, ultraviolet rays) and further development may be employed to remove any portion of the charge retaining layer that is not covered with the toner, such as a method of removing the portion.
こ う して トナー像以外の部分の電荷保持層がヱ ツチン グ 除去されると、 電極 7が露出されるが、 、 更に、 必要に応 じてヱ ツチ処理、 ゴム塗布等の処理を施してもよい。  When the charge retaining layer in the portion other than the toner image is removed by the printing in this way, the electrode 7 is exposed, and further, if necessary, a processing such as a touching process or a rubber coating is performed. Is also good.
[実施例 1 ]  [Example 1]
厚さ 0 . 3龍のアル ミニ ゥ ム板の表面をボール研磨により砂 目立てし、 その表面を次の整面液で洗浄し、 水洗した。  The surface of a 0.3-dragon-thick aluminum plate was grained by ball polishing, and the surface was washed with the following surface-regulating liquid and washed with water.
リ ン酸 I Bec  Phosphoric acid I Bec
水 l O O Occ  Water l O O Occ
さらに、 次の親水化処理液で処理し、 水洗、 乾燥した。  Further, it was treated with the following hydrophilizing solution, washed with water and dried.
重ク ロ ム酸アル ミ ニウ ム 1 350 g  Aluminum bichromate 1 350 g
水 20 S  Water 20 S
フ ッ化水素酸 48 % I G Occ 次に、 こ の アル ミ ニ ウ ム板上に、 ァク リ ロ 二 ト リノレー ブ タ ジェ ン ーアク リ ル酸ブロ ッ クポ リ マーの 5 % ト ルエ ン溶 液を回転塗布して乾燥塗膜厚 3 mの塗膜を形成後、 100 °Cのオーブン にて 30分間乾燥し、 版を形成した。 Hydrofluoric acid 48% IG Occ Next, a 5% solution of acrylonitrile blocker-acrylic acid block polymer in toluene is spin-coated on this aluminum plate and dried. After forming a 3 m-thick coating film, it was dried in an oven at 100 ° C. for 30 minutes to form a plate.
一方、 厚さ 3 urnのガラ ス板に厚さ 500Aの IT0 膜をスパ ッ タ法により形成し透明導電膜を得た。 面抵抗は 1000 Ω / □であ った。  On the other hand, a transparent conductive film was obtained by forming an IT0 film having a thickness of 500 A on a glass plate having a thickness of 3 urn by a sputtering method. The sheet resistance was 1000 Ω / □.
こ の上に、 スパヅ タ法によ り Si02を 1000A厚に形成し、 電荷注入防止層を形成した。 On top of this, to form a Si0 2 Ri by the Supadzu data method 1000A thickness, to form a charge injection preventing layer.
さらに、 5000Aの厚さの a-SeTe 電荷発生層を真空蒸着 法によ り形成した。 Te の含有率は U.5 wt%とした。  Furthermore, an a-SeTe charge generation layer having a thickness of 5000 A was formed by a vacuum deposition method. The Te content was U.5 wt%.
更に、 電荷輸送層として 30^ mの a-Se 層を同じ く真空 蒸着法により形成し感光体を得た。  Further, an a-Se layer having a thickness of 30 m was similarly formed as a charge transport layer by a vacuum evaporation method to obtain a photoreceptor.
次に、 この感光体を前述の版の上に、 厚さ 3 mmのポ リ エ ステル フ ィ ルムを部分的において、 ギャ ップを形成し、 圧 着した。 ギャ ップの実測値は 12〃 mであった。 次に、 感光 体の上に 150線/ィ ン チの網ポジフ イ ルムを置き、 密着させ た。 感光板側透明電極に + 800Vを印加し、 アル ミ ニ ウ ム板 側を接地した。  Next, a gap was formed and the photosensitive member was pressed on the above-described plate by partially forming a 3 mm-thick polyester film. The measured gap was 12 m. Next, a 150-line / inch net positive film was placed on the photoreceptor and brought into close contact. +800 V was applied to the transparent electrode on the photosensitive plate side, and the aluminum plate side was grounded.
色温度 4000° Kのタ ングステン ランプをほぼ平行光とな るように光を照射した。 感光板上で約 50ルク スであっ た。 ス ィ ツ チを 0.1秒間閉じた後、 版をはずした。  Light was applied to a tungsten lamp with a color temperature of 4000 ° K so that the light became almost parallel. It was about 50 lux on the photosensitive plate. After closing the switch for 0.1 second, the plate was removed.
版の上には、 + 170Vの静電潜像が形成されていた。 こ の 潜像を特開昭 58-2851号公報に示されている湿式 トナーで反 転現像を行い、 乾燥後、 100°Cのオーブン中で 5分間定着を 行った。 An electrostatic latent image of +170 V was formed on the plate. This latent image is subjected to inversion development with a wet toner disclosed in JP-A-58-2851, and after drying, fixed in an oven at 100 ° C for 5 minutes. went.
更に、 炭酸ナ ト リ ウ ムの 5 %水溶液で溶出を行い、 水洗、 乾燥して、 平版印刷版を形成した。  Further, elution was carried out with a 5% aqueous solution of sodium carbonate, followed by washing with water and drying to form a lithographic printing plate.
オ フ セ ッ ト校正印刷機にて湿し水を供給しながらオフ セ ッ ト印刷を行った結果、 1 50線/イ ン チの 3〜9 B %の網点が 印刷されたこ とが確認された。  Offset printing was performed using an offset proof press while supplying dampening water.As a result, it was confirmed that 3 to 9 B% of 150 lines / inch was printed. Was done.
[実施例 2 ]  [Example 2]
上記実施例 1 と同様に作成した版をオ フセッ ト輪転印刷 機にと りつけ、 1 0万枚の印刷を行った。 印刷版の損傷は確 認されなかった。  The plate prepared in the same manner as in Example 1 was mounted on an offset rotary printing press to print 100,000 sheets. No damage was found on the printing plate.
なお、 以上の例では一つの印刷版の製造のみを説明した が、 カ ラー印刷用の印刷版であれば、 上述したと同様なェ 程により、 Y用印刷版、 M用印刷版、 C用印刷版および K 用印刷版の 4種類の印刷版を製造する必要があることは当 然である。  In the above example, only one printing plate was manufactured. However, if the printing plate is for color printing, the printing plate for Y, the printing plate for M, and the printing plate for C are printed in the same manner as described above. It is natural that it is necessary to manufacture four types of printing plates, a printing plate and a printing plate for K.
次に、 本発明に係る電荷保持媒体を用いた集版システム について説明するが、 まず当該集版シ ステムにおいて使用 する電荷保持媒体、 電圧印加露光方法および電荷保持媒体 に形成された静電潜像の電位読取方法について説明する。 第 3図は電荷保持媒体による画像記録方法を説明するた めの図で、 図中、 21は電荷保持媒体、 22は感光体、 Eは電 源を示す。  Next, a plate collection system using the charge holding medium according to the present invention will be described. First, a charge holding medium, a voltage application exposure method, and an electrostatic latent image formed on the charge holding medium used in the plate collection system are described. Will be described. FIG. 3 is a diagram for explaining an image recording method using a charge holding medium. In the figure, 21 denotes a charge holding medium, 22 denotes a photoconductor, and E denotes a power source.
電荷保持媒体 21は、 例えば、 1 M厚のガラ スからなる絶縁 層支持体 2 1 c上に蒸着により 1 000 人厚の A 1 膜を成膜して 電荷保持媒体電極 21 bを形成し、 更に電荷保持媒体電極 2 1 b上に 10 tz m厚の絶縁層 21 aを形成するこ とによ り構成さ れている。 また、 感光体 22は、 第 1図の感光体 1 と同様に 感光体支持体 22a、 感光体電極 22b、 光導電層 22 cで構成 されており、 例えば、 1 厚のガラ スからなる感光体支持体 22 a上に 1000 A厚の IT0 からなる透明な感光体電極 22b を形成し、 更にその上に 10/z m厚程度の光導電層 22cを形 成するこ とによ り構成することができる The charge holding medium 21 is formed, for example, by depositing a 1,000-layer thick A 1 film on an insulating layer support 21 c made of a 1-M thick glass by vapor deposition to form a charge holding medium electrode 21 b, Furthermore, the charge storage medium electrode 2 1 It is formed by forming an insulating layer 21a having a thickness of 10 tz on b. The photoreceptor 22 includes a photoreceptor support 22a, a photoreceptor electrode 22b, and a photoconductive layer 22c as in the case of the photoreceptor 1 in FIG. A transparent photoreceptor electrode 22b made of IT0 having a thickness of 1000 A is formed on the support 22a, and a photoconductive layer 22c having a thickness of about 10 / zm is further formed thereon. it can
さて、 第 3図は感光体 22側から露光を行う態様であり、 まず、 第 3図( a )に示すよ う に、 感光体 22に対して、 10β m程度の空隙を介して電荷保持媒体 21を配置し、 次に、 同 図(b )に示すよう に電源 Eによ り感光体電極 22 b と電荷保 持媒体電極 21bとの間に所定の電圧を印加する。 暗所であ れば光導電層 22c は高抵抗体であるため、 これら両電極間 には何の変化も生じないが、 感光体 22側より光が入射する と、 光が入射した部分の光導電層 22 cは導電性を示し、 絶 縁層 21 aとの間に放電が生じ、 絶縁層 21 aに電荷が蓄積さ れる。 これが露光である。  FIG. 3 shows an embodiment in which exposure is performed from the photoreceptor 22 side. First, as shown in FIG. 3 (a), the charge holding medium is spaced from the photoreceptor 22 through a gap of about 10βm. Then, a predetermined voltage is applied between the photoreceptor electrode 22b and the charge holding medium electrode 21b by the power source E as shown in FIG. In a dark place, the photoconductive layer 22c is a high-resistance material, so that no change occurs between these two electrodes. The conductive layer 22c exhibits conductivity, discharge occurs between the conductive layer 22c and the insulating layer 21a, and electric charges are accumulated in the insulating layer 21a. This is exposure.
