WO1991002414A1 - Duplex radio apparatus - Google Patents
Duplex radio apparatus Download PDFInfo
- Publication number
- WO1991002414A1 WO1991002414A1 PCT/JP1990/001014 JP9001014W WO9102414A1 WO 1991002414 A1 WO1991002414 A1 WO 1991002414A1 JP 9001014 W JP9001014 W JP 9001014W WO 9102414 A1 WO9102414 A1 WO 9102414A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- reception
- time
- frequency
- transmission
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 81
- 238000004891 communication Methods 0.000 claims description 63
- 230000005236 sound signal Effects 0.000 claims description 61
- 238000000034 method Methods 0.000 claims description 24
- 238000007906 compression Methods 0.000 claims description 19
- 230000006835 compression Effects 0.000 claims description 18
- 238000001514 detection method Methods 0.000 claims description 13
- 239000002131 composite material Substances 0.000 claims description 5
- 230000006870 function Effects 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 230000006837 decompression Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 230000007423 decrease Effects 0.000 abstract description 3
- 238000012545 processing Methods 0.000 description 37
- 238000010586 diagram Methods 0.000 description 27
- 230000001360 synchronised effect Effects 0.000 description 8
- 230000005684 electric field Effects 0.000 description 4
- 102100032533 ADP/ATP translocase 1 Human genes 0.000 description 3
- 102100021879 Adenylyl cyclase-associated protein 2 Human genes 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 101710137132 Adenylyl cyclase-associated protein 2 Proteins 0.000 description 2
- 101000768061 Escherichia phage P1 Antirepressor protein 1 Proteins 0.000 description 2
- 101000796932 Homo sapiens ADP/ATP translocase 1 Proteins 0.000 description 2
- 101100140267 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RDS2 gene Proteins 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 101150028791 taf4 gene Proteins 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 101710148586 ADP,ATP carrier protein 1 Proteins 0.000 description 1
- 101710111394 ADP,ATP carrier protein 1, mitochondrial Proteins 0.000 description 1
- 101710148588 ADP,ATP carrier protein 2 Proteins 0.000 description 1
- 101710165307 ADP,ATP carrier protein 2, mitochondrial Proteins 0.000 description 1
- 101710102716 ADP/ATP translocase 1 Proteins 0.000 description 1
- 101710102718 ADP/ATP translocase 2 Proteins 0.000 description 1
- 102100026396 ADP/ATP translocase 2 Human genes 0.000 description 1
- 101710102715 ADP/ATP translocase 3 Proteins 0.000 description 1
- 101100326580 Arabidopsis thaliana CAD4 gene Proteins 0.000 description 1
- 101100123053 Arabidopsis thaliana GSH1 gene Proteins 0.000 description 1
- 101150081304 CAD2 gene Proteins 0.000 description 1
- 101100508406 Caenorhabditis elegans ifa-1 gene Proteins 0.000 description 1
- 101100508407 Caenorhabditis elegans mua-6 gene Proteins 0.000 description 1
- 101150096994 Cdx1 gene Proteins 0.000 description 1
- 102100032919 Chromobox protein homolog 1 Human genes 0.000 description 1
- 102100026329 Ciliogenesis and planar polarity effector 2 Human genes 0.000 description 1
- 101150066284 DET2 gene Proteins 0.000 description 1
- 101100154842 Danio rerio twsg1b gene Proteins 0.000 description 1
- 101000897856 Homo sapiens Adenylyl cyclase-associated protein 2 Proteins 0.000 description 1
- 101000797584 Homo sapiens Chromobox protein homolog 1 Proteins 0.000 description 1
- 101000855378 Homo sapiens Ciliogenesis and planar polarity effector 2 Proteins 0.000 description 1
- 101000893549 Homo sapiens Growth/differentiation factor 15 Proteins 0.000 description 1
- 101000692878 Homo sapiens Regulator of MON1-CCZ1 complex Proteins 0.000 description 1
- 101000836079 Homo sapiens Serpin B8 Proteins 0.000 description 1
- 101000798702 Homo sapiens Transmembrane protease serine 4 Proteins 0.000 description 1
- 101710091102 Probable cinnamyl alcohol dehydrogenase 2 Proteins 0.000 description 1
- 102100026436 Regulator of MON1-CCZ1 complex Human genes 0.000 description 1
- 101100381325 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PCA1 gene Proteins 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/54—Circuits using the same frequency for two directions of communication
- H04B1/56—Circuits using the same frequency for two directions of communication with provision for simultaneous communication in two directions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/66—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission
- H04B1/662—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission using a time/frequency relationship, e.g. time compression or expansion
Definitions
- the present invention relates to a simultaneous transmission / reception wireless communication device that transmits and receives radio waves of a single or two adjacent frequencies.
- FIG. 20 An outline configuration of a simple device of “narrowband voice wireless communication device” is shown.
- two narrow-band voice wireless communication devices B1 and B2 are devices having the same configuration, and both use a single frequency ⁇ for transmission and reception. Then, a transmitter ⁇ and a receiver R, a control switch SW for switching and operating them at a fixed cycle, a synchronization generator SYCGEN for regulating the cycle and synchronizing with each other, a speaker SP, Built-in microphone MIC and antenna coupler AT.
- the ANT is an antenna (in the drawing, the reference numerals of the respective members are attached with lower case suffixes 1 and 2 indicating the distinction between the wireless communication devices Bl and B2).
- FIG. 21 shows a time chart of a communication performed between the two narrow-band voice wireless communication devices B1 and B2 in FIG. 20 described above, again ignoring the subscripts.
- VM is the transmission voice
- SWT is the switching status of the control switch SW
- VSP is the reception voice.
- T is the transmission time
- R is the reception time
- T0 is the transmission / reception switching period.
- the transmission voice VM is naturally Half of the time is the received voice VSP, which is thinned out intermittently, and is a form of communication that reaches the other party intermittently. Fortunately, there is considerable redundancy in voice information, so it is known that transmission and reception operations can be carried out if the repetition frequency F 0 is set appropriately, but the voice you hear Is unnatural and very hot.
- the transmitting side transmits intermittent radio waves by modulating the carrier with a time-division and compressed call time of the audio signal
- the receiving side transmits the radio waves.
- Simultaneous transmission / reception wireless communication devices have been devised, which time-expand the audio signal obtained by receiving and detecting the signal, and demodulate it into the original audio signal by connecting them in synchronization with the time division of the transmitting side.
- the method of synchronization is as follows: one of the wireless communication devices of the communication determines that the master station J, that is, the active side, determines the time allocation of the time division of the modulated signal during transmission, and the other wireless communication device of the communication "Slave station", that is, the passive side, so as to synchronize with this.
- FIG. 10 is a diagram showing the configuration, and is a diagram corresponding to FIG. 20 described above.
- the configuration is not different from that of FIG.
- all subscripts shown in lower case in FIG. 20 are distinguished by changing them to upper case in FIG.
- FIG. 11 shows a timing chart of communication performed between two narrow-band voice wireless communication devices B 1 and B 2. This is a view corresponding to FIG. 21 described above. Ignoring the suffixes, VM is a transmission audio signal, SWT is a state of switching between transmission and reception by the control switch SW, and VSP is a reception audio signal. The operation of SWT is only half of T0 when viewed from the intermittent period of the audio signal.
- the transmission / reception audio signal from the wireless communication device B 1 to the wireless communication device B 2 is a solid line,
- the transmission / reception audio signals from B2 to B1 are shown by dotted lines.
- the communication in FIG. 11 differs from that in FIG. 21 in that the audio signal is subjected to time compression and time expansion processing.
- the transmission audio signal VM input from the microphone mouth phone MIC is “time-divided” at equal time intervals (1) (5) (in the case of the dotted line, the same applies hereinafter), and Time compression ”2 (6) Processing is applied, and the carrier is modulated as an intermittent signal of time-compressed audio and transmitted as intermittent radio waves.
- the receiving side receives and detects such radio waves.
- the intermittent signal of the time-compressed audio obtained in (2) is subjected to double “time expansion” and joined together and demodulated into the signal of (2), that is, a continuous audio signal, and output to the beaker SP. Is done.
- FIG. 13 is a block diagram of the transmission device in the case of the analog processing method. (However, subscript 1 is omitted.)
- 0SC is a reference oscillator with a clock frequency of 2fCLK, and a clock frequency fcLK obtained by dividing by a 1Z2 frequency divider DIV is input to the switch switching controller SWCONT.
- the switch switching controller SWCONT controls a control switch SW, that is, three interlocking switches SWa, SWb, and SWc.
- FIG. 12 is an operation timing chart of FIG.
- the pass band is limited to ⁇ 3 kHz by a low-pass filter AA LPF that eliminates aliasing noise (sample bandwidth is not limited to audio)
- AA LPF low-pass filter
- the clock frequency of ASR a is changed to 2fcu, and the speed is twice as fast as the previous writing speed through the switch SWa (thus, the half of the accumulation time Ts).
- the time-compressed audio signal is
- an audio signal is written to the analog shift register ASR b side at the clock frequency ⁇ cll £ passing through the switch SW b and the accumulation time T s, and the writing of the audio signal is performed.
- the clock frequency is changed to 2 fci K by switching the switch SWb, and at the same time, at twice the speed of the previous writing speed through the switch SWa (thus, half of the storage time T s).
- the temporally compressed audio signal is output to the band-limiting filter BLLPF. This is the second column in FIG.
- the output of the band-limiting filter BLLPF has a space of “T s —T cj, that is, half the time of Ts.
- the operations in columns i and 2 are repeated alternately, and the intermittent audio signal in column 3 in FIG. 12 is obtained from the output of the band-limiting filter BLLPF.
- the intermittent audio signal in column 3 is nothing but the signal (1) in Fig. 11 (2). This concludes the explanation of the processing on the transmitting side and the analog “time division” and “time compression” of audio.
- the processing on the receiving side is performed by adding a suffix 2 to each code in FIG. 13 and using VM as the intermittent compressed voice signal obtained by reception detection. , deprived AALPF, clock frequency i c and operates a Control This setup Rorusui Tsu Chi SW reversed switching of the 2 f c, made possible by removing the BLLPF.
- FIG. 16 is a block diagram showing a somewhat detailed configuration of the wireless communication device B 1 (also B 2 on the other end of the communication) in FIG.
- the reference oscillator 0SC1 triggers the flip-flop FF1 at a frequency of several Hz.
- the flip-flop F F1 alternately operates and stops the transmitting unit T X1 and the receiving unit R X1.
- the terminal Q1 side instructs the operation of the transmission unit TX1 and the compression of the above-mentioned audio for 1/2 hour, and the unit "5: 1" operates the reception unit RX1 and twice the time of the above-mentioned audio. Instruct extension.
- the audio signal from the microphone MIC 1 is "time-division” and “time-compressed” by the audio processing unit VSD, and the time-compressed signal such as 2 in Fig. 12 (3 in Fig. 12) is output.
- the signal is modulated by the transmitter TX1 and is transmitted from the antenna ANT1 as intermittent radio waves via the antenna coupler AT1 and the antenna ANT1.
- the receiving unit RX1 which starts operation with the signal on the terminal 1 side receives the disconnected radio wave emitted from the wireless communication device B2 on the other side.
- the intermittent radio wave is detected by the detector DET 1 via the front-end RXFE 1 (high-frequency amplifier, the middle of the mixer) and the input of the wave amplifier) and the intermediate-frequency amplifier IFA 1.
- the signal processing unit VSH 1 inputs one unit of the intermittent part during the period when Q 1 is at the high level, and performs time expansion during the period until the next time it goes to the high level.
- the TSG1 and the rectangular wave signal RSG1 output to the line RL1 from the " ⁇ " terminal toward the receiver RXI properly regulate the alternate repetition of the above two operations.
- Fig. 17 is a block diagram of an example of a slave-side receiver that uses the device shown in Fig. 16 as the master station and synchronizes with the slave station.
- Fig. 18 is a block diagram showing the main parts of Fig. 16 and Fig. 17 together, focusing on the parts related to synchronization to make the explanation easier to understand. This is a periodic timing chart.
