WO1989003170A2 - Method of controlling release of acesulfame k in chewing gum and gum produced thereby - Google Patents
Method of controlling release of acesulfame k in chewing gum and gum produced thereby Download PDFInfo
- Publication number
- WO1989003170A2 WO1989003170A2 PCT/US1988/004400 US8804400W WO8903170A2 WO 1989003170 A2 WO1989003170 A2 WO 1989003170A2 US 8804400 W US8804400 W US 8804400W WO 8903170 A2 WO8903170 A2 WO 8903170A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acesulfame
- sweetener
- gum
- chewing gum
- release
- Prior art date
Links
- WBZFUFAFFUEMEI-UHFFFAOYSA-M Acesulfame k Chemical compound [K+].CC1=CC(=O)[N-]S(=O)(=O)O1 WBZFUFAFFUEMEI-UHFFFAOYSA-M 0.000 title claims abstract description 216
- 235000015218 chewing gum Nutrition 0.000 title claims abstract description 85
- 229940112822 chewing gum Drugs 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims description 65
- 239000000619 acesulfame-K Substances 0.000 claims abstract description 223
- 235000003599 food sweetener Nutrition 0.000 claims abstract description 157
- 239000003765 sweetening agent Substances 0.000 claims abstract description 157
- 239000011248 coating agent Substances 0.000 claims abstract description 45
- 238000000576 coating method Methods 0.000 claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 238000001035 drying Methods 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims description 102
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 35
- 229920002494 Zein Polymers 0.000 claims description 31
- 239000005019 zein Substances 0.000 claims description 31
- 229940093612 zein Drugs 0.000 claims description 31
- 229920001800 Shellac Polymers 0.000 claims description 25
- 238000009472 formulation Methods 0.000 claims description 25
- 239000004208 shellac Substances 0.000 claims description 25
- 229940113147 shellac Drugs 0.000 claims description 25
- 235000013874 shellac Nutrition 0.000 claims description 25
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 claims description 25
- 238000001694 spray drying Methods 0.000 claims description 20
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 19
- 239000007921 spray Substances 0.000 claims description 17
- 239000002904 solvent Substances 0.000 claims description 16
- 108010011485 Aspartame Proteins 0.000 claims description 13
- 239000000605 aspartame Substances 0.000 claims description 13
- 235000010357 aspartame Nutrition 0.000 claims description 13
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 claims description 13
- 229960003438 aspartame Drugs 0.000 claims description 13
- 238000002156 mixing Methods 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- 239000000892 thaumatin Chemical class 0.000 claims description 7
- 235000010436 thaumatin Nutrition 0.000 claims description 7
- NUFKRGBSZPCGQB-FLBSXDLDSA-N (3s)-3-amino-4-oxo-4-[[(2r)-1-oxo-1-[(2,2,4,4-tetramethylthietan-3-yl)amino]propan-2-yl]amino]butanoic acid;pentahydrate Chemical compound O.O.O.O.O.OC(=O)C[C@H](N)C(=O)N[C@H](C)C(=O)NC1C(C)(C)SC1(C)C.OC(=O)C[C@H](N)C(=O)N[C@H](C)C(=O)NC1C(C)(C)SC1(C)C NUFKRGBSZPCGQB-FLBSXDLDSA-N 0.000 claims description 6
- 239000004377 Alitame Substances 0.000 claims description 6
- 239000004376 Sucralose Chemical class 0.000 claims description 6
- 235000019409 alitame Nutrition 0.000 claims description 6
- 108010009985 alitame Proteins 0.000 claims description 6
- 235000019408 sucralose Nutrition 0.000 claims description 6
- BAQAVOSOZGMPRM-QBMZZYIRSA-N sucralose Chemical class O[C@@H]1[C@@H](O)[C@@H](Cl)[C@@H](CO)O[C@@H]1O[C@@]1(CCl)[C@@H](O)[C@H](O)[C@@H](CCl)O1 BAQAVOSOZGMPRM-QBMZZYIRSA-N 0.000 claims description 6
- YGCFIWIQZPHFLU-UHFFFAOYSA-N acesulfame Chemical class CC1=CC(=O)NS(=O)(=O)O1 YGCFIWIQZPHFLU-UHFFFAOYSA-N 0.000 claims description 4
- 229960005164 acesulfame Drugs 0.000 claims description 4
- 239000000625 cyclamic acid and its Na and Ca salt Chemical class 0.000 claims description 3
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical class OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 claims description 3
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical class C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 claims description 3
- 235000019204 saccharin Nutrition 0.000 claims description 3
- 229940081974 saccharin Drugs 0.000 claims description 3
- 239000000901 saccharin and its Na,K and Ca salt Chemical class 0.000 claims description 3
- 108050004114 Monellin Chemical class 0.000 claims 2
- PXLWOFBAEVGBOA-UHFFFAOYSA-N dihydrochalcone Chemical class OC1C(O)C(O)C(CO)OC1C1=C(O)C=CC(C(=O)CC(O)C=2C=CC(O)=CC=2)=C1O PXLWOFBAEVGBOA-UHFFFAOYSA-N 0.000 claims 2
- QGGZBXOADPVUPN-UHFFFAOYSA-N dihydrochalcone Chemical class C=1C=CC=CC=1C(=O)CCC1=CC=CC=C1 QGGZBXOADPVUPN-UHFFFAOYSA-N 0.000 claims 2
- 230000003111 delayed effect Effects 0.000 abstract description 34
- 238000005538 encapsulation Methods 0.000 abstract description 26
- 238000010521 absorption reaction Methods 0.000 abstract description 10
- 238000005054 agglomeration Methods 0.000 abstract description 9
- 230000002776 aggregation Effects 0.000 abstract description 9
- 239000002245 particle Substances 0.000 abstract description 7
- 239000008123 high-intensity sweetener Substances 0.000 abstract description 2
- 235000013615 non-nutritive sweetener Nutrition 0.000 abstract description 2
- 239000000843 powder Substances 0.000 description 54
- 239000000047 product Substances 0.000 description 39
- 239000000796 flavoring agent Substances 0.000 description 38
- 239000000243 solution Substances 0.000 description 37
- 235000019634 flavors Nutrition 0.000 description 30
- 235000000346 sugar Nutrition 0.000 description 27
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 26
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 26
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 26
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 26
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 25
- 239000004615 ingredient Substances 0.000 description 24
- 239000007787 solid Substances 0.000 description 22
- 230000008569 process Effects 0.000 description 20
- 239000001993 wax Substances 0.000 description 20
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 19
- 239000000600 sorbitol Substances 0.000 description 19
- 235000010356 sorbitol Nutrition 0.000 description 19
- 235000011187 glycerol Nutrition 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- 150000005846 sugar alcohols Chemical class 0.000 description 13
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 12
- 108010010803 Gelatin Proteins 0.000 description 12
- 239000007864 aqueous solution Substances 0.000 description 12
- 239000010408 film Substances 0.000 description 12
- 239000008273 gelatin Substances 0.000 description 12
- 229920000159 gelatin Polymers 0.000 description 12
- 235000019322 gelatine Nutrition 0.000 description 12
- 235000011852 gelatine desserts Nutrition 0.000 description 12
- 239000006188 syrup Substances 0.000 description 12
- 235000020357 syrup Nutrition 0.000 description 12
- 229920002774 Maltodextrin Polymers 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 11
- 235000010449 maltitol Nutrition 0.000 description 11
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 10
- 239000005913 Maltodextrin Substances 0.000 description 10
- 239000008121 dextrose Substances 0.000 description 10
- 229960001031 glucose Drugs 0.000 description 10
- 229940035034 maltodextrin Drugs 0.000 description 10
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 238000004091 panning Methods 0.000 description 9
- 239000008188 pellet Substances 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 240000008042 Zea mays Species 0.000 description 8
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 8
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 8
- 235000005822 corn Nutrition 0.000 description 8
- 239000003995 emulsifying agent Substances 0.000 description 8
- 235000013355 food flavoring agent Nutrition 0.000 description 8
- -1 gum arabic Chemical compound 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 239000000839 emulsion Substances 0.000 description 7
- 238000000227 grinding Methods 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- 229920002472 Starch Polymers 0.000 description 6
- 229930006000 Sucrose Natural products 0.000 description 6
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 description 6
- 239000008393 encapsulating agent Substances 0.000 description 6
- 239000012467 final product Substances 0.000 description 6
- 235000013305 food Nutrition 0.000 description 6
- 229920002689 polyvinyl acetate Polymers 0.000 description 6
- 239000011118 polyvinyl acetate Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 235000019698 starch Nutrition 0.000 description 6
- 239000008107 starch Substances 0.000 description 6
- 239000005720 sucrose Substances 0.000 description 6
- 150000008163 sugars Chemical class 0.000 description 6
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 5
- 244000215068 Acacia senegal Species 0.000 description 5
- 229920000084 Gum arabic Polymers 0.000 description 5
- 229930195725 Mannitol Natural products 0.000 description 5
- 235000010489 acacia gum Nutrition 0.000 description 5
- 239000000205 acacia gum Substances 0.000 description 5
- 238000005354 coacervation Methods 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 235000010445 lecithin Nutrition 0.000 description 5
- 239000000787 lecithin Substances 0.000 description 5
- 229940067606 lecithin Drugs 0.000 description 5
- 239000000594 mannitol Substances 0.000 description 5
- 235000010355 mannitol Nutrition 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 4
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 4
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 4
- 239000004378 Glycyrrhizin Substances 0.000 description 4
- 229920001908 Hydrogenated starch hydrolysate Polymers 0.000 description 4
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 4
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 4
- 239000003125 aqueous solvent Substances 0.000 description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 4
- 239000004067 bulking agent Substances 0.000 description 4
- 150000001720 carbohydrates Chemical class 0.000 description 4
- 235000014633 carbohydrates Nutrition 0.000 description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 4
- 235000010980 cellulose Nutrition 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 230000001055 chewing effect Effects 0.000 description 4
- 239000003925 fat Substances 0.000 description 4
- 235000019197 fats Nutrition 0.000 description 4
- 229960002737 fructose Drugs 0.000 description 4
- LPLVUJXQOOQHMX-UHFFFAOYSA-N glycyrrhetinic acid glycoside Natural products C1CC(C2C(C3(CCC4(C)CCC(C)(CC4C3=CC2=O)C(O)=O)C)(C)CC2)(C)C2C(C)(C)C1OC1OC(C(O)=O)C(O)C(O)C1OC1OC(C(O)=O)C(O)C(O)C1O LPLVUJXQOOQHMX-UHFFFAOYSA-N 0.000 description 4
- 229960004949 glycyrrhizic acid Drugs 0.000 description 4
- UYRUBYNTXSDKQT-UHFFFAOYSA-N glycyrrhizic acid Natural products CC1(C)C(CCC2(C)C1CCC3(C)C2C(=O)C=C4C5CC(C)(CCC5(C)CCC34C)C(=O)O)OC6OC(C(O)C(O)C6OC7OC(O)C(O)C(O)C7C(=O)O)C(=O)O UYRUBYNTXSDKQT-UHFFFAOYSA-N 0.000 description 4
- 235000019410 glycyrrhizin Nutrition 0.000 description 4
- LPLVUJXQOOQHMX-QWBHMCJMSA-N glycyrrhizinic acid Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@H](O[C@@H]1O[C@@H]1C([C@H]2[C@]([C@@H]3[C@@]([C@@]4(CC[C@@]5(C)CC[C@@](C)(C[C@H]5C4=CC3=O)C(O)=O)C)(C)CC2)(C)CC1)(C)C)C(O)=O)[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O LPLVUJXQOOQHMX-QWBHMCJMSA-N 0.000 description 4
