WO1988006639A1 - A method of forming a corrosion resistant coating - Google Patents
A method of forming a corrosion resistant coating Download PDFInfo
- Publication number
- WO1988006639A1 WO1988006639A1 PCT/AU1988/000060 AU8800060W WO8806639A1 WO 1988006639 A1 WO1988006639 A1 WO 1988006639A1 AU 8800060 W AU8800060 W AU 8800060W WO 8806639 A1 WO8806639 A1 WO 8806639A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal surface
- cerium
- acidic solution
- method defined
- metal
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000011248 coating agent Substances 0.000 title claims abstract description 17
- 230000007797 corrosion Effects 0.000 title description 40
- 238000005260 corrosion Methods 0.000 title description 40
- 229910052751 metal Inorganic materials 0.000 claims abstract description 44
- 239000002184 metal Substances 0.000 claims abstract description 44
- 239000003929 acidic solution Substances 0.000 claims abstract description 39
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 30
- -1 cerium cations Chemical class 0.000 claims abstract description 18
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 16
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 26
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 claims description 16
- 238000007654 immersion Methods 0.000 claims description 12
- 229910052725 zinc Inorganic materials 0.000 claims description 8
- 239000011701 zinc Substances 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 6
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 6
- 239000004411 aluminium Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- 229910052793 cadmium Inorganic materials 0.000 claims description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 1
- 239000002244 precipitate Substances 0.000 abstract description 2
- 238000012360 testing method Methods 0.000 description 19
- 229910001008 7075 aluminium alloy Inorganic materials 0.000 description 16
- 229910004664 Cerium(III) chloride Inorganic materials 0.000 description 14
- 239000003973 paint Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- 229910000838 Al alloy Inorganic materials 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical class [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- 150000000703 Cerium Chemical class 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 238000010349 cathodic reaction Methods 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- PYPNFSVOZBISQN-LNTINUHCSA-K cerium acetylacetonate Chemical compound [Ce+3].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O PYPNFSVOZBISQN-LNTINUHCSA-K 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- MAYPHUUCLRDEAZ-UHFFFAOYSA-N chlorine peroxide Chemical compound ClOOCl MAYPHUUCLRDEAZ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007739 conversion coating Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 1
- 229940007718 zinc hydroxide Drugs 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/48—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/48—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
- C23C22/53—Treatment of zinc or alloys based thereon
Definitions
- the present invention relates to a method of forming coatings on metal surfaces " to inhibit corrosio .
- Corrosion is an electrochemical process . generally consisting of two or more partial reactions.
- cathodic sites which may be copper or iron rich micro-constituents, . cathodic reactions such as the reduction of oxygen (O2 + 2H 2 0 + 4e ⁇ 0H ) and the evolution of hydrogen 2H + 2e ⁇ H 2 occur- Inhibition of corrosion can be achieved if any of these reactions can be stopped or the rates at which they proceed reduced.
- chromates have been the accepted inhibitors of corrosion of aluminium alloys in aqueous environments .
- chromates are employed in paint films and sealants . Chromates are classified as anodic inhibitors because they prevent metal dissolution by forming a stable passive film on the metal surface.
- Zinc salts have also been used to inhibit corrosion. Inhibition by zinc cations results from the deposition of insoluble zinc hydroxide at cathodic sites promoting reduced rates of cathodic reaction. Thus, zinc is classified as a cathodic inhibitor. In practice, it is frequently used as zinc phosphate.
- the corrosion resistance was attributed to the formation of a complex hydrated cerium oxide film on the aluminium alloy.
- the research suggested that the cerium oxide film, if applied as a coating to 7075 aluminium alloy, could offer protection against corrosion in chloride containing environments .
- a method of forming a coating containing cerium on the surface of a metal comprising:
- the method comprises the use of hydrogen peroxide as the oxidising agent.
- the preferred method comprises:
- the metal is any one of aluminium, steel, zinc, cadmium and magnesium.
- cerium salt is cerium chloride.
- the pH of the acidic solution is less than 3.0 prior to contact with the metal surface.
- the pH of the acid solution is above 3.0 in the region -of the metal surface after contact with the metal surface.
- the quality of the coating is dependent on a number of factors such as the concentration of cerium cations in the acidic solution and the contact time of the acidic solution with the metal surface. It is preferred that the concentration of the cerium cations is between 5000 and 15000 parts per million (ppm) and the contact time is less than 60 minutes. It is particularly preferred that the concentration of the cerium cations is 10000 ppm and the contact time is 7 minutes.
- test specimens were prepared by forming coatings on samples of 7075 aluminium alloy plate (Al, 5.6% Zn, 2.5% Mg, 1.6% Cu, 0.3% Cr) .
- Each test specimen was formed by mixing together cerous chloride and hydrogen peroxide to form an aqueous acidic solution and then immersing samples of 7075 aluminium alloy plate in the acidic solution to form a coating thereon.
- the effect of the following variables on corrosion rate of the test specimens was investigated:
- the graph in Figure 1 illustrates the effect of the concentration of cerous chloride in the acidic solution on the corrosion rate of a series of test ' specimens prepared under the following conditions: ( a ) pH : 2 . 7 ;
- the graph indicates that only a small concentration of cerous chloride in the acidic solution was required to form corrosion-resistant coatings on the samples of 7075 aluminium alloy plate. Specifically, a
- the graph in figure 1 also confirms the effectiveness of the use of cerium to form corrosion-resistant coatings. Specifically, the graph indicates that corrosion rates of only 4.2 ⁇ g/m 2 /sec were recorded with test specimens prepared in acidic solutions containing between 5000 and 20,000 ppm cerous chloride (cf corrosion rate of 7 ⁇ g/m /sec for untreated samples of 7075 aluminium alloy plate).