- the master station does not need to take care of synchronization, and the slave station synchronizes with the master station. That is, the slave station extracts the carrier signal from the input terminal of the detector DET2, and uses the carrier detector CAD2 and the fall detector CAP2 to perform the carrier detection signal shown in FIG. TP2 of pulse signal ⁇ ⁇ is generated from CU2's falling CU2, and this is used as a trigger signal, and the monostable multivibrator provided in place of the flip-flop FF1 in Fig. 16
- the signal is applied to MB2, and from its terminals Q2 and 2, a rectangular wave signal TSG2 and a rectangular wave signal RSG2 that regulate audio processing are output to ensure synchronization. '
- the monostable multivibrator MB 2 when the power is turned on or in standby, the monostable multivibrator MB 2 is set to the “ ⁇ 2” side and is in the reception standby state.
- the detection signal ⁇ is extracted from the reception carrier ⁇ of the intermediate frequency amplifier IF2, and it is extracted by the detector CAP 2 (differential circuit) using the falling edge of the detection signal ⁇ and the trigger pulse TP Since this pulse is a signal that the transmission of the master station B1 has ended and the reception operation has started, this trigger pulse T? 2 inverts the monostable multivibrator MB2 and a square wave transmission switching signal.
- TSG 28 and square wave reception switching signal RSG 27 can be output, except that the inversion duration of the monostable multivibrator MB 2 is set to the reception time of the master station B 1 and B 1 is used for transmission. Migrated At this time, B2 automatically shifts to the receiving state so that synchronization is ensured.
- a flip-flop circuit is provided in the slave station instead of the monostable multivibrator MB2, and both the falling and rising edges of the detection signal ⁇ ⁇ detected from the reception carrier of the intermediate frequency amplifier IFA 2 are used. It is also useful to drive the flip-flop circuit with the detected trigger pulse.
- the above-described time compression ratio is detected by the slave station, and synchronization is facilitated by adjusting the transmission / reception ratio of the slave station to that.
- the standard method for achieving synchronization is the independent synchronization method, that is, two communicating radio transceivers B1 and B2 have reference oscillators that are separate from each other, and transmit and receive timing signals are created from these reference signals to correlate.
- the degree of freedom of communication increases, the synchronization error decreases, and the stability of communication increases.
- FIG. 14 is a block diagram in a case where audio is digitally processed.
- the transmission voice VM is the same as above
- the band is limited by the AA LPF, converted to a digital value by the A / D converter ADC, and stored at a predetermined address of the random access memory RAM at the speed of eating (for example, 8 kHz). . After this processing has been performed for a certain period of time, this is read out at twice the normal speed (16 kHz), and immediately converted to an analog value by the D / A converter DAC. After the conversion, the processing in the first column of FIG. 12 has been performed.
- the broken output signal in the third column of FIG. 12 becomes the same band limiting filter as described above.
- a voice pitch controller CTR with a built-in micro computer controls the above operation. Therefore, this CTR functions as both SW and SYCGEN in FIG. ( Figures 16 to 18 to be described later are also similar figures). That is, the CTR sends a start signal to each of the two converters ADC and DAC, and for the random access memory RAM, the work for designating the above-mentioned predetermined addresses and changing the speed are performed. Do the work of storing 'reading. On the other hand, on the receiving side, the intermittent compressed audio signal obtained by reception and detection is stored in the block diagram of Fig. By reversing the operation, it is demodulated and output to a normal continuous audio signal in exactly the same way as before.
- This conventional simultaneous transmission / reception wireless communication device has the following problems.
- Another problem is the synchronization problem.
- the present invention can be used sufficiently even when the occupied frequency bandwidth of a transmission radio wave is limited, is excellent in effective use of frequency, has no delay in calling, and further fuzzing.
- the present invention provides a simultaneous transmission / reception system that includes a low-pass filter that suppresses a high-frequency portion of the frequency of an audio signal and restricts the highest modulation frequency to less than half before a time compression device of a transmission unit. It constitutes a wireless communication device.
- the receiver processes the voice signal obtained by the reception and demodulation, and converts it to the high-frequency part cut off by the transmitter of the master station when limiting the maximum modulation frequency. It is desirable to have a configuration that includes a device that creates a pseudo high-frequency component and takes it into account.
- the device that creates the pseudo high frequency component is
- it can be configured to include a device that generates a distortion signal by passing an audio signal obtained by reception and demodulation through a predetermined nonlinear circuit, and a device that limits the band of the distortion signal.
- Both the transmitting section of the master station and the receiving section of the slave station are provided with a device for generating a time-division pattern having the same shape and opposite transmission / reception intervals, and a timing point, that is, both The point at which the phase is used to match the phase of the time division pattern of
- a transmitting unit of the master station is provided with a device for adding a timing tone point to a composite tone signal composed of a plurality of continuous tone signals and adding the divided tone signal to each of the divided compressed audio signals.
- a device that extracts the points is adopted.
- At least the first tone signal of the plurality of tone signals described above is used as a spare signal, and a predetermined phase position of a predetermined tone after the second flower is set as the above-mentioned timing point. At this time, capturing the timing point is accurate.
- a device that compresses the time an AD converter for the audio signal, a device that writes the converted digital signal to the memory, and a signal that is written after half or more than one half of one division
- a device for compressing and reading the compressed data from the memory and a DA converter for converting the read signal into a divided compressed audio signal.
- a device for extending the time is divided into an AD converter for the divided compressed audio signal, a device for writing the intermittent digital signal obtained by conversion by the AD converter to the memory, and the digital signal And a DA converter that converts the read signal into the original divided audio signal.
- the ratio of compression and decompression during that time is 1 / n and n times (n is a positive real number of 2 or more).
- FIG. 1 is a timing chart of the simultaneous transmission / reception wireless communication method of the present invention.
- FIG. 2 is a diagram extracting and showing only a part necessary for explanation of simultaneous transmission / reception wireless communication of a parent station and a slave station.
- Fig. 4 is a block diagram of the configuration of the master and slave stations, Fig. 4 is a block diagram of the audio processing unit on the transmitting side, Fig. 5 is a block diagram of the audio processing unit on the receiving side, and Fig. 6
- the figure shows a block diagram of a device that adds a pseudo high-frequency component to demodulated audio
- FIG. 7 shows a block diagram of another device that adds a pseudo high-frequency component to demodulated audio
- FIG. 8 shows a conventional tone Signal diagram, Fig.
- FIG. 10 is a block diagram showing the configuration of a conventional wireless communication device and a wireless communication method
- FIG. 11 is a block diagram showing the communication timing
- FIG. 13 is a block diagram in the case where the above processing is performed in an analog manner
- FIG. 14 is a digital chart of the above processing.
- Block diagram, Fig. 15A shows the energy distribution of voice
- Fig. 15B shows the relationship between filter characteristics and intelligibility
- Fig. 16 shows the conventional master station wireless communication.
- Fig. 17 is a block diagram of a conventional wireless communication device on the local station side
- FIG. 18 is a simplified drawing of both the parent and child wireless communication devices focusing on their synchronization.
- a block diagram is the synchronization timing chart
- Fig. 20 is a block diagram showing the configuration of a conventional wireless communication device
- Fig. 21 is the block diagram.
- the timing charts of the signals at each part of the communication are shown in Figs. 22a-d, which show the confidential stories by visual representation to facilitate understanding, and Fig. 23a-d, the contents of the fusing noise.
- FIG. 22a-d show the confidential stories by visual representation to facilitate understanding
- Fig. 23a-d the contents of the fusing noise.
- LPFQ Band-limited filter
- VMQ Voice with limited maximum frequency
- F0 Switching frequency
- VS Demodulated voice
- VARAMP Variable amplifier amplitude
- VHQ Pseudo high band component
- SUM Adder
- VSX Original voice NLIN
- Non-linear circuit, CTR Controller with built-in micro processor
- TW Q Synchronous tone signal
- TDG Synchronous generator
- VMQ Audio with limited high frequency, VSS Intermittent compressed sound, TOS; sound processing unit, MO DQ; modulation unit, MU; adder,
- D EMOD D Detector, TWQ: Synchronous tone signal, RDS: Synchronous processor, R 0 S: Audio processor, SWQ: Switch circuit, TDG: Synchronous generator, TQ, RQ: High frequency section, TSQ; Transmission section, RSQ: Receiving section, RDS: Synchronization processing section, CUQ 2: Timing point, DT1, DT2: Tone signal, B: Radio communication device (subscripts 1, 2 2), VM; transmission voice, VSP; reception voice, SWa, SWb, SWc; interlocking switch, SWCONT; switch switch Controller, AA LPF; aliasing low-pass filter,
- ASR a ASR b
- Analog shift register, BLLPF Band-limited filter
- ADC 5 AD converter RAM; Random access memory, DAC; D / A converter, OSC; Reference oscillator, FF; Top flop, TX: Transmitter, RX: Receiver, MIC: Microphone, VSD; Voice processor, AT: Antenna coupler,
- ANT Antenna
- RXFE Front end
- IFA Intermediate frequency amplifier
- DET Detector
- VSH Signal processing unit
- PA Transmission output unit
- SP Speaker
- DET Detector
- CAD Carrier detection Bowl
- CAP falling detector
- MB monostable multivibrator
- TSG transmission / reception switching signal.
- the upper limit of the modulation frequency is reduced to 1/2 by using an ⁇ -bass filter LPFQ (hereinafter, band limiting filter), and the effective maximum modulation frequency is limited (for example, , 1.5 kHz).
- LPFQ band limiting filter
- Fig. 4 shows the configuration. In FIG. 4, this band is added to the audio signal after the microphone MIC, that is, before the AA LPF in FIG. By placing a limiting filter LPFQ, a voice VMQ with a limited maximum frequency is obtained.
- Fig. 15A is a graph showing the distribution of voice energy with respect to frequency.
- the frequency bandwidth of the voice to be used is limited to ⁇ 1.5 kHz by limiting with the band-limiting filter LPFQ (characteristic curve L)
- the energy of the voice is It can be seen that about 90% is satisfied.
- Fig. 15B shows the relationship between the clarity and the frequency by the characteristic curve L of the band-pass filter LPFQ, which is approximately 60 to 70 at a frequency bandwidth of ⁇ 1.5 kHz. A degree of clarity has been obtained.
- the present invention performs the following processing on the received voice.
- the receiving unit of the slave station creates a pseudo high-frequency component that simulates the high-frequency component cut off by the transmitting unit of the master station, and combines it with the audio signal obtained by reception and demodulation and outputs it to the speaker SP. is there.
- FIG. 6 shows one example.
- the amplitude of the voice VS obtained by reception and demodulation is limited by an amplitude limiter LIM, and its frequency is limited to 1.5 to 3 kHz by a bandpass filter BPF, and a low-pass filter LPF. And the high frequency region is gently attenuated and input to the variable amplifier VARAMP.
- the amplification factor of the variable amplifier V A RAMP changes the amplitude of the audio V S according to the signal detected by the amplitude detector D ET.
- the desired pseudo high-frequency component VHQ is obtained at the output of the variable amplifier V ARAM P, and this is synthesized with the voice VS by the adder SUM to obtain a natural voice VSX close to the original voice. Become.
- Fig. 7 shows another method for creating a pseudo high-frequency component.
- the sound VS obtained by the reception demodulation passes through the non-linear circuit NLIN via the amplifier AMP to generate harmonics, the frequency band of which is adjusted by the bandpass filter BPF, and the attenuator ATT
- the strength is adjusted to give a pseudo high-frequency component VHQ, which is synthesized with the voice VS by the Kamino SUM to obtain the target sound VSX close to nature.
- a square circuit or other well-known circuits can be conveniently used as the non-linear circuit NLIN.
- Placing F 0 in the range of 1 ⁇ ⁇ to 10 ⁇ ⁇ in a simultaneous transmission / reception wireless communication device is an essential condition in order to obtain voice that has both intelligibility and confidentiality. It turned out to be. Regardless of whether or not various measures are taken as described below, if the frequency deviates from this frequency range, there will be no significant change in intelligibility, but the confidentiality due to human perceptual characteristics will decrease.
- speech is composed of several syllables per second, so if speech is compressed by half the time at a frequency of about 1 Hz to 10 Hz, the blank time and syllables generated by the compression process The illusion that the syllables are dropped occurs, making it difficult to grasp the conversation. 91 Also, the time pitch of 1Z2 doubles the voice pitch (frequency), making it difficult to hear and further increasing the effect.
- the transmission / reception switching frequency F 0 is set in the range of large ⁇ 1 ⁇ ⁇ to 10 Hz, and the radio wave carrying the transmission half-cycle time compressed sound has the third In most cases, it is impossible for a person to listen to the content of the conversation even if the person intercepts it.