露光が終了したら、 第 3図( c )に示すように電源 Eを切 り離し、 次いで、 第 3図( d )に示すように電荷保持媒体 21 を取り出すこ とによ り静電潜像の形成が終了する。  When the exposure is completed, the power supply E is disconnected as shown in FIG. 3 (c), and then the charge holding medium 21 is taken out as shown in FIG. 3 (d), thereby forming the electrostatic latent image. The formation ends.
なお、 感光体 22と電荷保持媒体 21とは第 3図に示すよう に非接触である必要はなく、 接触式でもよ く、 接触式の場 合には、 感光体電極 22 b側から光導電層 22 c の露光部に正 または負の電荷が注入され、 この電荷は電荷保持媒体 21側 の電極 21bに引かれて光導電層 22 cを通過し、 絶縁層 21 a の表面に達した所で電荷移動が停止し、 その部位に注入電 荷が蓄積される。 そして、 感光体 22と電荷保持媒体 21とを 分離すると、 絶縁層 21 aは電荷を蓄積したままの状態で分 ^れる ο The photoreceptor 22 and the charge holding medium 21 do not need to be in non-contact as shown in FIG. 3, and may be a contact type. Positive or negative charges are injected into the exposed portion of the layer 22c, and the charges are drawn by the electrode 21b on the charge holding medium 21 side, pass through the photoconductive layer 22c, and become When the charge reaches the surface, the charge transfer stops, and the injected charge accumulates at that position. Then, when the photoconductor 22 and the charge holding medium 21 are separated from each other, the insulating layer 21a is separated in a state where the charge is accumulated.
この記録方法は面状アナログ記録とした場合、 銀塩写真 法と同様に高解像度が得られ、 また形成される絶縁層' 2 i a 上の表面電荷は空気環境に曝されるが、 空気は良好な絶縁 性能を持っているので、 明所、 暗所に関係な く放電せず長 期間の保存が可能である。  In this recording method, high resolution can be obtained in the same manner as silver halide photography in the case of planar analog recording, and the surface charge on the formed insulating layer '2 ia is exposed to the air environment, but air is good. Because of its excellent insulation performance, it can be stored for a long period of time without discharging regardless of light or darkness.
この絶縁層 2 i a上の電荷保存期間は、 環境条件や絶縁体 の性質などによって定まり、 空気の絶縁性以外に絶縁体の 電荷捕捉特性が影響する。 前述の説明では電荷は表面電荷 として説明しているが、 注入電荷は単に表面に蓄積させる 場合もあり、 また微視的には絶縁体表面付近内部に侵入し、 その物質の構造内に電子またはホールが トラ ップされる場 合もあるので長期間の保存が行われるのである。 また電荷 保持媒体の物理的損傷や湿度が高い場合の放電等を防ぐた めに絶縁層 2 i aの表面を絶縁性フ イルム等で覆って保存す るようにしてもよい。  The charge storage period on the insulating layer 2ia is determined by environmental conditions and the properties of the insulator, and is affected by the charge trapping characteristics of the insulator in addition to the insulating properties of air. In the above description, charges are described as surface charges.However, injected charges may simply accumulate on the surface, and microscopically penetrate into the vicinity of the insulator surface, causing electrons or electrons to enter the structure of the substance. In some cases, holes are trapped, so long-term preservation takes place. The surface of the insulating layer 2ia may be covered with an insulating film or the like in order to prevent physical damage to the charge holding medium or discharge when the humidity is high.
次に第 4図( a )、 (b )により カラー画像情報を記録する 方法について説明する。  Next, a method for recording color image information will be described with reference to FIGS. 4 (a) and 4 (b).
第 4図( a )においては、 光源 23または 24で原稿 25を照射 し、 その反射光または透過光をカラーフ ィルタ 2Bを介して 感光体 22に面露光して電荷保持媒体 21に記録する。 カラー フ ィ ルタ 2Bは赤 (R:)、 緑 ( G:)、 青 ( B ) の 3つの要素 からなつており、 これを水平方向に移動させて R,G , Bを 選択し、 電荷保持媒体 3枚 1組で 1 つのカラー画像情報の 記録が完了する。 In FIG. 4 (a), the original 25 is illuminated by the light source 23 or 24, and the reflected light or transmitted light is surface-exposed to the photoreceptor 22 via the color filter 2B and recorded on the charge holding medium 21. Color filter 2B has three components: red (R :), green (G :), and blue (B). This is moved horizontally to select R, G, and B, and the recording of one color image information is completed with one set of three charge holding media.
第 4図(b )においては回転型カラーフ ィルタ 27を使用し、 このカラーフ ィルタ 27の回転によ り R,G , Bを選択する以 外は第 4図( a )の場合と同様である。  4 (b) is the same as that of FIG. 4 (a) except that a rotary color filter 27 is used and R, G, B are selected by rotation of the color filter 27.
こ う して記録した静電潜像の電位読取りの例を第 5図に よ り説明する。  An example of reading the potential of the electrostatic latent image thus recorded will be described with reference to FIG.
第 5図( a )は電位読み取り方法の例を示す図であり、 第 3図と同じものには同一の番号を付す。 なお、 図中、 30は 電位読み取り部、 31は検出電極、 32はガー ド電極、 33はコ ンデンサ、 34は電圧計を示す。  FIG. 5 (a) is a diagram showing an example of a potential reading method, and the same components as those in FIG. 3 are denoted by the same reference numerals. In the figure, 30 is a potential reading section, 31 is a detection electrode, 32 is a guard electrode, 33 is a capacitor, and 34 is a voltmeter.
電位読み取り部 30を電荷保持媒体 21の電荷蓄積面に対向 させると、 検出電極 31に電荷保持媒体 2 1の絶縁層 21 a上に 蓄積された電荷によって生じる電界が作用し、 検出電極 3 1 の面上に電荷保持媒体 21上の電荷と等量の誘導電荷が生ず る。 この誘導電荷と逆極性の等量の電荷でコ ンデンサ 3 3が 充電されるので、 コ ンデンサ 33の電極間には蓄積電荷に応 じた電位差が生じ、 この値を電圧計 34で読むこ とによって 電荷保持体 2 1の電位を求めることができる。 そして、 電位 読み取り部 3 0で電荷保持媒体 21の面上を走査する こ とによ り静電潜像を電気信号として出力するこ とができる。 なお、 検出電極 3 1だけでは電荷保持媒体 21の検出電極対向部位よ り も広い範囲の電荷による電界 (電気力線) が作用して分 解能が落ちるので、 検出電極 3 1の周囲に接地したガー ド電 極 32を配置するようにしてもよい。 これによつて、 電気力 線は面に対して垂直方向を向く ようになるので、 検出電極 3 1に対向した部位のみの電気力線が作用するようになり、 検出電極 3 1の面積に略等しい部位の電位を読み取るこ とが できる。 電位読み取りの精度、 分解能は検出電極 31、 ガー ド電極 32の形状、 大きさ、 及び電荷保持媒体 2 1との間隔に よって大き く変わるため、 要求される性能に合わせて最適 条件を求めて設計する必要がある。 When the potential reading section 30 is opposed to the charge storage surface of the charge storage medium 21, an electric field generated by the charge stored on the insulating layer 21a of the charge storage medium 21 acts on the detection electrode 31, and the detection electrode 31 An induced charge equal to the charge on the charge holding medium 21 is generated on the surface. Since the capacitor 33 is charged with the same amount of charge having the opposite polarity to the induced charge, a potential difference corresponding to the accumulated charge is generated between the electrodes of the capacitor 33, and this value is read by the voltmeter 34. Thus, the potential of the charge holder 21 can be obtained. By scanning the surface of the charge holding medium 21 with the potential reading unit 30, an electrostatic latent image can be output as an electric signal. In addition, since the electric field (line of electric force) due to electric charges in a wider range than the detection electrode facing portion of the charge holding medium 21 acts on the detection electrode 31 alone to reduce the resolution, the detection electrode 31 is grounded around the detection electrode 31. Guard electricity The pole 32 may be arranged. As a result, the lines of electric force are directed perpendicular to the surface, so that the lines of electric force only act on the portion facing the detection electrode 31, and the area of the detection electrode 31 is substantially reduced. The potential of the same part can be read. Since the accuracy and resolution of potential reading vary greatly depending on the shape and size of the detection electrode 31 and guard electrode 32 and the distance between the electrode and the charge retention medium 21, the optimal conditions are designed to meet the required performance. There is a need to.