- the graph in Figure 2 illustrates the effect of the concentration of hydrogen peroxide in the acidic solution on the corrosion rate of a series of test specimens prepared under the following conditions:
- the graph indicates that the concentration of hydrogen peroxide in the acidic solution had a significant effect on the corrosion-resistant characteristics of the coatings formed on the samples of 7075 aluminium alloy plate. This is reflected by the fact that a relatively high corrosion rate of 5.5 ⁇ g/m /s&c was recorded with a test specimen prepared in an acidic solution containing 1% hydrogen peroxide,
- the graph in figure 3 illustrates the effect of the pH of the acidic solution on the corrosion rate of a series of test specimens prepared under the following conditions . :
- the graph indicates that the pH of the acidic solution had a significant effect on the corrosion-resistant characteristics of coatings formed on the samples of 7075 aluminium alloy plate.
- the profile of the graph in Figure 3 indicates an optimum range of values of pH centred on 2.5. It is thought that the progressive increase in corrosion rate as the pH decreased from 2.5 was due to the pH being increasingly too low for the subsequent increase in- pH following contact with the samples of 7075 aluminium alloy plate to reach a threshold pH at which cerium precipitates. Moreover, whilst not clearly shown in the graph, it is expected that the corrosion rate would progressively increase as the pH increased from 2.5, and it is thought this trend would be due to cerium precipitating in the bulk of the acidic solution rate than as a coating on the samples of 7075 aluminium alloy plate.
- the graphs in Figures 4 and 5 respectively illustrate the effect of immersion time and immersion temperature on the corrosion rate of a series of test specimens prepared under the set conditions for the pH of the acidic solution and concentrations of H 2 0 2 and CeCl3 (7H2O) described above.
- the graph in Figure 4 indicates that an. immersion time of only 3 minutes was necessary to form a corrosion-resistant coating on a sample of 7075 aluminium alloy plate, and the graph in Figure 5 indicates that the temperature of the acidic solution did not affect significantly the corrosion-resistant characteristics of the coatings formed on the samples of 7075 aluminium alloy plate.
- a series of experiments was carried out to investigate the adhesion of an epoxy primer/polyurethane paint film to coatings formed from cerium.
- the experiments comprised forming a paint film on the test specimens and then gluing a block having an upstanding shaft onto the paint film. The block was then rotated about the axis of the shaft while the plate was held stationary. The torque at failure was determined to provide a measure of the adhesion strength of the paint film to the coatings .
- test specimens similar to those described in the foregoing were prepared.
- the only change in the procedure for preparing the test specimens was the addition of brighteners to the acidic solution.
- the brighteners included pearl glue, dextrose, glucose and starch. It was found that there was a further lowering of the corrosion rates of the test specimens.
- test specimens were prepared by forming coatings on zinc plate rather than 7075 aluminium plate. It was found that the rate of corrosion of the test specimens was up to 8 times less than the rate of corrosion of untreated zinc plate.
- the acidic solution thus formed has a pH approximately 2, and when the metal contacts the solution the surface layers of the metal are attacked and hydrogen is evolved. The evolution of. hydrogen results in an increase in the pH at the metal surface.
- the above preferred method of forming a cerium cation coating has a number of advantages over the known methods.
- One of the advantages is that the method is not dependent on applying a cathodic potential to form a coating in a reasonable time.
- Another advantage is that the method results in coatings that are uniform, have good corrosion properties and paint film adhesion properties.
- cerous chloride as the source of cerium cations
- cerous sulphate as the source of cerium cations
- mischmetall chloride as the source of cerium sulphate
- cerous perehlorate cerium acetyl acetonate
- cerous nitrate cerous nitrate
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Catalysts (AREA)
- Chemically Coating (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
A method forming a cerium based coating onto the surface of a metal is characterised by forming an acidic solution having a pH below that at which cerium precipitates, oxidising cerium cations from the +3 to the +4 valency state and immersing the metal in the acidic solution thereby to increase the pH sufficiently to cause cerium to precipitate on the metal.
Description
A METHOD OF FORMING A CORROSION RESISTANT COATING
The present invention relates to a method of forming coatings on metal surfaces "to inhibit corrosio .
Corrosion is an electrochemical process . generally consisting of two or more partial reactions.. At anodic sites on the metal surface dissolution occurs, which for aluminium is written Al j> Al + 3e. At cathodic sites, which may be copper or iron rich micro-constituents, . cathodic reactions such as the reduction of oxygen (O2 + 2H20 + 4e ^ 0H ) and the
evolution of hydrogen 2H + 2e ^H2 occur- Inhibition of corrosion can be achieved if any of these reactions can be stopped or the rates at which they proceed reduced.
For many years, chromates have been the accepted inhibitors of corrosion of aluminium alloys in aqueous environments . In the aircraft industry chromates are employed in paint films and sealants . Chromates are classified as anodic inhibitors because they prevent metal dissolution by forming a stable passive film on the metal surface.
Zinc salts have also been used to inhibit corrosion. Inhibition by zinc cations results from the deposition of insoluble zinc hydroxide at cathodic sites promoting reduced rates of cathodic reaction. Thus, zinc is classified as a cathodic inhibitor. In practice, it is frequently used as zinc phosphate.