- 239000000832 lactitol Substances 0.000 description 4
- 235000010448 lactitol Nutrition 0.000 description 4
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 4
- 229960003451 lactitol Drugs 0.000 description 4
- 239000000845 maltitol Substances 0.000 description 4
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 4
- 229940035436 maltitol Drugs 0.000 description 4
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 4
- 239000012188 paraffin wax Substances 0.000 description 4
- 239000007967 peppermint flavor Substances 0.000 description 4
- 239000004014 plasticizer Substances 0.000 description 4
- 235000010447 xylitol Nutrition 0.000 description 4
- 239000000811 xylitol Substances 0.000 description 4
- 229960002675 xylitol Drugs 0.000 description 4
- SERLAGPUMNYUCK-DCUALPFSSA-N 1-O-alpha-D-glucopyranosyl-D-mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SERLAGPUMNYUCK-DCUALPFSSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- 239000004375 Dextrin Substances 0.000 description 3
- 229920001353 Dextrin Polymers 0.000 description 3
- 229930091371 Fructose Natural products 0.000 description 3
- 239000005715 Fructose Substances 0.000 description 3
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 3
- 229920000881 Modified starch Polymers 0.000 description 3
- 108010009736 Protein Hydrolysates Proteins 0.000 description 3
- 229920001938 Vegetable gum Polymers 0.000 description 3
- 229920000615 alginic acid Polymers 0.000 description 3
- 235000010443 alginic acid Nutrition 0.000 description 3
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 3
- 229940105329 carboxymethylcellulose Drugs 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 239000008199 coating composition Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000013270 controlled release Methods 0.000 description 3
- 235000019425 dextrin Nutrition 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 238000010410 dusting Methods 0.000 description 3
- 239000007888 film coating Substances 0.000 description 3
- 238000009501 film coating Methods 0.000 description 3
- 150000004679 hydroxides Chemical class 0.000 description 3
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 3
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 3
- 230000018984 mastication Effects 0.000 description 3
- 238000010077 mastication Methods 0.000 description 3
- 235000019426 modified starch Nutrition 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 235000013772 propylene glycol Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 235000007586 terpenes Nutrition 0.000 description 3
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 3
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 2
- SPFMQWBKVUQXJV-BTVCFUMJSA-N (2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal;hydrate Chemical compound O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O SPFMQWBKVUQXJV-BTVCFUMJSA-N 0.000 description 2
- PVXPPJIGRGXGCY-DJHAAKORSA-N 6-O-alpha-D-glucopyranosyl-alpha-D-fructofuranose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@](O)(CO)O1 PVXPPJIGRGXGCY-DJHAAKORSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- 229920002907 Guar gum Polymers 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229920000161 Locust bean gum Polymers 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 229920006243 acrylic copolymer Polymers 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 229940077731 carbohydrate nutrients Drugs 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229960000673 dextrose monohydrate Drugs 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 239000000834 fixative Substances 0.000 description 2
- 235000007983 food acid Nutrition 0.000 description 2
- 235000013373 food additive Nutrition 0.000 description 2
- 239000002778 food additive Substances 0.000 description 2
- 229910021485 fumed silica Inorganic materials 0.000 description 2
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 2
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 2
- 235000010417 guar gum Nutrition 0.000 description 2
- 239000000665 guar gum Substances 0.000 description 2
- 229960002154 guar gum Drugs 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000002198 insoluble material Substances 0.000 description 2
- 229960004903 invert sugar Drugs 0.000 description 2
- 235000010420 locust bean gum Nutrition 0.000 description 2
- 239000000711 locust bean gum Substances 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 239000011325 microbead Substances 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 235000015424 sodium Nutrition 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920013683 Celanese Polymers 0.000 description 1
- 229920001412 Chicle Polymers 0.000 description 1
- 235000019499 Citrus oil Nutrition 0.000 description 1
- 244000180278 Copernicia prunifera Species 0.000 description 1
- 235000010919 Copernicia prunifera Nutrition 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 240000004181 Eucalyptus cladocalyx Species 0.000 description 1
- 101000801619 Homo sapiens Long-chain-fatty-acid-CoA ligase ACSBG1 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- VHOQXEIFYTTXJU-UHFFFAOYSA-N Isobutylene-isoprene copolymer Chemical compound CC(C)=C.CC(=C)C=C VHOQXEIFYTTXJU-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 102100033564 Long-chain-fatty-acid-CoA ligase ACSBG1 Human genes 0.000 description 1
- 240000001794 Manilkara zapota Species 0.000 description 1
- 235000011339 Manilkara zapota Nutrition 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 235000007265 Myrrhis odorata Nutrition 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 240000005295 Nyssa aquatica Species 0.000 description 1
- 235000000380 Nyssa aquatica Nutrition 0.000 description 1
- 240000004760 Pimpinella anisum Species 0.000 description 1
- 235000012550 Pimpinella anisum Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- UEDUENGHJMELGK-HYDKPPNVSA-N Stevioside Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O UEDUENGHJMELGK-HYDKPPNVSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 235000010358 acesulfame potassium Nutrition 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 235000010634 bubble gum Nutrition 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229940043202 calcium cyclamate Drugs 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000010500 citrus oil Substances 0.000 description 1
- 239000010634 clove oil Substances 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229940109275 cyclamate Drugs 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 208000002925 dental caries Diseases 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000686 essence Substances 0.000 description 1
- DHNGCHLFKUPGPX-RMKNXTFCSA-N ethyl trans-p-methoxycinnamate Chemical compound CCOC(=O)\C=C\C1=CC=C(OC)C=C1 DHNGCHLFKUPGPX-RMKNXTFCSA-N 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- LFVPBERIVUNMGV-UHFFFAOYSA-N fasudil hydrochloride Chemical compound Cl.C=1C=CC2=CN=CC=C2C=1S(=O)(=O)N1CCCNCC1 LFVPBERIVUNMGV-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 229960003082 galactose Drugs 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 235000019534 high fructose corn syrup Nutrition 0.000 description 1
- 239000007970 homogeneous dispersion Substances 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 229960002160 maltose Drugs 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 239000001525 mentha piperita l. herb oil Substances 0.000 description 1
- 239000001683 mentha spicata herb oil Substances 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 235000019477 peppermint oil Nutrition 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 150000003097 polyterpenes Chemical class 0.000 description 1
- 229940100467 polyvinyl acetate phthalate Drugs 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000014860 sensory perception of taste Effects 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- ILJOYZVVZZFIKA-UHFFFAOYSA-M sodium;1,1-dioxo-1,2-benzothiazol-3-olate;hydrate Chemical compound O.[Na+].C1=CC=C2C(=O)[N-]S(=O)(=O)C2=C1 ILJOYZVVZZFIKA-UHFFFAOYSA-M 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 235000019721 spearmint oil Nutrition 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 229940013618 stevioside Drugs 0.000 description 1
- OHHNJQXIOPOJSC-UHFFFAOYSA-N stevioside Natural products CC1(CCCC2(C)C3(C)CCC4(CC3(CCC12C)CC4=C)OC5OC(CO)C(O)C(O)C5OC6OC(CO)C(O)C(O)C6O)C(=O)OC7OC(CO)C(O)C(O)C7O OHHNJQXIOPOJSC-UHFFFAOYSA-N 0.000 description 1
- 235000019202 steviosides Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 238000009495 sugar coating Methods 0.000 description 1
- 235000015260 sugar-free gum Nutrition 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-M sulfamate Chemical compound NS([O-])(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-M 0.000 description 1
- 235000019605 sweet taste sensations Nutrition 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000011885 synergistic combination Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 239000009637 wintergreen oil Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23G—COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
- A23G4/00—Chewing gum
- A23G4/06—Chewing gum characterised by the composition containing organic or inorganic compounds
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23G—COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
- A23G4/00—Chewing gum
- A23G4/06—Chewing gum characterised by the composition containing organic or inorganic compounds
- A23G4/10—Chewing gum characterised by the composition containing organic or inorganic compounds characterised by the carbohydrates used, e.g. polysaccharides
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23G—COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
- A23G4/00—Chewing gum
- A23G4/18—Chewing gum characterised by shape, structure or physical form, e.g. aerated products
- A23G4/20—Composite products, e.g. centre-filled, multi-layer, laminated
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/30—Artificial sweetening agents
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/30—Artificial sweetening agents
- A23L27/31—Artificial sweetening agents containing amino acids, nucleotides, peptides or derivatives
- A23L27/32—Artificial sweetening agents containing amino acids, nucleotides, peptides or derivatives containing dipeptides or derivatives
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Inorganic Chemistry (AREA)
- Nutrition Science (AREA)
- Molecular Biology (AREA)
- Confectionery (AREA)
Abstract
The present invention is a method for producing a chewing gum with a delayed release Acesulfame K sweetener, as well as the chewing gum so produced. The delayed release Acesulfame K sweetener is obtained by physically modifying Acesulfame K's properties by coating and drying. Acesulfame K sweetener is coated by encapsulation, partially coated by agglomeration, entrapped by absorption, or treated by multiple steps of encapsulation, agglomeration, and absorption. The coated sweetener is then co-dried and particle sized to produce a release-modified Acesulfame K high-intensity sweetener. When incorporated into the chewing gum, these particles are adopted to enhance the shelf stability of the sweetener and/or produce a delayed release when the gum is chewed.
Description
METHOD OF CONTROLLING RELEASE OF ACESULFAME K IN CHEWING GUM AND GUM PROD'JCED THEREBY BACKGROUND OF THE INVENTION The present invention relates to methods for producing chewing gum. More particularly the invention relates to producing chewing gum containing high-potency sweeteners which have been treated to control their release and enhance shelf-life stability. In recent years, efforts have been devoted to controlling release characteristics of various ingredients in chewing gum. Most notably, attempts have been made to delay the release of sweeteners and flavors in various chewing gum formulations to thereby lengthen the satisfactory chewing time of the gum. Delaying the release of sweeteners and flavors can also avoid an undesirable overpowering burst of sweetness or flavor during the initial chewing period. On the other hand, some ingredients have been treated so as to increase their rate of release in chewing gum. In addition, other efforts have been directed at perfecting the use of high-potency sweeteners within the chewing gum formulation, to thereby increase the shelf-life stability of the ingredients, i.e. the protection against degradation of the high-potency sweetener over time. One such high-potency sweetener is Acesulfame K (6-methyl-1,2,3-oxathiazine-4(3H)-one-2, 2-dioxide potassium salt). This sweetener, which has been approved for use in food products in about 20 different countries, has also been approved for uge in chewing gum by the FDA as a food additive. This highly consumeracceptable, high-potency sweetener gives chewing gum a fast, strong release that is not desirable. Methods of treating the high-potency sweetener to delay the release or sweetness in balance with the chewing gum flavor would therefore be a definite improvement. Use of Acesulfame K in chewing gum has been disclosed in other patents. German Patent No. 3,120,857 discloses simple addition of Acesulfame K in gum at levels from 0.01% to 5%. This patent includes use of Acesulfame K in combination with sugar, aspartame, and other low and high-potency sweeteners. Acesulfame K may be added as a powder or in aqueous solution. U.S. Patent 4,374,122. relates to the use of Acesulfame K in a sugar containing chewing gum to reduce or prevent caries in the presence of fermentable carbohydrates. U.S. 4,158,086 discloses sweetener mixtures for use in foods, beverages and pharmaceuticals but not specifically chewing gums. The mixtures are of Acesulfame K and aspartame, saccharin, sulfamate sweeteners (cyclamate) or dihydrochalcones. U.K. 2,154,850 discloses beverages sweetened with sucralose and Acesulfame K (among others). U.K. 2,185,674 discloses combinations of thaumatin and Acesulfame K (among others) to stimulate growth of farm animals. U.S. Defensive Publication T 104,004 discloses table-top sweeteners comprising Acesulfame K in combination with a large list of taste/texture modifiers including thaumatin, many salts, food acids, sugars, sugar alcohols, amino acids, proteins, polysaccharides, 5' nucleotides, flavoring agents, glycyrrhizin, and gums. EPO 122,400 discloses combinations of Acesulfame K with amino acids, tartaric acid, or 5' nucleotides (and optionally many other ingredients) for use in foods including chewing gums. U.S. 4,536,396 discloses synergistic combinations of alitame and Acesulfame K in foods including chewing gum. U.S. 4,746,520 discloses sweetener compositions which preferentially include Acesulfame K along with a sugar or sugar alcohol, a food acid and bicarbonate. Other patents disclose how a sweetener like aspartame can be physically modified to control the release rate in chewing gum. For example, U.S. Patent No. 4,597,970 to Sharma et al. teaches a process for producing an agglomerated sweetener wherein the sweetener is dispersed in a hydrophobic matrix consisting essentially of lecithin, a glyceride, and a fatty acid or wax having a melting point between 25 and 1000C. The method disclosed uses a spray-congealing step to form the sweetener-containing matrix into droplets, followed by a fluid-bed second coating on the agglomerated particles. U.S. Patent Nos. 4,515,769 and 4,386,106, both to Merrit et al., teach a two step process for preparing a delayed release flavorant for chewing gum. In this process, the flavorant is prepared in an emulsion with a hydrophilic matrix. The emulsion is dried and ground and the particles are then coated with a waterimpermeable substance. U.S. Patent No. 4,230,687 to Sair et al. teaches a process for encasing an active ingredient to achieve gradual release of the ingredient in a product such as chewing gum. The method described involves adding the ingredient to an encapsulating material in the form of a viscous paste. High-shear mixing is used to achieve a homogeneous dispersion of the ingredient within the matrix, which is subsequently dried and ground. U.S. Patent No. 4,139,639 to Bahoshy et al. teaches a process of "fixing" aspartame by co-drying (by spray drying or fluid-bed coating) a solution con taining aspartame and an encapsulating agent, such as gum arabic, to thereby surround and protect the aspartame in the gum during storage. U.S. Patent No. 4,384,004 to Cea et al. teaches a method of encapsulating aspartame with various solutions of encapsulating agents using various encapsulation techniques, such as spray drying, in order to increase the shelf-stability of the aspartame. U.S. Patent No. 4,634,593 to Stroz et al. teaches a method for producing controlled release sweeteners for confections, such as chewing gum. The method taught therein involves the use of an insoluble fat material which is mix mulled with the sweetener. SUMMARY OF INVENTION The present invention is a method for pro ducing chewing gum with a modified high-potency sweetener, specifically Acesulfame K, as well as the chewing gum so produced. The delayed release high-potency sweetener is obtained by modifying the sweetener by encapsulation, partial encapsulation or partial coating, entrapment or absorption with low water-soluble materials or water insoluble materials. The procedures for modifying the sweetener include spray drying, spray chilling, fluid-bed coating, coacervation, and other agglomerating and standard encapsulating techniques. The sweetener may also be absorbed onto an inert or water-insoluble material. The sweetener may be modified in a multiple step process comprising any of the processes or combination of processes noted. The sweetener, Acesulfame K, may also be combined with other sweeteners including, but not limited to, sucrose, dextrose, fructose, maltose, maltodextin, xylose, palatinose, or others that are considered bulk sweeteners, as well as sugar alcohols including but not limited to sorbitol, mannitol, xlitol, maltitol, lactitol, palatinit, and lycasin. The high-potency sweetener Acesulfame K may also be combined with other high-potency sweeteners including, but not limited to, thaumatin, aspartame, sodium saccharin, calcium cyclamate, glycyrrhizin, alitame, sucralose, stevioside and dihydrochalcones. This sweetener, Acesulfame K, when modified according to the present invention, gives a chewing gum having a controlled-release sweetener. A higher quantity of sweetener san be used without resulting in a high initial sweetness impact, but instead having a delayed sweetness release that is compatible with the delayed flavor release in chewing gum, giving a highly consumer-aceeptable chewing gum product. DETAILED DESCRIPTION OF THg PREFERRED EMBODIMENTS Acesulfame K (potassium salt of 6-methyl-l, 2,3-oxathiazine-4(3H)-one-2, 2-dioxide) is a new, highpotency sweetener which is about 200 times sweeter than sugar. The taste properties of Acesulfame K are considered good. At concentrations usually used, Acesulfame K has a pure and rapidly perceptible sweet taste that does not linger. Acesulfame K is now approved for use in chewing gum in many foreign countries and recently approved for chewing gum by the United States Food and Drug Administration as a food additive. The manufacturer of Acesulfame K is the Hoechst Celanese Corporation of Somerville, New Jersey. Acesulfame K is sold under the trade name of "Sunett". When Acesulfame K is added to chewing gum at a level of about 0.10%-0.30%, the sweetener gives chewing gum a fast, intense sweetness that dissipates quickly, leaving a strong flavor character that is less pleasant. It would be considered a significant improvement to a chewing gum to have the Acesulfame K sweetener release its sweetness as the flavor in the gum is released, thus balancing the overall taste perception. Tests of Acesulfame K show that the same fast, intense sweetness results from chewing gum whether the Acesulfame K is added as a fine powder, dissolved in water, in glycerin, propylene glycol, corn syrup, hydrogenated starch hyrolyzate, or any other compatible aqueous solution. For aqueous solutions, an emulsifier can also be mixed in the solution with the Acesulfame K sweetener and the mixture added to a chewing gum. A flavor can also be added to the sweetener/emulsifier mixture. The emulsion formed can be added to chewing gum. Powdered Acesulfame K may also be mixed into a molten chewing gum base during base manufacture or prior to manufacture of the gum. Acesulfame K may also be mixed with base ingredients during base manufacture. Usage levels of Acesulfame K in water or aqueous solvent is limited to its solubility in the aqueous solvent. Solubility in water at 200C is approximately 27g/100 ml and increases to 130g/100 ml at 100 C. In most other aqueous solvents like glycerine or propylene glycol, solubility of Acesulfame K is much less. Whether as a powder or as an aqueous liquid, the amount of Acesulfame K added to chewing gum is about 0.01% to 5%. Preferably the range of Acesulfame K in gum is about 0.05% to about 1.0%, and more preferably about 0.1% to about 0.4%. Most preferably, the level of Acesulfame K in gum is about 0.2%. As stated previously, Acesulfame K releases very quickly from chewing gum during the early stages of mastication of the gum because of its high solubility in water. Physical modifications of the sweetener by encapsulation with another substrate will slow its release in chewing gum by reducing the solubility or dissolution rate of Acesulfame K. Any standard technique which gives partial or full encapsulation of the Acesulfame K sweetener can be used. These techniques include, but are not limited to, spray drying, spray chilling, fluid-bed coating and coacervation. These encapsulation techniques that give partial encapsulation or full encapsulation can be used individually or in any combination in a single step process or multiple step procese. Generally, delayed release of sweetener is obtained in multistep processes like spray drying the sweetener and then fluid-bed coating of the resultant powder. The encapsulation techniques here described are standard coating techniques and generally give varying degrees of coating from partial to full coating, depending on the coating composition used in the process. Also, the coating compositions may be susceptible to water permeation to various degrees. Generally, compositions that have high organic solubility, good filmforming properties and low water solubility give better delayed release of the sweetener. Such compositions include acrylic polymers and copolymers, carboxyvinyl polymer, polyamides, polystyrene, polyvinyl acetate, polyvinyl acetate phthalate, polyvinylpyrrolidone, and waxes. Although all of these materials are possible for encapsulation of Acesulfame K sweetener, only foodgrade materials should be considered. Two standard food-grade coating materials that are good film formers but not water soluble are shellac and Zein. Others which are more water soluble, but good film formers, are materials like agar, alginates, a wide range of cellulose derivatives like ethyl cellulose, methyl cellulose, sodium hydroxymethyl cellulose, and hydroxypropylmethyl cellulose, dextrin, gelatin, and modified starches. These ingredients, which are generally approved for food use, also give a delayed release when used as an encapsulant for Acesulfame K. Other encapsulants like acacia or maltodextrin can also encapsulate Acesulfame K, but give very little change in the release rate of Acesulfame K in gum. The amount of coating or encapsulating material on the sweetener Acesulfame K also controls the length of time for its release from chewing gum. Generally, the higher the level of coating and the lower the amount of active Acesulfame K, the slower the release of the sweetener during mastication. The release rate is generally not instantaneous, but gradual over an extended period of time. To obtain the desired sweetness release to blend with a gum's flavor release, the encapsulant should be a minimum of about 20% of the coated sweetener. Preferably, the encapsulant should be a minimum of about 30% of the coated sweetener, and most preferably should be a minimum of about 40% of the coated sweetener. Depending on the coating material, a higher or lower amount of coating material may be needed to give the desired release of sweetener to balance sweetness release with flavor release. Another method of giving a delayed release of the sweetener, Acesulfame K, is agglomeration of the sweetener with an agglomerating agent which partially coats the sweetener. This method includes the step of mixing the sweetener and agglomerating agent with a small amount of water or solvent. The mixture is prepared in such a way as to have individual wet particles in contact with each other so a partial coating can be applied. After the water or solvent is removed, the mixture is ground and used as a powdered, coated sweetener. Materials that can be used as the agglomerating agent are the same as those used in encapsulation mentioned previously. However, since the coating is only a partial encapsulation and the Acesulfame K sweetener is very water soluble, some agglomerating agents are more effective in delaying the sweetener release than others. Some of the better agglomerating agents are the organic polymers like acrylic polymers and copolymers, polyvinyl acetate, polyvinylpyrrolidone, waxes, shellac, and Zein. Other agglomerating agents are not as effective in giving the sweetener a delayed release as are the polymers, waxes, shellac and Zein, but can be used to give some delayed release. These other agglomerating agents include, but are not limited to, agar, alginates, a wide range of cellulose derivatives like ethyl cellulose, methyl cellulose, sodium hydroxymethyl cellulose, hydroxypropylmethyl cellulose, dextrin, gelatin, modified starches, and vegetable gums like guar gum, locust bean gum, and carrageenin. Even though the agglomerated sweetener is only partially coated, when the quantity of coating is increased compared to the quantity of Acesulfame K sweetener, the release of the sweetener can be delayed for a longer time during mastication. The level of coating used in the agglomerated product is a minimum of about 5%. Preferably the coating level is a minimum of about 15% and more preferably about 20%. Depending on the ag glomerating agent, a higher or lower amount of agent may be needed to give the desired release of sweetener to balance sweetness releasewith flavor release. The Acesulfame K sweetener may be coated in a two-step process or multiple step process. The sweetener may be encapsulated with any of the materials as described previously and then the encapsulated sweetener can be agglomerated as described previously to obtain an encapsulated/agglomerated/sweetener product that could be used in chewing gum to give a delayed release of sweetener. In another embodiment of this invention, Acesulfame K sweetener may be absorbed onto another component which is porous and become entrapped in the matrix of the porous component. Common materials used for absorbing the sweetener include, but are not limited to, silicas, silicates, pharmasorb clay, spongelike beads or microbeads, amorphous sugars like dried dextrose, sucrose, alditols, amorphous carbonates and hydroxides, including aluminum and calcium lakes, vegetable gums and other spray dried materials. Depending on the type of absorbant material and how it is prepared, the amount of Acesulfame K sweetener that can be loaded onto the absorbant will vary. Generally materials like polymers or sponglike beads or microbeads, amorphous sugars and alditols and amorphous carbonates and hydroxides absorb about 10% to about 40% of the weight of the absorbant. Other materials like silicas and pharmasorb clays may be able to absorb about 20% to about 80% of the weight of the absorbant. The general procedure for absorbing the sweetener onto the absorbent is as follows. An absorbent like fumed silica powder can be mixed in a powder blender and an aqueous solution of the Acesulfame K sweetener can be sprayed onto the powder as mixing continues. The aqueous solution can be about 5% to 30% Acesulfame K solids, and higher solid levels may be used if temperatures up to 900C are used. Generally water is the solvent, but other solvents like alcohol could also be used if approved for use in food. As the powder mixes, the liquid is sprayed onto the powder. Spraying is stopped before the mix becomes damp. The still flowing powder is removed from the mixer and dried to remove the water or other solvent, and ground to-a specific particle size. After the Acesulfame K sweetener is absorbed onto an absorbant or fixed onto an absorbant, the fixative/sweetener can be coated by encapsulation. Either full or partial encapsulation may be used, depending on the coating composition used in the process. Full encapsulation may be obtained by coating with a polymer as in spray drying, spray chilling, fluid-bed coating, coacervation, or any other standard technique. A partial encapsulation or coating can be obtained by agglomeration of the fixative/sweetener mixture using any of the materials discussed above. The three methods of use to obtain a delayed release of Acesulfame K sweetener are: (1) encapsulation by spray drying, fluid-bed coating, spray chilling and coacervation to give full or partial encapsulation, (2) agglomeration to give partial encapsulation and (3) fixation or entrapment/absorption which also gives partial encapsulation. These three methods, combined in any usable manner which physically isolates the Acesulfame K sweetener, reduces its dissolvability or slows down the release of sweetener, are included in this invention. Other methods of treating the Acesulfame K sweetener to physically isolate the sweetener from other chewing gum ingredients may also have some effect on its release rate and stability. The Acesulfame K sweetener may be added to the liquid inside a liquid center gum product. The center fill of a gum product may comprise one or more carbohydrate syrups, glycerin, thickeners, flavors, acidulants, colors, sugars and sugar alcohols in conventional amounts. The ingredients are combined in a conventional manner. The Acesulfame K sweetener is dissolved in the center-fill liquid and the amount of Acesulfame K sweetener added to the center-fill liquid is about 50 ppm to about 4000 ppm by weight of the entire chewing gum formula. This method of using Acesulfame K sweetener in chewing gum can allow for a lower usage level of the sweetener, can give the sweetener a smooth release rate, and can reduce or eliminate any possible reaction of the sweetener with gum base, flavor components or other components, yielding improved shelf stability. Another method of isolating Acesulfame K sweetener from other chewing gum ingredients is to add Acesulfame K to the dusting compound of a chewing gum. A rolling or dusting compound is applied to the surface of chewing gum as it is formed. This rolling or dusting compound serves to reduce sticking to machinery as it is formed, reduces sticking of the product to machinery as it is wrapped, and sticking to its wrapper after it is wrapped and being stored. The rolling compound comprises Acesulfame K sweetener in combination with manitol, sorbitol, sucrose, starch, calcium carbonate, talc, other orally acceptable substances or a combination thereof. The rolling compound constitutes from about 0.25% to about 10.0%, but preferably about 1% to about 3% of weight of the chewing gum composition. The amount of Acesulfame K sweetener added to the rolling compound is about 0.05% to about 20% of the rolling compound or about 5 ppm to about 2000 ppm of the chewing gum composition. This method of using Acesulfame K sweetener in the chewing gum can allow a lower usage level of the sweetener, can give the sweetener a more controlled release rate, and can reduce or eliminate any possible reaction of the sweetener with gum base, flavor components, or other components, yielding improved shelf stability. Another method of isolating Acesulfame K sweetener is to use it in the coating/panning of a pellet chewing gum. Pellet or ball gum is prepared as conventional chewing gum, but formed into pellets that are pillow shaped or into balls. The pellets/balls can be then sugar coated or panned by conventional panning techniques to make a unique sugar coated pellet gum. Acesulfame K sweetener is very stable and highly water soluble, and can be easily added to a sugar solution prepared for sugar panning. Acesulfame K can also be added as a powder blended with other powders often used in some types of conventional panning procedures. Using Acesulfame K sweetener isolates the sweetener from other gum ingredients and modifies its release rate in chewing gum. Levels of use of Acesulfame K may be about 100 ppm to about 5000 ppm in the coating and about 50 ppm to about 2000 ppm of the weight of the chewing gum product. The weight of the coating may be about 20% to about 50% of the weight of the