第 5図(b )は電位読み取り方法の他の例を示す図で、 検 出電極 3 1及びガー ド電極 32を絶縁性保護膜 35上に設け、 絶 縁性保護膜 3 5を介して電位を検出する点以外は第 5図( a ) の場合と同様である。 この方法によれば、 電荷保持媒体 2 1 に接触させて検出できるため、 検出電極 3 1との間隔を一定 にすることができる。  FIG. 5 (b) shows another example of the potential reading method, in which the detection electrode 31 and the guard electrode 32 are provided on the insulating protective film 35, and the potential is detected via the insulating protective film 35. It is the same as the case of Fig. 5 (a) except that is detected. According to this method, since the detection can be performed by contacting the charge holding medium 21, the distance from the detection electrode 31 can be made constant.
第 5図( C )は電位読み取り方法の他の例を示す図で、 針 状電極 3 Bを直接電荷保持媒体 2 1に接触させ、 その部分の電 位を検出するもので、 検出面積を小さ くするこ とができ る ので、 高分解能を得ることができる。 なお、 針状電極 3 6を 複数設けて検出するようにすれば読み取り速度を向上させ ることができる。  FIG. 5 (C) shows another example of the potential reading method, in which the needle electrode 3B is brought into direct contact with the charge holding medium 21 to detect the potential at that portion, and the detection area is small. High resolution can be obtained. The reading speed can be improved by providing a plurality of needle electrodes 36 for detection.
以上は接触または非接触で直流信号を検出する直流増幅 型のものであるが、 次に交流増幅型の例を説明する。  The above is a DC amplification type in which a DC signal is detected in a contact or non-contact manner. Next, an example of an AC amplification type will be described.
第 5図(d )は振動電極型の電位読み取り方法を示す図で、 3 7は検出電極、 38は増幅器、 39はメータである。  FIG. 5 (d) is a diagram showing a method of reading the potential of the vibrating electrode type, wherein 37 is a detection electrode, 38 is an amplifier, and 39 is a meter.
検出電極 3 7は振動し、 電荷保持媒体 2 1の帯電面に対して 時間的に距離が変化するように振動されており、 その結果、 検出電極 37における電位は、 帯電面の静電電位に応じた振 幅で時間的に変化する。 この時間的な電位変化をイ ン ピー ダンス Zの両端の電圧変化として取り出し、 コ ンデンサ C を通して交流分を増幅器 38で増幅し、 メータ 33により読み 取るこ とにより帯電面の静電電位を測定することができる。 The detection electrode 37 vibrates and contacts the charged surface of the charge holding medium 21. Vibration is performed so that the distance changes over time. As a result, the potential of the detection electrode 37 changes over time with an amplitude corresponding to the electrostatic potential of the charged surface. This temporal potential change is taken out as a voltage change across the impedance Z, the AC component is amplified by the amplifier 38 through the capacitor C, and read by the meter 33 to measure the electrostatic potential of the charged surface. be able to.
第 5図( e )は回転型検出器の例を示し、 図中 40は回転羽 根を示す。  Fig. 5 (e) shows an example of a rotary detector, in which 40 indicates a rotating blade.
検出電極 3 7と電荷保持媒体 2 1の帯電面の間には導電性の 回転羽根 40が設けられて図示しない振動手段によ り回転駆 動されている。 その結果、 検出電極 37と電荷保持媒体 2 1と の間は周期的に電気的に遮蔽される。 そのため、 検出電極 37には帯電面の静電電位に応じた振幅の周期的に変化する 電位信号が検出され、 この交流成分を増幅器 38で増幅して 読み取るこ とになる。  A conductive rotating blade 40 is provided between the detection electrode 37 and the charged surface of the charge holding medium 21 and is rotationally driven by vibration means (not shown). As a result, the space between the detection electrode 37 and the charge holding medium 21 is periodically electrically shielded. Therefore, a potential signal whose amplitude changes periodically according to the electrostatic potential of the charged surface is detected at the detection electrode 37, and this AC component is amplified by the amplifier 38 and read.
第 5図( f )は振動容量型検出器の例を示し、 図中、 4 1は 駆動回路、 4 2は振動片を示す。  Fig. 5 (f) shows an example of a vibration capacitance type detector, in which 41 is a drive circuit and 42 is a resonator element.
駆動回路 4 1によってコンデンサを形成する一方の電極の 振動片 42を振動させて、 コ ンデンサ容量を変化させる。 そ の結果、 検出電極 37により検出される直流電位信号は変調 を受け、 この交流成分を増幅して検出する。 この検出器は 直流を交流に変換して高感度で安定よ く電位測定するこ と ができる。  The drive circuit 41 vibrates the vibrating reed 42 of one of the electrodes forming the capacitor to change the capacitor capacity. As a result, the DC potential signal detected by the detection electrode 37 is modulated, and the AC component is amplified and detected. This detector converts DC to AC and can measure potential with high sensitivity and stability.
第 5図( g )は集電型検出器の例を示し、 図中、 43は接地 型金属円筒、 44は絶縁体、 4 5は集電器を示す。 集電器 45には放射性物質が内蔵され、 そこから な線が放 射されている。 そのため、 金属円筒内は空気が電離して正 負のイ オン対が形成されている。 これらのイ オンは自然の 状態では再結合および拡散によって消滅し、 平衡状態を保 つているが、 電界があると、 熱運動による空気分子との衝 突を繰り返しながら統計的には電界の方向に進み、 電荷を 運ぶ役割を果たす。 即ち、 イ オンのため空気が導電化され て、 集電器 45も含めたその周りの物体の間には等価的な電 気抵抗路が存在するとみなすことができる。 従って、 電荷 保持媒体 21の帯電面と接地金属円筒 43、 帯電面と集電器 、 および集電器 45と接地金属円筒 43の間の抵抗を、 それぞれ R0 , Ri , R2、 帯電体の電位を V, とすると、 集電器 45の電位 V2 は定常状態では、 V2=R2V,/ (R! + Rs) となる。 その結果、 集電器 45の電位を読み取るこ とによつ て電荷保持媒体 21の電位を求めることができる。 Fig. 5 (g) shows an example of a current-collecting detector, in which 43 is a grounded metal cylinder, 44 is an insulator, and 45 is a current collector. The current collector 45 contains a radioactive substance, from which radiation is emitted. As a result, air is ionized in the metal cylinder to form positive and negative ion pairs. In the natural state, these ions disappear by recombination and diffusion, and remain in an equilibrium state.However, when an electric field is present, the ions repeatedly impact with air molecules due to thermal motion and statistically move in the direction of the electric field. It plays the role of moving forward and carrying charges. In other words, the air is made conductive by the ions, and it can be considered that an equivalent electric resistance path exists between the surrounding objects including the current collector 45. Accordingly, the resistance between the charged surface of the charge holding medium 21 and the grounded metal cylinder 43, the charged surface and the current collector, and the resistance between the current collector 45 and the grounded metal cylinder 43 are respectively R 0 , Ri, R 2 , and the potential of the charged body. V, the potential V 2 of the current collector 45 is V 2 = R 2 V, / (R! + Rs) in a steady state. As a result, the potential of the charge holding medium 21 can be obtained by reading the potential of the current collector 45.
第 5図(h )は電子ビーム型の電位読取装置の例を示す図 で、 4Bは電子銃、 47は電子ビーム、 48は第 1 ダイ ノー ド、 49は 2次電子増倍部である。  FIG. 5 (h) is a diagram showing an example of an electron beam type potential reader, wherein 4B is an electron gun, 47 is an electron beam, 48 is a first dynode, and 49 is a secondary electron multiplier.
電子銃 46から出た電子を図示しない静電偏向装置あるい は電磁偏向装置により偏向して帯電面を走査する。 走査電 子ビームのうちの一部は、 帯電面の電荷と結合して充電電 流が流れ、 その分帯電面の電位は平街電位に下がる。 残り の変調された電子ビームは電子銃 48の方向に戻り、 第 1 ダ ィ ノ ー ド 48に衝突し、 その 2次電子が 2次電子增倍部 49で 増幅され、 その陽極から信号出力として取り出される。 こ の戻りの電子ビームとして反射電子あるいは 2次電子を使 用する。 Electrons emitted from the electron gun 46 are deflected by an electrostatic deflecting device or an electromagnetic deflecting device (not shown) to scan the charged surface. A part of the scanning electron beam is combined with the charge on the charged surface, and the charging current flows, and the potential on the charged surface drops to the flat street potential. The remaining modulated electron beam returns to the direction of the electron gun 48, strikes the first dynode 48, and the secondary electrons are amplified in the secondary electron multiplier 49, and the signal is output from the anode as the signal output. Taken out. This Use reflected electrons or secondary electrons as the returning electron beam.