- a is a sequence of syllables
- b is a frequency much lower than 1 Hz (from 1 second). Is also a long cycle). Because several syllables are connected, it is difficult to understand the content of the conversation to a large extent and to gain secrecy.
- d is a repetition with time compression frequency much higher than 10 Hz, and syllables are divided finely, but they are continuous almost in time, so the content of the conversation is Can understand with high probability.
- T In mobile communications, T always has the problem of fusing.
- the radio wave frequency f 800 MHz
- the traveling speed is 20 km / h.
- F f is approximately 30 Hz.
- the frequency of fusing noise, F f increases in direct proportion to both the frequency of the radio wave and the speed of movement. As a matter of course, the larger the F f, the more disturbance in the call and the greater the discomfort.
- Fig. 23 a to d are diagrams explaining the contents of fading noise, where the horizontal axis is time, a is the change in electric field strength, one point is the reception limit level, b is the switch between reception and transmission, c is The fusing noise that appears in the received detection signal, and d is the noise that appears in the demodulated signal obtained by expanding and combining it. It can be seen that in the demodulated signal, the noise generation interval is widened, the frequency is reduced, and the improvement is made automatically. Due to this effect, the expansion of the service area is achieved.
- F i is proportional to the frequency of the radio wave, so that when the frequency ⁇ ⁇ ⁇ ⁇ , F 0 330 0 ⁇ NO 800.
- the conventional synchronization method that is, the slave station shown in Fig. 17 is a detector
- a pulse signal ⁇ ⁇ 2 is created from the falling CU 2 of the carrier detection signal ⁇ in FIG. 19, and this is used as a trigger signal.
- the method of driving a flip-flop or monostable multivibrator and outputting square wave signals TSG2 and RSG2 that regulate sound processing requires a weak electric field, large noise, and intense noise. In the presence of a single signal, the carrier signal is likely to lose synchronization due to weakening or loss of the carrier signal.
- a timing chart shown in FIG. 1 is used by using a device having a new configuration in which only the parts necessary for the immediate explanation of the master and slave stations are extracted and shown in FIG. Adopt simultaneous transmission / reception wireless communication method.
- Each of the master and slave stations of the present invention has an internal device having the same function, and the configuration of the device is as shown in the block diagram of FIG. .
- a controller CTR with a built-in microprocessor and an antenna coupler AT are added to Fig. 2 in order to operate all signal processing described below in an orderly manner.
- the suffixes 1 and 2 for distinguishing the parent and child of the device are omitted.
- the transmission section of the master station passes the synchronization signal TDG1 that generates the synchronization tone signal TWQ and the audio signal VW1 obtained by the microphone MIC1 through the band-limited filter LPFQ and passes the high-frequency section.
- New audio processing unit T 0 S 1 that generates intermittent compressed audio signal VSS 1 from restricted audio signal VMQ 1, and adder MU 1 that adds signals sent from both and sends it to modulation unit M 0 DQ 1
- the receiving section of the slave station receives the radio wave transmitted from the antenna ANT 1 of the master station by the antenna ANT 2 and generates the synchronous tone signal TWQ of the signals detected by the detecting section D EMOD 2.
- the voice processing unit TOS 1 separates the original transmission voice VM (3 ⁇ 4 1 into TQ 3 (for example, 395 msec)) in the box 1 in the timing chart of FIG. Further, each of them is compressed to 1 / 2.5 to become an intermittently compressed audio signal VSS 1.
- the sync tone signal sent from the sync generator TDG 1 The TW Q and the adder MU 1 are combined to form a modulated signal in column 4, which is sent to the transmitting high-frequency unit TQ 1 via the modulating unit MODQ 1 and transmitted from the antennas ⁇ ⁇ and ⁇ ⁇ ⁇ ⁇ as intermittent radio waves. Is done.
- the transmission section TSQ 1 (TQ 2 in column 2) of the transmission section of the master station and the reception section RSQ 1 (TQ 1 in 3 ⁇ , for example, 18 msec) of the reception section The total is the above-mentioned divided section (TQ 3, 395 msec), and since synchronization between the parent and slave stations is established as described later, each of the slave stations has a reception section (TQ 2 in column 6). , The transmission interval (TQ 1 in column)).
- a time gap Tb (5 msec) is usually placed between the synchronous tone signal period Ta (for example, 25 msec) and the reception interval TQ1.
- the slave station when the above radio wave is received and detected by the detection unit DEM 0 D 2 via the reception high frequency unit RQ 2, the signal of TWQ + VSS 1 in the above column ⁇ ⁇ ⁇ is extracted, and first, the switch SWQ As a result, the synchronization tone signal TWQ is sent to the synchronization processing unit RDS2, and the timing point CUQ2 used to match the phase of the time division pattern of the slave station with that of the master station is extracted. Synchronizes the synchronization signal generated by the local station with it. At the same time, a control signal is also sent to the audio processing unit R 0 S 2, and each divided section of the intermittent compressed audio signal VSS 1 is expanded by a factor of 2.5.
- Traffic light When the above radio wave is received and detected by the detection unit DEM 0 D 2 via the reception high frequency unit RQ 2, the signal of TWQ + VSS 1 in the above column ⁇ ⁇ ⁇ is extracted, and first, the switch SWQ As a result, the synchronization tone signal T
- the signal is demodulated to V S2, and a pseudo high-frequency component V H Q is added to the sound V SX 2, which is almost natural, and output to the speaker SP 2.
- the audio signal input from the microphone of the slave station in response to the above is also time-divided in the same way as the master station, compressed to 1 / 2.5, and intermittently compressed in column 9.
- the audio signal is VSS 2, (in general, the decompression rate does not necessarily have to match that of the master station—slave station according to the compression rate of the slave station—master station. That is, the time TS 1 in FIG. It is not essential that the time TS 2 be equal to TS 2.
- the switching operation that is necessary in the case of being different is performed by the controller CTR by discriminating the parent and the child.) It is transmitted to the transmission section TSQ 2 of the child station in the column 8 on the radio wave of the child station, At the master station, it is received in the receiving section, that is, RSQ 1 in column 3, demodulated (detection 'expansion' ⁇ ⁇ ) into audio signal VS 1 in column ⁇ , and output smoothly.
- the radio wave transmitted by the slave station is not included because the tone signal such as the TWQ is unnecessary. Therefore, when the device shown in FIG. 3 is used as a slave station, its synchronization generator TDG does not generate a synchronization tone signal.
- the tone signal itself for synchronizing has been widely used in the past, but the conventional tone signal for synchronizing is usually generated by a digital circuit as shown in Fig. 8a.
- two (generally plural) tone signals t) T 1 which have successive frequencies different from each other, as shown in FIG.
- DT 2 seam position (generally the predetermined seam position) cc, if Or ideally, a position shifted from the phase by a predetermined value (the phase angle of 720 degrees in the case of Fig. C) is selected as the timing point CUQ2.
- TSQ 1 The rising or falling position of TSQ 1 does not match.
- controller CTR shown in Fig. 3 that regulates the time interval between the two.
- the time position of the synchronous tone signal TWQ and the intermittent compressed audio signal VSS 1 in column ⁇ and the interval between them are regulated with respect to the division break described above, and the transmission of the radio wave of the parent / slave station ⁇ Controller CTR also controls the reception.
- controller CTR also performs an operation of adjusting the synchronization signal of the own station to the master station using the timing point CUQ2 obtained and extracted by the slave station.
- Dotted lines extending from the controller CTR indicate various information for the control and exchange of control signals.
- a permutation or combination of multiple tone signals for selective calling which is already widely used in telephones and the like, has been developed.
- the technique described above can be easily applied to the simultaneous transmission / reception wireless communication device of the present invention.
- a plurality of tone signals DT2, DT2,..., which are successively different in frequency are located at predetermined gap positions or at positions shifted by a predetermined phase angle therefrom.
- the permutation or combination of these multiple tone signals can be made meaningful and used for selective calling of a slave station as in the prior art. It is easy to give various automatic functions to the device by this selective call as before.
- the method of selecting a timing point * including / extracting and selecting / calling a slave station based on a permutation or combination of a plurality of tone signals is such that the modulated signal is It is clear that it can be used not only for analog signals such as, but also for digital signals such as digital data.
- each section of the divided voice VMQ 1 in Fig. 1 is controlled by the controller CTR, digitized by the A / D converter ADC, and then random-accessed.
- the data is input to and stored in the memory RAM, but from the point when the input is performed almost for TQ 2 / TQ 3 hours (generally more than half), the DZA is output at the speed of 1 time TQ 3 ZTQ at the time of input.
- the stored contents are read out to the converter DAC, and the reading ends immediately after the end of the division section.
- the signal thus obtained is the intermittently compressed audio signal V S S 1 in column 4.
- the intermittent compressed audio signal VSS detected and extracted by the slave station that has received the radio wave from the master station is transmitted via the AA LPF and AZD converter ADC as described above, as shown in Fig. 5.
- reading starts at the speed of TQ 1 ZT Q 3 toward the DZA converter DAC, and the reading is started immediately after the start of the input. Ends immediately before the start of reading the next section of the intermittent compressed audio signal VSS. In this way, V S, that is, the demodulated signal V S 2 in column 7 is obtained.
- the difference of this embodiment from the conventional one is the timing of the start of the reading. In the past, reading of memory was started after the input was completed in this case as well.
- FIG. 11 The improvement in the voice delay is clear when the conventional FIG. 11 is compared with FIG. 1 of the present invention.
- the sound is delayed about 1.5 sections, but in Fig. 1, the sound in column (1) arrives in column ( ⁇ ) with a delay of about 0.5 section only.
- the method for improving the signal transmission delay disclosed in the fifth embodiment can be used not only when the modulation is an analog signal such as voice, but also when the modulation is a digital signal.
