WO1989003854A1 - Tetrahalophthalate esters as flame retardants for certain resins - Google Patents
Tetrahalophthalate esters as flame retardants for certain resins Download PDFInfo
- Publication number
- WO1989003854A1 WO1989003854A1 PCT/US1988/003839 US8803839W WO8903854A1 WO 1989003854 A1 WO1989003854 A1 WO 1989003854A1 US 8803839 W US8803839 W US 8803839W WO 8903854 A1 WO8903854 A1 WO 8903854A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- styrene
- butadiene
- flame retardant
- carbons
- Prior art date
Links
- 239000003063 flame retardant Substances 0.000 title claims abstract description 56
- 229920005989 resin Polymers 0.000 title claims abstract description 50
- 239000011347 resin Substances 0.000 title claims abstract description 50
- 150000002148 esters Chemical class 0.000 title claims abstract description 33
- 239000000203 mixture Substances 0.000 claims abstract description 86
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims abstract description 44
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims abstract description 38
- -1 Polybutylene Terephthalate Polymers 0.000 claims abstract description 38
- 229920001707 polybutylene terephthalate Polymers 0.000 claims abstract description 28
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims abstract description 26
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 24
- 239000004793 Polystyrene Substances 0.000 claims abstract description 21
- 229920002223 polystyrene Polymers 0.000 claims abstract description 21
- 229920000098 polyolefin Polymers 0.000 claims abstract description 15
- 239000004417 polycarbonate Substances 0.000 claims abstract description 8
- 229920001577 copolymer Polymers 0.000 claims abstract description 7
- 229920000515 polycarbonate Polymers 0.000 claims abstract description 7
- 238000004519 manufacturing process Methods 0.000 claims abstract description 6
- 239000006057 Non-nutritive feed additive Substances 0.000 claims abstract description 5
- 229910052794 bromium Inorganic materials 0.000 claims description 54
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 48
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 claims description 20
- 229920000147 Styrene maleic anhydride Polymers 0.000 claims description 20
- 229920005668 polycarbonate resin Polymers 0.000 claims description 20
- 239000004431 polycarbonate resin Substances 0.000 claims description 20
- 229920001971 elastomer Polymers 0.000 claims description 16
- 239000005060 rubber Substances 0.000 claims description 15
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 14
- 125000000217 alkyl group Chemical group 0.000 claims description 13
- 229920005669 high impact polystyrene Polymers 0.000 claims description 13
- 239000004797 high-impact polystyrene Substances 0.000 claims description 12
- 229920001519 homopolymer Polymers 0.000 claims description 12
- 239000000178 monomer Substances 0.000 claims description 10
- 229920005990 polystyrene resin Polymers 0.000 claims description 10
- 229920006026 co-polymeric resin Polymers 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 8
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 8
- PYSRRFNXTXNWCD-VOTSOKGWSA-N 3-[(e)-2-phenylethenyl]furan-2,5-dione Chemical compound O=C1OC(=O)C(\C=C\C=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-VOTSOKGWSA-N 0.000 claims description 6
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 6
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 claims description 5
- 239000005062 Polybutadiene Substances 0.000 claims description 5
- 239000004743 Polypropylene Substances 0.000 claims description 5
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 5
- 229920002857 polybutadiene Polymers 0.000 claims description 5
- 229920001155 polypropylene Polymers 0.000 claims description 5
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 150000002431 hydrogen Chemical group 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 4
- 229920006380 polyphenylene oxide Polymers 0.000 claims description 4
- 239000011118 polyvinyl acetate Substances 0.000 claims description 4
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 4
- 230000000979 retarding effect Effects 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 239000006260 foam Substances 0.000 claims description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 229920000058 polyacrylate Polymers 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920000193 polymethacrylate Polymers 0.000 claims description 3
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 claims description 2
- 239000004709 Chlorinated polyethylene Substances 0.000 claims description 2
- 229920002367 Polyisobutene Polymers 0.000 claims description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 2
- 125000003342 alkenyl group Chemical group 0.000 claims description 2
- UUEDINPOVKWVAZ-UHFFFAOYSA-N bis(2-ethylhexyl) 3,4,5,6-tetrabromobenzene-1,2-dicarboxylate Chemical group CCCCC(CC)COC(=O)C1=C(Br)C(Br)=C(Br)C(Br)=C1C(=O)OCC(CC)CCCC UUEDINPOVKWVAZ-UHFFFAOYSA-N 0.000 claims description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 2
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- 239000004800 polyvinyl chloride Substances 0.000 claims description 2
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 2
- 125000005017 substituted alkenyl group Chemical group 0.000 claims description 2
- 230000000063 preceeding effect Effects 0.000 claims 1
- 239000000088 plastic resin Substances 0.000 abstract 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 54
- 239000000047 product Substances 0.000 description 48
- 150000001875 compounds Chemical class 0.000 description 45
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 239000007788 liquid Substances 0.000 description 21
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 16
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 16
- WHHGLZMJPXIBIX-UHFFFAOYSA-N decabromodiphenyl ether Chemical compound BrC1=C(Br)C(Br)=C(Br)C(Br)=C1OC1=C(Br)C(Br)=C(Br)C(Br)=C1Br WHHGLZMJPXIBIX-UHFFFAOYSA-N 0.000 description 16
- 239000000463 material Substances 0.000 description 15
- 229910000410 antimony oxide Inorganic materials 0.000 description 13
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 13
- 229920001223 polyethylene glycol Polymers 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 11
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 239000001632 sodium acetate Substances 0.000 description 10
- 235000017281 sodium acetate Nutrition 0.000 description 10