電子ビーム型の場合には、 走査後は媒体上には均一な電 荷が形成されるが、 走査時に潜像に対応する電流が検出さ れる。 潜像がマイ ナス電荷の場合は、 電荷が多い部分 (露 光部) ではヱ レ ク ト ロ ンによ る蓄積電荷が少な く、 充電電 流が小さいが、 例えば電荷が存在しない部分では最大の充 電電流が流れる。 プラ ス電荷の場合はこの逆でネガ型とな る。  In the case of the electron beam type, a uniform charge is formed on the medium after scanning, but a current corresponding to a latent image is detected during scanning. When the latent image is a negative charge, the charge accumulated by the electron is small and the charge current is small in a portion having a large amount of charge (exposed portion), but is small in a portion where no charge exists, for example. Charging current flows. In the case of a positive charge, the reverse is true and the result is a negative type.
第 5図( i )は電位読み取り方法の他の例を示す図で、 静 電潜像が形成された電荷保持媒体 2 1を トナー現像し、 着色 した面を光ビームによ り照射してスキャ ニ ン グし、 その反 射光を光電変換器 50で電気信号に変換するも のであり、 光 ビーム径を小さ くするこ と によ り高分解能を達成するこ と ができ、 また光学的に簡便に静電電位の検出を行う こ とが できる。  FIG. 5 (i) is a diagram showing another example of the potential reading method, in which the charge holding medium 21 on which the electrostatic latent image is formed is developed with toner, and the colored surface is irradiated with a light beam and scanned. The reflected light is converted into an electric signal by the photoelectric converter 50.By reducing the light beam diameter, high resolution can be achieved, and optically simple operation is achieved. Then, the electrostatic potential can be detected in a short time.
第 5図( j )は電位読み取り方法の他の例を示す図であり、 後述する よ う な微細カ ラーフ ィ ルタ によ り形成した R , G , B分解像を トナー現像し、 着色した面を光ビーム によ り照 射し、 その反射光によ り Y ,M, C信号を得る場合の例を示 している。 図中、 51は走査信号発生器、 52はレーザ、 5 3は 反射鏡、 54はハーフ ミ ラー、 58は光電変換器、 55,5 B,5 7は ゲー ト回路である。  FIG. 5 (j) is a diagram showing another example of the potential reading method, in which the R, G, and B separation images formed by a fine color filter as described later are developed with toner and colored. The figure shows an example of irradiating a laser beam with a light beam and obtaining Y, M, and C signals from the reflected light. In the figure, 51 is a scanning signal generator, 52 is a laser, 53 is a reflecting mirror, 54 is a half mirror, 58 is a photoelectric converter, and 55, 5B, and 57 are gate circuits.
走査信号発生器 5 1からの走査信号でレーザ 52からのレ ー ザ光を、 反射鏡 53、 ハーフ ミ ラー 54を介して着色面に当て 普 て走査する。 着色面からの反射光をハーフ ミ ラー 54を介し て光電変換器 58に入射させて電気信号に変換する。 また、 走査信号発生器 51からの信号に同期してゲー ト回路 55,56, 57を開閉制御すれば、 微細フ ィルタのパターンに同期して ゲー ト回路 55 , 56,57が開閉制御されるので、 Y,M,Cに着 色しておかな くても Y ,M,Cの信号を得ることができる。 The scanning signal from the scanning signal generator 51 applies the laser beam from the laser 52 to the colored surface via the reflecting mirror 53 and the half mirror 54. Scan normally. The reflected light from the colored surface enters the photoelectric converter 58 via the half mirror 54 and is converted into an electric signal. If the gate circuits 55, 56, 57 are controlled to open and close in synchronization with the signal from the scanning signal generator 51, the gate circuits 55, 56, 57 are controlled to open and close in synchronization with the pattern of the fine filter. Therefore, Y, M, and C signals can be obtained without coloring Y, M, and C.
なお、 カラー像が後述するように 3面分割したものの場 合も、 全く同様に Y ,M,Cの信号を得ることができ、 この 場合も Y ,M,Cに着色しておかな くてもよいことは同様で ある。  In the case where the color image is divided into three planes as described later, the Y, M, and C signals can be obtained in exactly the same manner. In this case, the Y, M, and C signals need not be colored. The same is true.
第 5図( i ),( j )に示した静電電位検出法においては、 ト ナー像が静電潜像の帯電量に対応した 7特性を有している こ とが必要で、 そのため帯電量のアナログ的変化に対して 閾値を持たないようにする必要がある。 対応さえとれてい ればァ特性が一致していなくても電気的な処理によって 7 の捕正を行うようにすればよい。  In the electrostatic potential detection method shown in FIGS. 5 (i) and (j), the toner image needs to have seven characteristics corresponding to the charge amount of the electrostatic latent image, and therefore, the It is necessary to have no threshold value for the analog change of quantity. As long as the measures are taken, even if the characteristics do not match, it is sufficient to carry out the correction of 7 by electrical processing.
第 5図(k )は電位読み取り方法の他の例を示す図である。 即ち、 静電荷によって生ずる電気力線を電気光学材料 130に 作用させ、 該電気光学材料 130に生じた変化を光 132によつ て光センサ 131で読み取る方法である。  FIG. 5 (k) shows another example of the potential reading method. That is, the method is such that the lines of electric force generated by the electrostatic charge act on the electro-optic material 130, and the change generated in the electro-optic material 130 is read by the light sensor 131 with the light 132.
電気光学材料 130としては、 LiNb03 , 液晶等を使用する こ とができる。 光 132は必要に応じて偏光を用い、 光センサ 131にも必要に応じて偏光板を組み込む。 The electro-optic material 130, it is that you use LiNbO 3, a liquid crystal or the like. The light 132 uses polarized light as needed, and the optical sensor 131 also incorporates a polarizing plate as needed.
第 5図(k )では電荷保持媒体 21が透明な場合を例示した が、 第 5図( i )、 ( j )と同様の光学系を用いて、 反射光を 検出するこ とも可能であるこ とは言うまでもない。 また、 光 132及び光セ ンサ 131を固定して、 電荷保持媒体 21を走査 してもよいし、 逆に光 132及び光セ ンサ 131を走査してもよ い。 また、 光セ ン サ 131として CCD 等のエ リ アセ ンサを用 い、 レ ン ズを用いてエ リ アセ ンサに結像させてもよい。 次にカラー画像を形成するために使用するカラーフ ィ ル 夕について説明する。 In FIG. 5 (k), the case where the charge holding medium 21 is transparent is illustrated, but the reflected light is converted using the same optical system as in FIGS. 5 (i) and (j). Needless to say, it can be detected. Further, the light 132 and the optical sensor 131 may be fixed and the charge holding medium 21 may be scanned, or the light 132 and the optical sensor 131 may be scanned conversely. Alternatively, an image sensor may be used as the optical sensor 131, and an image may be formed on the image sensor using a lens. Next, a color filter used for forming a color image will be described.
第 6図はプ リ ズムによる色分解光学系 68を示す図で、 図 中、 80,61,62はプ リ ズム ブロ ッ ク、 63,64,65は フ ィ ルタ、 B6,B7は反射鏡である。  Fig. 6 shows a color separation optical system 68 using a prism. In the figure, 80, 61, and 62 are prism blocks, 63, 64, and 65 are filters, and B6 and B7 are reflection mirrors. It is.
色分解光学系 68は 3 つのプ リ ズムブロ ッ ク B0 ,61,B2から なり、 プ リ ズムブロ ッ ク B0の a面から入射した光情報は、 b面において一部が分離反射され、 更に a面で反射されて フ ィ ルタ 63から B色光成分が取り出される。 残りの光情報 はプリ ズムブロ ッ ク 61に入射し、 c面まで進んで一部が分 離反射され、 フ ィ ルタ 64から G色光成分、 他は直進してフ ィ ルタ 65から R色光成分が取り出される。 そして、 G, B 色光成分を、 反射鏡 66 , 67で反射させるこ と によ り、 R,G ,B光を平行光として取り出すことができる。  The color separation optical system 68 is composed of three prism blocks B0, 61, and B2. The light information incident from the a surface of the prism block B0 is partially reflected on the b surface, and is further reflected on the a surface. Then, the B color light component is extracted from the filter 63. The remaining light information is incident on the prism block 61, travels to the c-plane, and is partially reflected and separated, and the G color component from the filter 64 and the other goes straight to the R color component from the filter 65. Taken out. The G, B light components are reflected by the reflecting mirrors 66, 67, so that the R, G, B light can be extracted as parallel light.