- ADVANTAGE OF THE INVENTION According to the present invention, it can be used satisfactorily even when the occupied frequency bandwidth of the transmission radio wave is limited, is excellent in effective use of frequency, has no stagnation of delay in speech, and clarity of voice. ⁇ It is possible to provide a simultaneous transmission / reception wireless communication device with extremely high intelligibility.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
- Transceivers (AREA)
Description
明 細 書
同時送受話無線通信機
技術分野 ,
本発明は、 単一または近接する 2つの周波数の電波で送 . 受信を 行なう同時送受話無線通信機に関する。
背景技術
周知のように、 一般に複信方式の無線通信では、 安定した送受信 の確保には周波数の近接していない 2つの電波を必要とする。
しかし、 単一周波数または近接する 2つの周波数でも同時送受信 は不充分ではあるが可能であって、 第 2 0図に 「単一周波数の電波 で送 · 受信を行ない、 しかも同時送受話の可能な狭帯域音声無線通 信機」 の簡略な装置の概要の構成を示す。
第 2 0図について説明すると、 2つの狭帯域音声無線通信機 B1 、 B2 は同等構成の装置で、 ともに単一の周波数 ίを送 · 受信に使つ ている。 そして、 送信機 Τと受信機 R、 それらを一定の周期で切り 替えて動-作させるコ ン ト ロールスィ ッチ SW、 その周期を規制し互 いの同期をとる同期発生器 S Y C G E N、 スピーカー S P、 マイ ク 口ホン M I C、 アンテナ結合器 ATを内蔵している。 ANTは、 ァ ンテナである (同図面では、 それぞれの各部材の符号に無線通信機 Bl 、 B2 の区別を表す小文字の添え字 1、 2 を付けている) 。 同期発生器 S Y C GE Nの働きによって、 両無線通信機の送 · 受 信動作は、 互いに時間的に逆になるように周期的に制御される。 第 2 1図は、 前記第 2 0図の 2つの狭帯域音声無線通信機 B1 、 B2 の間で行なわれる交信のタイムチャー トを示すものであって、 再び添え字を無視して説明すると、 VMは送信音声、 SWTはコ ン トロールスィ ツチ S Wの送受の切り替え状況、 V S Pは受信音声で ある。 Tは送信時間、 Rは受信時間、 T 0は送 ' 受信の切り替え周 期である。 (その逆数、 すなわち繰り返し周波数を F 0 とする。 ) 上記構成の通信装置では、 当然のことながら、 送信音声 VMは時
間的に間引かれてその半分が受信音声 V S Pとなり、 途切れ途切れ に相手方に届く という形の交信となる。 幸い、 音声情報にはかなり 冗長性があるので、 送受の操.り返し周波数 F 0を適当に設定すれば、 通話内容の伝達は可能であることが分かっているが、 しかし耳にす る音声は不自然で非常に閒き辛い。
これを改善するために、 時間間引きで生じた空白部分 C 0に補償 を加えるなどの工夫も行なわれたが、 その効果は不十分で到底実用 に供することができなかった。
また、 そのほかにもこの問題を解決するために、 送信側では、 音 声信号を時分割しかつ通話時間を圧縮したものでキヤリァを変調し て断続した電波を送出し、 受信側では、 その電波を受信 · 検波して 得た音声信号を時簡伸長し、 送信側の時分割に同期して繋ぎ合わせ てもとの音声信号に復調する同時送受話無線通信機が考案されてい る。 その同期の取り方は、 交信の一方の無線通信機が 「親局 J 、 すなわち主動側となって送信時の変調信号の時分割の時間的割振り を決定し、 交信の他方の無線通信機が 「子局」 、 すなわち受動側と 'なってこれに同期するようにしている。
以下、 その装置の概略を図により説明する。
第 1 0図はその構成を示す図であって、 前記第 2 0図に相当する 図である。 この狭帯域音声無線通信機 B 1 、 B 2 もブロ ック図で示 す場合は、 構成は第 2 0図と全く変わらない。 ただし、 第 2 0図で 小文字で示された全ての添え字を、 第 1 0図では大文字に換えて区 別している。 第 1 1図は、 2つの狭帯域音声無線通信機 B 1 と B 2 の間で行なわれる交信のタイ ムチャー トを示す。 これは、 前記の第 2 1図に相当する図である。 添え字を無視していう と、 V Mは送信 音声信号、 S W Tはコ ン ト ロールスィ ッチ S Wによる送受の切り替 え状況、 V S Pは受信音声信号である。 S W Tの動作は、 音声信号 の断続の周期から見て、 T 0の半分になっているだけである。
無線通信機 B 1 から無線通信機 B 2 への送受信音声信号は実線で、
B 2から B 1 への送受信音声信号は点線で示した。 この第 1 1図の 交信が第 2 1図と異なる点は、 音声信号に時間圧縮 · 時間伸長の処 理が加えられているところにある。 すなわち、 送信側では、 マイ ク 口ホ ン M I Cから入った送信音声信号 V Mに等時間間隔の 「時分割」 ① (⑤) (括弧内は点線の場合、 以下同じ) 、 と 1ノ 2の 「時間圧 縮」 ② (⑥) 処理が加えられ、 時間圧縮音声の断続的信号となって キャ リ アを変調し、 断続的電波として送信され、 一方、 受信側では そう した電波を受信 · 検波して得た時間圧縮音声の断続的信号⑦ (③) に 2倍の 「時間伸長」 が施され、 つなぎ合わされて⑧ (④) の信号、 すなわち連続的音声信号に復調されてスビーカー S Pに出 力される。
この操作によって、 受信者の耳には、 第 2 1図の場合の閬き辛い 断続的音声ではな く、 連続的な、 より品質のよい音声が届けられる ことになる。 使用する電波は、 あきらかに周波数 f の 1波だけであ り、 有線電話と同様に 「同時通話」 されている。
この音声処理の方法、 すなわち 「時分割」 「時間圧縮」 「時間伸 長」 の方法には、 アナログ式、 デジタル式の 2つの処理方法がある。 第 1 2図、 第 1 3図、 第 1 4図に、 それぞれの具体内容を示す。 第 1 3図は、 アナ口グ式処理方法の場合の送信装置のブロ ックダ ィャグラムである。 (ただし、 添え字 1 は省略している) 。
0 S Cはクロ ック周波数 2 f CLK の基準発振器、 1 Z 2分周器 D I Vで分周して得られたクロ ック周波数 f cLK がスィ ツチ切り替 えコ ン トローラ S W C O N Tに入力されている。 これらが、 第 1 0 図の同期発生器 S Y C G E Nを構成する。
スィ ツチ切り替えコ ン ト ローラ S W C O N Tは、 コ ン ト ロールス イ ッチ S W、 すなわち連動する 3つのスィ ッチ S W a、 S W b、 S W cを制御している。
第 1 2図は、 第 1 3図の動作タイ ミ ングチャー トであ ¾。
両図によって動作を説明する と、 音声信号 V Mは、 ク ロ ッ ク周波
数 f c L k 、 2 f C L , と干渉を起こすことがないように、 折返雑音除 去ローバスフ ィ ルタ AA L P Fによって通過帯域を〜 3 k H z に制 限 (音声の帯域制限ではなく、 サンプリ ングノ ィ ズを音声に入り込 ませないように設けられたもの) されたのち、 2つのアナログシフ ト レジスタ A S R a、 A S R bに交互に書き込まれ、 次いで交互に 読みだされて出て行く のであるが、 その書き込みと読みだしの速度 はともにアナログシフ ト レジスタに入力されるクロ ック周波数に比 例する。 まず、 A S R a側にスィ ッチ S W cを通してクロ ック周波 数 f clk が入力され、 音声信号は蓄積時間 T sをかけて A S R aに 書き込まれる。 書き込みの終了と同時に全スィ ツチが切り替えられ る。 (第 1 3図は、 この切り替えられた後の状態である) 。
そして、 スィ ッチ S W cの切り替えによって、 A S R aのクロ ッ ク周波数は 2 f cu に変更され、 スィ ツチ S W aを通して先の書き 込み速度の 2倍の速度 (従って、 蓄積時間 Ts の半分の出力時間 Tc ) で、 時間的に圧縮された音声信号が帯域制限フ ィルタ
B L L P Fに向かって出力される。 これが、 第 1 2図の第 1欄であ る。
この出力期間中に、 アナログシフ ト レジスタ A S R b側には、 ス イ ッチ S W bを通るクロ ック周波数 ί cll£ で、 蓄積時間 T sをかけ て音声信号の書き込みが行なわれ、 書き込みの終了と同時にスィ ッ チ S W bの切り替えによってクロ ック周波数が 2 f ciK に変更され、 同時にスィ ツチ SW aを通して先の書き込み速度の 2倍の速度で (従って、 蓄積時間 T s の半分の出力時間 T cで) 、 時間的に圧縮 された音声信号が、 帯域制限フ ィ ルタ B L L P Fに向かって出力さ れる。 これが、 第 1 2図の第 2欄である。
第 1櫊の A S R aからの出力が終了した段階では、 第 2欄の A S R b側の書き込みはまだ半分しか終っていない。 従って、 帯域 制限フ ィルタ B L L P Fの出力には 「 T s — T c j 、 すなわち Ts の 1 / 2の時間の空白ができる。
こう した第 i欄、 第 2欄の動作が交互に繰り返し行なわれ、 帯域 制限フィルタ B L L P Fの出力には、 第 1 2 .図の第 3欄の断続音声 信号が得られるこ とになる。 .この第 3欄の断続音声信号は、 第 1 1 図の② (⑥) の信号にほかならない。 これで、 送信側の処理、 音声 のアナログ式 「時分割」 および 「時間圧縮」 が説明されたことにな る。
一方、 受信側の処理、 すなわち音声のアナログ式 「時間伸長」 お よび復調は、 第 1 3図の各符号に添え字 2を付し、 V Mを受信 ' 検 波で得た断続圧縮音声信号とし、 A A L P Fを取り去り、 クロ ック 周波数 i c と 2 f c の切り替えを逆にしてコ ン ト ロールスイ ツ チ S Wを動作させ、 B L L P Fを取り去ることで可能となる。
そして、 帯域制限フィルタ B L L P Fの部分に、 時間伸長され連 結されて連続した受信音声信号、 すなわち第 1 1図の⑧ (④) が復 調して得られる。
第 1 6図は、 第 1 2図の無線通信機 B 1 (交信の相手側の B 2 も 同じ) のやや詳細な構成を示すブロ ック図である。
基準発振器 0 S C 1 は、 数 H z の周波数でフリ ップフ口 ップ F F 1を ト リガしている。 フリ ップフロ ップ F F 1 は、 送信部 T X 1 と受信部 R X 1を交互に動作 · 停止させる。 端子 Q 1側が、 送信部 T X 1 の動作と、 既述の音声の 1 / 2時間圧縮を指令し、 単 子" 5:1側が受信部 R X 1 の動作と、 既述の音声の 2倍時間伸長を指 令する。
マイ クロホン M I C 1からの音声信号は、 音声処理部 V S Dで 「時分割」 および 「時間圧縮」 され、 第 1 2図の② (第 1 2図の第 3欐) のような時間圧縮された断統信号となり、 送信部 T X 1 で変 調されて、 ア ンテナ結合器 A T 1 とアンテナ A N T 1 を経由して断 続的な電波となってァ ンテナ A N T 1から発射される。
一方、 端子 1側の信号で動作を開始する受信部 R X 1 は、 相手 側の無線通信機 B 2から発射された断統する電波を受信する。
断続的な電波は、 フロ ン トエン ド R X F E 1 (高周波増幅器、 ミ キサーを舍み中間) |波増幅器の入力に至る) 、 中間周波増幅器 I F A 1を経由して検波器 D E T 1で検波されたのち、 信号処理部 V S H 1に入る。 信号処理部 V S H 1では、 Q 1がハイ レベルの時 間中に断続部分の 1単位を入力し、 次にハイ レベルになるまでの期 間中に時間伸長を行なう という、 第 1 2図第 1欄、 第 2欄の処理を 逆にした 2つの動作が交互に繰り返し行なわれることにより、 連続 的な音声信号となって、 音声電力増幅器 P A 1を経由してスビ一力 S P 1から出力される。 第 1 6図に付記した、 Q 1端子から送信部 T X 1の、 モジユ レ一タ MO D 1の後に置かれたフロ ン トエン ド T X F E 1に向かってライ ン T L 1に出力される矩形波の信号
T S G 1 と、 " ίΐ端子から受信部 R X Iに向かってライ ン R L 1に 出力される矩形波の信号 R S G 1 とは、 上記の 2つの動作の交互の 操り返しを正しく規制する。
さて、 通話を確保するためには交信する 2つの無線通信機 Β 1 と Β 2は、 それぞれ前記した音声信号の処理を規制しているおのおの の矩形波信号 T S G、 R S Gを互いに正確に同期させる必要がある。 第 1 6図の装置を親局とし、 それに合わせて子局が同期を取ると いう同期の取り方をする子局側受信機の例を、 第 1 7図にブロ ック 図で示す。 第 1 8図は説明を分かり易くするために、 同期に関する 部分に注目して第 1 6図と第 1 7図の要部を一緒にして描いたプロ ック図、 第 1 9図は両者の周期タイ ミ ングチャー トである。
この同期の取り方の場合は、 親局は同期に関して顧慮する必要が なく、 子局が親局に合わせて同期を取ることになる。 すなわち、 子 局は、 検波器 D ET 2の入力端からキャ リ ア信号を引出し、 キヤ リ ァ検出器 CAD 2 と立ち下がり検出器 CA P 2 とを用いて、 第 1 9 図のキヤリァ検出信号⑤の立ち下がり C U 2からパルス信号⑥の T P 2を作り、 これを ト リガ信号にして、 前述の第 1 6図のフリ ッ ブフロ ップ F F 1の代わりに設けられた単安定マルチバイブレータ
