WO1989008191A1 - Biaxial contrarotating centrifugal fluid pressure booster - Google Patents
Biaxial contrarotating centrifugal fluid pressure booster Download PDFInfo
- Publication number
- WO1989008191A1 WO1989008191A1 PCT/JP1989/000169 JP8900169W WO8908191A1 WO 1989008191 A1 WO1989008191 A1 WO 1989008191A1 JP 8900169 W JP8900169 W JP 8900169W WO 8908191 A1 WO8908191 A1 WO 8908191A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- impeller
- shaft
- bearing
- fluid
- hollow
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D1/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D1/003—Having contrarotating parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/10—Centrifugal pumps for compressing or evacuating
- F04D17/12—Multi-stage pumps
- F04D17/127—Multi-stage pumps with radially spaced stages, e.g. for contrarotating type
Definitions
- the present invention relates to a two-axis inverting centrifugal type that enables the efficiency of a rapid-centre type (a mixed flow type is a kind of centrifugal type, and therefore includes a mixed flow type as well). Fluid rise E device.
- centrifugal type is inferior in efficiency to the axial flow type, but it is widely used for applications where the comparative rotation speed Ns is small, that is, relatively high E and small capacity. .
- Ns the comparative rotation speed
- an object of the present invention is to provide a two-axis inverting centrifugal fluid-lifting apparatus capable of realizing near-high efficiency in an axial flow type, excluding the above-mentioned drawbacks of the conventional centrifugal turbomachine.
- the principle of the present invention is to use a rotating winged diffuser (referred to as a second impeller) instead of a stationary diffuser, and to use this diffuser as a conventional impeller (referred to as a second impeller). -»Call it a car) and rotate at an appropriate speed in the opposite direction.
- the present invention is based on the principle that the high-velocity fluid discharged from the outer periphery of the first impeller is directed to the second wing army rotating in the opposite direction to the first impeller: If necessary, use a winged fixed diffuser to uniformly increase the pressure, guide the person, and increase the large relative speed to the second car, With the deceleration due to the spread of the wings of the second impeller and the rotation due to its own rotation, the absolute velocity of the fluid at the exit of the second impeller will be significantly reduced. By converting the dynamics into highly efficient BE and guiding it to a drip-shaped casing at the low speed and a suitable casing having a wide space at the low speed, it is placed in the casing. The fluid is designed to reduce the friction loss of the fluid and to obtain a large increase in the power of the fluid as a whole with high efficiency. Aru in provides a two-axis reversed centrifugal fluid temperature E device.
- the spiral casing ie, the diffuser of the focal blade
- the fixed diffuser of the wing which has high efficiency.
- the diffuser wings like the fixed diffuser, have the deceleration effect due to the rotation of the diffuser wing, as well as the flow deceleration effect due to the formation of the passage by the divergent divergence.
- the flow is reversed and the flow is reversed.
- the spiral casing around the impeller has a very wide absolute space at a significantly lower absolute speed compared to any appropriate conventional type. Introducing the casing into a universal housing with a small resistance makes it possible to use a fixed diffuser, as shown in Fig.
- Fig. 1 is a cross-sectional view taken from the side of the simplest embodiment of the axial flow type single-sending machine according to the present invention, and Fig. 2 is viewed from the suction side of the embodiment shown in Fig. 1.
- Fig. 3 and Fig. 4 are the velocity diagrams of the impeller and the output rotor of the embodiment of Fig. 1, and Figs. 5 and 6 are the implementation of Fig. 1.
- Velocity diagram of the second impeller and the output rotor of the example, and Fig. 7 shows the side of the actual driving example in Fig. 1 where the bearing on the drive side is extended and provided off-axis of the second impeller.
- FIG. 1 is a cross-sectional view taken from the side of the simplest embodiment of the axial flow type single-sending machine according to the present invention
- Fig. 2 is viewed from the suction side of the embodiment shown in Fig. 1.
- Fig. 3 and Fig. 4 are the velocity diagrams of the impeller and the output
- FIG. 8 is a side sectional view of an example of a mixed flow impeller of the centrifugal type according to the present invention
- FIG. 9 is a modification of the embodiment of FIG.
- FIG. 10 is a side cross-sectional view schematically showing a lubrication system provided in the shaft of the impeller.
- FIG. 11 is a cross-sectional view showing details of the system, and FIG. 11 is a cross-sectional view when the axis of the impeller is provided through the second impeller.
- Fig. 1 The reason that the configuration in Fig. 1 is the simplest is that the first and second wing forces are directly fixed to the motor shaft. In this type, the suction pipe is open, so it is not possible to connect the S pipe to the suction pipe.However, the use as a push-in transmitter used with the suction pipe open is not rare.
- 1 is the motor for the 1st wing
- 2 is the shaft of the 1st wing army
- 3 is the 1st wing
- ..., 4 is the efficiency of the 1st wing.
- ⁇ S is a vortex chamber provided between the first impeller 3 and the second impeller 6, and may be omitted in some cases.
- the reversing second impeller is very effective in increasing the efficiency of the centrifugal blocker, but on the other hand, there is a seal to reduce the amount of discharge working fluid leaking to the lower side.
- the cover of the second impeller 6 is divided into large and small diameter rings around the outer circumference of the impeller, which is larger than the circumference.
- the small-diameter saliva 11 is attached to the large-diameter part, and is configured to be detachable. It is a good idea to provide a rubber ring where it overlaps the ring. It is important that this small-diameter part is as thin and light as possible, and that the dynamic balance does not substantially change during installation and removal.
- the mass ring 12 of the first wing wheel and the mass ring of the cover 11 are provided.
- the interior of the rubber ring 13 is configured as a labyrinth seal.
- the outer surface is a labyrinth supported by the front cover 10.
- the balance pinuton 15 is provided on the back of the No. 1 car, and a paranubiton 16 of the second wing car is provided over it, and the rabbinance 17 is sealed between them.
- the outer periphery of the balance piston 16 is supported by the casing 9 and is sealed and sealed by the lab.
- FIG. 2 shows an example of the shape of a preferred impeller based on the concept of the present invention.
- Sunawachi first over Tsubasasha has Choku ⁇ radial wings and I Ndeyusa is Aru ⁇ conventional Yo Una fixed to You for antibody 3 ⁇ 4 large dynamic pressure in small outer diameter It is difficult for a diffuser to convert the large dynamic pressure into a static pressure efficiently, so that the impeller blades are usually used as retreating wings, and the ratio of dynamic EE is increased by increasing the degree of reaction as much as possible. Although it is small, I still get only the same efficiency as mentioned above.
- the second wing vehicle will be inverted with respect to the first wing army, and the velocity diagram will be described below according to the third , fourth , fifth , and sixth diagrams.
- the rotation speed of the second impeller is 1 / 2 Since it is only about ⁇ ⁇ ⁇ , the disc friction loss does not increase, and ultimately both the first and second wings can ensure extremely high efficiency.
- Fig. 3 shows the velocity bran diagram of the wing rotor, where the peripheral speed at the average diameter of the R end of the suction rod of the inducer is 1 ⁇ , the flow velocity in the axial direction is Cm, And the relative velocity between the fluid and the 3 ⁇ 4 is given by Is small, so Ul is small, and C mi is originally small, so ⁇ is also small. This is the effect of Indukey
- Figure 4 is ⁇ at a speed diagram of the first 3 ⁇ 4 wheel Delo, u 2 is ⁇ speed w s at a flow rate of peripheral speed 3 ⁇ 4 Cm 2 radius ten thousand toward Cm: the equal I.
- the absolute velocity of the discharged fluid is C :.
- the relative speed is small and the blade length is short, the frictional resistance inside the impeller is very small.
- Fig. 5 shows the velocity line ⁇ of the second wing soldier B.
- ii a is the speed of the wing of the second wing car, but this is about 1/10 of the peripheral speed of the first car.
- C us is the circumferential velocity of the fluid flowing to the second car II, and if the partial velocity in the direction 2 of the above-mentioned speed 2 is C U2 ,
- D sigma first 3 ⁇ 4 wheel Dero ⁇ Da is I ⁇ at Second blade ⁇ b diameter
- B when the larger, C u 2 is rather much large dark
- the speed is increased to C U a $, and the static EE rises corresponding to the dynamic pressure difference.
- the main compartment 5 is made to have an appropriate size, the efficiency of converting the dynamic E into static pressure is high, and the effect of reducing the friction loss in the second vane is high, but if it is too large, I'm sorry.
- the casing should be spiral and have a suitable wide space to allow easy flow in either direction.
- the most important factor in improving efficiency is to adopt a pole-high rotation speed for the No. 1 impeller and to reduce the outer diameter of each of the No. II and No. II vehicles.
- the bearing diameter of the # 1 impeller should be small, and the structure should be double-supported with the # 1 wheel interposed.
- a vehicle front bearing is provided in the nozzle on the suction side of the impeller, and the other drive-side bearings are made to pass through by making the shaft of the second blade arm hollow, and further extended to make the second wheel of the second wheel
- the bearing on the wheel side of the second impeller is supported by a bearing housing fixed to the casing 9, and the bearing is connected to the housing by a flange with a mark. Supported by bearing housing 23. Also, the bearing on the main side of the first impeller is bearing housing 24 connected by a flange with a sealing 23! 5 Supported.
- the method of supporting the above bearings may be any other suitable method.
- Driving of the No. 1 impeller is at the end of shaft 2 by direct connection to gears, belts, and smooth motors.
- Driving of the 2nd wing arm is performed by boogies or teeth 25 fixed to shaft 8.
- the bearings on the side of the wing of the wing are used.
- the wing ⁇ is taken out of the suction casing, and the shaft extends through the hollow second wing army shaft 8 and is provided at a position separated from the second wing arm shaft 8. It is also practical to use such a configuration, as shown in Fig. 8 ⁇ In this case, the blade of the # 1 impeller is considerably long, and it is correspondingly thick to stabilize shaft rotation.
- Fig. 8 shows an example of a mixed flow impeller which is a centrifugal type variant. If attention is paid to the fact that the mixed flow impeller reduces the gap between the shroud 26 and the impeller of each vehicle, not only will the effect be high, but also the configuration of the second impeller will be improved. As it becomes simple, it can be used as Is something you like. It is not universal for low flow rates. Fig.