第 6図に示すような色分解光学系 B8を、 第 7図( a )に示 すように、 感光体 22の前面に配置して撮影するこ とにより、 第 7図(b )のように R,G ,B分解した電荷保持媒体 3セ ッ トで 1 コマを形成するか、 また、 第 7図( c )に示すように、 1平面上に R ,G,B像として並べて 1セ ッ 卜で 1 コマとす る こ と もでき る。 第 8図は微細カラーフ ィルタの例を示す図で、 例えば、 レ ジス ト をコ一テ ィ ン グした フ イ ルムをマス クノ、。ターンで 露光して R , G,B ス ト ラ イ プパターンを形成し、 それぞれ R,G,B染色する こ と によ り形成する方法、 または第 6図 のよ うな方法で色分解した光を、 それぞれ細いス リ ッ ト に 通すこ とによ り生じる R,G,Bの干渉縞をホログラム記録 媒体に記録させることにより形成する方法、 または静電潜 像による R , G,B ス ト ライプパターンを形成し、 これを ト ナー現像して 3回転写することにより カラー合成して トナ —のス ト ラ イ プを形成する方法等により形成する。 こ のよ うな方法で形成されたフ ィ ルタ の R,G,B 1組で 1画素を 形成し、 1画素を 10 ^ m程度の微細なものにする。 こ の フ ィ ルタを第 7図の色分解光学系 68として使用することに よ り カラー静電潜像を形成することができる。 この場合、 フ ィ ル タは感光体と離して配置しても、 あるいは感光体と —体に形成するようにしてもよい。 By arranging the color separation optical system B8 as shown in FIG. 6 and photographing it in front of the photoreceptor 22 as shown in FIG. 7 (a), the image as shown in FIG. 7 (b) is obtained. One frame is formed by three sets of the R, G, and B decomposed charge holding media. Alternatively, as shown in Fig. 7 (c), one set of R, G, and B images is arranged on one plane. Each frame can be one frame. FIG. 8 is a diagram showing an example of a fine color filter. For example, a mask obtained by coating a register with a mask. The pattern is formed by exposing in turns to form R, G, B stripe patterns and dyeing them by R, G, B, respectively, or the light separated by the method shown in Fig. 6 A method in which R, G, and B interference fringes generated by passing through a narrow slit are recorded on a hologram recording medium, or R, G, and B stripes are formed by an electrostatic latent image. A pattern is formed, this is developed by toner, transferred three times, and then color-combined to form a toner stripe. One pixel is formed by a set of filters R, G, and B formed by such a method, and one pixel is made as fine as about 10 m. A color electrostatic latent image can be formed by using this filter as the color separation optical system 68 in FIG. In this case, the filter may be disposed separately from the photoconductor, or may be formed on the photoconductor.
第 9図は微細カラーフ ィ ル夕とフ レ ネルレ ン ズを組み合 わせた例を示す図で、 フ レ ネルレ ン ズ 63によって R,G ,B パターンを縮小して記録することができ、 また通常のレ ン ズに比べて薄く コ ンパク トなレ ンズ設計が可能となる。 第 1 0図はハー フ ミ ラーと R,G , B フ ィ ル タを併用した 3面分割の例を示す図で、 入射光をハーフ ミ ラー 71 , 72およ び反射ミ ラー 73で 3分割し、 それぞれ R フ ィ ルタ 74、 G フ ィ ルタ 75、 B フ ィ ルタ 76を通すこ とによ り、 R,G,B光を 平行光として取り出すことができる。 次に電荷保持媒体に形成された静電潜像を消去する方法 としては次のような方法がある。 Fig. 9 shows an example in which a fine color filter and a Fresnel lens are combined. The R, G, and B patterns can be reduced and recorded by the Fresnel lens 63. A thin and compact lens design is possible compared to a normal lens. Fig. 10 shows an example of three-plane division using a half mirror and R, G, and B filters together. The incident light is split by half mirrors 71 and 72 and reflection mirror 73. R, G, and B light can be extracted as parallel light by splitting and passing through R filter 74, G filter 75, and B filter 76, respectively. Next, as a method for erasing the electrostatic latent image formed on the charge holding medium, there is the following method.
①潜像形成時の露光パターン と同じパターン、 も し く は露 光パターン と明暗が逆のパターンを用いて、 潜像形成時に 印加した極性と逆の極性の電圧を印加して露光を行う方法。 (1) Using the same pattern as the exposure pattern for forming a latent image, or using a pattern whose lightness and darkness are opposite to those of the exposure pattern, and performing exposure by applying a voltage with a polarity opposite to the polarity applied when forming the latent image. .
②潜像形成時と同じ極性または逆の極性の電圧を印加して 均一な光を照射して露光を行う方法。 (2) Exposure by applying a voltage of the same polarity or the opposite polarity during latent image formation and irradiating uniform light.
③赤外線加熱、 抵抗加熱、 マイ ク ロ波加熱、 サーマルへ ッ ドによる加熱等適当な加熱手段により加熱を行う方法。  (3) Heating by appropriate heating means such as infrared heating, resistance heating, microwave heating, and thermal head heating.
④潜像形成時の露光パターン と同じパターンを用いて紫外 線によ り露光する方法。 方法 A method of exposing with ultraviolet rays using the same pattern as the exposure pattern used when forming a latent image.
⑤紫外線によ り均一露光を行う方法。  (4) A method of performing uniform exposure using ultraviolet light.
⑥導電性部材を電荷保持媒体面に接触させながら走査する 方法。  (4) A method in which the conductive member is scanned while being in contact with the surface of the charge holding medium.
⑦電荷保持媒体面に水分を付着させる方法。 (4) A method of attaching moisture to the surface of the charge holding medium.
⑧電極を近接させ、 同極性または逆極性の電圧を印加する 方法。  (4) A method in which electrodes are brought close to each other and a voltage of the same or opposite polarity is applied.
これらの方法により静電潜像を消去するこ とが可能であ るが、 電荷保持媒体の一部に形成された静電潜像を消去す る場合には、 消去したい部分以外の他の部分をマ ス ク し て 上記のいずれかの方法により消去するこ とができる。  Although the electrostatic latent image can be erased by these methods, when erasing the electrostatic latent image formed on a part of the charge holding medium, other parts other than the part to be erased are used. And can be erased by any of the above methods.
次に、 本発明に係る電荷保持媒体を用いた集版システ ム の一実施例について説明する。  Next, an embodiment of a plate collecting system using the charge holding medium according to the present invention will be described.
集版作業に先立って、 電荷保持媒体 2 1および感光体 22が 用意される。 そして、 第 1 1図に示すように、 原稿の画像 を適当なレ ン ズ系 8 1により当該割付台紙に指定された通り の倍率、 例えば原寸大として感光体 22側から露光する。 こ れにより、 電荷保持媒体 2 1の所定の位置には原稿 80の画像 の静電潜像が形成される。 この操作を当該ページに割り当 てられている全ての原稿について行えば、 当該ページに使 用される原稿の集版を行う こ とができる。 このとき、 電荷 保持媒体 2 1および感光体 22のサイ ズは、 原稿の画像を指定 された大きさ、 この場合は即ち原寸大に露光できるもので あればよく、 上述した適当な電位読み取り方法により電位 読み取りを行うこ とにより、 原寸大の画像データを画像処 理装置に取り込んで濃度調整、 色調調整、 ト リ ミ ング等を 行い、 最終的にカ ラースキャナに入力してフ ィルムに出力 するこ とができるが、 特に、 割付台紙と同じサイ ズのもの を使用すれば、 当該ページに使用される原稿の画像を割付 台紙に指定された位置に割付露光することができるので好 適である。 なお、 原稿画像の露光は、 割付台紙に指定され ている ト リ ミ ング範囲より も大きめに行うようにするとよ い。 また、 割付台紙に指定された位置に指定された倍率お よび方向で原稿画像を露光するためには、 従来使用されて いる画像投影装置等を使用することにより行う こ とが可能Prior to the plate collecting operation, the charge holding medium 21 and the photoreceptor 22 are prepared. Then, as shown in Fig. 11, the image of the original Is exposed from the photoreceptor 22 side as a magnification specified by the appropriate lens system 81 on the layout sheet, for example, an original size. Thus, an electrostatic latent image of the image of the document 80 is formed at a predetermined position of the charge holding medium 21. If this operation is performed for all the originals assigned to the page, the originals used for the page can be collected. At this time, the size of the charge holding medium 21 and the photoreceptor 22 may be any size as long as the image of the document can be exposed to a designated size, in this case, that is, an original size. By reading the potential, the original size image data is taken into the image processing device to perform density adjustment, color tone adjustment, trimming, etc., and finally input to the color scanner and output to the film However, it is particularly preferable to use the same size as the layout sheet because the image of the document used for the page can be allocated and exposed at the position specified on the layout sheet. . It is recommended that the exposure of the original image be made larger than the trimming range specified on the layout sheet. In addition, in order to expose the original image at the specified magnification and direction at the position specified on the layout sheet, it is possible to use a conventionally used image projection device or the like.