M B 2に印加し、 その端子 Q 2、 2から、 音声処理を規制する矩 形波の信号 T S G 2 と矩形波の信号 R S G 2を出力して同期を確保 している。 '
第 1 9図でさらに詳しく説明すると、 子局 B 2では、 電源投入時 や待ち受け時は、 単安定マルチバイ ブレータ M B 2 は"^ 2側が選択 されており受信待機状態にあるが、 親局 B 1からの送信電波を受け とると中間周波増幅器 I F 2部の受信キャリ ア④から検出信号⑤が 抽出され、 検出信号⑤の立ち下がりを利用し検出器 C A P 2 (微分 回路) で取り出して ト リガパルス T P 2 とする。 このパルスは、 親 局 B 1 の送信が終了し受信動作を開始した合図であるから、 この ト リガパルス T? 2で単安定マルチバイブレータ M B 2を反転させ、 矩形波の送信切り替え信号 T S G 2⑧と、 矩形波の受信切り替え信 号 R S G 2⑦を出力できる。 ただし、 単安定マルチバイブレータ M B 2の反転綞続時間は、 親局 B 1の受信時間に合わせておいて、 B 1が送信に移行したとき、 自動的に B 2が受信状態に移り同期が 確保されるようにする。
なお、 上記の同期の取り方は、 一例を示すものであって、 その 方法には様々な技術がある。
また、 例えば子局で単安定マルチバイブレータ M B 2の代わりに フリ ップフ口 ップ回路を置き、 中間周波増幅器 I F A 2部の受信キ ャ リァ④から検出した検出信号⑤の立ち下がり と立ち上がりの両方 を検出した ト リ ガパルスでこのフ リ ッブフロ ップ回路を駆動するな どの構成も有用である。 この場合は、 橾り返し周期 T 0のほかに、 先述した時間圧縮比率を子局で検知し、 子局の送受信比をそれに合 わせることで同期化が容易になる。
同期を取る標準的な方法としては、 独立同期方式、 すなわち交信 する 2つの無線通信機 B 1、 B 2が互いに別個に基準発振器を持ち、 この基準信号から送信 · 受信タイ ミ ング信号を作り相関処理を施し て同期を確立する方法がある。 これは、 同期を取るまでに長い時間
ο を要し、 コス ト面でも前記した実施例に較べて不利であるが、 親子 の区別がなく なって交信の自由度が高まるうえ、 同期の誤差が小さ く なり交信の安定性が高まる。
なお、 上記の装置に、 その音声処理部と同期部の機能を一時停止 させる装置を付加すれば、 この装置は通常のプレス トーク方式の装 置に切り替え使用できることは明かである。
次に、 第 1 4図は、 音声をデジタル式に処理する場合のブロ ック 図である。
まず、 送信側の処理であるが、 送信音声 VMは前述と同じ
AA L P Fで帯域制限され、 A/Dコ ンバータ AD Cでデジタル値 に変換されて、 通食の速度 (例えば、 8 k H z ) で、 ラ ンダムァク セスメ モリ R AMの所定の番地に格納される。 この処理が一定時間 行なわれたのち、 今度は先の通常の速度の 2倍の速度 ( 1 6 k H z ) でこれを読み出し、 直ちにそれを D/Aコ ンバータ DA Cでアナ口 グ値に変換して行く と、 先の第 1 2図の第 1欄の処理が行なわれた こ とになる。
また、 上記の格納が終った時点から、 上記と同じ格納と読み出し をランダムァクセ メモリ RAMの別の所定の番地を使って行なつ たものでは、 ^の第 1 2図の第 2欄の処理が行なわれる。
上記の第 1橱と第 2櫬の両処理を操り返し行なう と、 第 1 2図の 第 3欄の断鐃的出力信号が、 前述と同じ帯域制限フ ィ ルタ
B L L P Fを経由して出力されることになる。
マイ ク ロコ ンピュータを内蔵する音声ピッチコ ン ト ローラ C TR が上記の動作を制御する。 従って、 この CT Rが第 1 0図の SWと S Y C G E Nの両者を兼ねた働きをする。 (後記する第 1 6図〜第 1 8図も同様の図になっている) 。 すなわち、 C TRは、 2つのコ ンバータ A D C、 D A Cにそれぞれのスター ト信号を送り、 ラ ンダ ムアクセスメモリ RAMに対しては、 前記の所定の各番地を指定す る作業、 速度を変化させての格納 ' 読み出しの作業を行なう。
一方、 受信側では、 受信 · 検波して得られた断続圧縮音声信号は、 上記と同じ第 1 4図のブロ ック図の装置を使って、 格納と読みだし の速度および順序を先とは逆にする操作によって、 先と完全に同じ 要領で、 通常の連続した音声信号に復調され出力される。
この従来の同時送受話無線通信機は、 次の問題を抱えている。
いずれも結局は音声の明瞭度 · 了解度に帰する問題であるが、 一 つは、 送信電波の占有周波数帯域幅に制限値が設けられている場合 には、 音声の圧縮によって送信電波の占有帯域幅が広く なり、 その 制限値を超過して他に妨害をあたえるという問題である。
もう一つの問題は、 同期の問題である。
受信側で各分割音声を伸長しそれを繫げる場合に、 同期がはずれ 繋げた分割音声に隙間を生じるときは、 破裂音のような激しい雑音 が混入して、 通話は殆んどネ可能となることが判明した。 同期は、 常にとれていなくてはならない。 この同期は、 フヱージングによつ て容易に同期外れを生ずるような、 脆弱なものであってはならない。
また、 さらに問題となるのは、 多数の局の中においては親子局関 係を生じることによって、 前記した一つの周波数で互いに通話し合 うのが通常であるから、 親局 (話しかけ局) が的確に子局 (話しか けたい局) を選択できるような工夫がなされていなければならない。 それができないと、 1親局対複数子局の通話となって混乱を生ず る。
他の問題は、 この音声処理、 すなわち 「時分割」 、 「時間圧縮」 、 「時間伸長」 と 「連結」 の処理の際に生ずる時間遅れの問題である。 この時間遅れは、 通話をあたかも衛星回線を通して行なつている かのようなもどかしいものにする。
本発明は、 送信電波の占有周波数帯域幅に制限が設けられている 場合にも充分使用できる、 周波数の有効利用に優れた、 通話に遅延 のまどろかしさのない、 さらにフヱ一ジ ングに強く、 秘話性に優れ た、 音声の明瞭度 · 了解度の極めて高い同時送受話無線通信機を提
供することを目的とする。
発明の開示
本発明は、 送信部の時間圧縮する装置の前に、 音声信号の周波数 の高域部分を力 ッ 卜して、 その最高変調周波数を半分以下に制限す る低域フィルタを具えて同時送受話無線通信機を構成したものであ る。
音声の明瞭度 · 了解度を高めるためには、 受信部で、 受信 · 復調 で得た音声信号を加工し、 親局の送信部が最高変調周波数を制限す る際に切り捨てた高域部分に疑似する疑似高域成分を作り出してそ れを加味する装置を具える構成が望ましい。
その疑似高域成分を作る装置は、
受信 ♦ 復調で得た音声信号の振幅を所定閻値で力 ッ ト してその歪 信号を作る装置と、 その歪信号を帯域制限する装置と、 帯域制限で 得た信号の振幅を、 受信 · 復調で得た音声信号の振幅に対応して変 化させる装置と、 を含んで構成するか、
もしく は、 受信 ♦ 復調で得た音声信号を所定の非直線回路に通す ことによってその歪信号を作る装置と、 その歪信号を帯域制限する 装置と、 を含んで構成することができる。
雑音を抑制し明瞭度 · 了解度の高い音声を得るためには、 親 · 子 局間の同期をとる装置として、
親局の送信部と子局の受信部の両方に、 同形状でかつ送 · 受信区 間が互いに逆であるような時分割パターンを発生する装置を具え、 タイ ミ ングポイ ン ト、 すなわち 「両方の時分割バターンの位相を合 致させるために使用する時点」 を与える装置として、
親局の送信部に、 連続する複数の トーン信号からなる複合トーン 信号に該タイ ミ ングボイ ン トを舍ませて、 分割圧縮音声信号のおの おのに付加する装置と、 付加して得た合成同期用信号で搬送波を変 調する装置と、 を具え、 子局の受信部に、 受信 · 検波して得た合成 同期用信号の中から、 その複数の トーン信号およびタイ ミ ングボイ
ン トを抽出する装置、 を具える構成を採用する。
上記した複数の トーン信号中の少なく とも第 1番目に来る トーン 信号を予備信号とし、 第 2華目以降のあらかじめ定めた トーンの、 あらかじめ定めた位相位置を、 前記したタイ ミ ングボイ ン ト として 置く とき、 タイ ミ ングポィ ン トの捕捉は的確となる。
子局を選択して呼び出したいとき、 この複数の トーン信号の トー ンの組み合わせを子局の選択呼出に使用する装置を付加するとよい。 音声の遅延によるもどかしさを解消し、 了解度を一層高めるため には、
時間圧縮する装置を、 音声信号の A D変 器と、 変換して得たデ ジタル信号をメ モ リ へ書き込む装置と、 書き込みが分割の 1 区間の 半分または半分以上行なわれた時点から、 その信号をメモリから圧 縮しっゝ読み出す装置と、 読み出された信号を分割圧縮音声信号に 変換する' D A変換器と、 を具えて構成し、
時間伸長する装置を、 分割圧縮音声信号の A D変換器と、 A D変 換器で変換して得た断続するデジタル信号をメモリへ書き込む装置 と、 1区間分の書き込みの開始と同時に、 そのデジタル信号をメ モ リから伸長しっゝ読み出す装置と、 読み出された信号を元の分割音 声信号に変換する D A変換器と、 を具えて構成する。
その時間の圧縮と伸長の率は、 1 / nと n倍 ( nは 2以上の正の 実数) に、 選定するとき理想的な結果が得られる。
図面の簡単な説明
第 1図は本発明の同時送受話無線通信方法のタイ ミ ングチャー ト、 第 2図は親 , 子局の同時送受話無線通信の説明に必要な部分だけを 抽出して示す図、 第 3図は親 · 子局の装置の構成のブロ ック図、 第 4図は送信側の音声処理部のブロ ック図、 第 5図は受信側の音声処 理部のプロ ッ久図、 第 6図は復調音声に疑似高域成分を添加する装 置のプロ ック図、 第 7図は復調音声に疑似高域成分を添加する別の 装置のブロ ック図、 第 8図は従来の トーン信号の図、 第 9図は本発
明の実施例の ドーン信号の図、 第 1 0図は従来の無線通信機および 無線通信方法の構成を示すブロ ック図、 第 1 1図はその交信のタイ ムチャー ト、 第 1 2図はその耷声の時分割および時間圧縮を説明す るタイムチヤ一 ト、 第 1 3図は上記の処理をアナログ式で行なう場 合のブロ ック図、 第 1 4図は上記の処理をデジタル式で行なう場合 ブロ ック図、 第 1 5図 Aは音声のエネルギー分布図、 第 1 5図 Bは フ ィ ルタ特性と明瞭度の閬係の図、 第 1 6図は従来の親局側無線通 信機のブロ ック図、 第 1 7図は従来の子局側無線通信機のプロ ック 図、 第 1 8図は親 · 子両無線通信機をその同期に注目し簡略化して 描いたブロ ック図、 第 1 9図はその同期タイ ミ ングチャー ト、 第 2 0図は従来の無線通信機の構成を示すプロ ック図、 第 2 1図はそ の交信の各部の信号のタィ ムチャー ト、 第 2 2図 a〜 dは、 理解を 助けるために、 秘話を視覚的に表現して説明する図、 第 2 3図 a〜 dはフヱージング雑音の内容を説明する図である。
図中において、 各符号は、 以下のとおりである。
L P F Q ; 帯域制限フィルタ、 VMQ ; 最大周波数を制限した音 声、 F 0 ; 切り替え周波数、 V S ;復調音声、 VARAMP ; 可変 増幅器振幅、 V H Q; 疑似高域成分、 S UM ;加算器、 V S X ; 原 音声に近い自然な音声、 N L I N ;非直線回路、 CT R ; マイ クロ プロセ ッ サーを内蔵する制御器、 TW Q ; 同期 トーン信号、 T D G ; 同期発生部、 VMQ ;高域部を制限した音声、 V S S ; 断続圧縮音 声、 T O S ; 音声処理部、 MO D Q ; 変調部、 MU ; 加算器、
D EMO D ;検出部、 TWQ ;同期トーン信号、 R D S ; 同期処理 部、 R 0 S ; 音声処理部、 SWQ ; スィ ッ チ回路、 T D G ; 同期発 生部、 T Q, R Q ;高周波部、 T S Q ; 送信区間、 R S Q ; 受信区 間、 R D S ; 同期処理部、 C U Q 2 ; タ イ ミ ングポイ ン ト、 D T 1 , D T 2 ; トーン信号、 B ; 無線通信機 (通信機を区別して、 添え字 1 , 2を使用) 、 V M ; 送信音声、 V S P ;受信音声、 S W a , SW b , SW c ;連動スィ ッ チ、 SWC O NT ; スィ ッ チ切り替え
コ ン ト ローラ、 AA L P F ; 折返雑音除去ローバスフィルタ、
A S R a , A S R b ; アナログシフ ト レジスタ、 B L L P F ; 帯域 制限フ イ ノレタ、 A D C 5 A Dコ ンバータ、 RAM ; ラ ンダムァク セスメ モ リ 、 D A C ; D/Aコ ンバータ、 O S C ;基準発振器、 F F ; フ リ ップフロ ップ、 T X ; 送信部、 R X ; 受信部、 M I C ; マイ ク ロホン、 V S D ;音声処理部、 AT ; アンテナ結合器、
ANT ; ア ンテナ、 R X F E ; フロ ン トエン ド、 I F A ; 中間周波 増幅器、 D E T ; 検波器、 V S H ; 信号処理部、 P A ; 送信出力部、 S P ; スピーカ、 D E T ;検波器、 C A D ; キャ リ ア検出器、
CAP ; 立ち下がり検出器、 MB ; 単安定マルチバイブレータ、 T S G, R S G ;送信, 受信切り替え信号。
発明を実施するための最良の形態
本究明をより詳細に説明するために、 添付の図面に従って実施例 を挙げて説明する。
実施例 1