- 239000011541 reaction mixture Substances 0.000 description 9
- QHWKHLYUUZGSCW-UHFFFAOYSA-N Tetrabromophthalic anhydride Chemical compound BrC1=C(Br)C(Br)=C2C(=O)OC(=O)C2=C1Br QHWKHLYUUZGSCW-UHFFFAOYSA-N 0.000 description 8
- 150000008064 anhydrides Chemical class 0.000 description 8
- MWVXFEZPEPOQRE-UHFFFAOYSA-N ditert-butyl(2-ditert-butylphosphanylethyl)phosphane Chemical compound CC(C)(C)P(C(C)(C)C)CCP(C(C)(C)C)C(C)(C)C MWVXFEZPEPOQRE-UHFFFAOYSA-N 0.000 description 8
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 5
- 239000004604 Blowing Agent Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- QRBLPTJJQNRVAJ-UHFFFAOYSA-N dioctyl 3,4,5,6-tetrabromobenzene-1,2-dicarboxylate Chemical compound CCCCCCCCOC(=O)C1=C(Br)C(Br)=C(Br)C(Br)=C1C(=O)OCCCCCCCC QRBLPTJJQNRVAJ-UHFFFAOYSA-N 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- UBOXGVDOUJQMTN-UHFFFAOYSA-N 1,1,2-trichloroethane Chemical compound ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 235000011056 potassium acetate Nutrition 0.000 description 4
- 229920001897 terpolymer Polymers 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 0 C*(C)(C)*(C([C@@]1*(C)(*O)O)OC(*=C)=C(C)C(*)=C1Br)O Chemical compound C*(C)(C)*(C([C@@]1*(C)(*O)O)OC(*=C)=C(C)C(*)=C1Br)O 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- NOPFSRXAKWQILS-UHFFFAOYSA-N docosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCO NOPFSRXAKWQILS-UHFFFAOYSA-N 0.000 description 3
- 229920006248 expandable polystyrene Polymers 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- AUHHYELHRWCWEZ-UHFFFAOYSA-N tetrachlorophthalic anhydride Chemical compound ClC1=C(Cl)C(Cl)=C2C(=O)OC(=O)C2=C1Cl AUHHYELHRWCWEZ-UHFFFAOYSA-N 0.000 description 3
- WGZYQOSEVSXDNI-UHFFFAOYSA-N 1,1,2-trifluoroethane Chemical compound FCC(F)F WGZYQOSEVSXDNI-UHFFFAOYSA-N 0.000 description 2
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920013683 Celanese Polymers 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- YXHKONLOYHBTNS-UHFFFAOYSA-N Diazomethane Chemical compound C=[N+]=[N-] YXHKONLOYHBTNS-UHFFFAOYSA-N 0.000 description 2
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Polymers CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 229960000735 docosanol Drugs 0.000 description 2
- 229920000578 graft copolymer Polymers 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 235000015497 potassium bicarbonate Nutrition 0.000 description 2
- 239000011736 potassium bicarbonate Substances 0.000 description 2
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 229920000638 styrene acrylonitrile Polymers 0.000 description 2
- 239000011145 styrene acrylonitrile resin Substances 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- JLYXXMFPNIAWKQ-UHFFFAOYSA-N γ Benzene hexachloride Chemical compound ClC1C(Cl)C(Cl)C(Cl)C(Cl)C1Cl JLYXXMFPNIAWKQ-UHFFFAOYSA-N 0.000 description 2
- LVLNPXCISNPHLE-UHFFFAOYSA-N (2-Hydroxy-phenyl)-(4-hydroxy-phenyl)-methan Natural products C1=CC(O)=CC=C1CC1=CC=CC=C1O LVLNPXCISNPHLE-UHFFFAOYSA-N 0.000 description 1
- HCNHNBLSNVSJTJ-UHFFFAOYSA-N 1,1-Bis(4-hydroxyphenyl)ethane Chemical compound C=1C=C(O)C=CC=1C(C)C1=CC=C(O)C=C1 HCNHNBLSNVSJTJ-UHFFFAOYSA-N 0.000 description 1
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 description 1
- SKDFWEPBABSFMG-UHFFFAOYSA-N 1,2-dichloro-1,1-difluoroethane Chemical compound FC(F)(Cl)CCl SKDFWEPBABSFMG-UHFFFAOYSA-N 0.000 description 1
- OQBLGYCUQGDOOR-UHFFFAOYSA-L 1,3,2$l^{2}-dioxastannolane-4,5-dione Chemical compound O=C1O[Sn]OC1=O OQBLGYCUQGDOOR-UHFFFAOYSA-L 0.000 description 1
- YATIGPZCMOYEGE-UHFFFAOYSA-N 1,3,5-tribromo-2-[2-(2,4,6-tribromophenoxy)ethoxy]benzene Chemical group BrC1=CC(Br)=CC(Br)=C1OCCOC1=C(Br)C=C(Br)C=C1Br YATIGPZCMOYEGE-UHFFFAOYSA-N 0.000 description 1
- MQCPOLNSJCWPGT-UHFFFAOYSA-N 2,2'-Bisphenol F Chemical compound OC1=CC=CC=C1CC1=CC=CC=C1O MQCPOLNSJCWPGT-UHFFFAOYSA-N 0.000 description 1
- PNXPXUDJXYVOFM-UHFFFAOYSA-N 2,3,5,6-tetrabromoterephthalic acid Chemical compound OC(=O)C1=C(Br)C(Br)=C(C(O)=O)C(Br)=C1Br PNXPXUDJXYVOFM-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- RKSBPFMNOJWYSB-UHFFFAOYSA-N 3,3-Bis(4-hydroxyphenyl)pentane Chemical compound C=1C=C(O)C=CC=1C(CC)(CC)C1=CC=C(O)C=C1 RKSBPFMNOJWYSB-UHFFFAOYSA-N 0.000 description 1
- NZGQHKSLKRFZFL-UHFFFAOYSA-N 4-(4-hydroxyphenoxy)phenol Chemical compound C1=CC(O)=CC=C1OC1=CC=C(O)C=C1 NZGQHKSLKRFZFL-UHFFFAOYSA-N 0.000 description 1
- DTOMAXGIWFLDMR-UHFFFAOYSA-N 4-[(4-hydroxy-3-nitrophenyl)methyl]-2-nitrophenol Chemical compound C1=C([N+]([O-])=O)C(O)=CC=C1CC1=CC=C(O)C([N+]([O-])=O)=C1 DTOMAXGIWFLDMR-UHFFFAOYSA-N 0.000 description 1
- WCUDAIJOADOKAW-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)pentan-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)(CCC)C1=CC=C(O)C=C1 WCUDAIJOADOKAW-UHFFFAOYSA-N 0.000 description 1
- 239000009261 D 400 Substances 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920004142 LEXAN™ Polymers 0.000 description 1
- 239000004418 Lexan Substances 0.000 description 1
- FFKZOUIEAHOBHW-UHFFFAOYSA-N N,4-dimethyl-N-nitrosobenzenesulfonamide Chemical group O=NN(C)S(=O)(=O)C1=CC=C(C)C=C1 FFKZOUIEAHOBHW-UHFFFAOYSA-N 0.000 description 1
- 229920001890 Novodur Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000232971 Passer domesticus Species 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- GHPGOEFPKIHBNM-UHFFFAOYSA-N antimony(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Sb+3].[Sb+3] GHPGOEFPKIHBNM-UHFFFAOYSA-N 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 229920003247 engineering thermoplastic Polymers 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229920002903 fire-safe polymer Polymers 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 239000011874 heated mixture Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229940057847 polyethylene glycol 600 Drugs 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 238000009988 textile finishing Methods 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- 125000005591 trimellitate group Chemical group 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- 239000000326 ultraviolet stabilizing agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/12—Esters; Ether-esters of cyclic polycarboxylic acids
Definitions
- This invention relates to flame retardant compositions containing at least one tetrahalophthalate ester and a certain resin, which is selected from: (A) Acrylonitrile-Butadiene-Styrene (ABS) Terpolymer Resins;
- inventive composition may contain one or more brominated and/or chlorinated compounds present in an amount effective to provide additional flame retardancy to the resin.
- ABS resins are known in the art as a class of thermoplastics which are characterized by excellent properties such as chemical resistance, abuse resistance, stain resistance, etc. A discussion of typical properties of ABS resins are described on pages 1-64, 1-66, and 1-68 of Charles A. Harper's "Handbook of Plastics and Elastomers" which is published by McGraw-Hill Book Company in 1975. These pages are hereby incorporated by reference. ABS resins are terpolymers which are, in general, derived from acrylonitrile, styrene, and butadiene.
- graft polymers in which acrylonitrile and styrene are grafted onto a polybutadiene or rubber phase which may further be dispersed in a rigid styrene-acrylonitrile (SAN) matrix.
- SAN styrene-acrylonitrile
- Other ABS resins are mechanical polyblends of elastomeric and rigid copolymer, e.g. butadiene-acrylo nitrile rubber and SAN. (See G.C. Hawkins, "Condensed Chemical Dictionary", 10th Edition, p. 3, 1981 as well as U.S. Patent Nos. 4,107,232; 4,206,290; 4,487,886; 4,567,218; and 4,579,906 all of which are incorporated herein by reference.
- ABS resin Any group of tough, rigid thermoplastics deriving their name from the three letters of the monomers which produce them; Acrylonitrile-Butadiene-Styrene. Most contemporary ABS resins are true graft polymers consisting of an elastomeric polybutadiene or rubber phase, grafted with styrene and acrylonitrile monomers for compatibility, dispersed in a rigid styrene-acrylonitrile (SAN) matrix.
- SAN rigid styrene-acrylonitrile
- x, y, and z may independently vary from about 10 to about 1,500.
- x, y, and z may independently vary from about 10 to about 1,500.
- analogs of each of the monomeric components above may be substituted in whole or in part, and is within the definition of ABS resin.
- ⁇ -methylstyrene may be substituted for styrene and methacrylonitrile for acrylonitrile.
- Descriptions of the compositions of various ABS resins and how they are prepared may be found in U.S. Patent Nos.
- ABS resins are useful in many commercial applications such as automotive, business machines, telephone, etc., where high impact strength is required as well as in the production of molded articles.
- Polystyrene resins find extensive use in the manufacture of packaging material, refrigerator doors, air conditioner cases; machine housings, electrical equipment, toys, clock, TV, and radio cabinets, thermal insulation, ice buckets, containers, furniture construction, appli ⁇ ances, dinnerware, etc.
- the preparation and description of polystyrene and expandable polystyrene are well known in the art. They are discussed in G. Hawley, “Condensed Chemical Encyclopedia", 10th Edition, pp 838 and 976 (1981); Kirk-Othmer “Encyclopedia of Chemical Technology", 2nd Edition, Vol. 9, pp 847-884 (1966) and Vol. 19, pp 85-134 (1969); A.E. Platt in "Encyclopedia of Polymer Science and Technology", Vol.
- Polycarbonate resins are known in the art as a class of thermoplastics that are characterized by excellent properties such as electrical, dimensional stability, high impact strength, toughness, and flexibility. In general, they are prepared by the reaction of a dihydric phenol with a carbonate ester, phosgene, or a bis chloroformate ester.
- U.S. Patent Nos. 2,999,835; 3,169,121; 3,879,348; 4,477,632; 4,477,637; 4,481,338; 4,490,504; 4,532,282; 4,501,875; 4,594,375; and 4,615,832 describe in detail the preparation of various classes of polycarbonate resins, the teachings of which are incorporated herein by reference.
- polycarbonate resins are useful in many commercial applications as engineering thermoplastics and in the manufacture of molded articles.
- PBT resins are known in the art as a class of thermoplastics that are characterized by excellent properties such as thermal stability, good resistance to brittleness, low friction and wear, chemical resistance, etc. In general, they are prepared by the polycondensation of terephthalic acid or a diester of terephthalic acid, such as dimethyl terephthalate (DMT), with 1,4 butanediol.
- DMT dimethyl terephthalate
- U.S. patents 2,645,319; 3,047, 539; 3,953,394; and 4,024,102 describe in detail the preparation of PBT, the teachings of which are incorporated herein by reference.
- Styrene-Maleic Anhydride (SMA) copolymer resins find extensive use in the manufacture of molded articles and foamed products. In general, they are prepared by copolymerizing styrene and maleic anhydride in the proper ratio and under the appropriate conditions. The preparation and description of SMA copolymers are described in U.S. Patent Nos. 2,769,804; 2,971,939; 3,336,267; and 3,966,843, the teachings of which are incorporated herein by reference. SMA polymers burn rapidly and are generally not used in applications which require fire retardant polymers such as radio and television cabinets, tables, chairs, appliance housings and the like. (See U.S. Patent 4,151,218 which is incorporated by reference).
- U.S. Patent No. 4,098,704 describes the use of these materials as textile finishing agents.
- U.S. Patent Nos. 4,298,517 and 4,397,977 disclose these compounds as flame retardants for halogenated resins.
- no teachings have been found which show these compounds as flame retardants or processing aids for ABS resins.
- ABS Acrylonitrile-Butadiene-Styrene
- R is selected from the group consisting of hydrogen, an alkyl or substituted alkyl of 1 to 30 carbons, hydroxyalkyl of 2 to 20 carbons, polyhydroxyalkyl of 3 to 10 carbons, and
- R 8 is an alkyl or substituted alkyl of 1 to 18 carbons, and b is 1 to 50;
- R 1 is selected from the group consisting of hydrogen, an alkyl or substituted alkyl of 1 to 30 carbons, alkenyl or substituted alkenyl of 2 to 22 carbons, where R 7 is an alkyl of 1 to 18 carbons; a polyhydroxyalkyl of 3 to 12 carbons;
- R 2 is independently selected from the class consisting of H and CH 3 - ;
- R 3 , R 4 , R 5 , and R 6 are independently selected from the class consisting of H and an alkyl of 1 to 18 carbons;
- X is selected from 0 to NH
- A is selected from Cl or Br.
- the weight ratio of (I) to (II) is within the range of about 100:1 to about 2:1.
- (III) Brominated and/or chlorinated flame retardants other than (I) which optionally may be present.
- composition can also contain other brominated and/or chlorinated flame retardants.
- Preferred other brominated flame retardants are selected from the group consisting of
- ABS resin a portion or all of acrylic and styrenic monomers comprising the resin include methacrylonitrile or ⁇ -methylstyrene, or methacrylonitrile and ⁇ -methylstyrene.
- the preferred ABS resin is comprised of monomeric units of a vinyl aromatic monomer, a vinyl nitrile monomer, and a butadiene monomer and the number of units of each monomer is independently within the range of from about 10 to about 1500.
- the polystyrene resin is selected from one of the following:
- n is within the range of greater than 1 to about 3,000;
- the homopolymer of (B)(a) above is in the form of a polystyrene foam.
- the foam is preferably prepared by polymerizing the repeatable homopolymer unit in the presence of a liquid or gaseous blowing agent and said agent has a boiling point that is below the softening point of the polystyrene and does not dissolve said polystyrene.