^ ¾る。 ^ Paruru.
また、 原稿の画像を原寸大、 即ち割付台紙で指示された 通りの大きさで露光することは重要である。 勿論、 原稿画 像をどの程度の大きさで露光するかは任意であり、 例えば、 指定された大きさの 1 /2 に縮小して露光することも可能な のであるが種々の問題がある。 つま り、 原寸大で露光する 場合には指示された倍率値をそのまま使用すればよいが、 縮小して露光する場合にはその都度倍率値を 1 /2 しなけら ばならず、 そのために倍率の設定誤りが生じ易いことにな る。 これは特に一旦露光して得た静電潜像を消去し、 露光 をやり直す場合に顕著である。 また、 原寸大露光において は、 後述する画像処理は勿論のこ と、 カラースキャナでの 出カフ イ ルムへの露光の際にも画像データをそのまま使用 するこ とができるが、 縮小露光の場合には、 フ ィ ルムへ出 力するに当たっては拡大処理が必要となり、 画像処理の時 間が増大することになるばかりでな く、 拡大処理のための ハー ド ウ アが必要となるからコ ス ト上昇の原因となる。 拡大処理のためのコス ト上昇および処理時間は無視できる ものであったとしても、 縮小露光して拡大処理した画像よ り原寸露光した画像の方がより好ましいものであることは 明らかであろう。 更に、 電荷保持媒体の電位読み取りも原 寸大露光が有利である。 なぜなら、 縮小露光を行った場合 には最終的に拡大を行わなければならないために、 原寸大 露光に比較して読み取り画素の密度を向上させなければな らず、 それに伴って読み取りヘッ ドのコス トは上昇するこ とになるからである。 It is also important to expose the original image to its original size, that is, the size specified on the layout sheet. Of course, the size of the original image to be exposed is arbitrary. For example, it is possible to reduce the size of the original image to 1/2 of the designated size and expose the original image. However, there are various problems. In other words, when exposing to the original size, the designated magnification value may be used as it is, but when reducing and exposing, the magnification value must be reduced by 1/2 each time. It is easy to cause a setting error. This is particularly remarkable when the electrostatic latent image obtained by the exposure is erased and the exposure is repeated. In full-scale exposure, the image data can be used as it is when exposing the output film with a color scanner, as well as image processing described later. Is required to perform enlargement processing when outputting to a film, which not only increases the time required for image processing, but also requires hardware for enlargement processing. It causes rise. Even if the cost increase and processing time for the enlargement process were negligible, it would be clear that a full-scale exposed image would be better than a reduced and enlarged image. In addition, full-scale exposure is advantageous for reading the potential of the charge holding medium. The reason for this is that, when a reduction exposure is performed, the magnification must be finally increased, so that the density of the read pixels must be increased compared to the full-size exposure, and the cost of the read head is accordingly increased. Because it will rise.
さて、 原稿画像は、 R , G,Bの 3色に分解する必要があ るが、 そのためには、 例えば、 第 6図あるいは第 1 0図に 示す方法によ り、 第 1 2図( a )、 (b )および( c )に示すよ うに、 3枚の電荷保持媒体 2 1R , 2 ΐ β , 21B に、 それぞれ、 -4B- 赤色画像、 緑色画像、 青色画像の静電潜像を形成してもよ いし、 第 8図に示す方法により、 カラース ト ライ プフ ィル タを用いて静電潜像を形成するようにしてもよい。 カラー ス ト ラ イ プフ ィ ル タを用いれば、 色分解像相互の位置ずれ 量はス ト ライ プフ ィ ルタの色と色の相対的位置ずれ量に等 し く、 ス ト ラ イ プフ ィ ルタ の位置精度に依存する。 こ の こ とは、 ス ト ラ イ プフ ィ ルタさえきちんとしていれば原理上 色ずれを生じないことを意味する。 一方、 第 1 2図に示す 方法によれば、 機械的に位置合わせを精度よ く行う必要が ある。 Now, the original image needs to be separated into three colors of R, G, and B. For this purpose, for example, the method shown in FIG. 6 or FIG. ), (B) and (c), the three charge storage media 21 R , 2 ΐ β , 21B -4B- An electrostatic latent image of a red image, a green image, and a blue image may be formed, or the electrostatic latent image may be formed using a color stripe filter by the method shown in FIG. It may be. If a color strip filter is used, the amount of misregistration between the color separation images is equal to the relative misregistration between the colors of the strip filter and the stripe filter. Depends on the positional accuracy of This means that if the strip filter is neat, no color shift will occur in principle. On the other hand, according to the method shown in FIG. 12, it is necessary to perform mechanical alignment with high accuracy.
カラース ト ライ プフ ィ ルタを用いる方法では、 空間的に 一つの色について考えれば他の 2色のフ ィルタ部分での情 報が失われる。 一方第 1 2図では解像度の高い色分解像を 得ることができる。  In the method using a color strip filter, if one spatially considers one color, the information in the filter portions of the other two colors is lost. On the other hand, in FIG. 12, a high-resolution color separation image can be obtained.
カ ラ 一ス ト ラ イ プフ ィ ルタによる方法の位置精度の良さ を生かし、 且つ、 十分な解像度を得るには、 R,G,B 3色 の ス ト ラ イ プ ピ ッ チを必要な解像度まで細かくすればよい。 例えば、 175線 イ ン チの網点画像を出力可能な解像度は 5 00線 イ ン チ以上と言われているから、 R,G,B 3色で構 成される 1画素の 1辺の大きさは 50 m以下であればよい。 また、 色文字読み取りの場合は画像より更に高解像度が要 求され、 1200〜2400線 Zイ ン チが必要である。 従って、 色 文字読み取りの場合は 20~ 10 jcz m程度の画素サイ ズになる ように力ラース ト ライ プフ ィルタのピッチを決めればよい c このような方法により、 割付台紙に指定された位置に、 指定された通りの大き さの原稿画像の静電潜像を形成する こ とができる。 勿論、 原稿画像の位置を間わず、 原寸大の 静電潜像を形成するだけでよいのであれば、 第 1 3図に示 すように、 一つの電荷保持媒体 21に一つの原稿画像の R , G , Bの静電潜像を隣接させて形成する こ とができる こ とは当 然である。 なお、 第 1 2図、 第 1 3図において、 85 , 86 , 87 , 88 , 83はそれぞれ原稿を示し、 85R , 85G , 85B は、 それ ぞれ、 原稿 85の赤色画像、 緑色画像、 青色画像を示してい るものである。 In order to take advantage of the high positional accuracy of the color strip filter method and obtain sufficient resolution, the R, G, and B color stripe pitch must be set to the required resolution. You only need to make it fine. For example, it is said that the resolution at which a halftone image of 175 line inches can be output is 500 line inches or more, so the size of one side of one pixel composed of R, G, and B colors is The length should be 50 m or less. In the case of reading color characters, a higher resolution is required than the image, and a 1200 to 2400-line Z-inch is required. Therefore, when reading color characters, the pitch of the power strip filter should be determined so that the pixel size is about 20 to 10 jcz m.c By this method, the position specified on the layout sheet is An electrostatic latent image of a document image of the specified size can be formed. Of course, if it is only necessary to form a full-sized electrostatic latent image without changing the position of the original image, as shown in FIG. Naturally, the R, G, and B electrostatic latent images can be formed adjacent to each other. The first 2 view, in the first 3 Figure 85, 86, 87, 88, 83 each represent a document, 85 R, 85 G, 85 B, it respectively, the red image of the document 85, green image , Indicates a blue image.
各原稿の画像を露光する場合、 電荷保持媒体上の所定の 位置だけを露光すれば足り、 他の部分に被り等の影響を与 えるこ とが無いようにしなければならないこ とは当然であ り、 そのためには、 例えば露光範囲以外をマスク して露光 を行えばよい。 また、 感光体電極 22 bおよび電荷保持媒体 電極 21 bをそれぞれス ト ライ プ状に形成し、 且つ、 感光体 電極 22 bと電荷保持媒体電極 21 bが略直交するように対向 させ、 露光したい部分にのみ所定の電圧を印加するように してもよいものである。  When exposing the image of each document, it is sufficient to expose only a predetermined position on the charge holding medium, and it is natural that the other parts should not be affected by the covering or the like. For this purpose, for example, exposure may be performed using a mask outside the exposure range. Also, it is desirable to form the photosensitive member electrode 22b and the charge holding medium electrode 21b in a strip shape, and to expose the photosensitive member electrode 22b and the charge holding medium electrode 21b so as to be substantially orthogonal to each other for exposure. A predetermined voltage may be applied only to the portion.
なお、 露光位置がずれたりなどして再度露光を行う場合 には、 上述した静電潜像消去方法のいずれかを用いて一旦 静電潜像を消去し、 再度位置合わせを行って露光を行えば よい。  When re-exposure is performed due to a shift in the exposure position or the like, the electrostatic latent image is temporarily erased using any of the above-described electrostatic latent image erasing methods, and the alignment is performed again to perform exposure. It is good.