The recently recognised toxicity of chromates together with the adverse effects of phosphates on natural waterways has led to interest in the use of more environmentally acceptable chemicals for corrosion inhibition.
It has been reported in an article by B.R.W. Hinton, D.R. Arnott, L. Wilson and others entitled "The Inhibition of Aluminium Alloy Corrosion by Rare Earth Metal Cations" published in Corrosion Australia June 1985 that additions of cerous cations to sodium chloride solution significantly reduce the rate of corrosion of 7075 aluminium alloy. It was found that the cerous cations act as a cathodic inhibitor.
The corrosion resistance was attributed to the formation of a complex hydrated cerium oxide film on the
aluminium alloy. The research suggested that the cerium oxide film, if applied as a coating to 7075 aluminium alloy, could offer protection against corrosion in chloride containing environments .
Subsequent research showed that three methods of treatment could cause the formation of a coating which contained cerium oxide. The findings of the research was reported in an article by B.R.W. Hinton, D.R. Arnott and N.E. Ryan entitled "Cerium Conversion Coatings for the Corrosion Protection of Aluminium" published in Vol. 9 No. 3 (1986) of Metals Forum. The methods of treatment disclosed in the article are (a) open circuit exposure to cerous chloride solution, (b) cathodic treatment in aqueous cerous chloride solution, or (c) cathodic treatment in cerous nitrate dissolved in butoxyethanol.
However, it was found that the coatings prepared at open circuit potential are not a viable option from the practical viewpoint because they take over 100 hours to prepare. Furthermore, it was found that, whilst coatings can be prepared cathodically in aqueous solutions in as little as 0.5 hours, in many instances, the coatings lack durability because of blistering on the surface and thus have limited practical applications. Furthermore, whilst it was found that coatings formed by cathodic treatment in cerous nitrate dissolved in butoxyethanol could be formed in as little as 150 seconds, in many instances, the coatings are subject to cracking and thus have limited practical applications. A more significant problem for both cathodic treatments is that the equipment required and the procedure involved in the cathodic treatments are generally inconvenient from a practical viewpoint.
It is an object of the present invention to provide a method of forming a cerium based coating onto a metal surface which alleviates the disadvantages of the prior art methods described above.
In accordance with the present invention there is provided a method of forming a coating containing cerium on the surface of a metal, comprising:
(a) forming an aqueous acidic solution, containing cerium cations,
(b) oxidising the cerium cations to the +4 valency state, and
(c) contacting the acidic solution with the metal surface thereby to cause the evolution of gaseous hydrogen in the region of the metal surface with the result that the pH of the acidic solution increases in the region of the metal surface to a value in excess of that required to precipitate the cerium ιn tne +4 valency state thereby to cause cerium to precipitate onto the metal surface uniformly over the whole of the metal surface.
It is preferred that the method comprises the use of hydrogen peroxide as the oxidising agent. In this regard, the preferred method comprises:
(a) mixing a cerium salt and hydrogen peroxide to form an aqueous acidic solution in which the cerium cations are substantially oxidised to the +4 valency state,
(b) contacting the acidic solution with the metal surface thereby to cause evolution of gaseous hydrogen in the region of the metal surface with the result that the pH of the acidic solution increases in the region of the metal surface to cause precipitation of eerie hydro peroxide onto the metal surface uniformly over the whole of the metal surface in contact with .the solution, and
(c) drying the metal surface to convert the eerie hydro peroxide to hydrated cerium oxide.
It is preferred that the metal is any one of aluminium, steel, zinc, cadmium and magnesium.
It is preferred that the cerium salt is cerium chloride.
It is preferred that the pH of the acidic solution is less than 3.0 prior to contact with the metal surface.
It is preferred that the pH of the acid solution is above 3.0 in the region -of the metal surface after contact with the metal surface.
The quality of the coating is dependent on a number of factors such as the concentration of cerium cations in the acidic solution and the contact time of the acidic solution with the metal surface. It is preferred that the concentration of the cerium cations is between 5000 and 15000 parts per million (ppm) and
the contact time is less than 60 minutes. It is particularly preferred that the concentration of the cerium cations is 10000 ppm and the contact time is 7 minutes.
A number of test specimens were prepared by forming coatings on samples of 7075 aluminium alloy plate (Al, 5.6% Zn, 2.5% Mg, 1.6% Cu, 0.3% Cr) . Each test specimen was formed by mixing together cerous chloride and hydrogen peroxide to form an aqueous acidic solution and then immersing samples of 7075 aluminium alloy plate in the acidic solution to form a coating thereon. The effect of the following variables on corrosion rate of the test specimens was investigated:
(a) pH of the acidic solution,
(b) concentration of hydrogen peroxide;
(c) concentration of cerous chloride;
(d) temperature of the acidic solution during immersion of samples of 7075 aluminium alloy plate; and
(e) time of immersion of samples 7075 aluminium alloy plate.
The results of the investigations are shown in the graphs in Figures 1 to 5.
The graph in Figure 1 illustrates the effect of the concentration of cerous chloride in the acidic solution on the corrosion rate of a series of test' specimens prepared under the following conditions:
( a ) pH : 2 . 7 ;
(b) concentration of H2O2 : 5%;
(c) temperature of immersion: 50°C; and
(d) time of immersion: 10 minutes.
The graph indicates that only a small concentration of cerous chloride in the acidic solution was required to form corrosion-resistant coatings on the samples of 7075 aluminium alloy plate. Specifically, a
2 corrosion rate of 5 μg/m /sec was recorded with a test specimen prepared in an acidic, solution having only 100 ppm cerous chloride. This corrosion rate compares with a corrosion rate of 7 μg/m /sec recorded with a sample of untreated 7075 aluminium alloy plate.
In this regard, the graph in figure 1 also confirms the effectiveness of the use of cerium to form corrosion-resistant coatings. Specifically, the graph indicates that corrosion rates of only 4.2 μg/m2 /sec were recorded with test specimens prepared in acidic solutions containing between 5000 and 20,000 ppm cerous chloride (cf corrosion rate of 7 μg/m /sec for untreated samples of 7075 aluminium alloy plate).
The graph in Figure 2 illustrates the effect of the concentration of hydrogen peroxide in the acidic solution on the corrosion rate of a series of test specimens prepared under the following conditions:
(a) concentration of CeC^ (7H20): 10,00 ppm;
(b) pH: 2.7;
(c) temperature of immersion: 50°C; and
(d) time of immersion: 10 minutes.
The graph indicates that the concentration of hydrogen peroxide in the acidic solution had a significant effect on the corrosion-resistant characteristics of the coatings formed on the samples of 7075 aluminium alloy plate. This is reflected by the fact that a relatively high corrosion rate of 5.5 μg/m /s&c was recorded with a test specimen prepared in an acidic solution containing 1% hydrogen peroxide,
2 whereas a corrosion rate of only 3.6 μg/m /sec was recorded with a test specimen prepared in an acidic solution containing 3% hydrogen peroxide.
The graph in figure 3 illustrates the effect of the pH of the acidic solution on the corrosion rate of a series of test specimens prepared under the following conditions . :
(a) concentration of CeCl3 (7H20): 10,000 ppm;
(b) concentration of H2θ2: 5%;
(c) temperature of immersion: 50°C; and
(d) time of immersion: 10 minutes.
The graph indicates that the pH of the acidic solution had a significant effect on the corrosion-resistant characteristics of coatings formed on the samples of 7075 aluminium alloy plate.
Specifically, relatively low corrosion rates of approximately 4 μg/m /sec were recorded with test specimens prepared in acidic solutions of pH between 2
and 3, whereas a corrosion rate of 6.5 μg/m2/sec was recorded with a test specimen prepared in an acidic solution of pH 1.
The profile of the graph in Figure 3 indicates an optimum range of values of pH centred on 2.5. It is thought that the progressive increase in corrosion rate as the pH decreased from 2.5 was due to the pH being increasingly too low for the subsequent increase in- pH following contact with the samples of 7075 aluminium alloy plate to reach a threshold pH at which cerium precipitates. Moreover, whilst not clearly shown in the graph, it is expected that the corrosion rate would progressively increase as the pH increased from 2.5, and it is thought this trend would be due to cerium precipitating in the bulk of the acidic solution rate than as a coating on the samples of 7075 aluminium alloy plate.
The graphs in Figures 4 and 5 respectively illustrate the effect of immersion time and immersion temperature on the corrosion rate of a series of test specimens prepared under the set conditions for the pH of the acidic solution and concentrations of H202 and CeCl3 (7H2O) described above. The graph in Figure 4 indicates that an. immersion time of only 3 minutes was necessary to form a corrosion-resistant coating on a sample of 7075 aluminium alloy plate, and the graph in Figure 5 indicates that the temperature of the acidic solution did not affect significantly the corrosion-resistant characteristics of the coatings formed on the samples of 7075 aluminium alloy plate.
A series of experiments was carried out to investigate the adhesion of an epoxy primer/polyurethane paint film to coatings formed from cerium. The experiments comprised forming a paint film on the test specimens and then gluing a block having an upstanding shaft onto the paint film. The block was then rotated
about the axis of the shaft while the plate was held stationary. The torque at failure was determined to provide a measure of the adhesion strength of the paint film to the coatings .
In two experiments carried out on samples of chromated aluminium alloy plate the measured values of torque at failure were 25.9 and 26.9 MNm —9. In three experiments carried out on samples of aluminium alloy plate having a coating formed from cerium the measured values of torque at failure were 31.3, 31.3 and 30.9
_2 MNm . Moreover, in the case of the first two experiments the failure occurred at the interface of the block and the paint film and not at the interface of paint film and the coatings . Thus, the experiments indicated that the coatings had good adhesion properties for paint film.
In a further series of investigations, test specimens similar to those described in the foregoing were prepared. The only change in the procedure for preparing the test specimens was the addition of brighteners to the acidic solution. Typically, the brighteners included pearl glue, dextrose, glucose and starch. It was found that there was a further lowering of the corrosion rates of the test specimens.
2 Specifically, corrosion rates as low as 1.5 μg/m /sec were recorded.
In a further series of investigations, test specimens were prepared by forming coatings on zinc plate rather than 7075 aluminium plate. It was found that the rate of corrosion of the test specimens was up to 8 times less than the rate of corrosion of untreated zinc plate.
It is believed that the mechanism for the formation of the coatings of the aluminium alloy plate
and the zinc plate is as follows:
1. Cerous chloride and hydrogen peroxide react to form eerie chloro peroxide in accordance with the following reaction:
2CeCl2 + 3H20 > 2CeCl3O.OH + 2^0
2. The acidic solution thus formed has a pH approximately 2, and when the metal contacts the solution the surface layers of the metal are attacked and hydrogen is evolved. The evolution of. hydrogen results in an increase in the pH at the metal surface.
3. The increase in the pH results in the precipitation of eerie hydro peroxide which deposits as a thin coating on the metal surface in accordance with the following reaction:
CeCl3 0.0H + 3H20 ) Ce(0H)3 00H + 3HCL
4. Drying of the coating converts the eerie hydro peroxide to hydrated cerium oxide.
The above preferred method of forming a cerium cation coating has a number of advantages over the known methods. One of the advantages is that the method is not dependent on applying a cathodic potential to form a coating in a reasonable time. Another advantage is that the method results in coatings that are uniform, have good corrosion properties and paint film adhesion properties.
Many modifications may be made without departing from the spirit and scope of the present invention. In this regard, whilst the invention has been described in relation to the use of cerous chloride
as the source of cerium cations, it can readily be appreciated that the invention is equally applicable to any source of cerium cations, such as mixtures of rare earth chlorides which include cerous chloride, cerous sulphate, mischmetall chloride, cerous perehlorate, cerium acetyl acetonate, and cerous nitrate.
Claims
1. A method of forming a surface coating containing cerium on the surface of a metal comprising:
(a) forming an aqueous acidic solution containing cerium cations,
(b) oxidising the cerium cations to the +4 valency state, and
(c) contacting the acidic solution with the metal surface thereby to cause the evolution of gaseous hydrogen in the region of the metal surface with the result that the pH of the acidic solution increases in the region of the metal surface to a value in excess of that required to precipitate the cerium in the +4 valency state thereby to cause cerium to precipitate onto the metal surface uniformly over the whole of the metal surface.
2. The method defined in claim 1, wherein the cerium cations are oxidised to the +4 valency state by mixing hydrogen peroxide after or during the preparation of the aqueous acidic solution.
3. The method defined in claim 1 or claim 2, further comprises drying the metal surface to convert the eerie hydro peroxide to hydrated cerium oxide.
4. The method defined in any one of the preceding claims, wherein the metal is any one of aluminium, steel, zinc, cadmium and magnesium.
5. The method defined in any one of the preceding claims, wherein the source of cerium cations is cerium chloride.
6. The method defined in any one of the preceding claims, wherein the pH of the acidic solution is less than 3 prior to contact with the metal surface.
7. The method defined in claim 6, wherein the pH of the acidic solution is greater than 1 prior to contact with the metal surface.
8. The method defined in any one of the preceding claims, wherein the pH of the acidic solution is above 3 in the region of the metal surface after contact with the metal surface.
9. The method defined in any one of the preceding claims, further comprises adding brighteners to the acidic solution prior to or during immersion of the metal surface.
10. A coated metal surface formed in accordance with the method defined in any one of the" preceding claims .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPI0649 | 1987-03-03 | ||
AUPI064987 | 1987-03-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1988006639A1 true WO1988006639A1 (en) | 1988-09-07 |
Family
ID=3772048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU1988/000060 WO1988006639A1 (en) | 1987-03-03 | 1988-03-03 | A method of forming a corrosion resistant coating |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0347420A4 (en) |
JP (1) | JPH02502655A (en) |
CA (1) | CA1292155C (en) |
NZ (1) | NZ223740A (en) |
WO (1) | WO1988006639A1 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5194138A (en) * | 1990-07-20 | 1993-03-16 | The University Of Southern California | Method for creating a corrosion-resistant aluminum surface |
EP0534120A1 (en) * | 1991-09-27 | 1993-03-31 | Hughes Aircraft Company | Chromium-free method and composition to protect aluminium |
US5362335A (en) * | 1993-03-25 | 1994-11-08 | General Motors Corporation | Rare earth coating process for aluminum alloys |
WO1995008008A1 (en) * | 1993-09-13 | 1995-03-23 | Commonwealth Scientific And Industrial Research Organisation | Metal treatment with acidic, rare earth ion containing cleaning solution |
WO1995034693A1 (en) * | 1994-06-10 | 1995-12-21 | Commonwealth Scientific And Industrial Research Organisation | Conversion coating and process and solution for its formation |
WO1996011290A1 (en) * | 1994-10-07 | 1996-04-18 | Mcmaster University | Method of increasing corrosion resistance of metals and alloys by treatment with rare earth elements |
EP0804633A4 (en) * | 1994-11-11 | 1998-02-25 | Commw Scient Ind Res Org | Process and solution for providing a conversion coating on a metal surface |
US5932083A (en) * | 1997-09-12 | 1999-08-03 | The Curators Of The University Of Missouri | Electrodeposition of cerium-based coatings for corrosion protection of aluminum alloys |
US6068711A (en) * | 1994-10-07 | 2000-05-30 | Mcmaster University | Method of increasing corrosion resistance of metals and alloys by treatment with rare earth elements |