- the preferred blowing agents are selected from the group consisting of one or more of propane, butane, pentane, hexane, heptane, cyclohexane, methyl chloride, dichlorodifluoroethane, 1,1,2 trifluoroethane, and 1,1,2 trichloroethane.
- polybutylene terephthalate resins that may be used in the present invention have the following repeated structural units of the formula:
- n is 0 to 100.
- the weight ratio of (styrene): (maleic anhydride) may be 1-19:1.
- Polyolefins and substituted polyolefin resins that are useful include: polyethylene (low density, linear low density, and high density); polypropylene; ethylenepropylene copolymers; ethylenevinylacetate copolymers; polyvinylacetate; polyvinyl alcohol derived from polyvinylacetate; poly-4-methyl pentene-1; polyisobutylene; polyacrylate esters; and polymethacrylate esters.
- polystyrene; styrene-butadiene copolymers chlorinated polyethylene; chlorinated polypropylene; polyvinylchloride; acrylonitrile-butadiene-styrene; polyethyleneterephthalate; polybutyleneterephthalate; polyphenylene oxide; and/or polyphenylene oxide/high impact polystyrene blends.
- polystyrene; styrene-butadiene copolymers chlorinated polyethylene; chlorinated polypropylene; polyvinylchloride; acrylonitrile-butadiene-styrene; polyethyleneterephthalate; polybutyleneterephthalate; polyphenylene oxide; and/or polyphenylene oxide/high impact polystyrene blends.
- polyethylene; polypropylene; polyacrylate; and polymethacrylate either alone or in the foregoing physical blends.
- R is an alkyl or substituted alkyl of 1 to 10 carbons, A is Br, X is oxygen, p is 0 to 20 (most preferably 0), and q is 1 to 6 (most preferably 1). More preferably R is
- the invention also comprehends a method for preparing a flame retardant plastic composition having enhanced processability properties which comprises incorporating a flame retarding effective amount of one or more of the above tetrahalophthalate esters of (II) in one or more of the above resins.
- This invention also comprehends the method of improving the flame retardancy, processability, and physical properties such as impact strength of the specified resins by incorporating in the resins the tetrahalophthalate compounds as described above alone or in combination with other bromine and/or chlorinated flame retardants.
- the preferred compounds are:
- brominated and/or chlorinated compounds that may be used in combination with the tetrahalophthalates are any of those that are well known in the art.
- Preferred halogenated flame retardant examples are
- the tetrahalophthalate by itself or additionally with (III) other brominated and/or chlorinated flame retardants is added to (I) theresin in any convenient manner, such as blending or extruding in order to get a uniform composition.
- Flame retardant synergists such as antimony oxide (Sb 2 O 3 ) may also be added if desired.
- other additives such as thermal stabilizers, ultraviolet stabilizers, reinforcing agents, organic polymers, mold release agents, blowing agents, colorants, and the like may also be optionally included.
- a further advantage of the tetrahalophthalates alone or in combination with other brominated and/or chlorinated compounds as used in this invention is their improved compatibility with the resins.
- ABS resins that may be used in this invention are, in general, derived from acrylonitrile, styrene, and butadiene and have the following general structure:
- x, y, and z may independently vary from about 10 to about 1,500. It is understood that analogs of each of the components above that comprise the ABS resins may be substituted in whole or in part.
- the ratio of tetrahalophthalate or a mixture of tetrahalophthalate and one or more brominated and/or chlorinated compounds to ABS resins that will impart flame retardancy to the latter may vary from 1:100 to about 1:2 depending on the application.
- the ratio of tetrahalophthalate to other brominated and/or chlorinated compounds may vary from 100:0 to about 1:99.
- the styrenic resins that may be used in the present invention are the following: polystyrene homopolymer, both crystalline and non-crystalline forms; expandable polystyrene beads, and rubber-modified polystyrene which include medium impact polystyrene, high impact polystyrene (HIPS), and super high impact polystyrene.
- the homopolymers of styrene both crystalline and non-crystalline, have the following repeatable unit wherein n is greater than 1 to about 2000-3000.
- the non-crystalline forms are generally prepared by polymerizing styrene with peroxide catalyst such as those described in U.S. Patent 4,281,067 while the crystalline stereoregular isotactic form uses Ziegler-Natta catalysts [See I. Pasquon in Encyclopedia of Polymer Science and Technology, Vol. 13, pp. 14, 19-20, and 31 (1970)].
- Expandable polystyrene beads are those that are prepared by incorporating a volatile expanding or blowing agent during the polymerization of styrene.
- blowing or expanding agents that may be used to cause polystyrene to foam are well known in the art. They may be liquid or gaseous, do not dissolve the styrene polymer, and have boiling points below the softening point of the polymer (See Column 6 in U.S. Patent 4,618,468). Suitable blowing agents are aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, cyclohexane or halogen hydrocarbons such as methyl chloride, dichlorodifluoromethane, 1,1,2 trifluoroethane, 1,1,2 trichloroethane and the like. Mixtures of the above may also be used. Typically, expanding agents are used in amounts of about 2 to 20% by weight.
- Rubber-modified polystyrenes that are suitable include medium, high, and super high impact polystyrenes. In these compositions, the rubber is dispersed in the polystyrene matrix as discrete particles (See U.S. Patent 4,341,890). Many rubber-modified styrenes are prepared by polymerizing styrene in the presence of a rubber such as polybutadiene or a styrene-butadiene copolymer (SBR). Some grafting of the styrene to the rubber takes place during polymerization, The weight ratio of the rubber to polystyrene may vary from about 2:98 to about 25:75.
- SBR styrene-butadiene copolymer
- the moderate impact polystyrene will contain about 2 to about 4% rubber, the high impact polystyrene greater than about 10% to about 25%. [See H. Keskkula in "Encyclopedia of Polymer Science and Technology” Vol. 13, pp. 396 and 400-404 (1970)].
- the polycarbonate resins that may be employed in the present invention use typical dihydric phenols such as are disclosed in U.S. Patent 3,334,154, which is incorporated herein by reference. They are as follows:
- Example 2 To the compound of Example 1 were added 348.0 g (6.0 moles) of propylene oxide and 2.0 liters of toluene. The mixture was heated at 60o-100oC. The solvent and residual propylene oxide were removed to give the product in almost quantitative yield.
- the analytical data were consistent with the assigned structure:
- Example 18 To 634.0 g(1.0 mole) of the composition of Example 18 is added 116 g (2.0 moles) of propylene oxide in 200 ml of toluene. The reaction mixture is heated from 60o-100oC for 3-5 hours, and then concentrated to give the product in nearly quantitative yield.
- the analytical data are consistent with the assigned structure:
- the mixture was cooled to about 100°C and tetrabromophthalie anhydride, 614.5 g (1.35 moles) and sodium acetate, 1.62 g were addei and the mixture was reheated to reflux and held for 25 hours.