以上のよ う にして当該ページに割り当てられている原稿 の画像の R,G,Bの静電潜像の形成が終了すると、 次には 第 5図に示した電位読取方法のいずれかを用いて当該静電 潜像を読み取り、 電気信号として適当な画像処理装置に取 り込む。 そして、 ト リ ミ ング、 濃度調整、 あるいは色調調 整等の画像処理を必要に応じて行い、 最終的にカ ラースキ ャ ナに供給してフ ィ ルムに出力する。 そのための構成の一 例を第 14図に示す。 After the formation of the R, G, and B electrostatic latent images of the image of the original document assigned to the relevant page is completed as described above, the potential reading method shown in FIG. 5 is then used. The electrostatic The latent image is read and taken into an appropriate image processing device as an electric signal. Then, image processing such as trimming, density adjustment, or color tone adjustment is performed as necessary, and finally supplied to a color scanner and output to a film. FIG. 14 shows an example of a configuration for that purpose.
まず読み取り装置 30において、 電荷保持媒体 21に記録さ れた静電潜像を読み取る。 これは上述した静電潜像読み取 り方法を用いて電荷保持媒体 21に記録された静電潜像を読 み取りヘッ ド 32によ り読み取る。 読み取ったアナログデー タは増幅器 33にて増幅されて画像処理装置 31に出力される。 画像処理装置 91においては、 まず、 デジ タル変換 34により、 読み取り装置 90から供給された R,G ,Bのアナログデータ は所定のビッ ト数のデジタルデータに変換され、 その後、 ト リ ミ ング、 色変換等の処理が行われる。 第 14図におい ては ト リ ミ ング、 色変換、 にごり補正の順序で処理が行わ れるようになされている。 ト リ ミ ング 35は、 各原稿の画像 データから割付台紙で指定された範囲のみを抽出する処理 を行うものであり、 例えば、 取り込んだ画像を CRT等に表示 し、 抽出する範囲を指定することで行う ことができる。 色 変換 3Bは R ,G,Bのデータを C,M,Y,Kのデータに変換す る処理を行うものであ り、 色変換 36で得られた C,Μ,Υ ,Κ のデータは次ににごり捕正 97によりにごり捕正が行われ、 C ,M,Y ,Kのデータはイ ンキのにごりを考慮して、 C' , Μ' ,Υ' ,Κ' へ変換される。 これによりイ ンキのにごり による印刷画像のにごりを回避することができる。 にごり 捕正がなされた画像データは、 次に網点処理 98により網点 処理が施される。 網点処理は、 例えば第 1 5図に示すよう に画像濃度に応じて網点の大きさを変えるこ とにより行い、 白っぽい場合は第 1 5図( a )に示すような網点、 中間のグ レーの場合は第 1 5図(b )に示すような 5 0 %の網点、 黒 っぽい場合は第 1 5図( c )に示すような網点となる。 こ の ように網点のピッ チは変えず画像濃度に応じて網点の大き さを変えるこ とによって行っている。 First, the reading device 30 reads an electrostatic latent image recorded on the charge holding medium 21. In this method, the electrostatic latent image recorded on the charge holding medium 21 is read by the reading head 32 using the above-described electrostatic latent image reading method. The read analog data is amplified by the amplifier 33 and output to the image processing device 31. In the image processing device 91, first, the R, G, and B analog data supplied from the reading device 90 is converted into digital data of a predetermined number of bits by the digital conversion 34, and then trimming, Processing such as color conversion is performed. In FIG. 14, processing is performed in the order of trimming, color conversion, and blur correction. Trimming 35 is a process for extracting only the range specified by the layout sheet from the image data of each document.For example, displaying the captured image on a CRT or the like and specifying the range to be extracted Can be done with The color conversion 3B converts the data of R, G, B into data of C, M, Y, K. The data of C, Μ, Υ, Κ obtained by the color conversion 36 is Next, dust correction is performed by dust detection 97, and the data of C, M, Y, and K are converted into C ', Μ', Υ ', and デ ー タ' in consideration of ink smear. This makes it possible to prevent the print image from being smeared by ink smear. Smell The corrected image data is then subjected to halftone processing by halftone processing 98. The halftone process is performed by changing the size of the halftone dot according to the image density as shown in FIG. 15, for example, and when it is whitish, the halftone dot as shown in FIG. In the case of gray, halftone dots are 50% as shown in Fig. 15 (b), and when they are dark, halftone dots are as shown in Fig. 15 (c). In this manner, the pitch of the halftone dots is not changed, but the size of the halftone dots is changed according to the image density.
こ の網点の形成は、 例えば、 第 1 6図に示すように ド ッ ト ジ ェ ネ レー タによる方法を使用すればよい。 こ の方法に ついて概略説明すると、 1網点が第 1 6図( a )示すように ものであった場合に、 図のような重み付けをしておき、 1 網点に相当する画像の濃度レベルが第 1 6図(b )に示すよ うに 8であったとする と、 重み付けの値と画像のレベル 8 とを比較し、 濃度レベルが重みの値を越えている部分を第 For example, a method using a dot generator as shown in FIG. 16 may be used to form the halftone dots. The outline of this method is as follows. If one halftone dot is as shown in Fig. 16 (a), weighting is performed as shown in the figure, and the density level of the image corresponding to one halftone dot is calculated. If the value is 8 as shown in Fig. 16 (b), the weighting value is compared with the level 8 of the image.
1 6図( c )に示すように黒とする。 こう して濃度レベルに 応じた大きさの網点を形成するこ とができる。 16 Black as shown in Figure (c). In this way, halftone dots having a size corresponding to the density level can be formed.
網点処理が施された画像データは網点処理の結果に基づ いて露光処理 99により露光処理が施され、 カ ラ ースキ ャ ナ (図示せず) に供給され、 出力 ド ラ ムに巻回されたフ ィ ル ム の露光が行われるこ とになる。  The halftone-processed image data is subjected to an exposure process by an exposure process 99 based on the result of the halftone process, supplied to a color scanner (not shown), and wound around an output drum. The exposed film is exposed.
なお、 第 1 4図は信号処理の流れのみを示した図であり、 装置の構成としては、 デジ タ ル変換された画像データ、 あ るいは網点処理の結果得られた画像データ等を格納する記 憶装置、 カラー CRT等の表示装置、 キーボー ドやマ ウ ス等の 入力装置等を具備するものであることは当然である。 FIG. 14 is a diagram showing only the flow of signal processing, and the device is configured to store digitally converted image data, image data obtained as a result of halftone dot processing, and the like. Storage devices, display devices such as color CRTs, keyboards and mice, etc. It is a matter of course that the device is provided with an input device and the like.
以上、 主にカ ラ ー画像を対象とした集版シ ステムに関し て説明したが、 勿論、 モ ノ ク ロ画像、 モ ノ ク ロ文字を対象 とする集版システムへの応用も可能であるこ とは明らかで あ  As mentioned above, the plate-collecting system mainly for color images has been described. However, it is needless to say that application to a plate-collecting system for monochromatic images and monochromatic characters is also possible. Is obvious
従来、 電気的あるいはコ ン ピュータによる集版が主に力 ラーを対象にしてきたのは色ずれを生じることな く色数分 だけの多く の色分解版を扱う手間が非常に大変であったこ とと、 モ ノ ク ロに対しては逆に手作業でもできないことは ないためと、 コス トがかかることなどが理由であった。 つ ま り、 モ ノ ク ロに対しては電子集版システムのコ ス トパフ オ ーマ ンスが悪かったからである。  In the past, electrical or computer-based plate collection has mainly focused on color printers because it was extremely difficult to handle as many color separations as there are several colors without causing color shift. On the other hand, there was nothing that could not be done by hand on a monocle, and the cost was high. In other words, the cost performance of the electronic compiling system was poor for monocrocs.
これに対して、 本発明によれば、 コ ス トパフ ォ ーマ ン ス を悪化させていたレ イ ァゥ ト部分に要する計算処理が不要 となり、 モ ノ ク ロに対する電子集版システムのコ ス ト ノ、'フ オ ーマ ンスを大幅に改善できるものである。  On the other hand, according to the present invention, the calculation processing required for the layout part which deteriorated the cost performance is not required, and the cost of the electronic plate collection system for the monocro is eliminated. It can greatly improve the performance.
産業上の利用可能性  Industrial applicability
本発明の電荷保持媒体を用いた印刷版、 その製造方法及 び電荷保持媒体を用いた集版シ ステムは、 印刷の製版、 集 版の分野に広く適用されるものである。  The printing plate using the charge holding medium, the method for producing the same, and the plate collection system using the charge holding medium of the present invention are widely applied to the fields of plate making and plate printing.

Claims

請 求 の 範 囲 The scope of the claims
1 . 導電性基板上に電荷保持層と トナー層で形成された画 線部を有する こ とを特徴とする電荷保持媒体を用いた印刷 版 1. A printing plate using a charge holding medium, which has an image portion formed of a charge holding layer and a toner layer on a conductive substrate.
2. 導電性基板と電荷保持層とからなる電荷保持媒体と、 感光体との間に所定の電圧を印加し、 感光体側から所定の パター ンを露光するこ とによつて前記電荷保持層に所定の パター ンを有する静電潜像を形成する第 1 の工程と、 前記 第 1 の工程により得られた電荷保持層上の静電潜像に対し て トナー現像、 定着を行う第 2の工程と、 前記第 2の工程 により得られた トナー像以外の部分の電荷保持層を除去す る第 3 の工程とを備えることを特徴とする電荷保持媒体を 用いた印刷版の製造方法。  2. A predetermined voltage is applied between the photoreceptor and a charge holding medium composed of a conductive substrate and a charge holding layer, and a predetermined pattern is exposed from the photoreceptor side. A first step of forming an electrostatic latent image having a predetermined pattern, and a second step of performing toner development and fixing on the electrostatic latent image on the charge holding layer obtained in the first step And a third step of removing a portion of the charge holding layer other than the toner image obtained in the second step. A method for manufacturing a printing plate using a charge holding medium.
3. 感光体と電荷保持媒体とを対向させて配置し、 且つ前 記感光体と前記電荷保持媒体との間に所定の電圧を印加し た状態で前記感光体側から印刷原稿の画像を所定の倍率お よび方向で所定の位置に露光するこ とによって、 前記電荷 保持媒体上に前記印刷原稿の画像の静電潜像を形成し、 前 記静電潜像の電荷を読み取りセンサによって読み取るこ と を特徴とする電荷保持媒体を用いた集版シ ス テ ム。 3. A photoreceptor and a charge holding medium are arranged facing each other, and a predetermined voltage is applied between the photoreceptor and the charge holding medium. An electrostatic latent image of the image of the print document is formed on the charge holding medium by exposing a predetermined position at a magnification and a direction, and the charge of the electrostatic latent image is read by a reading sensor. A plate collection system using a charge retention medium characterized by the following.
PCT/JP1990/001198 1989-09-21 1990-09-19 Printing press using charge retaining medium, its manufacturing method and stripping system using charge retaining medium WO1991004518A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP24543089 1989-09-21
JP1/245430 1989-09-21
JP1/299168 1989-11-17
JP29916889A JPH03158867A (en) 1989-11-17 1989-11-17 Copying system using electrostatic charge holding medium

Publications (1)

Publication Number Publication Date
WO1991004518A1 true WO1991004518A1 (en) 1991-04-04

Family

ID=26537225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/001198 WO1991004518A1 (en) 1989-09-21 1990-09-19 Printing press using charge retaining medium, its manufacturing method and stripping system using charge retaining medium

Country Status (2)

Country Link
EP (1) EP0444211A4 (en)
WO (1) WO1991004518A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125032A (en) * 1978-03-22 1979-09-28 Dainippon Printing Co Ltd Method of making flat printing plate
JPS6149895A (en) * 1985-06-24 1986-03-11 Konishiroku Photo Ind Co Ltd Production of printing plate
JPS62109062A (en) * 1985-11-07 1987-05-20 Ricoh Co Ltd Printing original plate for electrophotoengraving

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE598591A (en) * 1959-12-28
JPH0248895B2 (en) * 1982-02-23 1990-10-26 Mitsubishi Paper Mills Ltd HEIBANINSATSUHAN
US4628017A (en) * 1984-11-02 1986-12-09 Ricoh Company, Limited Electrostatic image forming method
JPS6368858A (en) * 1986-09-10 1988-03-28 Dainippon Ink & Chem Inc Printing plate manufacturing method and manufacturing device
DE3883811T2 (en) * 1987-03-09 1994-02-24 Mitsubishi Paper Mills Ltd Manufacturing method of lithographic printing plates, use of such a printing plate for printing and printing method with such a printing plate.
EP1033706B1 (en) * 1988-05-17 2004-03-03 Dai Nippon Printing Co., Ltd. Electrostatic information recording medium and electrostatic information recording and reproducing method
DE69023042T2 (en) * 1989-03-24 1996-03-21 Victor Company Of Japan Photosensitive medium for recording latent charge image and reproduction process therefor.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125032A (en) * 1978-03-22 1979-09-28 Dainippon Printing Co Ltd Method of making flat printing plate
JPS6149895A (en) * 1985-06-24 1986-03-11 Konishiroku Photo Ind Co Ltd Production of printing plate
JPS62109062A (en) * 1985-11-07 1987-05-20 Ricoh Co Ltd Printing original plate for electrophotoengraving

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0444211A4 *

Also Published As

Publication number Publication date
EP0444211A1 (en) 1991-09-04
EP0444211A4 (en) 1993-03-17

Similar Documents

Publication Publication Date Title
US5638103A (en) Method for recording and reproducing information, apparatus therefor and recording medium
US5424156A (en) Electrostatic information recording medium and method of recording and reproducing electrostatic information
JP3046649B2 (en) Electrostatic information recording medium and electrostatic information recording / reproducing method
US5731116A (en) Electrostatic information recording medium and electrostatic information recording and reproducing method
US5439768A (en) Electrostatic information recording medium and electrostatic information recording and reproducing method
KR100239961B1 (en) Electrostatic information recordong medium and apparatus
US4527886A (en) Electrophotographic recording apparatus having both functions of copying and printing
US5414496A (en) Method for manufacturing a printing plate using a charge carrier medium and method for page make-up using a charge carrier medium
WO1991004518A1 (en) Printing press using charge retaining medium, its manufacturing method and stripping system using charge retaining medium
JP2842870B2 (en) Electrostatic image recording / reproducing method
JP2667222B2 (en) Electrostatic image recording medium
JP2619948B2 (en) Injection charge control type photoconductor
KR100223697B1 (en) Method of recording and producing information, apparatus thereof and recording mediem
JP2716975B2 (en) Charge holding medium on which voice and image information are recorded, and method for recording and reproducing the same
JP2980349B2 (en) Electrostatic information recording method
JP2826119B2 (en) Photoreceptor having photoelectron doubling effect and electrostatic image recording method
JP2795851B2 (en) Electrostatic image recording medium and charge holding medium
JP2732855B2 (en) Electrostatic camera with voice information input function
JP2962780B2 (en) Photoreceptor and electrostatic information recording method
JP2835368B2 (en) Image forming method and image forming apparatus
JPH01296255A (en) Electrostatic charge retaining medium
JPH0256557A (en) Charge holding medium
JP2980350B2 (en) Electrostatic information recording method
JPH01298860A (en) Input scanner reading electrostatic latent image
JPH01290368A (en) Electrostatic latent image picture processing system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990913869

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990913869

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1990913869

Country of ref document: EP