- the driving means as the driving means, for the first wing vehicle, the speed increasing gear, and for the second vehicle, the belt transmission is used, and the motors are separated but all belt transmissions are used.
- the gears are all geared, the motors can be separate, and one can drive both, and the choice is appropriate. This is similar to other examples.
- motors with SS kw or more are made to order, and the larger the size, the higher the cost. ⁇ Especially, the U starting current is small and easy. For example, it is better to use 2 units of 5.5 kW for each 110 kW unit, and the motor, starter, etc. will be much cheaper and the starting current will be small.
- Fig. 9 shows that the bearing of the suction wheel of the impeller is installed at a distance outside the suction casing as in Fig. 8 , but the bearing of the motor is installed inside the shaft of the second wing army.
- This is an example of the device of the present invention in which the shaft of the No. 1 wheel is prevented from becoming too long, and the bearing of the second wheel is not too large. If the bearing of the No. 1 impeller is placed on this side, the shaft of the First Wing Army will come out very short, so that the primary dangerous rotation speed can be greatly increased and the shaft seal Even if the lubricating oil leaks if it breaks down, there is no danger of it getting into the machine.
- the lubrication system for the bearings of the first impeller provided in the second axle becomes slightly more complicated.
- the bearing referred to as the in-shaft bearing for short, the bearing of Aru Second impeller to its periphery Tsu ⁇ - in the cane will be referred to as two heavy bearing, the Gai ⁇ of the lubricating system Figure 9 Nyori, Next, the details will be described with reference to FIG.
- the two bearings supporting the second impeller are supported by bearing housings 23, 27 fixed to the casing 9 and fixed by flanges.
- the lubricating oil for the bearing of the second impeller of the double-bearing is provided on the lubricating oil housing 28 fixed to the bearing housing 27 with a flange with a seal before it.
- the inner bearing 31 is lubricated through a long hole 30 formed in the shaft core of the shaft, and the discharged oil passes through a number of pores formed in the inner periphery of a cavity ⁇ around the bearing end. It is provided to the impeller bearing of the second impeller, and is collected and discharged without being rafted outside by the oil collecting mechanism provided in the bearing housing.
- the lubrication system for the second R-wheel bearing can be freely selected.
- Reference numeral 32 denotes a shaft seal made of lubricating oil provided at the end of the shaft 8, and a mechanical seal, a screw seal, and the like are appropriately formed.
- FIG. 1G is a detailed view of the double bearing portion, and details of the thrust bearing and the lubricating oil discharge gun are described below.
- reference numeral 33 denotes a thrust ring fixed to the axle of the first R wheel by means of a threaded portion 35 which is in contact with the journal 34. 1 of the end face j Las preparative bearing 3 6 Nyo I * to stabilize the first wing ⁇ Tsu axial position receiving the scan lath bets vehicles.
- Lubricating oil passes between the scan Las door ring 3 3 and vinegar Las door bearing 3 6, been thrown off me ⁇ Ni ⁇ o of the scan Las door-ring was finished to the parent angle, of the second impeller hub 3 7 Gather in the oil collecting grooves 3 8 provided on the inner surface! ? Then, the oil is supplied to the second vane bearing 40 of the second dextrous through a number of oil holes 39 provided in the periphery thereof.
- the seal on the car side of the lubricating oil of the bearing 40 is specially designed to be combined with E of the airflow leaking between the parallax piston 15 and the labyrinth 17 D, special You have to pay attention to.
- the air flow passes through a large number of ventilation holes 41 formed on the circumference of the corner of the parallax piston 16 of the second car, and is released to the outside air.
- a few thousand mosquitoes remain in the balance piston 16.
- the thrust ring 33 is formed into a cylindrical shape on the wheel, and the thrust bearing is located on the thrust bearing side. A constriction is provided to prevent the oil from leaking out of the cylinder, and a lapillus 42 is provided around the cylinder to prevent the leakage of lubricating oil.
- the configuration of the space 44 is such that a thinner sleeve 46 is further extended from the balance screw 16, and a cover 47 having a labyrinth surrounding the outer periphery thereof is mounted on the bearing housing 23. Make it up.
- the oil bearing 4 0 has lubricated the bearing Haujin Da 2 3 on the other side are gathered space 4 8 provided, is ⁇ from discharging b 4 9 provided on the lower ⁇ . Since the shaft bearing 31 rotates in the opposite direction to the journal 34, its relative speed is high, and resistance and heat generation must be increased accordingly, but in order to alleviate this, the bearing clearance must be reduced. You should make it bigger. This is because the relative speed is large and the stability of the shaft is maintained even if the clarity is increased a little. With this configuration, the length of the shaft of the first impeller is the shortest, and the central part can be made sufficiently thick, and the high-speed stability of the shaft can be increased. Suitable when required.
- Fig. 1 1 shows that the shaft fixed to the cantilever by the first wing arm 3 penetrates the shaft of the hollow second impeller 6, and the bearing on the impeller side is inside the hollow shaft of the second impeller 6. provided 3 ⁇ 4 ⁇ , bearing the Mou ⁇ 5 I configuration Shi favored ⁇ at which the axis of the over impeller 3 fixedly provided position S which is out out through transmural the second impeller 6 Is shown.
- Lubricating oil is supplied from an oil supply hole 29 provided in a bearing housing 24 for supporting a bearing behind the first impeller 3, and a hollow shaft 8 of the second blade 6 is provided for the in-shaft bearing 31. From the gap between the first end of the first impeller 3 and the shaft 2, move along the shaft 2, and for the bearing of the housing 24, move in the opposite direction. Lubricated and discharged respectively.
- the end of the shaft 2 of the first impeller 3 is provided with a coupling and connected to the hooking shaft 1a, and the drive shaft 1a is increased in speed by an appropriate speed increasing device.
- a boogie or gear may be used instead of the coupling to increase the belt speed or gear speed.
- the belt is pulled from the left and right with an equal force and driven by two motors.
- the second impeller is shown as driven by pulley 25, but this is also the gear.
- the impeller shown in Fig. 11 has no side plate and only the mass ring, but this mass ring is intended to reinforce the centrifugal force of the blades of the people. And also to prevent fluid leakage.
- the blower or the compressor of the present invention can improve the overall efficiency of the conventional machine from 65 to 75 to 85 to 9056, respectively. Is expected to save 20 to 30 * in the future, so the increase in the rating due to the dual axis reversal will be eliminated within one year due to power savings. You can do it.
- the floor area of the blower of the present invention is reduced, a large-capacity blower can be obtained with the same floor area.
- the present invention is not limited to a blower, and although there are some differences in terms of seals, the present invention is not limited to turbine pumps. However, similar configurations can be achieved, with similar increases in efficiency and benefits.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
The biaxial contrarotating centrifugal fluid pressure booster of the present invention relates to an inprovement in a centrifugal turbo-blower, a compressor or a turbine pump. The booster includes two large and small vane wheels. The larger vane wheel (second vane wheel) covers the smaller one (first vane wheel), rotates in the direction opposite to the first vane wheel and functions as a rotary diffuser. The second vane wheel as the rotary diffuser decreases extremely efficiently the high speed of a fluid discharged from the first vane wheel to nearly zero, or deflects the direction of the discharged fluid, reduces the frictional loss of the fluid inside a casing and brings about as a whole a large pressure rise of the fluid with a high efficiency.
Description
明 細 書 Specification
ニ軸反転速心型流体昇圧装置 Two-axis reversing fast-center type fluid pressure booster
技街分野 Technology area
この発明は、 速心型(斜流型は遠心型の一種でぁるので、 斜流型 をも含むものとする )のターポ送 機またはタービンポン ブの効率 改巷を可能ならしめるニ軸反転遠心型流体昇 E装置に関する。 The present invention relates to a two-axis inverting centrifugal type that enables the efficiency of a rapid-centre type (a mixed flow type is a kind of centrifugal type, and therefore includes a mixed flow type as well). Fluid rise E device.
背景技術 Background art
元来遠心型は軸流型に比較して効率が劣るのでぁるが、 比較回転 度 N sの小さぃ範囲、 即ち比較的に高 Eカで小容量の用途には広く 使用されてぃる。 なぉ、 説明の都合上、 送風機、 EE縮機にっぃて先 ず説明する。 Originally, the centrifugal type is inferior in efficiency to the axial flow type, but it is widely used for applications where the comparative rotation speed Ns is small, that is, relatively high E and small capacity. . By the way, for the sake of explanation, we will explain the blower and EE compressor first.