- propylene oxide, (156.4 g, 2.69 moles, 100% excess) was added and the mixture heated to and held at 100°C for 2.5 hours.
- This compound was prepared by the procedure described in Example 25 except that poly(echylene glycol 200) was used in place of poly(ethylene 300).
- Product is viscous Liquid. Calcd . % Br , 51.0 . Found % Br, 49.3. Analytical data was consistent with the assigned structure .
- This compound was prepared by the procedure described in Example 25 except that polyethylene glycol 600) was used in place of poly(ethylene glycol 300).
- Product is a viscous liquid. Calcd. % Br, 39.5. Found % Br, 39.3. Analytical data is consistent with the assigned structure.
- Example 21 This compound was prepared by the procedure described in Example 25 except that poly(ethylene glycol 400) was used in place of poly(ethylene glycol 300). Product is a viscous liquid. Calcd. % Br, 44.2. Found % Br, 44.0. Analytical data is consistent with the assigned structure.
- This compound was prepared by the procedure outlined in Example 29 except that aethoxycarbowax 350 was used in place of methanol and epoxybutane in place of propylene oxide. Product is a viscous liquid. Calcd. % Br, 36.5. Found % Br, 37.2. Analytical data is consistent with the assigned structure.
- Example 33 This compound was prepared by the procedure outlined Example 29 except that 2-ethylhexanol-1 was used in place methanol. Product is a viscous liquid. Calcd. % Br, 50.0. Found % 52.7. Analytical data is consistent with the assigned structure.
- This compound was prepared by the procedure outlined in Example 29 except that epichlorohydrin was used in place of propylene oxide . Calcd . % Br , 35 .7. Found % 35 .4. Analytical data is consistent with the assigned structure .
- methoxycarbowax 350 (300.0 g, 0.89 mole) in dry toluene (184 ml) was added sodium methoxide (48.0 g, 0.90 mole) in methanol. The aethanol was then distilled off atmospherically. Tetrabromophthalic anhydride was then added (442.2 g, 0.89 mole) along with an additional. 50 al of toluene. The reaction mixture was refluxed for 2 hours and after cooling to room temperature, epichlorchycrin (106.94 g, 1.16 moles) was added. The mixture was refluxed for 20 hours. After the solvent and excess epichlorohydrin were distilled, a viscous dark product was obtained. Calcd. % Br, 37.2. Found % Br, 40.4. Analytical data is consistent with assigned structure.
- Methoxycarbowax 350 and toluene were refluxed for 1 hour in order to distill out a small amount of water.
- Tetrabromophthalic anhydride (1:1 mole ratio with methoxycarbowax 350) and sodium acetate were added and the mixture refluxed for 17 hours.
- an excess of diazomethane (prepared from the decomposition of N-methyl-N-nitroso-p-toluene sulfonamide by sodium hydroxide) in ethyl ether was added and the mixture allowed to stand overnight. The excess diazomethane was decomposed by adding acetic acid and the solvent removed by distillation. Product is viscous liquid. Calcd. % Br, 39.2. Found % Br, 37.4. Analytical data is consistent with the assigned structure.
- Example 39 Di(2-ethylhexyl) tetrabromophthalate was prepared by the procedure described by Spatz et. al (I & EC Product Research and Development, Vol. 8, No. 4, 395 (1969).
- Poly(ethylene glycol 600) 885.4 g (1.40 moles), tetrabromophthalic anhydride, 1298.4 g (2.80 moles), potassium acetate, 1.35 g, and toluene (1000 g) were charged into a one-gallon glass-lined reactor and heated to 120°C. After 4 hours at this temperature, ethylene oxide, 246.68 g (5.60 moles) was pumped into the reactor in 3/4 hour while maintaining the temperature at 120oC. After one hour Longer of beating, the mixture was cooled to room temperature, the excess ethylene oxide was then vented, and the product collected. After stripping off the toluene, 2250 g of the product was isolated in 99% yield as a viscous liquid. Calcd. % Br, 39.2. Found % Br, 38.8. Analytical data is consistent with the assigned structure.
- Example 3 To the product of Example 3, 453.8 g (0.27 mole), acetic anhydride, 83.4 g (0.82 mole), potassium acetate, 1.0 g, and toluene, 400 ml, were refluxed for 8 hours. After cooling to room temperature, the reaction mixture was transferred to a separatory funnel and extracted first with 100 ml of a 16% potassium bicarbonate solution and then with 100 al of water. After distilling off the solvent, 335.0 g (64% yield) of product was obtained as a viscous liquid. Calcd. % Br, 36.8. Found % Br, 32.9. Analytical data is consistent with the assigned structure.
- 2-ethylhexanol, 130.2 g (1.0 mole). and potassium acetate, 0.24 g were heated to and kept at 120oC for 4 hours.
- the mixture was cooled to 60oC and potassium carbonate, 35.9 g (0.26 mole), was added.
- Tetrabromophthalic anhydride 231.9 g (0.5 mole), 2-[2-methoxyethoxy]-ethanol, 360.5 g (3.0 moles), stannous oxalate, 2.32 g , and xylene, 200 ml, were refluxed (temp. 160oC) for 18 hours during which time, theory water was collected.
- the xylene and excess 2-[2-methoxyethoxy]-ethanol were distilled under reduced pressure to give 332 3 of crude product as a wet white solid.
- This compound was prepared by the procedure outlined in Example 43 except using 2-(2-ethoxyethoxy]-ethanol,
- Example 45 This compound was prepared by the procedure outlined in Example 1 except that docosyl alcohol (behenyl alcohol) was used in place of poly(ethylene glycol 600) and propylene oxide in place of ethylene oxide. Product is a viscous liquid. Calcd. % Br, 37.7. Found % Br, 36.5. Analytical data is consistent with the assigned structure.
- This compound was prepared by the procedure outlined in Example 1 except that tricontyl alcohol was used in place of poly(ethylene glycol 600) and propylene oxide in place of ethylene oxide.
- Product is a viscous liquid.
- This compound was prepared by the procedure outlined in Example 4 except that methoxycarbowax 550 was used in place of 2-[2-methoxyethoxy]-ethanol.
- the flame retardancy of the compounds of this invention are demonstrated with respect to ABS resins.
- the compositions were prepared by mixing together the flame retardants, antimony oxide, and ABS on a roller until the compounds were blended thoroughly.
- the compounds were pelletized at 230-245°C and then injection molded into test specimens at 230°C.
- the UL-94 vertical burn test was run and compared to a control consisting of ABS itself.
- ABS Acrylonitrile-styrene-butadiene terpolymer
- DTBPE 1,2-bis(2,4,6-tribromophenoxy)-ethane
- DOTBP Dioctyl tetrabromophthalate (45% Bromine)
- AO Antimony Oxide
- the conventional flame retardant, DTBPE greatly reduces the impact strength of ABS compared to those examples where a portion of the DTBPE is replaced by the ABS-containing flame retardant compositions of this invention.
- HDT Heat Reflection Temperature
- ABS (a) 100 100 100 DTBPE - 22 11 DOTBP - - 17 AO - 4 4
- compositions of this invention were prepared by mixing together the flame retardants, antimony oxide, and high impact polystyrene on a roller until the compounds were blended thoroughly.
- the compounds were pelletized at 200-260°C and then injection molded into test specimens at 230°C.
- the UL-94 vertical burn test was run and compared to a control consisting of the impact polystyrene itself.
- DOTBP Dioctyl Tetrabromophthalate (45% Bromine)
- Examples 58 through 64 are all run at equal bromine levels. Partial or total replacement of the conventional flame retardant (DBDPO) with the esters disclosed in this invention improves the flame retardancy of the polystyrene as can be seen by the UL-94 results for the 0.062" specimens. Examples and clearly demonstrate that the total bromine levels can be reduced when the compositions of this invention are used and still yield comparable or better flame retardancy. Examples 65-70
- HIPS 100 84 81.5 76.4 73.9 80.8 DBDPO - 12 9 3 - -
- control (100% polystyrene)
- comparison no tetrahalophthalate ester
- the conventional flame retardant, DBDPO greatly reduces the impact strength of the polystyrene (see Example 66).
- the compositions containing the material of the invention clearly improve the impact strength to a point where it is better than the comparison example.
- the extrusion rates were measured during pelletization to determine the processing characteristics of the compounds.
- compositions of this invention are demonstrated with respect to polycarbonate resins.
- the compositions were prepared by mixing together the flame retardants, antimony oxide, and polycarbonate resin on a roller until the compounds were blended thoroughly.
- the compounds were pelletized at 160-305°C and then injection molded into test specimens at 271°C.
- the UL-94 vertical burn test was run and compared to a control consisting of the polycarbonate resin itself. The following tests were performed on the various materials according to the appropriate ASTM method.
- PC Polycarbonate polymer
- BPC Brominated Polycarbonate Oligomer (58% Bromine)
- DOTBP Dioctyl Tetrabromophthalate (45% Bromine) TABLE I (C)
- BPC conventional flame retardant
- Examples 76-79 are all run at equal bromine levels. Partial or total replacement of the conventional flame retardant, BPC, with the esters disclosed in this invention results in greatly enhanced flow characteristics as shown by the improved melt flow properties measured according to ASTM D-1238.
- the polycarbonate resin containing compositions of this invention show improved tensile properties when compared to the control, and comparable to that of the conventional flame retardant, BPC. Furthermore, the polycarbonate resin containing compositions of this invention maintain percent elongation.
- the flame retardancy of the compounds of this invention are demonstrated.
- the compositions were prepared by mixing together the flame retardants, antimony oxide, and polybutylene terephthalate (PBT) on a roller until the compounds were blended thoroughly.
- the compounds were pelletized at 150-216°C and then injection molded into test specimens at 235°C.
- the UL-94 vertical burn test was run and compared to a control consisting of PBT itself. Melt flow of the various materials were determined according to ASTM D-1238.
- PBT Polybutylene Terephthalate
- BPC Brominated Polycarbonate Oligomer (58% Bromine)
- DOTBP Dioctyl Tetrabromophthalate (45% Bromine)
- AO Antimony Oxide
- control (100% polybutylene terephthalate)
- comparison no tetrahalophthalate ester
- compositions of this invention have at least equivalent flame retardancy to the BPC conventional flame retardant used in PBT (Example 81).
- Examples 81-83 are all run at equal bromine levels. Partial or total replacement of the conventional flame retardant (BPC) with the compositions of this invention results in enhanced flow characteristics as shown by the improved melt flow properties measured according to ASTM D-1238.
- BPC flame retardant
- control (100% polybutylene terephthalate)
- polybutylene terephthalate resin compositions containing the flame retardants of this invention greatly improve the impact strength relative to the control (Example 84) and the BPC conventional flame retardant, (Example 85) used in PBT while maintaining both tensile strength and percent elongation properties.
- the flame retardants of this invention significantly improve the heat distortion temperature (HDT) and flow properties relative to the control.
- compositions with SMA resins In the following examples, the flame retardancy of the compounds of this invention are demonstrated.
- the compositions were prepared by mixing together the flame retardants, antimony oxide, and SMA on a roller until the compounds were blended thoroughly.
- the compounds were pelletized at 95-245°C and then injection molded into test specimens at 190-204°C.
- the UL-94 vertical burn test was run and compared to a control consisting of SMA itself. Melt flow of the various materials were determined according to ASTM D-1238.
- compositions of this invention have at least equal flame retardancy to the DBDPO commercial conventional flame retardant used in SMA (Example 87).
- examples 88-91 are all run at equal bromine levels. Partial replacement of the conventional flame retardant (DBDPO) with the compositions of this invention results in enhanced flow characteristics as shown by the improved melt flow properties measured according to ASTM D-1238.
- SMA resin compositions containing the flame retardants of this invention greatly improve the impact strength relative to the control (Example 92) and the DBDPO commercial flame retardant with PBT (Example 93), while maintaining both tensile strength and percent elongation properties.
- thermoelectric temperature (HDT) of the compositions of this invention are comparable to both the control and to DBDPO.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR888807274A BR8807274A (pt) | 1987-10-30 | 1988-10-28 | Composicao plastica retardadora de chama,processo para comunicar caracteristicas de retardo de chama e escoamento aperfeicoado a resinas,processo para fabricar resina reticar resina retardante de chama,e produto retardador de chama ardente de chama e produto retardador de chama |
AU27854/89A AU626532B2 (en) | 1987-10-30 | 1988-10-28 | Tetrahalophthalate esters as flame retardants for certain resins |
NO892684A NO892684D0 (no) | 1987-10-30 | 1989-06-28 | Tetrahaloftalatestere som flammehemmere for visse resiner. |
DK323589A DK323589A (da) | 1987-10-30 | 1989-06-29 | Som ildretarderende midler for visse harpikser tjenende tetrahalogenphthalatestere |
FI893189A FI893189A0 (fi) | 1987-10-30 | 1989-06-29 | Tetrahaloftalatestrar som brandskyddsvaetskor foer vissa hartser. |
KR1019890701219A KR890701679A (ko) | 1987-10-30 | 1989-06-30 | 특정수지용 난연제로서의 테트라할로프탈레이트 에스테르 |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US115,688 | 1987-10-30 | ||
US07/115,211 US4762861A (en) | 1987-10-30 | 1987-10-30 | Tetrahalophthalate esters as flame retardants for polystyrene resins |
US07/115,688 US4938894A (en) | 1987-10-30 | 1987-10-30 | Tetrahalophthalate esters as flame retardants for ABS (acrylonitrile-butadiene styrene terpolymer) resins |
US115,211 | 1987-10-30 | ||
US07/173,343 US4954542A (en) | 1988-03-25 | 1988-03-25 | Tetrahalophthalate esters as flame retardants for polybutylene terephthalate resins (PBT) |
US07/173,691 US4923917A (en) | 1988-03-25 | 1988-03-25 | Tetrahalophthalate esters as flame retardants for styrene-maleic anhydride copolymer (SMA) resins |
US173,691 | 1988-03-25 | ||
US07/173,344 US4912158A (en) | 1988-03-25 | 1988-03-25 | Tetrahalophthalate esters as flame retardants for polycarbonate resins |
US173,343 | 1988-03-25 | ||
US173,344 | 1988-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1989003854A1 true WO1989003854A1 (en) | 1989-05-05 |
Family
ID=27537405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1988/003839 WO1989003854A1 (en) | 1987-10-30 | 1988-10-28 | Tetrahalophthalate esters as flame retardants for certain resins |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP0339074A4 (fi) |
JP (1) | JPH02502026A (fi) |
AU (1) | AU2126392A (fi) |
BR (1) | BR8807274A (fi) |
CA (1) | CA1337310C (fi) |
DK (1) | DK323589A (fi) |
ES (1) | ES2018098A6 (fi) |
FI (1) | FI893189A0 (fi) |
HU (1) | HUT54720A (fi) |
WO (1) | WO1989003854A1 (fi) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0386406A1 (en) * | 1989-03-10 | 1990-09-12 | Elf Atochem North America, Inc. | Polyhaloaromatic ester flame retardants for polyolefin resins |
WO1996035754A1 (en) * | 1995-05-09 | 1996-11-14 | E.I. Du Pont De Nemours And Company | Flame resistant polyester resin composition |
US5760161A (en) * | 1997-02-10 | 1998-06-02 | Albemarle Corporation | Process for making unsaturated, thermosetting, brominated phthalic anhydride/polyol polyester resins |
WO2004094517A1 (en) * | 2003-04-21 | 2004-11-04 | Albemarle Corporation | Flame retarded styrenic polymer foams |
US7423069B2 (en) | 2002-05-06 | 2008-09-09 | Crompton Corporation | Blends of tetrahalophthalate esters and phosphorus-containing flame retardants for polyurethane compositions |
US7615168B2 (en) | 2005-03-21 | 2009-11-10 | Chemtura Corporation | Flame retardants and flame retarded polymers |
US8129457B2 (en) | 2006-03-22 | 2012-03-06 | Chemtura Corporation | Flame retardant blends for flexible polyurethane foam |
WO2022018036A1 (de) * | 2020-07-23 | 2022-01-27 | Pts Gmbh | Styrolfreie beschichtungszusammensetzung |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012131764A (ja) * | 2010-12-03 | 2012-07-12 | Kawasaki Kasei Chem Ltd | エステル組成物及びその製造方法 |
JP5938899B2 (ja) * | 2011-12-27 | 2016-06-22 | 川崎化成工業株式会社 | ポリウレタンフォーム製造原料用エステル組成物及びポリウレタンフォームの製造方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3766249A (en) * | 1971-07-21 | 1973-10-16 | Koppers Co Inc | Brominated cinnamic acid esters |
US3775165A (en) * | 1971-07-19 | 1973-11-27 | Deering Milliken Res Corp | Polymers of improved flame retardance |
US3947421A (en) * | 1973-01-19 | 1976-03-30 | Basf Aktiengesellschaft | Self-extinguishing polyester molding compositions |
US3966676A (en) * | 1975-02-18 | 1976-06-29 | Velsicol Chemical Corporation | Bis-(halophenyl) 2,3,5,6-tetrachloro-terephthalate and fire retardant compositions prepared therefrom |
US4024102A (en) * | 1974-02-13 | 1977-05-17 | Celanese Corporation | Molding composition suitable for forming improved flame retardant three-dimensional shaped articles |
US4032481A (en) * | 1976-01-30 | 1977-06-28 | Arco Polymers, Inc. | Heat stabilizers for expandable styrene polymers |
US4098704A (en) * | 1977-02-25 | 1978-07-04 | Pennwalt Corporation | Polyoxyalkylene tetrahalophthalate ester as textile finishing agent |
US4107231A (en) * | 1975-04-09 | 1978-08-15 | Basf Aktiengesellschaft | Flame-retardant linear polyesters |
JPS53120755A (en) * | 1977-03-30 | 1978-10-21 | Sumitomo Chem Co Ltd | Flame-retardant composition |
US4295886A (en) * | 1973-10-09 | 1981-10-20 | Avtex Fibers Inc. | Flame-retardant polyester fiber compositions |
US4397977A (en) * | 1979-08-23 | 1983-08-09 | Pennwalt Corporation | Tetrahalophthalates as flame retardant plasticizers for halogenated resins |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3833641A (en) * | 1971-08-16 | 1974-09-03 | Union Carbide Corp | Halo-aryl amide-ester polyols |
US4094850A (en) * | 1975-10-06 | 1978-06-13 | Monsanto Company | Flame retardant composition |
JPS55108435A (en) * | 1978-12-22 | 1980-08-20 | Pennwalt Corp | Polyoxyalkylenetetrahaloterephthalate as flame retardant plasitizer for halogenated resin |
DE3034634C2 (de) * | 1980-09-13 | 1982-11-11 | Chemische Fabrik Kalk GmbH, 5000 Köln | Tetrabromphthalsäureester, Herstellung und Verwendung als Brandschutzmittel in Kunststoffen |
US4361666A (en) * | 1982-01-04 | 1982-11-30 | Monsanto Company | Styrenic polymer additive |
GB8431792D0 (en) * | 1984-12-17 | 1985-01-30 | Sandoz Ltd | Organic compounds |
-
1988
- 1988-10-28 JP JP63509179A patent/JPH02502026A/ja active Pending
- 1988-10-28 HU HU886711A patent/HUT54720A/hu unknown
- 1988-10-28 WO PCT/US1988/003839 patent/WO1989003854A1/en not_active Application Discontinuation
- 1988-10-28 EP EP19880909875 patent/EP0339074A4/en not_active Withdrawn
- 1988-10-28 BR BR888807274A patent/BR8807274A/pt not_active Application Discontinuation
- 1988-10-31 ES ES8803328A patent/ES2018098A6/es not_active Expired - Lifetime
- 1988-10-31 CA CA000581742A patent/CA1337310C/en not_active Expired - Fee Related
-
1989