さて、 前記したように、 アナログ式、 デジタル式いずれの処理の 場合も同じであるが、 これらの音声の処理、 すなわち 「時分割」 、 「時間圧縮」 、 「時間伸長」 などの処理では、 次の問題を生ずる。 すなわち、 それは、 音声信号が 1 /2の時間に圧縮されるために、 その最大変調周波数 (こ こでは一応 3 k H z とする) が 2倍となつ て周波数帯域幅が広がり、 電波を発射するとき、 法規上の制限値を 超過して使用不可能になる ことである。 この現象は、 圧縮 (伸長) 率が 2以上ではさらに激し くなる。
本発明では、 この問題解決のために、 α—バスフ ィ ルタ L P F Q (以下、 帯域制限フ ィ ルタ) を使って変調周波数の上限を 1 /2に し、 実効的な最大変調周波数を制限 (例えば、 1. 5 k H zに制限) する。
第 4図にその構成を示した。 第 4図では、 マイ ク ロホン M I Cの 後の音声信号に、 すなわち第 1 4図の AA L P Fの前に、 この帯域
制限フ ィ ルタ L P F Qを置いて最大周波数を制限した音声 VMQを 得ている。
幸いにして、 音声の場合は,、 最大変調周波数の 1 / 2以上の周波 数部分をフ ィルタでカ ツ ト しても通話にほとんど支障のないことが 分かっている。
以下、 それを説明すると、 第 1 5図 Aは音声のエネルギーの周波 数に対する分布を示すグラフであるが、 音声のエネルギーはそのほ とんどが低い周波数部分に分布しており、 本実施例の場合のように、 帯域制限フィルタ L P F Q (特性曲線 L ) で制限して、 使用する音 声の周波数帯域幅を〜 1. 5 k H zにした場合も、 その部分には音 声のエネルギーの 9 0 %程度が納まつていることが分かる。
第 1 5図 Bは、 同じく帯域制限フィルタ L P F Qの特性曲線 Lに よる、 明瞭度と周波数の関係を示したものであるが、 周波数帯幅〜 1. 5 k H zでほぼ 6 0〜 7 0程度の明瞭度が得られている。
従って、 通話の了解度は、 1. 5 k H zの遮断周波数の帯域制限 フィルタ L P F Qで処理してもほとんど悪化がないと想像される。 本願の発明者は、 実験によってこの事実を確認した。
実施例 2
第 4図のようにして、 帯域制限フ ィルタ L P F Q (特性曲線 L ) で音声周波数の高域部を切り落として、 変調に使用する音声 VMQ の周波数帯域幅を〜 1. 5 k H Z にした場合も、 受信部に高い了解 度は得られるが、 高音部の欠けた受信音声はやはり不自然である。
自然さを取り戻すために、 本発明では、 この受信音声に次の加工 を施す。
すなわち、 子局の受信部で、 親局の送信部が切り捨てた高域成分 に疑似する疑似高域成分を作り、 それを受信 ♦ 復調で得た音声信号 と合成してスピーカ S Pに出力するのである。
この疑似高域成分の作り方には種々のものがあり、 第 6図にその 1例を示す。
受信 ' 復調で得られた音声 V Sは、 振幅制限器 L I Mでその振幅 を制限され、 帯域瀘波器 B P Fでその周波数を 1. 5〜 3 k H zに 制限されて低域濾波器 L P F.に入りその高.域部をなだらかに減衰さ せられて、 可変増幅器 V A R A M Pに入力される。
可変増幅器 V A RAM Pの増幅率は、 音声 V Sの振幅を振幅検出 器 D E Tで検出した信号によって変化させるようになつている。
この構成によつて可変増幅器 V ARAM Pの出力に目的の疑似高 域成分 V H Qが得られ、 それが加算器 S UMで音声 V Sと合成され て、 原音声に近い自然な音声 V S Xを得ることになる。
第 7図には、 別の疑似高域成分の作成の方法を示す。
受信 ' 復調で得られた音声 V Sは、 増幅器 AM Pを経由して非直 線回路 N L I Nを通過して高調波が作られ、 帯域濾波器 B P Fでそ の周波数帯が調整され、 減衰器 AT Tで強さが加減されて疑似高域 成分 V H Qとなり、 加箕器 S UMで音声 V Sと合成されて目的とす る自然に近い音声 V S Xを得るものである。 非直線回路 N L I Nと しては、 自乗回路その他周知の回路が便利に使用できる。
実施例 3
前述の送 · 受信の切り替え周波数 F 0は、 1 Η ζ〜 1 0 Η ζで運 用上支障を来さない値を採用する。
同時送受話無線通信機でこの F 0を 1 Η ζ〜 1 0 Η ζの範囲内に 置く ことは、 了解度と秘話性の両者を合わせ持つ音声を得んとする 場合に、 必須の条件となることが判明した。 後述の様々な工夫を施 すと否とにかかわらず、 この周波数範囲を外れると、 了解度には大 きい変化を生じないが、 人間の知覚特性に起因する秘話性は低下す る。
一般に、 音声は 1秒当たり数個の音節からなっているので、 音声 を 1 H z〜 1 0 H z程度の周波数で 1 /2の時間圧縮を行なう と、 圧縮処理によって生じた空白時間と音節の時間分とが同程度となり、 音節が脱落したような錯覚が生じ、 会話の把握が困難となる。
91 また、 1 Z 2の時間圧縮により音声ピッチ (周波数) が 2倍にな るため聞き取り難く、 一層その効果が増す。
従って、 前述の通信機の 成で、 送受の切り替え周波数 F 0を大 赂 1 Η ζ〜 1 0 H z の範囲に置いて、 送信の半サイ クル時間圧縮音 声を乗せた電波では、 第 3者がこれを傍受しても会話の内容を聞き 取ることはほとんどの場合不可能となる。
理解を助けるために、 秘話を視覚的に表現して第 2 2図 a〜 dで 説明すると、 a は音節を連続したもの、 bは aを 1 H z より も遥か に低い周波数 ( 1秒より も長い周期) で時間圧縮したものである。 音節が数個つながるため、 会話の内容がかなりの程度分かり、 秘 話性を得る とが困難である。
c は時間圧縮の周波数を 1 Η ζ 〜 1 0 H z程度にして操り返した もので、 音節が互いに離れて、 歯抜けのような音声になり、 会話の 内容を理解することが困難になり、 秘話性が確保される。
dは時間圧縮の周波数を 1 0 H z より もかなり高い周波数にして 操り返したもので、 音節は細かく分断されるものの、 時間的にはほ とんど離れず連続するため、 会話の内容を高い確率で理解すること ができる。
第 2 2図 a〜(!は、 視覚的に説明したものであるが、 聴覚的にも このとおりになる::とが実験で確認された。
実施例 4
移動通信におい Tは、 常にフヱージングの問題がある。
本方式を用いるとこの改善に大き く寄与する。
一般に、 移動通偉では電波が建造物等により反射されるため、 ほ とんどの場合、 直接相手側に届く直接波と反射波が互いに干渉した 定在波を舍む電波を利用して通信することになる。 干渉は、 概ね電 波の波長の 1ノ 2毎に発生して合成波の電界強度はときにはかなり 大き く変動し、 電界強度が受信機の能力の限界を越えて低下すると 雑音が発生してフエージング現象を起こす。
移動速度 v ( m/ s e c ) の移勤局の受信機に発生するフュージ ング雑音の発生頻度 F f ( H z ) は、 その局が 1秒間走る間に何回、 半波長 (すなわち、 λ / 、, スは波長で単位は m ) を通過するかで 決まり、 F i = v Z ( スノ 2 ) で与えられ、 例えば電波の周波数 f が 8 0 0 M H z、 移動速度が 2 0 k m/ hのとき、 F f はほぼ 3 0 H zである。 フュージング雑音の発生頻度 F f は、 電波の周波数、 移動速度の両方に正比例して大き く なる訳で、 当然のことながら Ff が大になるほど通話の妨害が多く不快感も増す。
第 2 3図 a〜 dは、 フェージング雑音の内容を説明する図で、 横 軸は時間、 a は電界強度の変化を示し一点鎮線は受信限界レベル、 bは受信 · 送信の切り替え、 c は受信検波信号に現れるフ ージン グ雑音、 dはそれを伸長して繫ぎ合わせた復調信号に現れる雑音で ある。 復調信号では、 雑音の発生間隔が広がり、 頻度は低下して改 善が自動的になされていることが分かる。 この効果によりサービス ェリァの拡大が達成され δ。
第 2 3図で明かなように、 F f に対して送信 . 受信の切り替え周 波数 F 0をどうすべきかには適値があり、 実用上、 F 0を、 V = 2 0 k mZ hの時の F f より も小さい値に設定することが雑音対策 として優れることを見いだした。
この条件を数式であらわすと、 F i は電波の周波数に比例するの で、 周波数 ί Μ Η ζ のとき、 F 0く 3 0 · ίノ 8 0 0である。
実施例 5
従来の同期のとり方、 すなわち第 1 7図の、 子局が検波器
D Ε Τ 2の入力端からキ ャ リ ア信号を引出し、 キ ャ リ ア検出器
C A D 2 と立ち下がり検出器 C A P 2 とを用いて、 第 1 9図のキ ヤ リァ検出信号⑤の立ち下がり C U 2からパルス信号⑥の Τ Ρ 2を作 り、 これを ト リガ信号にして、 フ リ ッ プフ ロ ッ プや単安定マルチバ イブレータを駆動し、 音声処理を規制する矩形波の信号 T S G 2、 R S G 2を出力する方法では、 微弱電界、 大きい雑音、 激しいフ ユ
一ジングの存在の下では、 キ ヤ リ ァ信号の弱小化ないし消失のため にどう しても同期外れを起こしやすい。
このため、 本発明では、 第 2図に親 · 子局の当面の説明に必要な 部分だけを抽出して示すような新規構成の装置を用いて、 第 1図の タ イ ミ ングチャー ト に示す同時送受話無線通信方法を採用する。
なお、 本発明の親 · 子局もそれぞれは同機能の内部装置を有し、 その装置の構成は、 第 2図をまとめた彤のブロ ック図第 3図に示さ れているとおりである。 第 3図では、 下記にこれから説明する全て の信号処理を秩序正しく運行させるための、 マイ クロプロセッサー を内蔵する制御器 C T Rと、 ァンテナ結合器 ATとが第 2図に書き 加えられている。 例によって、 装置の親 · 子を区別する添え字 1、 2は省略されている。
さて、 第 1〜2¾を用いて同時送受信の順序を説明する。
まず、 親局の送信部は、 同期トーン信号 TW Qを作る同期発生部 TD G 1 と、 マイ クロホ ン M I C 1で得た音声信号 V W 1を帯域制 限フ ィ ルタ L P F Qに通し高域部を制限した音声信号 VMQ 1から 断続圧縮音声信号 V S S 1を作る音声処理部 T 0 S 1 と、 両者から 送られた信号を加算して変調部 M 0 D Q 1に送る加算器 MU 1を新 しく具え、 一方、 子局の受信部は、 親局のアンテナ ANT 1から送 られた電波をァンテナ ANT 2で受信し、 検出部 D EMO D 2で検 波された信号のうちの、 同期 トーン信号 TWQを処理する同期処理 部 R D S 2と、 音声信号 V S S 2を処理する音声処理部 R 0 S 2と、 両者へそれらの信号をタィ ミ ングよ く切り替えて送出するスィ ツチ 面路 SWQとを新し く具えている。
それらの装置により、 親局では音声処理部 T O S 1によって、 第 1図のタイ ミ ングチャー トの①欄の原送信音声 V M (¾ 1は T Q 3 (例えば、 3 9 5 m s e c ) 間隔に分断され、 さらにそのおのおの が 1ノ2. 5に圧縮されて断続圧縮音声信号 V S S 1 となる。
そして、 同期発生部 T D G 1から送られて来た同期トーン信号
TW Qと加算器 M U 1 で一緒にされて、 ④欄の変調信号を形成し、 これが変調部 M O D Q 1 を経て送信高周波部 T Q 1 に送られ、 断続 する電波としてアンテナ Α Ν,Τ Ι から送出される。
なお、 親局の、 送信部の送信区間 T S Q 1 (②欄の T Q 2、 例え ば 2 1 0 m s e c ) と、 受信部の受信区間 R S Q 1 (③櫊の T Q 1、 例えば 1 8 5 m s e c ) の合計が前述の分断区間 ( T Q 3、 3 9 5 m s e c ) であり、 後述のようにして親 ♦ 子局間の同期がとられる ため、 子局ではそのそれぞれが受信区間 (⑥欄の T Q 2 ) 、 送信区 間 (⑧欄の T Q 1 ) となる。
同期 ト一ン信号期間 T a (例えば、 2 5 m s e c ) と受信区間 T Q 1 の間には、 時間間隙 T b ( 5 m s e c ) が置かれるのが通常 ある。
子局では、 前記の電波を受信し受信高周波部 R Q 2を経て検出部 D E M 0 D 2で検波されると、 先の④欄の TWQ + V S S 1の信号 が取り出され、 まずスィ ッチ S WQの切り替えによって同期 トーン 信号 TWQが同期処理部 R D S 2に送られて、 子局の時分割パター ンの位相を親局のそれに合致させるために使用するタイ ミ ングボイ ン ト C U Q 2が取り出され、 これを用いて自局の発生する同期信号 をそれに同期させる。 さらにそれとともに、 音声処理部 R 0 S 2に も制御信号が送られて、 断続圧縮音声信号 V S S 1 の各分断区間は 2. 5倍に伸長され、 それらを繫ぎ合わせて、 ⑦欄の音声信号
V S 2に復調され、 疑似高域成分 V H Qが加えられて自然に近い音 声 V S X 2 となり スピーカ S P 2に出力されるものである。
詳細な図示は省略するが、 上記に呼応して子局のマイ クロホンか ら入った音声信号も親局同様に時間分割された上で 1 / 2. 5に圧 縮されて⑨欄の断続圧縮音声信号 V S S 2 となり、 (一般に、 子局 —親局の圧縮率に従って、 伸長率は必ずしも親局—子局の場合のそ れに合わせる必要はない。 すなわち、 第 1図④撊の時間 T S 1 と、 ⑨撊の時間 T S 2を等しくすることは必須の条件ではない。 両者を
違える場合に必要となる切り替え動作は、 制御器 C T Rが親、 子を 判別して行なう ことになる.) 、 子局の電波に乗って⑧欄の子局の送 信区間 T S Q 2に送出され、 親局では、 その受信区間、 すなわち③ 欄の R S Q 1 にそれが受信され、 ⑩欄の音声信号 V S 1 に復調 (検 波 ' 伸長 ' 繫ぎ合わせ) されてスビ一力に出力される。 この場合、 子局の送る電波には、 先の T W Qのような トーン信号は不要である ため含まれていはいない。 従って、 第 3図の装置が子局として用い られる場合は、 その同期発生部 T D Gは同期トーン信号を発生しな い。