従来速心型の効率が軸流型に劣るとぃゎれてぃる最大の原因は、 ¾車にょって与ぇられる高ぃ動圧を静 に変換するためのディ フュ ーザーの効率の低さにぁる。 むしろ、 翼覃そのものの効率は決して 悪くはなく、 設針次第では 9 0 56以上を達成出来ることを本発明者 は轻験してぃる。 にも拘らず、 総合効率は翟通低 N sのもので 6 5 〜 7 5 6でぁる。 大容量の高 N sのものでは総合効率 8 5 *を達成 してぃるものもぁるが、 しかし大容量軸流式の 9 0〜 9 5 *にはゃ はり及ばなぃ o The biggest cause that the efficiency of the conventional quick-core type is inferior to that of the axial flow type is that the efficiency of the diffuser for statically converting the high dynamic pressure applied to the vehicle is low. Sanyaru Rather, the present inventor has tested that the efficiency of Toshido itself is not bad at all, and it is possible to achieve 9056 or more depending on the setting. Despite, the overall efficiency翟通low N 6 5 ~ 7 5 6 Dearu with those of s. Than those of the high-N s of large capacity overall efficiency 8 5 * to achieve Shitiru things also Aru is, however, a large-capacity axial flow type 9 0-9 5 * Niwaya beams reach Nai o
従って、 本発明は、 上記の従来の遠心式タ一ボ機械の欠点を除き, 軸流式に近ぃ高効率を ¾現できるニ軸反転遠心型流体昇 E装置を提 供することを目的としてぃる。 然して、 本発明の原理と しては、 静 止^ィフューザーの代りに、 有翼の回転ディフューザー )これを第 ニ翼車と呼ぶ)を用ぃ、 このディ フューザーを従来の翼車( これを 第ー »車と呼ぶ)と反対向きに適当な速度で回転させることにょ り、 固定デ フューザーょ!)も、 むしろ短ぃ翼で第ー翼車にょって与ぇ られた動£の大鄞分を効率ょくき圧に変換し、 第ニ翼車出ロの流体 の絶対速度を適度に小さく して、 出ロ渦卷ケーシン グなぃし遍当な 空間を有するケーシングにぉける摩擦損失を小さくし、 かく して低
N sに対しても、 軸流式に近ぃ高効率を与ぇることにぁる。 したが って、 また髙 N sに対しては軸流式に劣らぬ高効率を与ぇることに も.なる。 Accordingly, an object of the present invention is to provide a two-axis inverting centrifugal fluid-lifting apparatus capable of realizing near-high efficiency in an axial flow type, excluding the above-mentioned drawbacks of the conventional centrifugal turbomachine. You. However, the principle of the present invention is to use a rotating winged diffuser (referred to as a second impeller) instead of a stationary diffuser, and to use this diffuser as a conventional impeller (referred to as a second impeller). -»Call it a car) and rotate at an appropriate speed in the opposite direction. ) Also converts a large part of the power supplied by the short impeller to the first impeller into efficiency, and reduces the absolute velocity of the fluid from the second impeller to a moderate level. Therefore, the friction loss in the casing having the uniform space such as the spiral winding casing is reduced, and thus the friction loss is reduced. For N s, we will give near-efficiency to the axial flow type. Therefore, 髙 N s is given a high efficiency that is not inferior to the axial flow type.
発明の開示 Disclosure of the invention
本発明は、 基本的構成として、 第ー翼車の外周から吐出される高 速の流体を第一翼車と反対: 5向に回転する第ニ翼軍に直ちに、 ぁる ぃは漪室なぃし必要にょっては有翼の固定ディフューザーにょって 遍当に滅速昇圧させてから導人し、 第ニ ¾車人ロにぉぃて大きな相 対速度をっく ぁげるとともに、 第ニ翼車の翼の広がりにょる滅速 化とそれ自体の回転にょる滅速化とにょって、 第ニ翼車出ロの該流 体の絶体速度を著しく低下させることにょ D、 動 £を効率ょく静 BE に変換し 且っ低速で第ニ¾覃外周の滴卷型ケー シングまたは広ぃ 空間を有する適当なケーシン グに導人することにょり、 該ケー シン グ内にぉける流体摩擦損失を小さくし、 全体として該流体の大きな Eカ上昇を高ぃ効辜をもって得るょぅに構成したことを特徴とする ニ軸反転遠心型流体昇 E装置, を提供するものでぁる。 The present invention is based on the principle that the high-velocity fluid discharged from the outer periphery of the first impeller is directed to the second wing army rotating in the opposite direction to the first impeller: If necessary, use a winged fixed diffuser to uniformly increase the pressure, guide the person, and increase the large relative speed to the second car, With the deceleration due to the spread of the wings of the second impeller and the rotation due to its own rotation, the absolute velocity of the fluid at the exit of the second impeller will be significantly reduced. By converting the dynamics into highly efficient BE and guiding it to a drip-shaped casing at the low speed and a suitable casing having a wide space at the low speed, it is placed in the casing. The fluid is designed to reduce the friction loss of the fluid and to obtain a large increase in the power of the fluid as a whole with high efficiency. Aru in provides a two-axis reversed centrifugal fluid temperature E device.
ここで念のため、 従来のターボ送 ¾機なぃし EE缩機の固定ディフ ューザーとの比較を、 ょ 明らかにして置くこととする。 As a precautionary measure, a comparison of the conventional turbo transmitter without an EE with a fixed diffuser will be clarified.
先ず、 渦卷型ケー シング、 すなゎち焦翼のディ フ ューザーょ りも 効率が高ぃとぃゎれてぃる有翼の固定ディフューザーとの比較にっ ぃて述べる。 First, the spiral casing, ie, the diffuser of the focal blade, is compared with the fixed diffuser of the wing, which has high efficiency.
有翼の固定ディフューザーで効率ょく滅速出来る限界はディフュ ーザーの出ロ速度 Z人ロ速度の比にして、 なぃし 1 Z4とぃ ゎれて 、る 0 たとぇば、 人ロで 2 4 0 m / s e c のものは 8 0〜6 0 m / s e c までしか滅速出来なぃで、 そのぁとの動圧はケーシン グ 内の摩擦に殆ど奪ゎれてしまラのでぁる。 Limits can efficiently consentration flashing speed fixed diffuser winged is in the Delo speed Z's B speed ratio of diffuser Za, Nai and 1 Z4 Ti Warete, Ru 0 other and Eba, in human B 2 The 40 m / sec type can only slow down to 80 to 60 m / sec, and the dynamic pressure with that is almost taken away by the friction in the casing, and it is generated.
この滅速比をもっと大きくすると、 案内 ¾の長さが大きくなって 且っディフ ューザー、 ケー シン グも大型となり、 好ましくなぃ結果 となる。
これに対して、 回転ディフュ一ザーを用ぃると、 固定ディ フュー ザーと同様にディフューザーの翼が末広が 通路を形成することに ょる流れの減速効果とともに、 回転することにょる滅速効果が加ゎ 、 さらにその流れを反転させて適当な任意の従来型に比較して、 著しく小さぃ絶対速度で、 翼車外周の渦巻型ケー シング ぃし広ぃ 空間を有し、 かっ流れの摩擦抵抗の小さぃ遍宜のケーシングに導入 することを町能ならしめ、 しかも第ニ »車、 すなゎち回転ディ フュ ーザーの翼の長さは第 2図から知られるょ ぅに、 固定ディフューザ ーの翼ょ り も短く出来るので、 翼覃内の摩擦損失も小さくな 、 そ れらの総合効果にょって、 高ぃ静 E上昇を高ぃ効率をもって達成出 来ることになるのでぁるが、 以上の効果のすべては回転ディ フュー ザーにょる効果でぁる。 If the deceleration ratio is further increased, the length of the guide 大 き く increases, and the diffuser and the casing also increase in size. On the other hand, when the rotating diffuser is used, the diffuser wings, like the fixed diffuser, have the deceleration effect due to the rotation of the diffuser wing, as well as the flow deceleration effect due to the formation of the passage by the divergent divergence. In addition, the flow is reversed and the flow is reversed. The spiral casing around the impeller has a very wide absolute space at a significantly lower absolute speed compared to any appropriate conventional type. Introducing the casing into a universal housing with a small resistance makes it possible to use a fixed diffuser, as shown in Fig. 2 for the length of the second car, that is, the length of the rotating diffuser wing. Since the wing of the vehicle can be shortened, the friction loss within the wing is also reduced, and a high static E rise can be achieved with high efficiency by the combined effect. All of the above effects are rotated The effect is based on the user.
なぉ第ニ翼車にぉぃて、 人ロと出ロの絶対速度の周 向の分速度 が反転してぃるとぃぅ ことは、 そこで大きな £カ上昇が達成されて ぃることを示すものでぁる · しかし、 この型式にぉぃては第ニ翼車 出ロの絶対速度の周方向の分速度が設計流量を超ぇた範囲で逆方向 になる場合もぁり、 このょぅなことを考盧して、 渦巻型ケーシン グ ょ りは、 むしろ広ぃ空間を有するケーシングにして、 どの方向にも 流れ易く した方がょぃ場合もぁる。 In addition, when the circumferential speed of the absolute speed of the robot and the rotor is reversed for the second impeller, it means that a large increase in power has been achieved there. However, in this model, the circumferential speed of the absolute speed of the rotor of the second impeller becomes opposite in the range exceeding the design flow rate. Considering the disadvantages, it is sometimes desirable to use spiral casings with casings that have a wide space so that they can easily flow in any direction.
囡面の簡単な説明 A brief description of the screen
第 1図は軸流型の本発明に基づく送 1機の中で最も単純に構成さ れた実施例の側面から昆た断面図、 第 2図は第 1図の荑施例の吸込 側から見た要鄞断面図、 第 3図及ぴ第 4図は第 1 図の実施例の第ー 翼車人ロと出ロの速度線図、 第 5図及び第 6図は第 1図の実施例の 第ニ翼車人ロと出ロの速度線図、 第 7図は第 1図の実旄例のー方の 駆動側の軸受を延長して第ニ翼車の軸外に設けた側断面図、 第 8図 は本発明の遠心型の変型でぁ¾斜流型翼車のー例の側断面図、 第 9 図は第 8図の実施钾の変形でー方の軸受を第ニ翼車の軸内に設けた 場合の潤滑系統の概略を示す側断面図、 第 1 0図は第 9図の潤滑系
統の詳細を示す側断面図、 第 1 1図は第ー翼車の軸が第ニ翼車を貫 ぃて設けられた場合の断面図でぁる。 Fig. 1 is a cross-sectional view taken from the side of the simplest embodiment of the axial flow type single-sending machine according to the present invention, and Fig. 2 is viewed from the suction side of the embodiment shown in Fig. 1. Fig. 3 and Fig. 4 are the velocity diagrams of the impeller and the output rotor of the embodiment of Fig. 1, and Figs. 5 and 6 are the implementation of Fig. 1. Velocity diagram of the second impeller and the output rotor of the example, and Fig. 7 shows the side of the actual driving example in Fig. 1 where the bearing on the drive side is extended and provided off-axis of the second impeller. FIG. 8 is a side sectional view of an example of a mixed flow impeller of the centrifugal type according to the present invention, and FIG. 9 is a modification of the embodiment of FIG. FIG. 10 is a side cross-sectional view schematically showing a lubrication system provided in the shaft of the impeller. FIG. 11 is a cross-sectional view showing details of the system, and FIG. 11 is a cross-sectional view when the axis of the impeller is provided through the second impeller.
発钥を莠施するための最良の形態 The best form to apply the sound
本発明をょ り詳細に説述するために、 添付の図面に従ってこれを 説明する。 The present invention will be described in more detail with reference to the accompanying drawings.
第 1図の構成が最も簡単でぁるとぃぅ理由は、 第ー, 第ニ各翼軍 が直接モーターの軸に固定されてぃることにぁる。 この型は吸込ロ が開放されてぃるので、 ¾込ロに S管を接続することは出来なぃが, このょぅに吸込ロ開放状態で使用する押込み送 機としての用途は 少なくはなぃが、 第 1図にぉぃて、 1は第一翼萆用モーター, 2は 第一翼軍シャフ ト, 3は第一翼車 ·—式, 4は第ー翼車の効率を高め るためのィ デューサーでぁるが、 れは場合にょっては省略して もょぃ β Sは第ー翼車 3と第ニ翼車 6 との間に設けた渦室でぁって, これは半径万向に 1 0なぃし 2 0 Λ位の大きさを取り、 騒音の低下 と流れの均一化 * すなゎち第ニ翼車 6の効率の向上をはかるための ものでぁる。 しかしながら、 この渦室 5をぁま D大きくすると、 む しろ不利となる《 7は第ニ ¾車 6 用モーター、 8は第ニ翼車シャフ ト、 9は渦巻型ケーシングでぁるが、 場合にょっては第ニ翼車出ロ の気流の絶対速度の周速がほとんどゼロになるょぅに設計出来た場 合は、 むしろ回転対称のまたは適宜の広ぃ空間にして流れ易くした :5がょぃ。 The reason that the configuration in Fig. 1 is the simplest is that the first and second wing forces are directly fixed to the motor shaft. In this type, the suction pipe is open, so it is not possible to connect the S pipe to the suction pipe.However, the use as a push-in transmitter used with the suction pipe open is not rare. In Fig. 1, 1 is the motor for the 1st wing, 2 is the shaft of the 1st wing army, 3 is the 1st wing, ..., 4 is the efficiency of the 1st wing. Β S is a vortex chamber provided between the first impeller 3 and the second impeller 6, and may be omitted in some cases. Has a size of 10 to 20 mm in all directions in the radius, reducing noise and equalizing the flow * In other words, to improve the efficiency of the second impeller 6 . However, if this swirl chamber 5 is made larger by a factor of D, it is rather disadvantageous. <7 is the motor for the sixth wheel 6, 8 is the second impeller shaft, and 9 is a spiral casing. In other words, when the peripheral speed of the absolute velocity of the airflow from the second vane wheel was designed to be almost zero, rather, it was made easier to flow by making it a rotationally symmetric or appropriate wide space: 5 Hey.
1 0はケーシング前カパーで ¾車の取付け、 取外しの際に開放す ο 10 is the cover in front of the casing ¾ Opened when installing or removing the car ο
遠心式ブ οヮーの効率を高める上で、 反転する第ニ翼車は大変効 果がぁるが、 その反面、 吐出働の流体が低 £側に洩れる量を少なく するためのシ一ルのェ夫が必要となる。 すなゎち、 第 i図にぉぃて は、 第ニ翼車 6のカバーを第ー翼車の外径ょり大きぃ円周を境とし て、 大, 小径ニっのリングに分割し、 小径の涎分 1 1を大径の部分 に対して取付け、 取外し自在に構成し、 且っ第ー翼車のマ ゥス リン
グと重なるょぅにマゥス リングを設けるのが良ぃ。 この小径の部分 は、 なる可く薄く軽快にパランスょくっく 、 取付け、 取外しにょ って、 動バラ ンスが実質的に変らぬょ ぅにすることが重要でぁる。 また、 第ー翼車のマゥス リ ング 1 2と該カバー 1 1 のマゥ ス リ ングThe reversing second impeller is very effective in increasing the efficiency of the centrifugal blocker, but on the other hand, there is a seal to reduce the amount of discharge working fluid leaking to the lower side. You need a husband. In other words, in Fig. I, the cover of the second impeller 6 is divided into large and small diameter rings around the outer circumference of the impeller, which is larger than the circumference. The small-diameter saliva 11 is attached to the large-diameter part, and is configured to be detachable. It is a good idea to provide a rubber ring where it overlaps the ring. It is important that this small-diameter part is as thin and light as possible, and that the dynamic balance does not substantially change during installation and removal. Also, the mass ring 12 of the first wing wheel and the mass ring of the cover 11 are provided.
1 3とが適当の隙闢を保って、 シールの役目をょく果すょぅにする。 場合にょっては、 マゥス リング 1 3の内部をラ ビ リ ンス シールに構 成する。 また、 その外面は前カバー 1 0に支持されたラビリ ン ス1 and 3 keep the proper time and play the role of the seal. In some cases, the interior of the rubber ring 13 is configured as a labyrinth seal. The outer surface is a labyrinth supported by the front cover 10.
1 4でシ一ルされ、 第ニ翼車吐出側の高 E流体の洩れを少なくする。 第一 ¾車の背面にはバランス ピヌ ト ン 1 5を設け、 それにかぶさる ょ ぅに、 第ニ翼車のパラ ンヌ ビス ト ン 1 6を設け、 その間はラビ V ン ス 1 7にょつてシールする θ Sealed at 14 to reduce leakage of high E fluid on the discharge side of the second impeller. The balance pinuton 15 is provided on the back of the No. 1 car, and a paranubiton 16 of the second wing car is provided over it, and the rabbinance 17 is sealed between them. Do θ
さらに、 パラン ス ビス ト ン 1 6の外厢はケーシン グ 9に支持され. たラ ビ ン ス ^—ル 1 8 にょって シールされて、、る。 In addition, the outer periphery of the balance piston 16 is supported by the casing 9 and is sealed and sealed by the lab.
第 2図は本発明の思想に基づく好ましぃ翼車の形状のー例を示す。 すなゎち、 第ー翼車は直艤放射状の翼と ィ ンデューサーを有し、 小 さな外径で大きな動圧を ¾生させるょぅにしてぁる β 従来のょ ぅな 固定されたディフューザーをもってしては、 その大きな動圧を効率 ょく静 £に変換することが困難でぁるため、 普通には翼車翼を後退 翼とし、 なるべく反動度を高めて動 EEの割合ぃを小さく してぃるが、 それでも結局は前述のょぅな効率しか得られてぃなぃ。 本発明では 第ニ翼車を第一翼軍に対して反転させることにょ 、 以下に速度線 図を第 3 , 4, 5 , 6各図にょって、 説明するょ ぅ に、 第ニ翼車に ょっては大きな静 ε上昇を得て吐出流体の動 Εを著しく小さくする ことが出来るのでぁ 、 且っ後述するょぅに、 第ニ翼車の回転速度 は第一翼阜の 1 /2 なぃし ι Ζι ο 程度ですむので、 円盤摩擦損失 も大きくはならず、 結局第ー, 第ニ各翼萆とも非常に高ぃ効率を確 保出来るのでぁる。 FIG. 2 shows an example of the shape of a preferred impeller based on the concept of the present invention. Sunawachi, first over Tsubasasha has Choku艤radial wings and I Ndeyusa is Aru β conventional Yo Una fixed to You for antibody ¾ large dynamic pressure in small outer diameter It is difficult for a diffuser to convert the large dynamic pressure into a static pressure efficiently, so that the impeller blades are usually used as retreating wings, and the ratio of dynamic EE is increased by increasing the degree of reaction as much as possible. Although it is small, I still get only the same efficiency as mentioned above. In the present invention, the second wing vehicle will be inverted with respect to the first wing army, and the velocity diagram will be described below according to the third , fourth , fifth , and sixth diagrams. In addition, since a large static ε rise can be obtained and the motion of the discharge fluid can be significantly reduced, the rotation speed of the second impeller is 1 / 2 Since it is only about ι Ζι ο, the disc friction loss does not increase, and ultimately both the first and second wings can ensure extremely high efficiency.
第 3図は第ー翼車人ロの速度糠図でぁり、 ィンデューサーの吸込 ロの R端の平均径 にぉける周速を 1^ , 軸万向の流速を Cm ,
とし、流体と ¾との相対速度を としてぃる。 は小さぃので Ul は小さく、 Cmi は元来小さく取るので ^ も小さく、 したがって 人ロの流れの乱れゃ摩擦損失が小さぃ。 これはィンデューキーの効 果でぁる Fig. 3 shows the velocity bran diagram of the wing rotor, where the peripheral speed at the average diameter of the R end of the suction rod of the inducer is 1 ^, the flow velocity in the axial direction is Cm, And the relative velocity between the fluid and the ¾ is given by Is small, so Ul is small, and C mi is originally small, so ^ is also small. This is the effect of Indukey
第 4図は第一 ¾車出ロの速度線図でぁ 、 u2 は周速 ¾ Cm2 は 半径万向の流速で钼対速度 ws は Cm: に等しぃ。 ここで説明を簡 単にする為に、 ¾数は充分に多く流体は正確に半径 向に流れ、 ぃ ゎゅる滑 係数は 1でぁるとすると、 吐出流体の絶対速度は C: と なる。 しかし、 相対速度 は小さく且っ翼長も短かぃので、 翼車 内の摩擦抵抗は大変小さぃ。 Figure 4 is § at a speed diagram of the first ¾ wheel Delo, u 2 is钼対speed w s at a flow rate of peripheral speed ¾ Cm 2 radius ten thousand toward Cm: the equal I. For the sake of simplicity, if the number is sufficiently large that the fluid flows exactly in the radial direction and the slip coefficient is 1, the absolute velocity of the discharged fluid is C :. However, since the relative speed is small and the blade length is short, the frictional resistance inside the impeller is very small.
すなゎち、 頼射型の翼車自体内での圧損は小さく ¾車内効率は大 変高ぃ翼車でぁると言ぅことが出来る。 その代 、 出ロの流体の絶 対速度 C2 は大きく、 ディフューザーの効率 ¾何が問題となるゎけ でぁる。 In other words, it can be said that the pressure loss in the reciprocating-type impeller itself is small, and the in-vehicle efficiency is a highly variable impeller. Instead, the absolute velocity C 2 of the fluid flowing out is large, and the efficiency of the diffuser is only a problem.
第 5図は第ニ翼軍人ロの速度線囡でぁる。 iia は第ニ翼車人ロの 犀速でぁるが 種 *の鬨保からこれは第一¾車出ロ周速の約 IZ2 なぃし 1/10に取るのがょぃ。 C us は第ニ II車に流人する流体の 周万向分速度で、 前記速度 2 の円鹿^向の分速度を C U2 とする ときは Fig. 5 shows the velocity line の of the second wing soldier B. ii a is the speed of the wing of the second wing car, but this is about 1/10 of the peripheral speed of the first car. C us is the circumferential velocity of the fluid flowing to the second car II, and if the partial velocity in the direction 2 of the above-mentioned speed 2 is C U2 ,
C u s = C us u2 とな OC us = C us u 2 and O
ここで、 D∑ は第一 ¾車出ロ径, Da は第ニ翼覃人ロ径でぁって、 漏室 5を大きくして、 B, を大きくすると、 C u2 はそれだけ大き く滅速されて C U a とな $、 その動圧 差に相当して静 EE上昇が起 る。 親室 5を適当の大きさに取ると、 その動 Eを静圧に变換する効 率は高く、 かっ第ニ翼車内での摩擦損失を軽滅する効果がぁるが、 大きくしすぎてはぃけなぃ。 Here, D sigma first ¾ wheel Dero径, Da is I § at Second blade覃人b diameter, by increasing the Moshitsu 5, B, when the larger, C u 2 is rather much large dark The speed is increased to C U a $, and the static EE rises corresponding to the dynamic pressure difference. If the main compartment 5 is made to have an appropriate size, the efficiency of converting the dynamic E into static pressure is high, and the effect of reducing the friction loss in the second vane is high, but if it is too large, I'm sorry.
しかし、 非常に高ぃ Eカ上昇を要求 ^れ、 その鎗果、 第ー, 第ニ 風車間の相対速度が音速を大巾に超ぇるょぅな場合は前記灞室 5の
外周に短ぃ翼をもったディフューザーを設けて適当に滅速してから 第ニ翼車に導入するのも良ぃが、 図は省略する。 However, if a very high E power rise is required, and the relative speed between the spears and the first and second wind turbines greatly exceeds the speed of sound, the room 5 It is also good to provide a diffuser with short wings on the outer circumference and to introduce it into the second vane after slowing down appropriately, but illustration is omitted.
第 β図は第ニ翼車出ロの速度線図で、 第 5図と比較すると、 翼内 の相対速度は w a から W 4 まで約半滅して居り、 これは第ニ翼車内 通路の末広がりにょる減速にょるものでぁる。 これに対して、 周速 度 ιι 4 ょって絶対速度の円周: 5向速度 C u 4 は人ロのそれに对し て小さく反転してぃる。 The β view the velocity diagram of the second-wheel Delo, when compared with FIG. 5, the relative velocity of the blades sediment for about half dark from w a to W 4, which is flared Second wing interior passage It is something that slows down. In contrast, the peripheral speed Iotaiota 4 Yotte absolute velocity of the circumference: 5 countercurrent speed C u 4 inverts small in对to that of human B Till.
この反転した速度は翼車外周のケ一'ンン グに導人して排出される 間の摩擦損失を小さくするために小さく取ることが重要とされる。 伹し、 流量が設計値ょ 大きくなると、 こ の C U 4 はゼ π 近づき, さらに流量が大きくなると、 その反対の万向に向くことになる。 It is important to keep this inverted speed small in order to reduce the friction loss during guiding and discharging to the crown around the impeller. However, when the flow rate becomes larger than the design value, this CU 4 approaches zπ, and when the flow rate further increases, it becomes the opposite direction.
広ぃ範囲の流量変化に対応させるょ ぅにする場合には、 ケー シン グは渦巻型にせすに、 適当な広ぃ空間にしてどちらの: 5向にも流れ 易く して置く 5がょぃ · ー般的に、 効率向上の上でもっとも大切な ことは第ー翼車に極カ高ぃ函転数を採用し第ー, 第ニ各 II車外径を 小さくすることでぁり、 その為には、 軸受けの摩擦損失を小さくす るため * 第ー翼車の軸受径を小さくし、 且っ安定がょぃょ ぅに第ー ¾車を挟んで両持ち構造とするのがょく、 その為には、 ϋ車前面 軸受を翼車の吸込側のノズル内に設け、 他の駆動側の軸受は第ニ翼 軍の軸を中空にして貫通させ、 さらに延長して第ニ ¾車の軸外に設 ける第 7図に示す構成が好ましぃ。 なぉ、 場合にょっては、 第ニ翼 軍の回転速度を第ー ¾車のそれと同等程度まで大きくし、 大きな Ε カ上昇を達成することも勿論実用上ぁり ぅる。 この場合も通常のニ 段式ょ り効率は改善できる β 第 7図では、 第 1図との共通部分の符 号は同ーとする。 この場合の第ー翼車側軸受の潤滑油は第 7図に示 すリブ 1 9を経由して轴受に送られ且っリブ 2 0を経由して排出さ れる。 それ故に、 油のシールにはメカニカルシールを用ぃるか、 ま たは吐出流体にょる カシールを用ぃるか、 ぁるぃは両シールを併 用する。 第 7図の 2 1は該軸シール鄞分を示し * 2 2は軸受部分を
示す。 To accommodate a wide range of changes in flow rate, the casing should be spiral and have a suitable wide space to allow easy flow in either direction. · In general, the most important factor in improving efficiency is to adopt a pole-high rotation speed for the No. 1 impeller and to reduce the outer diameter of each of the No. II and No. II vehicles. In order to reduce the friction loss of the bearings, the bearing diameter of the # 1 impeller should be small, and the structure should be double-supported with the # 1 wheel interposed. For this purpose, a vehicle front bearing is provided in the nozzle on the suction side of the impeller, and the other drive-side bearings are made to pass through by making the shaft of the second blade arm hollow, and further extended to make the second wheel of the second wheel The configuration shown in Fig. 7 off-axis is preferred. In some cases, of course, it is practically possible to increase the rotation speed of the 2nd wing army to about the same as that of the 1st vehicle and achieve a large increase in power. In this case, conventional two-stage Yo Ri efficiency in the Figure 7 β can improve, sign of the intersection of the first drawing is the same over. In this case, the lubricating oil of the impeller-side bearing is sent to the bearing via the rib 19 shown in FIG. 7 and is discharged via the rib 20. Therefore, use a mechanical seal for the oil seal, or use a seal for the discharge fluid, or use both seals. In FIG. 7, 21 indicates the shaft seal portion. * 22 indicates the bearing part. Show.
なぉ、 この場合第ニ翼車の ¾車側の軸受はケーシング 9に固定さ れた軸受ハゥ ジングに支持され、 も ぅーっの轴受は該ハゥ ジングに 印镜付きフランジで結合された軸受ハゥジング 2 3にょ り支持され る。 又第一翼車のも ぅー方の軸受はハゥジン グ 2 3 印篚付きフラ ンジで結合された軸受ハゥジング 2 4にょ !5支持される。 もっとも、 以上の軸受の支持の仕方は他の適宜な万法でもょぃ。 第ー翼車の駆 動は軸 2の末端で齒車, べル ト, なぃしモーター直結で行なぃ、 第 ニ翼軍の駆動は軸 8 に固定したブーリーまたは歯萆 2 5 で行なぅ o この構成は潤滑系統とそのシ一ルが若干コス ト高にはなるが、 高ぃ 効率を達成させるのに適し * 且っ吸込ロの構造が簡単 なる。 第 7 図では第一¾軍人ロのィ ンデュ一サ一は第 1図のょ ぅに別体とせず、 ー体としてぁるが効喿に変 &はなぃ。 第ニ翼車の軸受として、 図で は密封型の玉軸受を示してぁるが、 轴受とその潤滑の運択は適宜で ぁ O O In this case, the bearing on the wheel side of the second impeller is supported by a bearing housing fixed to the casing 9, and the bearing is connected to the housing by a flange with a mark. Supported by bearing housing 23. Also, the bearing on the main side of the first impeller is bearing housing 24 connected by a flange with a sealing 23! 5 Supported. However, the method of supporting the above bearings may be any other suitable method. Driving of the No. 1 impeller is at the end of shaft 2 by direct connection to gears, belts, and smooth motors. Driving of the 2nd wing arm is performed by boogies or teeth 25 fixed to shaft 8. This structure o Although the lubrication system and its seal are slightly more expensive, this structure is suitable for achieving high heat efficiency * and the structure of the suction roller is simplified. In Fig. 7 , the military personnel of the first soldier, Russia, are not separated from each other as shown in Fig. 1, but they are effective as bodies, but they are effective. Although the figure shows a sealed ball bearing as the bearing for the second impeller, the choice of bearing and lubrication is optional.
第ー翼軍側軸受のシールを簡易なものにして、 しかも若し洩れて も機内に混人する恐れのなぃょ ぅにする 法のーっと して、 第ー翼 車側の軸受を翼萆吸込ロケーシングの外に出し、 該軸は中空に構成 された第ニ翼軍の軸 8を貫通して延長され、 第ニ瑟軍の軸 8から分 雜した位置に設けられた軸受にょって支持されるょ ぅな構成も実用 的でぁ り、 それを第 8図に示す《 この場合、 第ー翼車の轴はかなり 長くなり、 軸回転の安定の為にそれに相当して太くする必要がぁる 結杲、 第ニ翼車の軸も太くな D、 第ニ翼車の翼車側轴受損失が増大 するのは止むを得なぃが、 第ニ翼車の回転速度は小さく損失そのも のが元来ぁま 大きなものではなぃので、 総合効率に対する影響は 小さぃ。 なぉ、 第 8図には遠心型の変型でぁる斜流型翼車のー例を 示してぁる。 斜流型翼車はシュラゥ ド 2 6と各 ¾車の翼との間の隙 間を小さくすることに注意をすれば、 高ぃ効军を与ぇる上に、 第ニ 翼車の構成も簡単になるので本発明のニ轴反転構造の昇 E機と して
は好ましぃものでぁる。 伹しぁま り低流量には遍さなぃ。 第 8図に は駆動手段として、 第一翼車用は増速歯軍、 第ニ ¾車.用はべル ト 伝 導とし、 モーターは別々 にしてぁるが、 全部べル ト 伝導なぃし全部 齒車伝導とし、 モーターは別々でもょぃし、 1個で両万を駆動して もょく、 その選択は適宜に行なぅ。 このことは他の例にぉぃても同 様 tめる o As a method of simplifying the seals of the bearings on the side of the wing of the wing, and avoiding the risk of mixing in the cabin if leaked, the bearings on the side of the wing of the wing are used. The wing 萆 is taken out of the suction casing, and the shaft extends through the hollow second wing army shaft 8 and is provided at a position separated from the second wing arm shaft 8. It is also practical to use such a configuration, as shown in Fig. 8 《In this case, the blade of the # 1 impeller is considerably long, and it is correspondingly thick to stabilize shaft rotation. The result is that the shaft of the second impeller is thicker D, and the impulse loss on the impeller side of the second impeller is unavoidable to increase, but the rotation speed of the second impeller is The impact on the overall efficiency is small because the loss is small and the loss itself is not large. Fig. 8 shows an example of a mixed flow impeller which is a centrifugal type variant. If attention is paid to the fact that the mixed flow impeller reduces the gap between the shroud 26 and the impeller of each vehicle, not only will the effect be high, but also the configuration of the second impeller will be improved. As it becomes simple, it can be used as Is something you like. It is not universal for low flow rates. Fig. 8 shows the driving means, as the driving means, for the first wing vehicle, the speed increasing gear, and for the second vehicle, the belt transmission is used, and the motors are separated but all belt transmissions are used. The gears are all geared, the motors can be separate, and one can drive both, and the choice is appropriate. This is similar to other examples.
ー般に、 S S kw以上の鼋動機は注文生産でぁり、 大型になる程 割高となるので むしろニ台に分けた ¾が安儸になるし、 起動もー 台ずっ時間をずらして行なぅ ことにょ U起動電流が小さく且っ容易 となる。 たとぇぱ、 1 1 0 kw 1台ょ りも 5 5 k w 2台にする方が モーター, ス タータ一等がずっと安くなるとともに、 起動電流が小 さくて済むこととなる。 Generally, motors with SS kw or more are made to order, and the larger the size, the higher the cost.ょ Especially, the U starting current is small and easy. For example, it is better to use 2 units of 5.5 kW for each 110 kW unit, and the motor, starter, etc. will be much cheaper and the starting current will be small.
第 9図は第ー翼車の吸込倜の軸受は椠 8図と同様吸込ケーシン グ の外に ^離して設けるが、 もぅー の軸受は第ニ翼軍の軸内に設け, 第 8図のょ ぅに第ー爨車の軸が長くなるのを防止し、 且っ第ニ翼車 の軸受も遏大にならぬょぅにした本発明装置のー例でぁる。 このょ ぅに、 第ー翼車の軸受を配置すると、 第一翼軍の軸を大変短かく出 来るので、 第一次の危険回転速度を大巾に高めることが出来る上に, 軸シールが故障して潤滑油が若し仮りに洩れても、 機内に混入する 恐れがなぃ。 その代りに、 第ニ翼車軸内に設けた第ー翼車の軸受の 潤滑系統が少し複雑となる。 この軸受は略して軸内軸受と称し、 且 っその外周にぁる第ニ翼車の軸受と―しょにしてニ重軸受と称する こととし、 その潤滑系統の概薆を第 9図にょり、 次にその詳細を第 1 0図にょって説明する。 Fig. 9 shows that the bearing of the suction wheel of the impeller is installed at a distance outside the suction casing as in Fig. 8 , but the bearing of the motor is installed inside the shaft of the second wing army. This is an example of the device of the present invention in which the shaft of the No. 1 wheel is prevented from becoming too long, and the bearing of the second wheel is not too large. If the bearing of the No. 1 impeller is placed on this side, the shaft of the First Wing Army will come out very short, so that the primary dangerous rotation speed can be greatly increased and the shaft seal Even if the lubricating oil leaks if it breaks down, there is no danger of it getting into the machine. Instead, the lubrication system for the bearings of the first impeller provided in the second axle becomes slightly more complicated. The bearing referred to as the in-shaft bearing for short, the bearing of Aru Second impeller to its periphery Tsu且- in the cane will be referred to as two heavy bearing, the Gai薆of the lubricating system Figure 9 Nyori, Next, the details will be described with reference to FIG.
第 9図にぉぃて、 第ニ翼車を支持するニっの軸受はケーシン グ 9 に印镅付きフラン ジで願次固定された軸受ハゥジング 2 3 , 2 7に ょってそれぞれ支持され、 ニ重軸受の第ー翼車の軸受用潤滑油は軸 受ハゥジン グ 2 7の先きに印痛付きフ ランジにょって固定された潤 滑油ハゥジング 2 8に設けられた耠油ロ 2 9から、 第ニ翼車の軸 8
の軸芯にぁけられた長孔 3 0を経て前記軸内軸受 3 1を潤滑し、 該 排出油は該軸受端周囲の空洞鄞の内周にぁけられた多数の細孔を経 て、 第ニ翼車の翼車倜軸受に供絵され、 且っ該軸受ハゥ ジングに設 けられた集油機構にょって、 外部に筏れることなく、 集められ且っ 排出される。 伹し、 第ニ R車軸受の潤滑方式の選択は自由でぁる。 As shown in Fig. 9, the two bearings supporting the second impeller are supported by bearing housings 23, 27 fixed to the casing 9 and fixed by flanges. The lubricating oil for the bearing of the second impeller of the double-bearing is provided on the lubricating oil housing 28 fixed to the bearing housing 27 with a flange with a seal before it. From the second impeller shaft 8 The inner bearing 31 is lubricated through a long hole 30 formed in the shaft core of the shaft, and the discharged oil passes through a number of pores formed in the inner periphery of a cavity 鄞 around the bearing end. It is provided to the impeller bearing of the second impeller, and is collected and discharged without being rafted outside by the oil collecting mechanism provided in the bearing housing. However, the lubrication system for the second R-wheel bearing can be freely selected.
なぉ、 3 2は軸 8の端に設けられた潤滑油の軸シールでぁり、 メ カ -カルシール、 ねじシールその他適宜遘^する。 Reference numeral 32 denotes a shaft seal made of lubricating oil provided at the end of the shaft 8, and a mechanical seal, a screw seal, and the like are appropriately formed.
第 1 G図は前記ニ重軸受部の詳細図でぁり、 ス ラス ト軸受と潤滑 油の排出系銃の詳細をこれにょ 説¾する。 FIG. 1G is a detailed view of the double bearing portion, and details of the thrust bearing and the lubricating oil discharge gun are described below.
第 1 0図にぉぃて、 3 3はジャ一ナル 3 4に驂接したねじ部 3 5 によって、 第一R車の軸に固定されたス ラス ト リ ングでぁり、 軸内 軸受 3 1 の端面のヌ ラス ト軸受 3 6 にょって * 第一翼車のス ラス ト を受け且っ軸方向の位置を安定させる。 In FIG. 10, reference numeral 33 denotes a thrust ring fixed to the axle of the first R wheel by means of a threaded portion 35 which is in contact with the journal 34. 1 of the end face j Las preparative bearing 3 6 Nyo I * to stabilize the first wing且Tsu axial position receiving the scan lath bets vehicles.
潤滑油はス ラス ト ング 3 3とス ラス ト軸受 3 6 との間を通り、 親角に仕上げられたス ラス ト リ ングの緣にょって振り切られて、 第 ニ翼車ハブ 3 7の内面に設けられた集油溝 3 8に集ま!?、 その周辺 に設けられた多数の通油孔 3 9を経て、 第ニ ¾覃の翼車倒軸受 4 0 に供給される。 軸受 4 0の潤滑油の ¾車側のシールは、 パ ラ ン スビ ス ト ン 1 5とラビリ ンス 1 7 との閽を洩れて来る気流の Eカとの兼 ね合ぃがぁ D、 特別の考慮を払ゎねばならなぃ。 すなゎち、 該気流 は第ニ »車のパランス ビス ト ン 1 6の夹の角の円周上にぁけられた 多数の通気孔 4 1を通って、 外気に逃がされるのでぁるが、 なぉパ ラン ス ビス ト ン 1 6内に若千の カが残る、 —方前記スラ ス ト リ ン グ 3 3は ¾車偶に円筒形に形成され、 そ ス ラ ス ト軸受け側にくび れを設け、 緣を説く して油の切れをょく してぁるとともに、 該円筒 部の扃囲にラピリ ン ス 4 2を設けて、 潤滑油の漏れを防止するので ぁるが、 このラビリンス に前記気流の一部が流れ込むので、 これが 潤滑油の本流に混らぬょ ぅに翁記通気孔 4 1 を通って、 軸受ハゥジ ン グ 2 3の翼車倜に設けられた空間 4 4に集められ、 その下部に設
けられた排出ロ 4 5から拚出されるょぅにする 0 この気流には、 微 量の油が混入する恐れがぁるので、 その油を分離出来るょ ぅにバッ フ了を設けて置く。 Lubricating oil passes between the scan Las door ring 3 3 and vinegar Las door bearing 3 6, been thrown off me緣Niño of the scan Las door-ring was finished to the parent angle, of the second impeller hub 3 7 Gather in the oil collecting grooves 3 8 provided on the inner surface! ? Then, the oil is supplied to the second vane bearing 40 of the second dextrous through a number of oil holes 39 provided in the periphery thereof. The seal on the car side of the lubricating oil of the bearing 40 is specially designed to be combined with E of the airflow leaking between the parallax piston 15 and the labyrinth 17 D, special You have to pay attention to. In other words, the air flow passes through a large number of ventilation holes 41 formed on the circumference of the corner of the parallax piston 16 of the second car, and is released to the outside air. A few thousand mosquitoes remain in the balance piston 16. The thrust ring 33 is formed into a cylindrical shape on the wheel, and the thrust bearing is located on the thrust bearing side. A constriction is provided to prevent the oil from leaking out of the cylinder, and a lapillus 42 is provided around the cylinder to prevent the leakage of lubricating oil. However, since a part of the airflow flows into the labyrinth, the airflow does not mix with the main flow of the lubricating oil, so that the airflow passes through the air hole 41 and the space provided in the impeller wheel of the bearing housing 23. 4 Collected in 4 The 0 This airflow in You are拚出from discharging b 4 5 kicked, a possibility that fine amount of oil is mixed because Aru places provided Yo Uniba' full completion capable separating the oil.
前記空間 4 4 の構成はバラン ス ビス ト ン 1 6から、 更に薄肉のス リーブ 4 6を出し、 その外周をかこむラ ビリ ン スを有するカパー 4 7を、 軸受ハゥジング 2 3に取 Uっけることにょって構成する。 他方、 軸受 4 0を潤滑した油は軸受ハゥジン ダ 2 3 の他の側に設け られた空間 4 8 集められ、 その下鄞に設けられた排出ロ 4 9から 拼出される。 軸内軸受 3 1はジャーナル 3 4と反対万向に回転する ため、 その相対速度が大きく、 抵抗と発熱がそれだけ大きくなるゎ けでぁるが、 それ 緩和するために、 軸受のクリャランス を若千大 きくするのがょぃ。 それは相対速度が大きぃので、 ク リャランスを 若千大きくしても、 軸の安定性が保たれるからでぁる。 この構成は 第ー翼車の軸の長さを最も短かく、 且っその中央部を充分に太くす ることが出来、 軸の高速安定性を高めることが出来るので、 非常に 高ぃ高速を要求される場合に適してぃる。 The configuration of the space 44 is such that a thinner sleeve 46 is further extended from the balance screw 16, and a cover 47 having a labyrinth surrounding the outer periphery thereof is mounted on the bearing housing 23. Make it up. On the other hand, the oil bearing 4 0 has lubricated the bearing Haujin Da 2 3 on the other side are gathered space 4 8 provided, is拼出from discharging b 4 9 provided on the lower鄞. Since the shaft bearing 31 rotates in the opposite direction to the journal 34, its relative speed is high, and resistance and heat generation must be increased accordingly, but in order to alleviate this, the bearing clearance must be reduced. You should make it bigger. This is because the relative speed is large and the stability of the shaft is maintained even if the clarity is increased a little. With this configuration, the length of the shaft of the first impeller is the shortest, and the central part can be made sufficiently thick, and the high-speed stability of the shaft can be increased. Suitable when required.
第 1 1 図は第一翼軍 3が片持ちに固定された軸を、 中空の第ニ翼 車 6の軸に貫通させ、 その翼車側の軸受は第ニ翼車 6の中空軸内の ¾萆側に設け、 もぅー 5の軸受は第ー翼車 3の軸が第ニ翼車 6を貫 通して出外れた位 Sに固定的に設けたところの单純で好ましぃ構成 を示す。 Fig. 1 1 shows that the shaft fixed to the cantilever by the first wing arm 3 penetrates the shaft of the hollow second impeller 6, and the bearing on the impeller side is inside the hollow shaft of the second impeller 6. provided ¾萆側, bearing the Mouー5 I configuration Shi favored单純at which the axis of the over impeller 3 fixedly provided position S which is out out through transmural the second impeller 6 Is shown.
第 1 1図にぉぃて記人されてぃる記号の中、 4個の鄞品 2 3 a , 4 0 a , 4 4 a , 4 7 aを除く他のすべては、 すでに記述した内容 と同ーの要素を示す。 また、 軸内軸受 3 1 を潤滑した油は第 9図、 第 1 0図の例では、 さらに第ニ翼車 6の軸受に導かれてぃるが、 第 1 1図では、 第ニ翼車 6の翼車側軸受 4 0 aには導く ことを止め、 同軸受を支持するブラケッ ト 2 3 aと同カバー 4 7 aの凹み部とで 構成される空間 4 4 aを轻由して、 上下の排出ロ 4 5から排出され る。 排出ロ 4 ' Sを上下に設けた理由は、 上の方からはバラ ンス ピス
トンを筏れた気体の一鄞が潤滑油に混人するのを逃がすためでぁり、 下からは油を排出するためでぁる。 In the symbols written in Figure 11, all but the four goods 23a, 40a, 44a, 47a are the same as those already described. Indicates the same element. The oil that has lubricated the in-shaft bearing 31 is further guided to the bearing of the second impeller 6 in the examples of FIGS. 9 and 10, but in FIG. 11, the second impeller Stop guiding to the impeller side bearing 40a of 6, and use the space 44a formed by the bracket 23a that supports the bearing and the recess of the cover 47a. It is discharged from the upper and lower discharge rollers 45. The reason why 4'S is provided above and below is that It is used to escape a part of the gas from the rafted gas to the lubricating oil, and to drain the oil from below.
潤滑油は第ー翼車 3の後方の軸受を支持する軸受ハゥジン グ 2 4 に設けた給油孔 2 9から供給され、 軸内軸受 3 1 に対しては、 第ニ 翼草 6の中空軸 8のも ぅー方の端の第ー翼車 3の軸 2との間のすき まから軸 2に沿って進人し、 またハゥジング 2 4の軸受に対しては その反対方向に進人して潤滑し且っそれぞれ排出される。 Lubricating oil is supplied from an oil supply hole 29 provided in a bearing housing 24 for supporting a bearing behind the first impeller 3, and a hollow shaft 8 of the second blade 6 is provided for the in-shaft bearing 31. From the gap between the first end of the first impeller 3 and the shaft 2, move along the shaft 2, and for the bearing of the housing 24, move in the opposite direction. Lubricated and discharged respectively.
第一翼車 3の軸 2の端にはカ ッ ブリ ングを付し魘動軸 1 aと連結 してぁり、 駆動軸 1 aは適宜の増速装置で増速される。 しかし、 カ ッブリ ン グの代りにブーリーまたはギャをっけてべルト増速または 齒車増速してもょぃ。 この場合のべルトは左右から均等のカで引張 るょぅにし、 ニ台のモ一ターで駆動する。 第ニ翼車はプーリ ー 2 5 で駆動するょぅに示してぁるが、 これは齒車でもょぃ。 The end of the shaft 2 of the first impeller 3 is provided with a coupling and connected to the hooking shaft 1a, and the drive shaft 1a is increased in speed by an appropriate speed increasing device. However, a boogie or gear may be used instead of the coupling to increase the belt speed or gear speed. In this case, the belt is pulled from the left and right with an equal force and driven by two motors. The second impeller is shown as driven by pulley 25, but this is also the gear.
なぉ、 第 1 1図の第ー翼車には側板がなく、 マゥ ス リ ン グだけが っけてぁるが、 このマゥス リ ングは人ロの羽根の遠心カに対する補 強の意昧と流体の洩れ防止とを兼ねてぃる。 Note that the impeller shown in Fig. 11 has no side plate and only the mass ring, but this mass ring is intended to reinforce the centrifugal force of the blades of the people. And also to prevent fluid leakage.
また第ニ翼草の外周には渦室はなく広ぃケーシングの中で回転す る形となってぃるが、 第ニ翼萆 6そのものが改良された渦室のー種 と ¾て もょぃ。 産業上の利用可能性 There is no swirl chamber around the outer periphery of the second wing blade, and it rotates in a wide casing, but the second wing blade 6 itself is an improved type of vortex chamber.ぃ. Industrial applicability
以上のょぅに、 本発明のブロヮーまたはコン ブレ グサーはそれぞ れ従来型機の全効率 6 5なぃし 7 5 ¾を、 8 5なぃし 9 0 56にまで 向上出来るので、 相対的には 2 0なぃし 3 0 *の菴カ節滅を期待出 来るため、 ニ軸反転式にすることにょる锢格の上昇分は電カ節約に ょって一ケ年以内に僙却出来ることとなる。 また、 本発明のブロ ヮ ーは床面積も小さくなるので同ー床面積でょり大容量のブロヮーを 釐くことも出来る。 さらに、 本発明はブロヮーに限定されるもので なく、 シールの点に若干の違ぃがぁるものの、 タービンポンブ ·し
ても、 同様に構成でき、 同様な効率の上昇とメ リ ッ トが得られる。
As described above, the blower or the compressor of the present invention can improve the overall efficiency of the conventional machine from 65 to 75 to 85 to 9056, respectively. Is expected to save 20 to 30 * in the future, so the increase in the rating due to the dual axis reversal will be eliminated within one year due to power savings. You can do it. In addition, since the floor area of the blower of the present invention is reduced, a large-capacity blower can be obtained with the same floor area. Further, the present invention is not limited to a blower, and although there are some differences in terms of seals, the present invention is not limited to turbine pumps. However, similar configurations can be achieved, with similar increases in efficiency and benefits.
Claims
1. 第一翼車の外周から吐出される高速の流体を、 第ー ¾車と反対 万向に回転する第ニ翼車に、 直ちに或は凝室なぃし必要にょって は有翼の固定ディ フューザーにょって適当に減速昇£させてから 導 し、 第ニ翼車人ロにぉぃて大きな相対速度をっく りぁげると と もに、 第ニ翼萆の翼の広がりにょる滅速化とそれ自体の回転に ょる减速化とにょって、 第ニ翼車出ロの該流体の絶体速度を著し く低下させることにょ り ¾ 動 Eを効率ょ く静 Eに変換し、 且っ低 速で第ニ翼車外周の騎巻型ケーシン グまたは広ぃ空間を有する適 当なケ一シン グに導人することにょ り、 該ケーシン グ にぉける 流体摩擦損失を小さ く し、 全体として該流体の大きな Eカ上昇を 高ぃ効率をもって得るょ ぅに構成したことを特徴とするニ軸反転 遠心型流体昇 EE装置。 1. The high-speed fluid discharged from the outer periphery of the first impeller is transferred to the second impeller, which rotates in the opposite direction to the first impeller, immediately or without a condensate chamber. Derived from the fixed diffuser after decelerating and raising it appropriately, the large relative speed is noticed to the second wing car, and the wing spread of the second wing the rotation of Nyoru flashing speed of the own I Yoru Slow down of the Nyo, efficiency Nyo Ri ¾ dynamic E to reduce markedly the absolute velocities of the fluid in the second-wheel Delo Yo KuShizu It is converted to E and guided at a low speed to a winding type casing around the outer periphery of the second impeller or an appropriate casing having a wide space, and the fluid friction applied to the casing is increased. A two-axis reversing centrifugal fluid rising EE characterized in that the loss is reduced and the large E rise of the fluid as a whole is obtained with high efficiency. apparatus.
2. 第一翼車の軸はその吸込側に延伸されるとともに、 該軸は原動 機の軸そのものでぁるか、 また原動機にょって、 回転されるょ ぅ に軸受けにょって支持されて居 13、 且っ第ニ翼車の軸は第一翼車 の軸と反対方向に延伸されるとともに、 該軸は原動機の軸そのも のでぁるか、 または原動機にょって回転されるょ ぅ に軸受けにょ って支持されることを特徴とする請求の範囲第 1項記载のニ軸反 転遠心型流体昇 E装置。 2. The shaft of the first impeller extends to the suction side, and the shaft is the shaft of the prime mover itself, or is supported by the bearing while being rotated by the prime mover. The shaft of the second impeller extends in a direction opposite to the axis of the first impeller, and the shaft is driven by the shaft of the prime mover or rotated by the prime mover. 2. The twin-shaft reversing centrifugal fluid rising E device according to claim 1, wherein the device is supported by a bearing.
3. 第ニ翼車の軸を中空に形成し、 且っ第ー翼車の吸込側に延伸す る第ー翼車軸の端部は吸込ノズルの周壁から ブにょって支持さ れた軸受及び軸シールにょって支承され、 該 リ ブ内に潤滑油の供 耠と排出用の通路及び必要にょ i? シール流体の通路を設け、 第ー 翼車の背面に延伸する第一翼車軸は前記第ニ翼車の中空軸を貫通 し、 該中空軸外に設けられた軸受けにょって支承されるこ とを特 徵とする請求の範囲第 1項記載のニ軸反転遠心型流体畀 E装置。 3. The shaft of the second impeller is formed hollow, and the end of the first impeller, which extends toward the suction side of the first impeller, is supported by the peripheral wall of the suction nozzle. A passage for supplying and discharging lubricating oil and a passage for sealing fluid are provided in the rib, and the first axle extending to the back of the first impeller is provided with the shaft described above. 2. The two-axis inverted centrifugal fluid E device according to claim 1, wherein the two-axis impeller has a hollow shaft penetrated through the hollow shaft of the second impeller and is supported by a bearing provided outside the hollow shaft. .
4. 第ニ翼車の翼車側の軸端を中空とし、 その中に第ー翼革のー方
の軸端を保持する軸受けを装置し、 該軸受けの潤滑油は第ニ翼車 の中心を貫通する長孔を経由して供耠し、 第ー翼車の他方の軸受 けは翼車吸込側に設けた吸込ケ一シン グ外に設けたことを特徴と する請求の範囲第 1項記載のニ軸反転遠心型流体昇 E装置。 4. The shaft end on the impeller side of the second impeller is hollow, and the A bearing for holding the shaft end of the impeller, lubricating oil of the bearing is supplied via a long hole penetrating the center of the second impeller, and the other bearing of the first impeller is the impeller suction side. 2. The two-axis inverting centrifugal fluid elevating device according to claim 1, wherein the device is provided outside the suction casing provided in the device.
5. 第ニ翼車の軸を中空にし、 第ー翼車の片持ち軸を同心に貫通さ せ第ー翼憲の翼車側の軸受けは前記中空軸の翼車側端の軸内に設 け、 もぅー万の軸受けは第一翼車の前記軸が前記中空軸を出外れ た所に固定して設け、 且っ第一翼車軸受け用の潤滑油は第ニ翼車 の軸受けハゥジングと第ー翼車のもぅ一 の軸受けハゥジン グと の中間に供給し、 前記中空軸端と篛ー翼車の軸との間のすきまか ら前記軸内軸受けぇ、 またその反対:5向にもぅー: 5の固定軸受け ぇと第一翼車の軸に沿って進入させ、 且っ適宜排出させるょ ぅに 構成したことを特徵とする請求の範囲第 1項記載のニ軸反転遠心 型流体昇 E装置。 5. The shaft of the second impeller is hollow, and the cantilever shaft of the first impeller is penetrated concentrically. The bearing on the impeller side of the first impeller is set in the shaft at the end of the hollow shaft on the impeller side. The first and second bearings are fixedly provided at a position where the shaft of the first impeller comes off the hollow shaft, and the lubricating oil for the first impeller bearing is a bearing housing of the second impeller. And the first impeller are also supplied in the middle of the first bearing housing, and the inner bearing ら from the clearance between the end of the hollow shaft and the shaft of the impeller, and vice versa: 5 directions 2. The two-axis reversing centrifuge according to claim 1, wherein the two fixed bearings are arranged so as to enter along the axis of the first impeller and to be discharged as appropriate. Mold fluid riser E device.
6. 第ニ翼車の軸を中空に形成し、 第ー翼車の吸込側に延伸する軸 は吸込ケーシン グ外に設けた軸受けにょ り、 他の側に延伸する軸 は第ニ翼車の軸を貫通して該中空軸外に設けた軸受けにょ り、 そ れぞれ支承されることを特徴とする請求の範囲第 1項記載のニ軸 反転遠心型流体昇 E装置。 6. The shaft of the second impeller is hollow, the shaft extending to the suction side of the first impeller is the bearing provided outside the suction casing, and the shaft extending to the other side is the same as that of the second impeller. 2. The two-axis inverted centrifugal fluid rising E device according to claim 1, wherein each of the bearings is supported by a bearing provided outside the hollow shaft through the shaft.
7. 第ニ翼車の側板を第一翼車の外径ょ り も大きぃ円周を境として 大、 小径ニっの リ ングに分割し、 小径の鄞分を大径の部分に対し て取りっけ取 外し自在に構成し且っ小径の部分にマゥ ス リ ン グ を設けたことを特徴とする請求の範囲第 1項記載のニ軸反転遠心 型流体畀 E装置。
7. Divide the side plate of the second impeller into large and small diameter rings with the outer diameter of the first impeller being larger than the circumference of the first impeller. 2. The two-axis inverting centrifugal fluid type E device according to claim 1, wherein a mass ring is provided at a small diameter portion which is configured to be detachable.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63/41490 | 1988-02-24 | ||
JP4149088A JPH01216095A (en) | 1988-02-24 | 1988-02-24 | Double shaft inversion centrifugal type fluid booster |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1989008191A1 true WO1989008191A1 (en) | 1989-09-08 |
Family
ID=12609793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1989/000169 WO1989008191A1 (en) | 1988-02-24 | 1989-02-21 | Biaxial contrarotating centrifugal fluid pressure booster |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH01216095A (en) |
WO (1) | WO1989008191A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2177086C2 (en) * | 1999-11-25 | 2001-12-20 | Лесковский Михаил Михайлович | Multi-stage pump |
EP3077681A4 (en) * | 2013-12-03 | 2017-08-16 | Flowserve Management Company | Rotating diffuser pump |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4981857B2 (en) * | 2009-07-17 | 2012-07-25 | 三菱重工業株式会社 | Diffuser for mixed flow compressor |
WO2019103904A1 (en) * | 2017-11-22 | 2019-05-31 | Parker-Hannifin Corporation | Bent axis hydraulic pump with centrifugal assist |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5397605A (en) * | 1977-02-07 | 1978-08-26 | Hitachi Ltd | Centrifugal type fluid machinery |
-
1988
- 1988-02-24 JP JP4149088A patent/JPH01216095A/en active Pending
-
1989
- 1989-02-21 WO PCT/JP1989/000169 patent/WO1989008191A1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5397605A (en) * | 1977-02-07 | 1978-08-26 | Hitachi Ltd | Centrifugal type fluid machinery |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2177086C2 (en) * | 1999-11-25 | 2001-12-20 | Лесковский Михаил Михайлович | Multi-stage pump |
EP3077681A4 (en) * | 2013-12-03 | 2017-08-16 | Flowserve Management Company | Rotating diffuser pump |
US11396887B2 (en) | 2013-12-03 | 2022-07-26 | Flowserve Management Company | Rotating diffuser pump |
Also Published As
Publication number | Publication date |
---|---|
JPH01216095A (en) | 1989-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5209650A (en) | Integral motor and pump | |
US3160108A (en) | Thrust carrying arrangement for fluid handling machines | |
US3868196A (en) | Centrifugal compressor with rotating vaneless diffuser powered by leakage flow | |
CN105889097A (en) | Superspeed air blower | |
EP0780577A1 (en) | Improved multistage pumps and compressors | |
GB2240591A (en) | Contra-rotating prop-fans | |
WO1989008191A1 (en) | Biaxial contrarotating centrifugal fluid pressure booster | |
KR100801717B1 (en) | Integral Cross Rotor Axial Turbine Compressor | |
US4281962A (en) | High pressure centrifugal pump | |
US3689931A (en) | Centrifugal pumps | |
CN105443270A (en) | Novel aviation turbofan engine | |
US6076354A (en) | Power generator driven by environment's heat | |
US2366732A (en) | Hydroelectric power unit | |
JPH04166698A (en) | Contrarotating axial fan | |
JP2001304190A (en) | High speed gate pump | |
US2306951A (en) | Pump | |
US2129808A (en) | Blower | |
US4648794A (en) | Pump with high speed expeller | |
US2609140A (en) | Radial compressor with auxiliary bladewheel | |
US4068975A (en) | Fluid pressurizer | |
JP3637426B2 (en) | Mixed flow fluid machine | |
US2227336A (en) | Hydraulic coupling and turbotorque transmitter | |
JP4078477B2 (en) | Multistage pump | |
GB2071765A (en) | Centrifugal Pump | |
CN205533405U (en) | A impeller device for power equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): CH DE FR GB |