finished gum product. Conventional panning procedures generally coat with sucrose, but recent advances in panning have allowed the use of other carbohydrate materials to be used in the place of sucrose. Some of these components include, but are not limited to, dextrose, maltose, palatinose, xylitol, lactitol, palatinit and other new additols or a combination thereof. These materials may be blended with panning modifiers including, but not limited to, gum arabic, maltodextrins, corn syrup, gelatin, cellulose type materials like carboxymethyl cellulose, or hydroxymethyl cellulose, starch and modified starches, vegetable gums like alginates, locust bean gum, guar gum, and gum tragacanth, insoluble carbonates like calcium carbonate or magnesium carbonate and talc. Antitack agents may also be added as panning modifiers which allow the use of a variety of carbohydrates and sugar alcohols to be used in the development of new panned or coated gum products. Flavors may also be added with the sugar coating and with the Acesulfame K sweetener to yield unique product characteristics Another type of pan coating would also isolate the Acesulfame K sweetener from the chewing gum in gredients. This technique is referred to as film coating and is more common in pharmaceuticals than in chewing gum, but procedures are similar. A film like shellac, Zein, or cellulose-type material is applied onto a pellettype product forming a thin film on the surface of the product. The film is applied by mixing the polymer, a plasticizer and a solvent (pigments are optional) and spraying the mixture onto the pellet surface. This is done in conventional type panning equipment, or in more advanced side-vended coating pans. When a solvent like alcohol is used, extra precautions are needed to prevent fires and explosions, and specialized equipment must be used. Some film polymers can use water as the solvent in film coating. Recent advances in polymer research and in film coating technology eliminates the problem associated with the use of solvents in coating. These advances make it possible to apply aqueous films to a pellet or chewing gum product. As Acesulfame K sweetener is highly water soluble, it can be added to this aqueous film solution and applied with the film to the pellet or chewing gum product. The aqueous film or even the alcohol solvent film may also contain a flavor along with the polymer and plasticizer. By adding Acesulfame K sweetener to the polymer/plasticizer/solvent system either as an emulsion or solution, the sweetener can add sweetness to the flavor and a balanced flavor/sweetness can be obtained. The Acesulfame K sweetener can also be dissolved in the aqueous solvent and coated on the surface with the aqueous film. This will give a unique sweetness release to a film coated product. The previously described encapsulated, agglomerated, or absorbed high-potency sweetener may readily be incorporated into a chewing gum composition. The remainder of the chewing gum ingredients are noncritical to the present invention. That is, the coated particles of high-potency sweetener can be incorporated into conventional chewing gum formulations in a conventional manner. Naturally, the preferred chewing gum formulation is a sugarless chewing gum. However., the high-potency sweeteners may also be used in a sugar chewing gum to intensify and/or extend the sweetness thereof. The coated highpotency sweetener may be used in either regular chewing gum or bubble gum. In general, a chewing gum composition typically comprises a water-soluble bulk portion, a water-insoluble chewable gum base portion and typically waterinsoluble flavoring agents. The water-soluble portion dissipates with a portion of the flavoring agent over a period of time during chewing. The gum base portion is retained in the mouth throughout the chew. The insoluble gum base generally comprises elastomers, resins, fats and oils, waxes, softeners and inorganic fillers. Elastomers may include polyisobutylene, isobutylene-isoprene copolymer and styrene butadiene rubber, as well as natural latexes such as chicle. Resins include polyvinylacetate and terpene resins. Fats and oils may also be included in the gum base, including tallow, hydrogenated and partially hydrogenated vegetable oils, and cocoa butter. Commonly employed waxes include paraffin, microcrystalline and natural waxes such as beeswax and carnauba. According to the preferred embodiment of the present invention, the insoluble gum base constitutes between about 5 to about 95 percent by weight of the gum. More preferably the insoluble gum base comprises between 10 and 50 percent by weight of the gum and most preferably about 20 to about 35 percent by weight of the gum. The gum base typically also includes a filler component. The filler component may be calcium carbonate, magnesium carbonate, talc, dicalcium phosphate or the like The filler may constitute between about 5 and about 60 percent by weight of the gum base. Preferably, the filler comprises about 5 to about 50 percent by weight of the gum base. Gum bases typically also contain softeners, including glycerol monostearate and glycerol triacetate Further, gum bases may also contain optional ingredients such as antioxidants, colors, and emulsifiers. The present invention contemplates employing any commercially acceptable gum base. The water-soluble portion of the chewing gum may further comprise softeners, sweeteners, flavoring agents and combinations thereof. Softeners are added to the chewing gum in order to optimize the chewability and mouth feel of the gum. Softeners, also known in the art as plasticizers or plasticizing agents, generally constitute between about 0.5 to about 15.0 percent by weight of the chewing gum. Softeners contemplated by the present invention include glycerin, lecithin, and combinations thereof. Further, aqueous sweetener solu tions such as those containing sorbitol, hydrogenated starch hydrolysates, corn syrup and combinations thereof may be used as softeners and binding agents in gum. As mentioned above, the coated high-potency sweeteners of the present invention will most likely be used in sugarless gum formulations. However, formulations containing sugar are also within the scope of the invention. Sugar sweeteners generally include saccharide- containing components commonly known in the chewing gum art which comprise, but are not limited to, sucrose, dextrose, maltose, dextrin, dried invert sugar, fructose, levulose, galactose, corn syrup solids and the like, alone or in any combination. The coated high-potency sweeteners of the present invention can also be used in combination with other sugarless sweeteners. Generally sugarless sweeteners include components with sweetening characteristics but which are devoid of the commonly known sugars and comprise, but are not limited to, sugar alcohols such as sorbitol, mannitol, xylitol, hydrogenated starch hydrolysates, maltitol and the like, alone or in any combination. Depending on the particular sweetness release profile and shelf-stability needed, the coated highpotency sweeteners of the present invention can also be used in combination with uncoated high-potency sweeteners or with high-potency sweeteners coated with other materials and by other techniques. A flavoring agent may be present in the chewing gum in an amount within the range of from about 0.1 to -about 10.0 weight percent and preferably from about 0.5 to about 3.0 weight percent of the gum. The flavoring agents may comprise essential oils, synthetic flavors, or mixture thereof including, but not limited to, oils derived from plants and fruits such as citrus oils, fruit essences, peppermint oil, spearmint oil, clove oil, oil of wintergreen, anise, and the like. Artificial flavoring components are also contemplated for use in gums of the present invention. Those skilled in the art will recognize that natural and artificial flavoring agents may be combined in any sensorally acceptable blend. All such flavors and flavor blends are contemplated by the present invention. Optional ingredients such as colors, emulsifiers and pharmaceutical agents may be added to the chewing gum. In general, chewing gum is manufactured by sequentially adding the various chewing gum ingredients to a commercially available mixer known in the art. After the ingredients have been thoroughly mixed, the gum masts is discharged from the mixer and shaped into the desired form such as by rolling into sheets and cutting into sticks, extruding into chunks or casting into pellets. Generally, the ingredients are mixed by first melting the gum base and adding it to the running mixer. The base may also be melted in the mixer itself. Color or emulsifiers may also be added at this time. A softener such as glycerin may also be added at this time, along with syrup and a portion of the bulking agent. Further portions of the bulking agent may then be added to the mixer. A flavoring agent is typically added with the final portion of the bulking agent. The coated sweetener of the present invention is preferably added after the final portion of bulking agent and flavor have been added. The entire mixing procedure typically takes from five to fifteen minutes, but longer mixing times may sometimes be required. Those skilled in the art will recognize that many variations of the above described procedure may be followed. Examples The following examples of the invention and comparative examples are provided by way of explanation and illustration. The formulas listed in Table 1 comprise various sugar-free formulas in which Acesulfame K is added to gum after it is dissolved in various aqueous type solvents. TABLE 1 (wit. %) Example Example Example Example Example 1 2 3 ¯ 4 5 Sorbitol 49.3 48.6 49.3 49.3 49.3 Manitol 8.0 8.0 8.0 8.0 8.0 Gum Base 25.5 25.5 25.5 25.5 25.5 Glycerin 8.5 8.5 4.7 4.7 8.5 Hydrogenated Starch Hydrolysates 6.8 6.8 6.8 6.8 3.0 Lecithin 0.2 0.2 0.2 0.2 0.2 Peppermint Flavor 1.45 1.45 1.45 1.45 1.45 Color 0.05 0.05 0.05 0.05 0.05 Liquid/ Acesulfame K blend 0.2 0.90 4.0 4.0 4.0 In Example 1, Acesulfame K powder was added directly to the gum. In Example 2, a 13.0 g portion of Acesulfame K was dissolved in 45.5 g water, making a 22.2% solution, and added to gum. In Example 3 - A 2.5 gram portion of Acesulfame K was dissolved in 97.5 gram propylene glycol, making a 2.5% solution, and added to gum. In Example 4 - A 2.5 gram portion of Acesulfame K was dissolved in 47.5 gram of glycerin, making a 5% solution, and added to gum. In Example 5 - A 5.0 gram portion of Acesulfame K was dissolved in hot hydrogenated starch hydrolysates, making a 5% solution, and added to gum. The 5 examples were evaluated in standard "chew out tests, which consist of several panelists chewing the gum over time and analyzing the resulting bolus for Acesulfame K. The results showed that all 5 examples had the same rate of release of Acesulfame K. Thus, Acesulfame K releases the same whether added as a powder or dissolved in an aqueous liquid. In the next examples of a sugar gum formulation, Acesulfame K can be dissolved in water and emulsifiers can be added to the aqueous solution. Example solutions can be prepared by dissolving 15 grams of Acesulfame K in 70 grams water and adding 15 grams of emulsifiers of various hydrophilic-lipophilic balance (HLB) values to the solution. The mixtures can then be used in the following formulas. TABLE 2 (Wt. %) Example Example Example Example Example Example 6 7 8 9 10 11 Sugar 55 59.2 55.2 55.2 55.2 55.2 Base 19*2 19.2 19.2 19.2 19.2 19.2 Corn Syrup 12.4 12.4 12.4 12.4 12.4 12.4 Glycerine 1.4 1.4 1.4 1.4 1.4 1.4 TABLE 2 CONT'D (Wt. %) Example Example Example Example Example Example 6 7 8 9 10 11 Dextrose Monohydrate 9.9 9.9 9.9 9.9 9.9 9.9 Peppermint Flavor 0.9 0.9 0.9 0.9 0.9 0.9 Sweetener/ Emulsifier/ Water Mixture 1ç0 1.6 1.0 1.0 1.0 1.0 None HLB=2 HLB=4 HLB=6 HLB=9 ELB=12 Examples 12-16 - The same as the formulations made in Examples 6-11, respectively, except that the flavor is mixed together with the aqueous sweetener solution and emulsified before adding the mixture to the gum batch. Acesulfame K sweetener can also be blended into various base ingredients. ,A typical base formula is as follows: Wt. / Polyvinyl acetate 27 Synthetic rubber 13 Paraffin Wax 13 Fat 3 Glycerol Monostearate 5 Terpene Resin 27 Calcium Carbonate Filler 12 100% The individual base components can be softened prior to their addition in the base manufacturing process. To the presoftened base component, Acesulfame K can be added and mixed, and then the presoftened base/sweetener blend can be added to make the finished base. In the following examples, Acesulfame K is mixed first with one of the base ingredients, and the mixed ingredient is then used in making a base. The ingredients blended with Acesulfame K are then used at the levels indicated in the typical base formula above. Example 17 - The terpen resin used to make the base is 98% polyterpene resin and 2% Acesulfame K. Example 18 - The polyvinyl acetate used to make the base is 98% low M.W. polyvinyl acetate and 2% Acesulfame K. Example 19 - The paraffin wax used to make the base is 96% paraffin wax and 4% Acesulfame K The Acesulfame K may also be added to an otherwise complete gum base. Example 20 - 0.5% Acesulfame K is mixed with 99.5% of a gum base have the above listed typical formula. The Acesulfame K is added near the end of the process after all the other ingredients are added. The samples of finished base made with Acesulfame K added to different base components can then be evaluated in a sugar-type chewing gum formulated as follows: TABLE 3 (Wt, % ) (For examples 17, 18, 19, and 20) Sugar 55.2 Base 19.2 Corn Syrup 13.4 Glycerine 1.4 Dextrose Monohydrate 9.9 Peppermint Flavor 0.9 100% The theoretical level of Acesulfame K sweetener is 0.1% in the finished gum. Using the following formulation of a sugar-free gum, a variety of encapsulated Acesulfame K samples can be evaluated: Table 4 (Wt. %) Sorbitol 49.3 Manitol 8.0 Gum Base 25.5 Glycerin 8.5 Lycasin 6.8 Lecithin 0.2 Peppermint Flavor 1.45 Color 0.05 Active Acestilfame K 0.20 For spray drying, the solids level of an aqueous or alcoholic solution can be about 10-50%, but preferred levels are indicated in the examples listed. Example 22 - An 80% shellac, 20% active Acesulfame K powder mixture is obtained by spray drying an alcohol/shellac/Acesulfame K emulsion at total solids of 25%. Example 23 - A 50% shellac, 50% active Acesulfame K powder mixture is obtained by spray drying an appropriate ratio of alcohol/shellac/Acesulfame K emulsion at 25% solids. Example 24 - A 70% Zein, 30% active Acesulfame K powder mixture is obtained by spray drying an alcohol/Zein/Acesulfame K emulsion at 30% solids. Example 25 - A 40% shellac, 60% Active Acesulfame K powder mixture is obtained by fluid-bed coating Acesulfame K with an alcohol/shellac solution at 20% solids. Example 26 - A 60% shellac, 40% active Acesulfame K powder mixture is obtained by fluid-bed coating Acesulfame K with an alcohol/shellac solution of 25% solids. Example 27 - A 40% Zein, 60% active Acesulfame K powder mixture is obtained by fluid-bed coating Acesulfame K with an alcohol/Zein solution of 25% solids. Example 28 - An 85% wax, 15% active Acesulfame K powder mixture is obtained by spray chilling a mixture of molten wax and Acesulfame K. Example 29 - A 70% wax, 30% active Acesulfame K powder mixture is obtained by spray chilling a mixture of molten wax and Acesulfame K. Example 30 - A 30% Zein, 70% active Acesulfame K powder mixture is obtained by spray drying an aqueous mixture of Acesulfame K and Zein dispersed in an aqueous, high pie (pH of 11.6-12.0) media. at 15% solids. Example 31 - A 30% Zein, 70% active Acesulfame K powder mixture is obtained by fluid-bed coating Acesulfame K with a an aqueous, high-ps (pH=11.6-12.0) Zein dispersion of 15% solids. Example 32 - A 20% Zein, 20% shellac, 60% active Acesulfame K powder mixture is obtained by spray drying an alcohol/shellac/Acesulfame K mixture and then fluid-bed coating the spray dried product for a second coating of alcohol and Zein. Example 22 to 32 would all give nearly complete encapsulation and would delay the release of Acesulfame K sweetener when used in sugarless gum formulation in Table 4. The higher levels of coating would give a longer delayed release of sweetener than the lower levels of coating. Other polymers that are more water soluble and used in coating would have less of an effect of delaying the release of the Acesulfame K sweetener. Example 33 - An 80% gelatin, 20% active Acesulfame K powder mixture is obtained by spray drying a gelatin/Acesulfame K solution at 30% solids. Example 34 - A 30% hydroxypropylmethyl cellulose (HPMC), 70% Acesulfame K powder mixture is obtained by fluid-bed coating Acesulfame K with an aqueous solution of HPMC at 10% solids. Example 35 - A 30% carboxymethyl cellulose, 70% active Acesulfame K powder mixture is obtained by fluid bed coating Acesulfame K with an aqueous solution of carboxy methyl cellulose at 10% solids. Example 36 - A 50% maltodextrin, 50% active Acesulfame K powder mixture is obtained by spray drying an aqueous solution of Acesulfame K and maltodextrin at 40% solids. Example 37 - A 40% gum arabic, 60% active Acesulfame K powder mixture is obtained by fluid-bed coating Acesulfame K with an aqueous solution of gum arabic at 40% solids. The coated Acesulfame K from Examples 33, 34 and 35, when used in the chewing gum formula in Table 4, would give a delayed release of sweetener. However, this delayed release would not be extended as much as in the previous examples (22-32), but would show some delayed release compared to the use of Acesulfame K added directly to gum. The product coated with maltodextrin and gum arabic in Examples 36 and 37, when used in the gum formula in Table 4, would show no delay in sweetener release in chewing gum compared to Acesulfame K added directly. Acesulfame K could also be used in gum as an agglomerated sweetener to give delayed sweetness release. Agglomerated sweeteners can be prepared as in the following examples: Example 38 - A 15% hydroxypropylmethyl cellulose (HPMC), 85% active Acesulfame K powder mixture is prepared by agglomerating Acesulfame K and HPMC blended together, with water being added, and the resulting product being dried and ground. Example 39 - A 15% gelatin, 85% active Acesulfame K powder mixture is made by agglomerating Acesulfame K and gelatin blended together, with water being added, and the resulting product being dried and ground. Example 40 - A 10% Zein, 90% active Acesulfame K powder mixture is made by agglomerating Acesulfame K with an alcohol solution containing 25% Zein, and drying and grinding the resulting product. Example 41 - A 15% shellac, 85% active Acesulfame K powder mixture is made by agglomerating Acesulfame K with an alcohol solution containing 25% shellac, and drying and grinding the resulting product. Example 42 - A 20% HPMC, 80% active Acesulfame K powder mixture is obtained by agglomerating an HPMC and Acesulfame K mixture blended together, with water being added, and the resulting product being dried and ground. Example 43 - A 20% Zein, 80% active Acesulfame K powder mixture is obtained by agglomerating Acesulfame K and Zein dissolved in high-pR water (11.6-12.0) at 15% solids, with the resulting product being dried and ground. Example 44 - A 20% wax, 80% active Acesulfame K powder mixture is obtained by agglomerating Acesulfame K and molten wax, and cooling and grinding the resulting product. Example 45 - A 15% maltodextrin, 85% active Acesulfame K powder mixture is obtained by agglomerating a blend of Acesulfame K and maltodextrin, then adding water, drying and grinding. All of the above mixtures can be added to any of the following types of chewing gum formulas: TABLE 5 (Wt. %) Sugar Sugarless Sugarless With With With Sugarless Sugar Sorbitol Water Lycasin No Water Gum Base 19.2 19.2 25.5 25.5 25.5 Sugar 55.2 53.2 -- -- - Sorbitol -- 2.0 53.6 49.3 52.1 Mannitol -- - 8.0 8.0 12.0 Corn Syrup 13.25 13.25 -- -- - Lycasin/ -- -- 9 5(a) 6 8(b) - Sorbitol liquid Glycerin 1.4 1.4 . 1.5 8.5 8.5 Lecithin -- -- 0.2 0.2 0.2 Dextrose 9.9 9.9 - Monohydrate Flavor 0.9 0.9 1.5 1.5 1.5 Level of 0.15 0.15 0.2 0.2 0.2 active Acesulfame K (a) liquid sorbitol (70% sorbitol, 30% water) (b) hydrogenated starch hydrolyzate syrup If each of the examples of agglomerated material (38-45) were evaluated in the formulations shown in Table 5, all samples except Example 45 with maltodextrin would give Acesulfame K a delayed release. Samples using Zein, wax, and shellac would give the slowest release rate, whereas samples with HPMC and gelatin would give the next slowest release. Maltodextrin would give a release similar to the release rate of non-coated Acesulfame K added directly to gum as a powder or liquid. Partially coated or fully coated Acesulfame K can also be used in sugar type gum formulations containing other sugars, such as in the following formulations A-G: TABLE 6 (Wt. %) A B C D E F G Gum Base 19.2 1902 19.2 19.2 19.2 19.2 19.2 Sugar 59.3 50.3 49.3 49.3 50.3 52.3 52e3 Glycerin 1.4 1.4 1.4 1.4 1.4 1.4 1.4 Corn Syrup 19.0 23.0 19.0 19.0 23.0 16.0 16.0 Dextrose -- -- 5.0 -- -- -- - Lactose Z -- --. -- 5.0 -- - Fructose -- -- 5.0 -- -- -- - Invert Sugar -- -- -- 10.0 -- -- - Maltose z O -- -- -- 10.0 -- Palatinose =- -- -- -- -- -- 10. O Corn Syrup -- 500 -- -- -- -- -- Solids Peppermint 0.9 0.9 0.9 0.9 0.9 0.9 0.9 Flavor Level of 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Active Acesulfame K These formulations may also contain sugar alcohols such as sorbitol, mannitol, xylitol, lactitol, maltitol, palatinit, and lycasin or combinations thereof. Sugarless type gum formulations with partially coated or fully coated Acesulfame K can also be made using various sugar alcohols, such as the following formulations H-O: TABLE 7 (Wt. %) H I J K L M N O Base 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 Sorbitol 53.8 46.8 41.8 41.8 41.8 41.8 36.8 37.8 Sorbitol 17.0 14.0 6.0 -- 5.0 -- -- 6.Cl(a Liquid/ Lycasin Mannitol -- 10.0 8.0 8.0 8.0 8.0 .8.0 8.0 Maltitol -- -- -- 5.0 -- -- 5.0 - Xylitol " -- 15.0 10.0 -- -- 5.0 15.O Lactitol -- -- -- -- 10.0 -- -- - Palatinit -- -- -- -- -- 15.0 10.0 - Glycerin 2.0 2.0 2.0 8.0 8.0 8.0 8.0 6.0 Flavor 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Active 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Level of Acesulfame K (a) lycasin, all others use sorbitol liquid All of these formulations in Table 6 and Table 7 which use the agglomerated Acesulfame K as described in the examples (38-45) and in the previous encapsulated examples (22-35) would be expected to give a delayed release of sweetness compared to a product made by adding Acesulfame K directly to gum as a powder or as liquid. Multiple step agglomeration/encapsulation procedures can also be used in making release-modified sweetners for use in the formulations in Tables 5, 6 and 7. Examples of multiple step treatments are here described: Example 46 - Acesulfame K is spray dried with maltodextrin at 30% solids to prepare a powder. Thins powder is then agglomerated with a hydroxypropylmethyl cellulose (HPMC) in a ratio of 85/15 powder/EPMC, wetted with water and dried. After grinding the resulting powder will contain about 68% active Acesulfame K, 17% maltodextrin and 15% HPMC. Example 47 - Acesulfame K is agglomerated with HPMC in a ratio of 85/15 sweetener HPMC. After drying and grinding, the resulting powder is fluid-bed coated with an alcohol shellac solution at about 25% solids to give a final product containing about 60% active Acesulfame K, 10% HPMC, and about 30% shellac. Example 48 - Acesulfame K is agglomerated with HPMC in a ratio of 85/15 Sweetener/HPMC. After drying and grinding, the resulting powder is agglomerated with a 15% solids7 high-pH, aqueous solution of Zein to give a final product containing about 60% active Acesulfame K, 10% HPMC, and 30% Zein. Example 49 - Acesulfame K is spray dried with a 25% solution of gelatin. The spray dried product is then agglomerated with a 15% solids, high-pH, aqueous solution of Zein. The final product will contain about 50% active Acesulfame K, 20% gelatin, and 30% Zein. Example 50 - Acesulfame K is agglomerated with molten wax in a ratio of 85/15 sweetener/wax. When the mixture cools and is ground, it is fluid-bed coated with a 25% Zein - 75% alcohol solution, giving a final product containing 60% active Acesulfame K, 10% wax and 30% Zein. These examples 46-50, when used in any of the formulations noted in Tables 5, 6, and 7 above, give Acesulfame K a delayed release and delayed sweetness. These multiple step procedures can actually give more delayed release then the single step processes. Multiple step processes of more than two steps may give even longer delayed release times, but may generally become less cost effective and less efficient. Preferably spray drying can be the first step with additional steps of fluid-bed coating, spray chilling and agglomeration being part of the latter steps. For absorption type examples, delayed release of Acesulfame K sweetener is dependent on the type of absorbing material. Most materials like silicas, silicates, cellulose, carbonates, and hydroxides would be expected to give a more delayed release than amorphous sugar and sugar alcohols. Some examples: Example 51 - A hot 45% solution of Acesulfame K is sprayed onto a precipitated silica to absorb the sweetener. The mixture is dried and coated with a fumed silica. The final product is about 50% active Acesulfame K. Example 52 - A hot 45% solution of Acesulfame K is sprayed onto a pharmasorb clay to absorb the sweetener. The mixture is dried and ground and gives a final product of about 80% clay and 20% active Acesulfame K. Example 53 - A 25% solution of Acesulfame K is sprayed onto a microcrystalline cellulose powder to absorb the sweetener. The mixture is dried and ground and gives a product that is about 70% microcrystalline cellulose and 30% active Acesulfame K. Example 54 - A 25% solution of Acesulfame K is sprayed onto a high absorption starch to absorb the sweetener. The mixture is dried and ground and gives a product that is about 80% starch and 20% active Acesulfame K. Example 55 - A 25% solution of Acesulfame K is sprayed onto a calcium carbonate powder to absorb the sweetener. The mixture is dried and ground and gives a product of about 90% calcium carbonate and 10% active Acesulfame K. Example 56 - A hot 45% solution of Acesulfame K is sprayed onto a highly absorptive dextrose material to absorb the sweetener. The mixture is dried and ground and gives a product of about 80% dextrose and 20% active Acesulfame K. Example 57 - A hot 45% solution of Acesulfame K is sprayed onto a sorbitol powder to absorb the material. The mixture is dried and ground and gives a product of about 90% sorbitol and 10% active Acesulfame K. The samples prepared in examples 51-57 can be used in gum formulations as noted in Tables 5, 6, and 7. Those preparations which have Acesulfame K absorbed onto a material that is not water soluble are expected to give a delayed release of Acesulfame K sweetener. Another modification or absorption technique is to dry the Acesulfame K together with a sugar or sugar alcohol, or resolidify the sweetener with sugar or sugar alcohol after both are mixed together in a molten state. Example 58 - Molten Acesulfame K is added to molten sorbitol in a ratio of 90 parts sorbitol to 10 parts Acesulfame K. The blend is cooled and ground. Example 59 - Molten Acesulfame K is added to molten dextrose in a ratio of 90 parts dextrose to 10 parts Acesulfame K. The blend is cooled and ground. Example 60 - 4% Acesulfame K is dissolved in 96% high fructose corn syrup. The mixture is evaporated to a low moisture and ground. The product of examples 58-60 may be added to the gum formulations shown in Tables 5, 6 and 7. Many of the examples listed are single step processes. However, more delayed release of the Acesulfame K sweetener may be obtained by combining the various processes of encapsulation, agglomeration, absorption, and entrappment. Any of the preparations made in Examples 51-60 can be further treated in fluid-bed coating, spray chilling, or coacervation processes to encapsulate the product, and can be agglomerated with various materials and procedures in a variety of multiple step processes. The Acesulfame K sweetener can also be used with a variety of other high-intensity sweeteners and blended together before encapsulation, agglomeration, absorption, and entrappment. Some examples are: Example 61 - Acesulfame K and aspartame are blended together in a 1/1 ratio as a powder. This mixture is then be spray chilled with wax in a ratio of 70/30 mixture/wax to obtain a powder containing 35% Acesulfame K, 35% aspartame, and 30% wax. Example 62 - Acesulfame K and thaumatin in a 9/1 ratio are dissolved in water with a 30% solution of gelatin and spray dried. This spray dried powder is then agglomerated with a high-pH aqueous 15% Zein solution. The mixture is dried and ground and gives a product containing 45% Acesulfame K, 5% thaumatin, 35% gelatin, and 15% Zein. Example 63 - Acesulfame K and alitame in a 9/1 ratio are prepared in a hot 40% solution. This solution is sprayed onto a high absorption silica powder. The mixture is dried, ground and fluid-bed coated with an alcohol/shellac mixture, giving a product that contains 36% Acesulfame K, 4% alitame, 40% silica, and 20 % shellac. Example 64 - Acesulfame K and sucralose in a 3/1 ratio are blended together as a powder and then agglomerated with water and hydroxypropylmethyl cellulose (HPMC). This blend is dried, ground and agglomerated further with a high-pH, aqueous 15% solution of Zein to obtain a product containing 51% Acesulfame K, 17% sucralose, 12% HPMC and 20% Zein. Example 65 - Acesulfame K and glycyrrhizin in a 1/1 ratio are blended together as a powder and fluid-bed coated with a solution of 25% shellac in alcohol. The coated product is agglomerated further with water and hydroxypropylmethyl cellulose (HPMC) to obtain a product containing 30% Acesulfame K, 30% glycyrrhizin, 25% shellac, and 15% HPMC. When the blends of Acesulfame K and other high-intensity sweetness of Examples 61-65 are tested in gum formulations such as those noted in Tables 4, 5, 6 and 7, a significant delayed release of the sweetener and sweetness are expected. This delayed release would improve the quality of flavor giving it the impression of a longer lasting flavor. Due to the synergistic effects of the sweetener combinations in Examples 61-65, less total sweetener can be used to give the same sweetness level as the single delayed release Acesulfame K sweetener.
Claims
We CLAIM:
1. A method for producing chewing gum with Acesulfame
K comprising the steps of:
a) mixing a quantity of Acesulfame K with a spray drying solvent and an encapsulating material;
b) spray drying the mixture in such a way as to encapsulate the Acesulfame K and
c) adding a quantity of the spray dried material to a chewing gum formulation to provide an
Acesulfame K level in the gum of from O.05% to 1.0%.
2. The method of Claim 1 wherein the solvent is selected from the group consisting of alcohol and water.
3. The method of Claim 1 wherein the encapsulating material is selected from the group consisting of shellac and Zein.
4. The method in Claim 1 wherein an additional high-potency sweetener selected from the group consisting of aspartame, alitame, other salts of Acesulfame, sucralose, saccharin and its salts, cyclamic acid and its salts, thaumatin, monellin, dihydrochalcone, and combinations thereof is mixed in the spray drying mixture in combination with the Acesulfame R.
5. A chewing gum made according to the method of
Claim 1.
6. A method for producing chewing gum with
Acesulfame K comprising the steps of:
a) fluid-bed coating Acesulfame K with a solution of an encapsulating material and a solvent;
b) drying said fluid-bed coated material and
c) adding a quantity of the fluid-bed coated material to a chewing gum formulation to provide an
Acesulfame K level in the gum formulation of from about 0005% to about 1.0%.
7. The method of Claim 6 wherein the solvent is selected from the group consisting of alcohol and water.
8. The method of Claim 6 wherein the encapsulating material is selected from the group consisting of shellac and Zein.
9. The method in Claim 6 wherein an additional high-potency sweetener selected from the group consisting of aspartame, alitame, other salts of Acesulfame, sucralose, saccharin and its salts, cyclamic acid and its salts, thaumatin, monellin, dihydrochalcone, and combinations thereof is mixed in the spray drying mixture in combination with the Acesulfame K.
10. A chewing gum made according to the method of
Claim 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1988/004400 WO1989003170A2 (en) | 1988-12-09 | 1988-12-09 | Method of controlling release of acesulfame k in chewing gum and gum produced thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1988/004400 WO1989003170A2 (en) | 1988-12-09 | 1988-12-09 | Method of controlling release of acesulfame k in chewing gum and gum produced thereby |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1989003170A2 true WO1989003170A2 (en) | 1989-04-20 |
WO1989003170A3 WO1989003170A3 (en) | 1989-06-15 |
Family
ID=22209044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1988/004400 WO1989003170A2 (en) | 1988-12-09 | 1988-12-09 | Method of controlling release of acesulfame k in chewing gum and gum produced thereby |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1989003170A2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0398466A2 (en) * | 1989-05-19 | 1990-11-22 | Warner-Lambert Company | Synergistic sweetening compositions containing dipeptide sweetening agents and methods for preparing same |
EP0427796A1 (en) * | 1988-12-02 | 1991-05-22 | Wrigley W M Jun Co | Chewing gum containing high-potency sweetener particles with modified zein coating. |
EP0461197A4 (en) * | 1989-03-28 | 1991-10-11 | Wrigley W M Jun Co | Improved alitame stability in chewinggum by encapsulation. |
US5112625A (en) * | 1989-02-15 | 1992-05-12 | Wm. Wrigley Jr. Company | Aqueous zein coated sweeteners and other ingredients for chewing gum |
WO1992007473A1 (en) * | 1990-10-31 | 1992-05-14 | Warner-Lambert Company | Encapsulated synergistic sweetening agent compositions comprising aspartame and acesulfame-k and methods for preparing same |
US5139798A (en) * | 1990-11-21 | 1992-08-18 | Wm. Wrigley Jr. Company | Polyvinyl acetate encapsulation of codried sucralose for use in chewing gum |
US5192563A (en) * | 1986-10-22 | 1993-03-09 | Wm. Wrigley, Jr. Company | Strongly mint-flavored chewing gums with reduced bitterness and harshness |
US5248508A (en) * | 1992-03-23 | 1993-09-28 | Wm. Wrigley Jr. Company | Hard coated gum with improved shelf life |
US5270061A (en) * | 1992-03-26 | 1993-12-14 | Wm. Wrigley Jr. Company | Dual composition hard coated gum with improved shelf life |
US5286502A (en) * | 1992-04-21 | 1994-02-15 | Wm. Wrigley Jr. Company | Use of edible film to prolong chewing gum shelf life |
EP0650330A1 (en) * | 1992-07-10 | 1995-05-03 | Novatech, Inc. | Flavor enhancing composition containing colloidal silica and method for its preparation and use |
EP0722274A1 (en) * | 1993-09-30 | 1996-07-24 | Wm. Wrigley Jr. Company | Chewing gum containing low levels of maltitol and a high-intensity sweetener |
US5665406A (en) * | 1992-03-23 | 1997-09-09 | Wm. Wrigley Jr. Company | Polyol coated chewing gum having improved shelf life and method of making |
WO2006127934A2 (en) * | 2005-05-23 | 2006-11-30 | Cadbury Adams Usa, Llc | Taste potentiator compositions and edible confectionery and chewing gum products containing same |
EP1935252A1 (en) | 1997-09-18 | 2008-06-25 | WM. Wrigley Jr., Company | Chewing gum composition |
US7727565B2 (en) | 2004-08-25 | 2010-06-01 | Cadbury Adams Usa Llc | Liquid-filled chewing gum composition |
WO2013041236A1 (en) * | 2011-09-22 | 2013-03-28 | Nutrinova Nutrition Specialties & Food Ingredients Gmbh | Sweetener compositions, methods of making same and consumables containing same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9198448B2 (en) | 2005-02-07 | 2015-12-01 | Intercontinental Great Brands Llc | Stable tooth whitening gum with reactive ingredients |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4384004A (en) * | 1981-06-02 | 1983-05-17 | Warner-Lambert Company | Encapsulated APM and method of preparation |
US4386106A (en) * | 1981-12-01 | 1983-05-31 | Borden, Inc. | Process for preparing a time delayed release flavorant and an improved flavored chewing gum composition |
US4673577A (en) * | 1983-02-18 | 1987-06-16 | Wm. Wrigley Jr. Company | Shellac encapsulant for high-potency sweeteners in chewing gum |
US4804548A (en) * | 1984-10-05 | 1989-02-14 | Warner-Lambert Company | Novel sweetener delivery systems |
US4752485A (en) * | 1984-10-05 | 1988-06-21 | Warner-Lambert Company | Novel sweetener delivery systems |
US4726953A (en) * | 1986-10-01 | 1988-02-23 | Nabisco Brands, Inc. | Sweet flavorful soft flexible sugarless chewing gum |
-
1988
- 1988-12-09 WO PCT/US1988/004400 patent/WO1989003170A2/en unknown
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5192563A (en) * | 1986-10-22 | 1993-03-09 | Wm. Wrigley, Jr. Company | Strongly mint-flavored chewing gums with reduced bitterness and harshness |
EP0427796A1 (en) * | 1988-12-02 | 1991-05-22 | Wrigley W M Jun Co | Chewing gum containing high-potency sweetener particles with modified zein coating. |
EP0427796A4 (en) * | 1988-12-02 | 1991-06-05 | Wm. Wrigley Jr. Company | Chewing gum containing high-potency sweetener particles with modified zein coating |
US5112625A (en) * | 1989-02-15 | 1992-05-12 | Wm. Wrigley Jr. Company | Aqueous zein coated sweeteners and other ingredients for chewing gum |
EP0461197A1 (en) * | 1989-03-28 | 1991-12-18 | Wrigley W M Jun Co | Improved alitame stability in chewinggum by encapsulation. |
EP0461197A4 (en) * | 1989-03-28 | 1991-10-11 | Wrigley W M Jun Co | Improved alitame stability in chewinggum by encapsulation. |
EP0398466A3 (en) * | 1989-05-19 | 1992-01-08 | Warner-Lambert Company | Synergistic sweetening compositions containing dipeptide sweetening agents and methods for preparing same |
EP0398466A2 (en) * | 1989-05-19 | 1990-11-22 | Warner-Lambert Company | Synergistic sweetening compositions containing dipeptide sweetening agents and methods for preparing same |
WO1992007473A1 (en) * | 1990-10-31 | 1992-05-14 | Warner-Lambert Company | Encapsulated synergistic sweetening agent compositions comprising aspartame and acesulfame-k and methods for preparing same |
US5139798A (en) * | 1990-11-21 | 1992-08-18 | Wm. Wrigley Jr. Company | Polyvinyl acetate encapsulation of codried sucralose for use in chewing gum |
US5248508A (en) * | 1992-03-23 | 1993-09-28 | Wm. Wrigley Jr. Company | Hard coated gum with improved shelf life |
US5665406A (en) * | 1992-03-23 | 1997-09-09 | Wm. Wrigley Jr. Company | Polyol coated chewing gum having improved shelf life and method of making |
US5270061A (en) * | 1992-03-26 | 1993-12-14 | Wm. Wrigley Jr. Company | Dual composition hard coated gum with improved shelf life |
US5409715A (en) * | 1992-04-21 | 1995-04-25 | Wm. Wrigley Jr. Company | Use of edible film to prolong chewing gum shelf life |
US5286502A (en) * | 1992-04-21 | 1994-02-15 | Wm. Wrigley Jr. Company | Use of edible film to prolong chewing gum shelf life |
US5376388A (en) * | 1992-04-21 | 1994-12-27 | The Wm. Wrigley Jr. Company | Use of edible film to improve the packaging of chewing gum |
US5433960A (en) * | 1992-04-21 | 1995-07-18 | Wm. Wrigley Jr. Company | Chewing gum including agent containing edible film |
EP0650330A4 (en) * | 1992-07-10 | 1995-06-07 | ||
EP0650330A1 (en) * | 1992-07-10 | 1995-05-03 | Novatech, Inc. | Flavor enhancing composition containing colloidal silica and method for its preparation and use |
EP0722274A1 (en) * | 1993-09-30 | 1996-07-24 | Wm. Wrigley Jr. Company | Chewing gum containing low levels of maltitol and a high-intensity sweetener |
EP0722274A4 (en) * | 1993-09-30 | 1997-03-05 | Wrigley W M Jun Co | Chewing gum containing low levels of maltitol and a high-intensity sweetener |
EP1935252A1 (en) | 1997-09-18 | 2008-06-25 | WM. Wrigley Jr., Company | Chewing gum composition |
US7727565B2 (en) | 2004-08-25 | 2010-06-01 | Cadbury Adams Usa Llc | Liquid-filled chewing gum composition |
WO2006127934A2 (en) * | 2005-05-23 | 2006-11-30 | Cadbury Adams Usa, Llc | Taste potentiator compositions and edible confectionery and chewing gum products containing same |
WO2006127936A3 (en) * | 2005-05-23 | 2007-03-08 | Cadbury Adams Usa Llc | Taste potentiator compositions and edible confectionery and chewing gum products containing same |
WO2006127934A3 (en) * | 2005-05-23 | 2007-03-08 | Cadbury Adams Usa Llc | Taste potentiator compositions and edible confectionery and chewing gum products containing same |
AU2006249857B2 (en) * | 2005-05-23 | 2010-05-13 | Intercontinental Great Brands Llc | Taste potentiator compositions and edible confectionery and chewing gum products containing same |
WO2013041236A1 (en) * | 2011-09-22 | 2013-03-28 | Nutrinova Nutrition Specialties & Food Ingredients Gmbh | Sweetener compositions, methods of making same and consumables containing same |
Also Published As
Publication number | Publication date |
---|---|
WO1989003170A3 (en) | 1989-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7416751B2 (en) | Method of controlling release of N-substituted derivatives of aspartame in chewing gum and gum produced thereby | |
CA2271889C (en) | Method of controlling release of caffeine in chewing gum and gum produced thereby | |
US4997659A (en) | Alitame stability in chewing gum by encapsulation | |
US6165516A (en) | Method of controlling release of caffeine in chewing gum | |
US6444241B1 (en) | Caffeine coated chewing gum product and process of making | |
US20020004083A1 (en) | Controlled release perillartine in chewing gum | |
WO1990007859A2 (en) | Method of controlling release of sucralose in chewing gum and gum produced thereby | |
US6472000B1 (en) | Method of controlling release of bitterness inhibitors in chewing gum and gum produced thereby | |
US6592912B1 (en) | Method of controlling release of antimicrobial agents from chewing gum and gum produced thereby | |
WO1989011212A2 (en) | Method of controlling release of cyclamate in chewing gum and gum produced thereby | |
WO1989003170A2 (en) | Method of controlling release of acesulfame k in chewing gum and gum produced thereby | |
CA2334385C (en) | Method of controlling release of n-substituted derivatives of aspartame in chewing gum and gum produced thereby | |
WO1991003147A2 (en) | Method of controlling release of stevioside in chewing gum and gum produced thereby | |
WO1990013994A2 (en) | Controlled release of dihydrochalcones in chewing gum | |
CA2315726C (en) | Method of controlling release of antimicrobial agents in chewing gum and gum produced thereby | |
WO1990006061A1 (en) | Method of controlling release of alitame in chewing gum and gum produced thereby | |
WO1990007864A2 (en) | Method of controlling release of clycyrrhizin in chewing gum and gum produced thereby | |
WO1996020608A1 (en) | Chewing gum containing encapsulated combinations of aspartame and acesulfame k | |
WO1997022263A1 (en) | Chewing gum containing d-tagatose | |
CA2431848C (en) | Method of producing chewing gum containing caffeine and gum produced thereby | |
AU2006203624B2 (en) | Method of controlling release of N-substituted derivatives of aspartame in chewing gum and gum produced thereby | |
AU2006200212B2 (en) | Method of controlling release of N-substituted derivatives of aspartame in chewing gum and gum produced thereby | |
AU2003213469B2 (en) | Method of Controlling Release of N-substituted Derivatives of Aspartame in Chewing Gum and Gum Produced Thereby | |
WO1997010722A1 (en) | Chewing gum containing leucrose | |
AU2319702A (en) | Method of controlling release of bitterness inhibitors in chewing gum and gum produced thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AU DK FI JP KR NO US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AU DK FI JP KR NO US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): AT BE CH DE FR GB IT LU NL SE |