この動作の切り替えも、 制御器 C T Rが親、 子の判別をして行な うことになる。
さて、 同期をとるために トーン信号を送ること自体は従来から盛 んに行なわれていることであるが、 従来の同期のための トーン信号 は、 通常、 デジタル回路で発生された第 8図 aのような矩形波をも とにして作られる同図 bのような単一正弦波 D T 1であり、 そのた めにタイ ミ ングボイ ン トの抽出にはとかく の不安定さが付きまとつ ていた。
その理由は、 この正弦波信号 D T 1が受信側で復調されるときに は、 信号が濾波器その他の様々な復調用回路を通過するために、 得 られる信号はどう しても同図 cのように、 はじめと終わりに過渡的 な 「だれ j 1 3 Q、 1 4 Qを伴う ものとなっている。 この 「だれ」 が存在するために、 タイ ミ ングポイ ン トをこの同図 cのどの位置に 選定 · 舍有させておけば、 それを誤ることな く受信側に抽出させる ことが出来るか、 それが難しい問題になるのである。 同時送受話無 線通信機の場合は、 特に厳密な同期を必要とし、 実験によってその 選定 · 抽出が至難の技となることが分かった。
本実施例では、 この問題の解決のために、 第 9図のように連続す る周波数の異なる二つ (一般には複数) の トーン信号 t) T 1 、
D T 2の繋ぎ目位置 (一般には所定番目の繋ぎ目位置) c c、 もし
く は理想的にはそれから所定値 (図 cの場合は 7 2 0度の位相角) だけ位相のずれた位置をタイ ミ ングボイ ン ト C U Q 2 として選定す ることにしたものである。
この方法によると、 繫ぎ目の c c位置には少なく とも 1 3 Q、 1 Qにみられるような振幅の 「だれ」 を生じないため、 受信側で 極めて的確にタイ ミ ングボイ ン ト C U Q 2を抽出することが出来る。 第 1図の⑤欄のタイ ミ ングポイ ン ト C U Q 2 はこのようにして選 定され含有され抽出されたものである。
第 1図で①欄の親局の送信音声の分割の区切り目と送信区間
T S Q 1 の立ち上がりまたはたち下がり位置は一致していない。
この両者の時間間隔を規制しているのは、 第 3図に示した制御器 C T Rである。 また、 ④欄の同期トーン信号 T W Qと断続圧縮音声 信号 V S S 1 の時間的位置、 それら相互の間隔などを、 前記した分 割の区切り目に対して規制し、 親 · 子局の電波の送信 ♦ 受信を制御 ているのも制御器 C T Rである。
さらにまた、 子局が抽出して得たタイ ミ ングポイ ン ト C U Q 2を 用いて自局の同期信号を親局に合わせる操作も制御器 C T Rが行な つ。
制御器 C T Rからのびている点線は、 その制御のための各種情報、 制御信号のやり とりを表示している。
実施例 6
さらに、 次の点も問題となるものであった。
一つの周波数で、 多数の局の中に親 · 子局の関係を作って、 他局 に邪魔されることなく互いに通話できるようにすること、 すなわち 親局 (話しかけ局) が的確に子局 (話しかけたい局) を選択把握で きる工夫がなければ、 1親局対複数子局の通話となって混乱を生じ かねないという点である。
複数の トーン信号の順列または組み合わせを選択呼出に使用する 技術は、 すでに電話その他で盛んに使われているものであるが、 こ
の技術が本発明の同時送受話無線通信機で容易に流用可能となる。 実施例 3で逮ベた、 連続する周波数の異なる複数の トーン信号 DT DT 2、 · · ' の所定番目の繫ぎ目位置、 も し く はそれか ら所定位相角だけ位相のずれた位置をタイ ミ ングポイ ン ト として使 用するとともに、 これら複数の トーン信号の順列または組み合わせ にも意味をもたせて、 それを従来の技術とおりに子局の選択呼出に 使用すればよいのである。 この選択呼出によって、 装置に様々な自 動化機能を賦与することは従来とおり容易である。
なお、 実施例 3および 4で開示された、 タイ ミ ングポイ ン トの選 定 * 含有 · 抽出方法、 および複数の トーン信号の順列または組み合 わせによる子局の選択呼出方法は、 変調信号が音声などのアナログ 信号の場合だけでなく、 デジタルデータなどのデジタル信号の場合 にもそのまま使用できることは明かである。
実施例 Ί
すでに、 第 4図と第 1図にかなりの部分が表されているので、 両 図と第 5図を用いて本願で開示される次の新しい技術の説明を行な う 通話に遅延の ¾い、 すなわちまどろかしさのない同時送受話無 線通信のためには、 ここで述べる対策がどう しても必要となる。 第 1図①檷の分断された音声 VMQ 1の各区間は、 それぞれ第 4 図のように、 制御器 CTRに制御されて、 まず A/D変換器 AD C でデジタル化されたのち、 ランダムアクセスメ モリ RAMに入力さ れ記憶されて行くが、 その入力がほとんど T Q 2 /T Q 3時間 (一 般には半分以上) 行なわれた時点から、 入力時の T Q 3 ZTQ 1倍 の速度で、 DZA変換器 D A Cに向けてその記憶内容が読み出され て行き、 分割の区間の終わりの直後に、 その読みだしが終了する。
こう して得られたものが、 ④欄の断続圧縮音声信号 V S S 1であ る。
この実施例が従来と異なる点は、 上記の読みだしおよび読みだし 終了の時期である。 従来は記憶の読みだしは、 入力の終了後に開始
されていたものである。
親局からの電波を受信し 'た子局が、 検波して取り出したその断続 圧縮音声信号 V S Sは、 第 5図に示すように先と同様 AA L P F、 AZD変換器 AD Cを経由してラ ンダムアクセスメ モ リ RAMに入 力され記憶されて行く 力 その入力の開始の直後から、 DZA変換 器 DA Cへ向けて、 T Q 1 ZT Q 3の速度で読みだしが始まり、 そ の読みだしは、 断続圧縮音声信号 V S Sの次の区分の読みだし開始 の直前に終了する。 このようにして V S、 すなわち⑦欄の復調信号 V S 2を得る。
この実施例が従来と異なる点は、 上記の読みだし開始の時期であ る。 従来は記憶の読みだしは、 この場合も入力が終了した後に開始 されていたものである。
音声の遅れが改善されていることは、 従来の第 1 1図と本発明の 第 1図を対比させるとき明瞭である。 第 1 1図では音声はほぼ 1. 5区画分遅れているが、 第 1図では①欄の音声が⑦欄にほぼ 0. 5区画分の遅れだけで届いている。
この実施例 5で開示された信号の伝達の遅れの改善方法も、 変調 が音声などのアナ口グ信号の場合だけでな く、 デジタル信号の場合 にもそのまま使用できる。
なお、 以上の実施例は、 音声伝送のみについて記載したが、 デー タ伝送のやり とり も可能であることは勿論である。
産業上の利用可能性
本発明によれば、 送信電波の占有周波数帯域幅に制限が設けられ ている場合にも充分使用できる、 周波数の有効利用に優れた、 通話 に遅延のまどろかしさのない、 音声の明瞭度 · 了解度の極めて高い 同時送受話無線通信機を提供することができる。
Claims
1 . 親局と子局がそれぞれ商等機能の送信部 ' 受信部を具え、 親局の送信部が、
①音声信号を時分割する装置と、
②時分割で得た各分割音声信号を時間圧縮してこれを断続する信号 に変える装置と、
③その断続する信号でキヤリァを変調し断続する電波に変えて子局 に送信する装置と、 を具え、
子局の受信部が、
④親局から送られた前記断繞する電波を受信 ♦ 検波して得た断続す る信号の各々に時間伸長を施す装置と、
⑤時間伸長して得た分割音声信号を親局の時分割に同期して連結す ることにより、 元②音声信号に戻す装置と、 を具えた、
送信電波の占有周波数帯域幅に制限値の設けられている場合におけ る、
単一または近接する 2つの周波数の電波を使用する同時送受話無線 通信機において、
前記送信部の時間圧縮する装置の前に、
前記音声信号の周波数の高域部分を力 ッ ト して、 その最高変調周波 数を半分以下に制躧する低域フィルタを具えたことを特徴とする同 時送受話無線通信機。
2 . 受信部に、 受信 · 復調で得た音声信号を加工して、 前記親局の 送信部が最高変調周波数を制限する際に切り捨てた高域部分に疑似 する疑似高域成分を作り出し、 それを該受信 · 復調で得た音声信号 と合成する装置を具えた請求項 1記載の同時送受話無線通信機。
3 . 請求項 2記載 0疑似高域成分を作る装置が、
①該受信: 復調で得た音声信号の振幅を所定闥値で力 ッ ト してその 歪信号を作る装置と、
②該歪信号を帯域制限する装置と、
③帯域制限で得られた信号の振幅を、 該受信 · 復調で得た音声信号 の振幅に対応して変化させ 装置と、
を舍む請求項 2記載の同時送受話無線通信機。
4 . 請求項 3記載の疑似高域成分を作る装置が、
①該受信 · 復調で得た音声信号を所定の非直線回路に通すことによ つてその歪信号を作る装置と、
②該歪信号を帯域制限する装置と、
を含んで構成された請求項 3記載の同時送受話無線通信機。
5 . 前記送 · 受信の切り替え周波数 F 0を 1 Η ζ〜 1 0 Η ζ の範囲 に設定した請求項 1記載の同時送受話無線通信機。
6 . 送信電波の周波数を ί M H z、 送信 . 受信の切り替え周波数を F 0 とするとき、
F 0 < 3 0 · f / 8 0 0
になした請求項 1記載の同時送受話無線通信機。
7 . 該親 · 子局の同期をとる装置として、
親局の送信部と子局の受信部の両方に、 同形状でかつ送 · 受信区 間が互いに逆であるような時分割パターンを発生する装置を具え、 かつタイ ミ ングポイ ン ト、 すなわち 「該両方の時分割パターンの位 相を合致させるために使用する時点」 を与える装置として、
親局の送信部に、
①連铳する複数の トーン信号からなる複合トーン信号に該タイ ミ ン グポイ ン トを舍ませて、 これを該分割圧縮音声信号の各々に付加す る装置と、
②付加して得た合成同期用信号で搬送波を変調する装置と、 を具え、 子局の受信部に、
親局の発射する断続する電波を受信 · 検波して得た合成同期用信号 の中から、 該複数の トーン信号および該タイ ミ ングボイ ン トを抽出 する装置、
を具えた請求項 1、 2、 5または 6記載の同時送受話無線通信機。
8 . 該複数の トーン信号中の
第 2番目以降の所定番目の'トーン信号の所定位相位置を、 前記タィ ミ ングポイ ン ト とした請求項 7記載の同時送受話無線通信機。
9 . 前記複数の トーン信号の トーンの組み合わせを子局の選択呼出 に使用した請求項 8記載の同時送受話無線通信機。
1 0 . 前記時間圧縮する装置が、
①該音声信号の A D変換器と、
②変換して得たデジタル信号をメモリへ書き込む装置と、
③該書き込みが前記分割の 1区間の半分または半分以上行なわれた 時点から、 その信号をメ モリから圧縮しつつ読み出す装置と、
④読み出された信号を分割圧縮音声信号に変換する D A変換器と、 を具え、
前記時間伸長する装置が、
⑤該分割圧縮音声信号の A D変換器と、
⑥その A D変換器で変換して得た断繞するデジタル信号をメモリへ 書き込む装置と、
⑦その 1区間分の書き込みの開始と同時に、 該デジタル信号をメモ リから伸長しつつ読み出す装置と、
⑧読み出された信号を元の分割音声信号に変換する D A変換器と、 を具えた請求項 7記載の同時送受話無線通信機。
1 1 . 前記の時間の圧縮と伸長が、 Ι Ζ ηと n倍 ( nは 2以上の正 の実数) である請求項 1 0記載の同時送受話無線通信機。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2511237A JPH0628349B1 (ja) | 1989-08-09 | 1990-08-08 | |
US07/671,821 US5490167A (en) | 1989-08-09 | 1990-08-08 | Duplex voice communication radio transmitter-receiver |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20487089 | 1989-08-09 | ||
JP1/204870 | 1989-08-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1991002414A1 true WO1991002414A1 (en) | 1991-02-21 |
Family
ID=16497765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1990/001014 WO1991002414A1 (en) | 1989-08-09 | 1990-08-08 | Duplex radio apparatus |
Country Status (3)
Country | Link |
---|---|
US (1) | US5490167A (ja) |
EP (1) | EP0498096B1 (ja) |
WO (1) | WO1991002414A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5355363A (en) * | 1992-03-09 | 1994-10-11 | Hitachi Denshi Kabushiki Kaisha | Voice transmission method and apparatus in duplex radio system |
US5697049A (en) * | 1993-04-20 | 1997-12-09 | Hitachi Denshi Kabushiki Kaisha | Radio relay method, radio relay system using the method and radio unit |