- 1989-06-29 FI FI893189A patent/FI893189A0/fi not_active Application Discontinuation
- 1989-06-29 DK DK323589A patent/DK323589A/da not_active Application Discontinuation
-
1992
- 1992-08-25 AU AU21263/92A patent/AU2126392A/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3775165A (en) * | 1971-07-19 | 1973-11-27 | Deering Milliken Res Corp | Polymers of improved flame retardance |
US3766249A (en) * | 1971-07-21 | 1973-10-16 | Koppers Co Inc | Brominated cinnamic acid esters |
US3947421A (en) * | 1973-01-19 | 1976-03-30 | Basf Aktiengesellschaft | Self-extinguishing polyester molding compositions |
US4295886A (en) * | 1973-10-09 | 1981-10-20 | Avtex Fibers Inc. | Flame-retardant polyester fiber compositions |
US4024102A (en) * | 1974-02-13 | 1977-05-17 | Celanese Corporation | Molding composition suitable for forming improved flame retardant three-dimensional shaped articles |
US3966676A (en) * | 1975-02-18 | 1976-06-29 | Velsicol Chemical Corporation | Bis-(halophenyl) 2,3,5,6-tetrachloro-terephthalate and fire retardant compositions prepared therefrom |
US4107231A (en) * | 1975-04-09 | 1978-08-15 | Basf Aktiengesellschaft | Flame-retardant linear polyesters |
US4032481A (en) * | 1976-01-30 | 1977-06-28 | Arco Polymers, Inc. | Heat stabilizers for expandable styrene polymers |
US4098704A (en) * | 1977-02-25 | 1978-07-04 | Pennwalt Corporation | Polyoxyalkylene tetrahalophthalate ester as textile finishing agent |
JPS53120755A (en) * | 1977-03-30 | 1978-10-21 | Sumitomo Chem Co Ltd | Flame-retardant composition |
US4397977A (en) * | 1979-08-23 | 1983-08-09 | Pennwalt Corporation | Tetrahalophthalates as flame retardant plasticizers for halogenated resins |
Non-Patent Citations (2)
Title |
---|
See also references of EP0339074A4 * |
V.M. BHATNAGER "Fire Retardants: Proceedings of 1974 Intl. Symposium on Flammability and Fire Retardants" May 1-2, 1974 by Technomic Pub. Co. (Westport, Connecticut) see pages 170 to 171, especially figures 5 and 6. * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0386406A1 (en) * | 1989-03-10 | 1990-09-12 | Elf Atochem North America, Inc. | Polyhaloaromatic ester flame retardants for polyolefin resins |
WO1996035754A1 (en) * | 1995-05-09 | 1996-11-14 | E.I. Du Pont De Nemours And Company | Flame resistant polyester resin composition |
US5990213A (en) * | 1995-05-09 | 1999-11-23 | E. I. Du Pont De Nemours And Company | Flame resistant polyester resin composition |
US5760161A (en) * | 1997-02-10 | 1998-06-02 | Albemarle Corporation | Process for making unsaturated, thermosetting, brominated phthalic anhydride/polyol polyester resins |
US7423069B2 (en) | 2002-05-06 | 2008-09-09 | Crompton Corporation | Blends of tetrahalophthalate esters and phosphorus-containing flame retardants for polyurethane compositions |
WO2004094517A1 (en) * | 2003-04-21 | 2004-11-04 | Albemarle Corporation | Flame retarded styrenic polymer foams |
US7615168B2 (en) | 2005-03-21 | 2009-11-10 | Chemtura Corporation | Flame retardants and flame retarded polymers |
US7696256B2 (en) * | 2005-03-21 | 2010-04-13 | Crompton Corporation | Flame retardants and flame retarded polymers |
US8129457B2 (en) | 2006-03-22 | 2012-03-06 | Chemtura Corporation | Flame retardant blends for flexible polyurethane foam |
WO2022018036A1 (de) * | 2020-07-23 | 2022-01-27 | Pts Gmbh | Styrolfreie beschichtungszusammensetzung |
Also Published As
Publication number | Publication date |
---|---|
HUT54720A (en) | 1991-03-28 |
FI893189L (fi) | 1989-06-29 |
FI893189A0 (fi) | 1989-06-29 |
HU886711D0 (en) | 1991-01-28 |
JPH02502026A (ja) | 1990-07-05 |
DK323589D0 (da) | 1989-06-29 |
DK323589A (da) | 1989-06-29 |
CA1337310C (en) | 1995-10-10 |
EP0339074A1 (en) | 1989-11-02 |
AU2126392A (en) | 1992-10-29 |
BR8807274A (pt) | 1989-10-31 |
EP0339074A4 (en) | 1991-07-03 |
ES2018098A6 (es) | 1991-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5112898A (en) | High impact polystyrene containing low molecular weight brominated polystyrene | |
EP1063252A1 (en) | Flame-retardant resin, composition thereof, and process for producing the same | |
EP0235266B1 (en) | Tetrahalophthalate esters as flame retardants for polyphenylene ether resins | |
WO1989003854A1 (en) | Tetrahalophthalate esters as flame retardants for certain resins | |
US4762861A (en) | Tetrahalophthalate esters as flame retardants for polystyrene resins | |
WO2004072179A1 (en) | Halogen free ignition resistant thermoplastic resin compositions | |
US4197370A (en) | Foamable polyphenylene oxide composition with thermally unstable copolymer as foaming agent | |
JPS61157512A (ja) | 成型しうる組成物、成型した製品を製造する方法及びランダム共重合体 | |
US3966677A (en) | Self-extinguishing polystyrene resin composition | |
US4923916A (en) | Tetrahalophthalate esters as flame retardants for polystyrene resins | |
US4743637A (en) | Flame retardant compounds and thermoplastic compositions containing the same | |
CA2054695A1 (en) | Flame retardant resin composition | |
DD290203A5 (de) | Tetrahalophthalat-ester als flammschutzmittel fuer bestimmte kunststoffe | |
WO1988003542A1 (en) | Flame retarded modified polyphenylene esters having improved flow characteristics | |
AU2785489A (en) | Tetrahalophthalate esters as flame retardants for certain resins | |
EP0189668B1 (en) | Flame retardant molded composition which incorporates a poly (styrene-co-maleic anhydride-co-dibromostyrene) copolymer | |
US4938894A (en) | Tetrahalophthalate esters as flame retardants for ABS (acrylonitrile-butadiene styrene terpolymer) resins | |
AU580833B2 (en) | Thermoplastics containing brominated homopolymer | |
US4626573A (en) | Flame-retardant molded composition incorporating a poly(N-(bromophenyl)maleimide-co-styrene-co-maleic anhydride) copolymer | |
US4927873A (en) | Halophenyl ester flame retardants for polyphenylene ether resins | |
US4959481A (en) | Flame retardant compounds and thermoplastic compositions containing the same | |
EP0687696A1 (en) | Flame retardant polymer compositions comprising thermally stable resins | |
JPS62164759A (ja) | ポリカ−ボネ−ト樹脂とアルケニル芳香族共重合体との耐燃性ブレンド | |
PT88909B (pt) | Processo de preparacao de resina retardadoras de chama contendo, como agente retardador de chama, esteres de tetra-haloftalato | |
EP0111791A2 (en) | Flame retardant thermoplastic polycarbonate composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BB BG BR DK FI HU JP KP KR LK MC MG MW NO RO SD SU US US US US US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BJ CF CG CH CM DE FR GA GB IT LU ML MR NL SE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1988909875 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 893189 Country of ref document: FI |
|
WWP | Wipo information: published in national office |
Ref document number: 1988909875 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1988909875 Country of ref document: EP |