US6248184B1 (en) | 1997-05-12 | 2001-06-19 | The Boeing Company | Use of rare earth metal salt solutions for sealing or anodized aluminum for corosion protection and paint adhesion |
WO2001071059A1 (en) | 2000-03-20 | 2001-09-27 | Commonwealth Scientific And Industrial Research Organisation | Process and solution for providing a conversion coating on a metallic surface ii |
WO2001071058A1 (en) | 2000-03-20 | 2001-09-27 | Commonwealth Scientific And Industrial Research Organisation | Process and solution for providing a conversion coating on a metallic surface i |
ES2211348A1 (en) * | 2002-12-27 | 2004-07-01 | Universidad De Cadiz | Method of obtaining chromate-free conversion coatings on aluminium alloys |
US6818116B2 (en) | 2002-08-08 | 2004-11-16 | The Curators Of The University Of Missouri | Additive-assisted cerium-based electrolytic coating process for corrosion protection of aluminum alloys |
US7048807B2 (en) | 2002-08-08 | 2006-05-23 | The Curators Of The University Of Missouri | Cerium-based spontaneous coating process for corrosion protection of aluminum alloys |
EP1666634A1 (en) | 2004-12-01 | 2006-06-07 | Deft, Inc. | Corrosion resistant conversion coatings |
WO2007032702A1 (en) * | 2005-09-16 | 2007-03-22 | Gosudarstvennoye Obrazovatelnoye Uchrezhdeniye Vysshego Professionalnogo Obrazovaniya (Gouvpo) 'udmurtskij Gosudarstvennyj Universitet' | Workpiece strengthening method |
US7241371B2 (en) | 2000-08-17 | 2007-07-10 | The Curators Of University Of Missouri | Additive-assisted, cerium-based, corrosion-resistant e-coating |
US7407711B2 (en) | 2002-01-04 | 2008-08-05 | University Of Dayton | Non-toxic corrosion-protection conversion coats based on rare earth elements |
US7601425B2 (en) | 2003-03-07 | 2009-10-13 | The Curators Of The University Of Missouri | Corrosion resistant coatings containing carbon |
WO2010032702A1 (en) | 2008-09-17 | 2010-03-25 | 株式会社放電精密加工研究所 | Aqueous solution for blackening chemical conversion treatment of zinc or zinc alloy surface and method for forming blackened antirust coating film using the aqueous solution for the treatment |
EP2570515A2 (en) | 2011-09-16 | 2013-03-20 | Deft, Inc. | Corrosion resistant pretreatment coating compositions |
US8609755B2 (en) | 2005-04-07 | 2013-12-17 | Momentive Perfomance Materials Inc. | Storage stable composition of partial and/or complete condensate of hydrolyzable organofunctional silane |
TWI477648B (en) * | 2010-12-30 | 2015-03-21 | Hon Hai Prec Ind Co Ltd | Anticorrosion surface treatment for al and al-alloy and articles treated by same |
US9290846B2 (en) | 2014-03-05 | 2016-03-22 | The Boeing Company | Chromium-free conversion coating |
US9347134B2 (en) | 2010-06-04 | 2016-05-24 | Prc-Desoto International, Inc. | Corrosion resistant metallate compositions |
US20190316261A1 (en) * | 2016-08-12 | 2019-10-17 | Prc-Desoto International, Inc. | Sealing Composition |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4105765B2 (en) * | 1996-02-05 | 2008-06-25 | 新日本製鐵株式会社 | Corrosion-resistant surface-treated metal material and surface treatment agent therefor |
US6190780B1 (en) | 1996-02-05 | 2001-02-20 | Nippon Steel Corporation | Surface treated metal material and surface treating agent |
CN110670054B (en) * | 2019-10-11 | 2021-06-29 | 青海民族大学 | A kind of magnesium alloy surface ceria conversion repair film and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1418957A (en) * | 1972-05-11 | 1975-12-24 | Lummus Co | Protective coating of metals |
US4297246A (en) * | 1977-11-01 | 1981-10-27 | United Kingdom Atomic Energy Authority | Method of producing dense refractory oxide coatings on metallic substrates and the production of catalysts from the coated substrates |
US4328285A (en) * | 1980-07-21 | 1982-05-04 | General Electric Company | Method of coating a superalloy substrate, coating compositions, and composites obtained therefrom |
AU3294784A (en) * | 1983-09-15 | 1985-03-21 | British Petroleum Company Plc, The | Inhibiting corrosion in aqueous systems |
AU3566184A (en) * | 1983-11-19 | 1985-05-23 | Alain James Duggan | Corrosion resistant boiler tubes |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE863280C (en) * | 1951-07-02 | 1953-01-15 | American Chem Paint Co | Process and means for increasing the corrosion resistance of metal surfaces |
CA1228000A (en) * | 1981-04-16 | 1987-10-13 | David E. Crotty | Chromium appearance passivate solution and process |
JPS60200972A (en) * | 1984-03-23 | 1985-10-11 | Hitachi Ltd | Corrosion prevention of zirconium or zirconium alloy |
-
1988
- 1988-03-01 CA CA000560195A patent/CA1292155C/en not_active Expired - Lifetime
- 1988-03-03 WO PCT/AU1988/000060 patent/WO1988006639A1/en not_active Application Discontinuation
- 1988-03-03 NZ NZ22374088A patent/NZ223740A/en unknown
- 1988-03-03 EP EP19880902363 patent/EP0347420A4/en not_active Withdrawn
- 1988-03-03 JP JP63502524A patent/JPH02502655A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1418957A (en) * | 1972-05-11 | 1975-12-24 | Lummus Co | Protective coating of metals |
US4297246A (en) * | 1977-11-01 | 1981-10-27 | United Kingdom Atomic Energy Authority | Method of producing dense refractory oxide coatings on metallic substrates and the production of catalysts from the coated substrates |
US4328285A (en) * | 1980-07-21 | 1982-05-04 | General Electric Company | Method of coating a superalloy substrate, coating compositions, and composites obtained therefrom |
AU3294784A (en) * | 1983-09-15 | 1985-03-21 | British Petroleum Company Plc, The | Inhibiting corrosion in aqueous systems |
AU3566184A (en) * | 1983-11-19 | 1985-05-23 | Alain James Duggan | Corrosion resistant boiler tubes |
Non-Patent Citations (4)
Title |
---|
CHEMICAL ABSTRACTS, Volume 103, No. 12, issued 1985 September 9, D.R. ARNOTT et al, 'Auger and XPS Studies of Cerium Corrosion Inhibition on 7075 Aluminium Alloy', see page 237, column 2, the Abstract No. 91568a, Appl. Surf. Sci. 1985, 22-23(1), 236-51 (Eng.) * |
CHEMICAL ABSTRACTS, Volume 106, No. 8, issued 1987, February 23 (Columbus, Ohio, USA), B.R.W. HINTON et al, 'Cerium Conversion Coatings for the Corrosion Protection of Aluminium', see page 256, column 1, the Abstract No. 54262n, Mater. Forum 1986, 9(3), 162-75 (Eng.) * |
CHEMICAL ABSTRACTS, Volume 96, No. 26, issued 1982, 28 June, M.J. BENNET et al, 'Influence of Thermal and Mechanical Stresses on the Improvement by Ceramic Protective Surface Coatings of the Oxidation Behaviour of a 20% / 25% Niclel/Niobium Stabilised Stainless Steel', see page 224, column 2, the Abstract No. 221202b, Met. Corros. Proc.: Int. Congr. Met. Corros./, 8th 1981,2, 1026-31 (Eng.) * |
See also references of EP0347420A4 * |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5194138A (en) * | 1990-07-20 | 1993-03-16 | The University Of Southern California | Method for creating a corrosion-resistant aluminum surface |
EP0534120A1 (en) * | 1991-09-27 | 1993-03-31 | Hughes Aircraft Company | Chromium-free method and composition to protect aluminium |
US5362335A (en) * | 1993-03-25 | 1994-11-08 | General Motors Corporation | Rare earth coating process for aluminum alloys |
WO1995008008A1 (en) * | 1993-09-13 | 1995-03-23 | Commonwealth Scientific And Industrial Research Organisation | Metal treatment with acidic, rare earth ion containing cleaning solution |
US6503565B1 (en) | 1993-09-13 | 2003-01-07 | Commonwealth Scientific And Industrial Research Organisation | Metal treatment with acidic, rare earth ion containing cleaning solution |
US6022425A (en) * | 1994-06-10 | 2000-02-08 | Commonwealth Scientific And Industrial Research Organisation | Conversion coating and process and solution for its formation |
WO1995034693A1 (en) * | 1994-06-10 | 1995-12-21 | Commonwealth Scientific And Industrial Research Organisation | Conversion coating and process and solution for its formation |
WO1996011290A1 (en) * | 1994-10-07 | 1996-04-18 | Mcmaster University | Method of increasing corrosion resistance of metals and alloys by treatment with rare earth elements |
US6406562B1 (en) | 1994-10-07 | 2002-06-18 | Mcmaster University | Method of increasing corrosion resistance of metals and alloys by treatment with rare earth elements |
US6068711A (en) * | 1994-10-07 | 2000-05-30 | Mcmaster University | Method of increasing corrosion resistance of metals and alloys by treatment with rare earth elements |
US6206982B1 (en) | 1994-11-11 | 2001-03-27 | Commonwealth Scientific And Industrial Research Organisation | Process and solution for providing a conversion coating on a metal surface |
EP0804633A4 (en) * | 1994-11-11 | 1998-02-25 | Commw Scient Ind Res Org | Process and solution for providing a conversion coating on a metal surface |
US6248184B1 (en) | 1997-05-12 | 2001-06-19 | The Boeing Company | Use of rare earth metal salt solutions for sealing or anodized aluminum for corosion protection and paint adhesion |
US5932083A (en) * | 1997-09-12 | 1999-08-03 | The Curators Of The University Of Missouri | Electrodeposition of cerium-based coatings for corrosion protection of aluminum alloys |
WO2001071058A1 (en) | 2000-03-20 | 2001-09-27 | Commonwealth Scientific And Industrial Research Organisation | Process and solution for providing a conversion coating on a metallic surface i |
WO2001071059A1 (en) | 2000-03-20 | 2001-09-27 | Commonwealth Scientific And Industrial Research Organisation | Process and solution for providing a conversion coating on a metallic surface ii |
US6755917B2 (en) | 2000-03-20 | 2004-06-29 | Commonwealth Scientific And Industrial Research Organisation | Process and solution for providing a conversion coating on a metallic surface II |
EP1198614A4 (en) * | 2000-03-20 | 2008-03-05 | Commw Scient Ind Res Org | Process and solution for providing a conversion coating on a metallic surface i |
US6773516B2 (en) | 2000-03-20 | 2004-08-10 | Commonwealth Scientific And Industrial Research Organisation | Process and solution for providing a conversion coating on a metallic surface I |
EP1198615A4 (en) * | 2000-03-20 | 2007-12-26 | Commw Scient Ind Res Org | METHOD AND SOLUTION FOR IMPLEMENTING A CONVERSION COATING ON A METAL SURFACE II |
US7241371B2 (en) | 2000-08-17 | 2007-07-10 | The Curators Of University Of Missouri | Additive-assisted, cerium-based, corrosion-resistant e-coating |
US7407711B2 (en) | 2002-01-04 | 2008-08-05 | University Of Dayton | Non-toxic corrosion-protection conversion coats based on rare earth elements |
US6818116B2 (en) | 2002-08-08 | 2004-11-16 | The Curators Of The University Of Missouri | Additive-assisted cerium-based electrolytic coating process for corrosion protection of aluminum alloys |
US7048807B2 (en) | 2002-08-08 | 2006-05-23 | The Curators Of The University Of Missouri | Cerium-based spontaneous coating process for corrosion protection of aluminum alloys |
WO2004059035A1 (en) * | 2002-12-27 | 2004-07-15 | Universidad De Cádiz | Method of obtaining chromate-free conversion coatings on aluminium alloys |
ES2211348A1 (en) * | 2002-12-27 | 2004-07-01 | Universidad De Cadiz | Method of obtaining chromate-free conversion coatings on aluminium alloys |
US7601425B2 (en) | 2003-03-07 | 2009-10-13 | The Curators Of The University Of Missouri | Corrosion resistant coatings containing carbon |
EP1666634A1 (en) | 2004-12-01 | 2006-06-07 | Deft, Inc. | Corrosion resistant conversion coatings |
US7452427B2 (en) | 2004-12-01 | 2008-11-18 | Deft, Inc. | Corrosion resistant conversion coatings |
US8609755B2 (en) | 2005-04-07 | 2013-12-17 | Momentive Perfomance Materials Inc. | Storage stable composition of partial and/or complete condensate of hydrolyzable organofunctional silane |
US10041176B2 (en) | 2005-04-07 | 2018-08-07 | Momentive Performance Materials Inc. | No-rinse pretreatment methods and compositions |
WO2007032702A1 (en) * | 2005-09-16 | 2007-03-22 | Gosudarstvennoye Obrazovatelnoye Uchrezhdeniye Vysshego Professionalnogo Obrazovaniya (Gouvpo) 'udmurtskij Gosudarstvennyj Universitet' | Workpiece strengthening method |
CN102149848A (en) * | 2008-09-17 | 2011-08-10 | 株式会社放电精密加工研究所 | Aqueous solution for blackening chemical conversion treatment of zinc or zinc alloy surface and method for forming blackened antirust coating film using the aqueous solution for the treatment |
WO2010032702A1 (en) | 2008-09-17 | 2010-03-25 | 株式会社放電精密加工研究所 | Aqueous solution for blackening chemical conversion treatment of zinc or zinc alloy surface and method for forming blackened antirust coating film using the aqueous solution for the treatment |
US9347134B2 (en) | 2010-06-04 | 2016-05-24 | Prc-Desoto International, Inc. | Corrosion resistant metallate compositions |
TWI477648B (en) * | 2010-12-30 | 2015-03-21 | Hon Hai Prec Ind Co Ltd | Anticorrosion surface treatment for al and al-alloy and articles treated by same |
EP2570515A2 (en) | 2011-09-16 | 2013-03-20 | Deft, Inc. | Corrosion resistant pretreatment coating compositions |
US10876211B2 (en) | 2011-09-16 | 2020-12-29 | Prc-Desoto International, Inc. | Compositions for application to a metal substrate |
US9290846B2 (en) | 2014-03-05 | 2016-03-22 | The Boeing Company | Chromium-free conversion coating |
US20190316261A1 (en) * | 2016-08-12 | 2019-10-17 | Prc-Desoto International, Inc. | Sealing Composition |
Also Published As
Publication number | Publication date |
---|---|
CA1292155C (en) | 1991-11-19 |
NZ223740A (en) | 1989-06-28 |
EP0347420A4 (en) | 1990-02-26 |
EP0347420A1 (en) | 1989-12-27 |
JPH02502655A (en) | 1990-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1988006639A1 (en) | A method of forming a corrosion resistant coating | |
US5304257A (en) | Trivalent chromium conversion coatings for aluminum | |
US5374347A (en) | Trivalent chromium solutions for sealing anodized aluminum | |
US3964936A (en) | Coating solution for metal surfaces | |
CA2373996C (en) | Process and solution for providing a conversion coating on a metallic surface i | |
EP0534120B1 (en) | Chromium-free method and composition to protect aluminium | |
US6755917B2 (en) | Process and solution for providing a conversion coating on a metallic surface II | |
KR100362549B1 (en) | Patent application title: PHOSPHATE PROCESSING METHOD WITH METAL CONTAINING REINUS STEP | |
EP0664348A1 (en) | Method and composition for treatment of metals | |
EP0719350B1 (en) | Metal treatment with acidic, rare earth ion containing cleaning solution | |
EP0034040A1 (en) | Method of producing conversion coatings | |
US4600447A (en) | After-passivation of phosphated metal surfaces | |
Pearlstein et al. | Trivalent chromium conversion coatings for aluminum | |
GB2195359A (en) | Process for producing phosphate coatings on metal surfaces | |
US5178690A (en) | Process for sealing chromate conversion coatings on electrodeposited zinc | |
US4784731A (en) | Chromate treatment of a metal coated steel sheet | |
GB2078261A (en) | Preventing Corrosion of Zinc and Cadmium | |
US4497666A (en) | Process for the treatment of phosphatized metal surfaces with a composition comprising trivalent titanium | |
US3726721A (en) | Process for coating aluminum | |
WO2005014890A1 (en) | An electrolyte solution | |
US3615897A (en) | Black films for metal surfaces | |
EP1895023B1 (en) | Agents for the surface treatment of zinc or zinc alloy products | |
JPS5834178A (en) | Chromate treatment for plated steel plate | |
Hülser | Passivation of Zinc-Nickel Surfaces: An optimal process control is essential to achieve a high corrosion protection and decorative appearance | |
US2793967A (en) | Sealing composition and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU JP KR SU US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1988902363 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1988902363 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1988902363 Country of ref document: EP |