US5701581A (en) * | 1993-12-28 | 1997-12-23 | Hitachi Denshi Kabushiki Kaisha | Method for bidirectionally transmitting digital video signal and digital video signal bidirectional transmission system |
US5821995A (en) * | 1994-12-23 | 1998-10-13 | Hitachi Denshi Kabushiki Kaisha | Method and apparatus for controlling transmission of multiplexed video signals |
US6009305A (en) * | 1993-12-28 | 1999-12-28 | Hitachi Denshi Kabushiki Kaisha | Digital video signal multiplex transmission system |
US6345390B1 (en) | 1993-12-28 | 2002-02-05 | Hitachi Denshi Kabushiki Kaisha | Bidirectional digital signal transmission system and repeater for the same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5818814A (en) * | 1996-10-25 | 1998-10-06 | Sonics Associates, Inc. | Method and apparatus for synchronizing and controlling remote receiver |
CA2266149A1 (en) | 1998-07-06 | 2000-01-06 | Telecommunications Research Laboratories | An analog radio system with acoustic transmission properties |
US6801759B1 (en) * | 2000-09-25 | 2004-10-05 | Qualcomm, Incorporated | Method and apparatus for power control in a wireless communication system |
NZ508340A (en) * | 2000-11-22 | 2002-10-25 | Tait Electronics Ltd | Mobile radio half duplex communication with synchronisation |
CA2497518A1 (en) * | 2002-09-05 | 2004-03-18 | South Land Communications Pty Ltd | A system to deliver internet media streams, data & telecommunications |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5335411A (en) * | 1976-09-14 | 1978-04-01 | Sony Corp | Communicating method for dual directions |
JPS60147796A (ja) * | 1984-01-12 | 1985-08-03 | 町田 健二 | 信号合成装置 |
JPS63136835A (ja) * | 1986-11-28 | 1988-06-09 | Mitsubishi Electric Corp | 同時送受話装置 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS492417A (ja) * | 1972-04-18 | 1974-01-10 | ||
JPS5041406A (ja) * | 1973-07-20 | 1975-04-15 | ||
JPS5828939B2 (ja) * | 1975-09-23 | 1983-06-18 | カシオケイサンキ カブシキガイシヤ | ムセンツウシンホウシキ |
JPS5245813A (en) * | 1975-10-09 | 1977-04-11 | Saburo Tanaka | Wireless telephone system |
DE2901034C3 (de) * | 1979-01-12 | 1984-08-09 | Grundig E.M.V. Elektro-Mechanische Versuchsanstalt Max Grundig & Co KG, 8510 Fürth | Verfahren und Schaltungsanordnung zur Komprimierung und Dekomprimierung von Analogsignalen in digitaler Form |
NL7908213A (nl) * | 1979-11-09 | 1981-06-01 | Philips Nv | Spraaksynthese inrichting met tenminste twee vervormingsketens. |
SE453449B (sv) * | 1982-07-06 | 1988-02-01 | Ericsson Telefon Ab L M | Anleggning for tradlos overforing av telefonsamtal |
JPS6057731A (ja) * | 1983-09-08 | 1985-04-03 | Hitachi Ltd | 双方向同時通信方式 |
JPS61102830A (ja) * | 1984-10-24 | 1986-05-21 | Touno:Kk | 同時通話無線装置 |
US4893339A (en) * | 1986-09-03 | 1990-01-09 | Motorola, Inc. | Secure communication system |
JPS63127626A (ja) * | 1986-11-18 | 1988-05-31 | Keihin Denshi Kogyo Kk | 無線通信装置 |
EP0271094A2 (en) * | 1986-12-12 | 1988-06-15 | Motorola Inc. | Method and apparatus for a burst analog two-way communications system |
EP0292996B1 (en) * | 1987-05-27 | 1994-01-19 | Fujitsu Limited | Digital two-way radiocommunication system using single frequency |
JPH0329430A (ja) * | 1989-06-26 | 1991-02-07 | Iwatsu Electric Co Ltd | 移動体通信の時間分割通信方法 |
JPH0529997A (ja) * | 1991-07-18 | 1993-02-05 | Iwatsu Electric Co Ltd | 時間分割移動体通信のダイバーシテイ通信方法 |
JP2628126B2 (ja) * | 1992-03-09 | 1997-07-09 | 日立電子株式会社 | 無線機およびその音声伝送方法 |
-
1990
- 1990-08-08 WO PCT/JP1990/001014 patent/WO1991002414A1/ja unknown
- 1990-08-08 US US07/671,821 patent/US5490167A/en not_active Expired - Fee Related
-
1991
- 1991-02-05 EP EP91300923A patent/EP0498096B1/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5335411A (en) * | 1976-09-14 | 1978-04-01 | Sony Corp | Communicating method for dual directions |
JPS60147796A (ja) * | 1984-01-12 | 1985-08-03 | 町田 健二 | 信号合成装置 |
JPS63136835A (ja) * | 1986-11-28 | 1988-06-09 | Mitsubishi Electric Corp | 同時送受話装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5355363A (en) * | 1992-03-09 | 1994-10-11 | Hitachi Denshi Kabushiki Kaisha | Voice transmission method and apparatus in duplex radio system |
US5697049A (en) * | 1993-04-20 | 1997-12-09 | Hitachi Denshi Kabushiki Kaisha | Radio relay method, radio relay system using the method and radio unit |
US5701581A (en) * | 1993-12-28 | 1997-12-23 | Hitachi Denshi Kabushiki Kaisha | Method for bidirectionally transmitting digital video signal and digital video signal bidirectional transmission system |
US5978651A (en) * | 1993-12-28 | 1999-11-02 | Hitachi Denshi Kabushiki Kaisha | Method for bidirectionally transmitting digital video signal and digital video signal bidirectional transmission system |
US6009305A (en) * | 1993-12-28 | 1999-12-28 | Hitachi Denshi Kabushiki Kaisha | Digital video signal multiplex transmission system |
US6345390B1 (en) | 1993-12-28 | 2002-02-05 | Hitachi Denshi Kabushiki Kaisha | Bidirectional digital signal transmission system and repeater for the same |
US5821995A (en) * | 1994-12-23 | 1998-10-13 | Hitachi Denshi Kabushiki Kaisha | Method and apparatus for controlling transmission of multiplexed video signals |
Also Published As
Publication number | Publication date |
---|---|
US5490167A (en) | 1996-02-06 |
EP0498096B1 (en) | 1995-07-12 |
EP0498096A1 (en) | 1992-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11510326A (ja) | デジタルセルラー通信システムのための広帯域ベースステーションアーキテクチャ | |
WO1991002414A1 (en) | Duplex radio apparatus | |
JP2001503653A (ja) | 移植された医療装置を備え無線通信伝送するための方法 | |
EA001394B1 (ru) | Способ беспроводной передачи информации | |
EP0889603A3 (en) | Transmission diversity apparatus | |
JPS6234306B2 (ja) | ||
JPH04321328A (ja) | 無線通信方法 | |
JPH0419730B2 (ja) | ||
JP2528062B2 (ja) | 単信・複信切換無線機 | |
JPH0514236A (ja) | 無線中継装置 | |
JPH0473896B2 (ja) | ||
JP2005210478A (ja) | 無線機の遠隔通信システム及び遠隔通信方法 | |
JP2833897B2 (ja) | 情報通信装置 | |
JPH05244035A (ja) | 周波数帯域圧縮無線通信方式 | |
JP2783992B2 (ja) | 情報送受信方法 | |
JPS58156241A (ja) | 通信路の電力負荷を減少させるための方法および装置 | |
JPS63278433A (ja) | スペクトル拡散通信装置 | |
JPS60117825A (ja) | コンパンダ通信方式 | |
JPH0378813B2 (ja) | ||
JPH06311071A (ja) | 無線機 | |
JPH02283160A (ja) | インターカム付き電話機 | |
JPH03289830A (ja) | 時分割多重通信方式 | |
JPH0541692A (ja) | 移動体通信の時間分割通信方法 | |
JPS6094539A (ja) | スケルチ制御方式 | |
JPS6076834A (ja) | 周波数変換方式 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |