[go: up one dir, main page]

WO1988003646A1 - Installation d'imagerie par resonance magnetique nucleaire - Google Patents

Installation d'imagerie par resonance magnetique nucleaire Download PDF

Info

Publication number
WO1988003646A1
WO1988003646A1 PCT/FR1987/000449 FR8700449W WO8803646A1 WO 1988003646 A1 WO1988003646 A1 WO 1988003646A1 FR 8700449 W FR8700449 W FR 8700449W WO 8803646 A1 WO8803646 A1 WO 8803646A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
flat coil
intense
installation according
field
Prior art date
Application number
PCT/FR1987/000449
Other languages
English (en)
Inventor
Diane Dessalles-Martin
Guy Aubert
Martine Collet
Original Assignee
Thomson-Cgr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson-Cgr filed Critical Thomson-Cgr
Publication of WO1988003646A1 publication Critical patent/WO1988003646A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3875Compensation of inhomogeneities using correction coil assemblies, e.g. active shimming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/42Screening
    • G01R33/421Screening of main or gradient magnetic field

Definitions

  • the present invention relates to a nuclear magnetic resonance imaging installation.
  • the invention particularly relates to means for removing from the action of a magnetic field instruments placed in the environment of the apparatus which produces the magnetic field, as is the case in particular for monitors of the cathode screen type. which are used in the operating console of the nuclear magnetic resonance imaging device.
  • a nuclear magnetic resonance imaging device, or MRI device in particular comprises a magnet which produces in the device a constant, intense magnetic field, to which the body of a patient to be examined is subjected.
  • an operating console generally comprises two monitors: a first monitor called an image-monitor and intended to represent the image obtained; a second monitor called monitor -dialogue, in particular allows an operator to adjust the different parameters.
  • a first monitor called an image-monitor and intended to represent the image obtained
  • a second monitor called monitor -dialogue, in particular allows an operator to adjust the different parameters.
  • the use of the monitor-dialog is greatly facilitated when the latter is placed under a touch screen; but it should be noted that the use of the touch screen is really only interesting if the dialog-monitor is itself a color-monitor.
  • the MRI machine itself is located in a first room which constitutes a Faraday cage.
  • the operating console is located in an adjoining room, and the partition separating the two rooms is provided with a window which allows operators or doctors not to lose sight of the patient during the entire time when the latter is installed in the MRI machine, so as to possibly intervene very quickly with the patient in the event of an incident. For this reason, but also with a view to reducing the space required for premises, it is sought to place the operating console at a relatively short distance from the MRI machine, for example within 10 meters.
  • a monitor presents disturbances which can make it unusable: thus for example, with a black and white monitor placed in a magnetic field of the order of 3 gauss, it is impossible to use correctly a touch screen ; with a color monitor, the constraint is even greater, and the latter is practically no longer usable when it is in a field greater than about 0.5 gauss.
  • the intense field produced by the MRI machine can reach several thousand gauss in the machine itself, so that in the control room adjoining the examination room, the magnetic field leakage , even at ten meters, is still much higher than the values quoted above.
  • the present invention particularly aims to allow the use of at least one monitor, black and white or color, in a nuclear magnetic resonance imaging installation, at a distance from the MRI machine much lower than in the prior art for the same field strength, and to allow the commissioning of the monitor or monitors in a much simpler and safer manner than in the prior art. It should be noted that, under substantially the same conditions, the invention can be applied to the protection with respect to the magnetic field, of different instruments such as for example magnetic cassettes whose use and storage near the MRI machine can cause problems.
  • an installation for nuclear magnetic resonance imaging comprising an apparatus producing an intense magnetic field, the apparatus being at a given distance from at least one instrument whose operation can be disturbed by the intense magnetic field, is characterized in that it comprises means for producing a second magnetic field of direction substantially opposite to that of the intense magnetic field, so that the second magnetic field tends to cancel the first intense magnetic field at the level of the instrument.
  • FIG. 1 schematically shows an installation for nuclear magnetic resonance imaging according to the invention:
  • Figure 2 is a front view of a flat coil and an operating console shown in Figure 1.
  • FIG. 1 schematically shows a nuclear magnetic resonance imaging installation 1 or MRI installation, intended, in the nonlimiting example described, for use in the context of medical diagnosis.
  • the installation of MRI 1 is shared between two adjoining rooms, the first of which is an examination room 2 and the second is a control room 3; the examination room 2 contains the MRI machine 4 proper, symbolized in FIG. 1 by a rectangle arranged along a longitudinal axis Z; in practice, the MRI machine 4 may have the general shape of a circular cylinder centered around the longitudinal axis Z, and the inner part of which along the longitudinal axis Z is intended to receive a patient (not represented) .
  • the MRI machine 4 comprises in a conventional manner a coil or a magnet (not shown) producing an intense magnetic field B 0 , homogeneous and constant inside the MRI machine 4, and particularly in a volume of interest materialized in FIG. 1 by a length of interest L having a center 0.
  • the direction of the field B n , inside the MRI machine 4, is for example that shown by the arrow 7, so that the MRI machine 4 can symbolize a magnet, one side 8 of which is located towards the control room 3 constitutes a north face N and the second side 9 of which faces the examination room 3 is a South face S.
  • the direction of the field B n is that of the longitudinal axis Z, and its Intensity which is constant at all points of the length L is several thousand gauss over this length L, for example 5000 gauss or 0 , 5 tesla.
  • the control room 3 contains an operating console 10 using which operators (not shown) carry out the operations necessary to obtain the image of the patient.
  • a partition 11 which separates the examination room 2 from the control room 3 incorporates a communication door
  • the plane of the window 12 is substantially perpendicular to that of the longitudinal axis Z of the MRI machine 4, and the console 10 is substantially parallel to the window
  • an operating console 10 includes at least one monitor.
  • the operating console 10 comprises a first and a second monitor 15, 16 arranged one above the other, so that the first monitor 15 being in FIG. 1 in a plane deeper than the latter, it is only partially represented.
  • the screens 17 of the monitors 15, 16 are oriented substantially towards the front 13 of the console 10, and form a volume which is particularly sensitive to the intense magnetic field B_, this particularly sensitive volume being represented in FIG. 1 by a sensitive length L2 formed between the screens 17, and the rear 19 of the monitors 15, 16.
  • the MRI installation 1 comprises means for producing a second magnetic field B, antagonistic to the first field B.
  • the means for producing the second magnetic field B, antagonist of the first magnetic field B- comprise a coil 20 of the flat coil type.
  • the flat coil 20 is traversed by a current (not shown) whose direction is such that a first face 21 of the flat coil 20 oriented towards the MRI machine 4 constitutes a North N pole, and that its second face 22 constitutes a South S pole.
  • the flat coil 20 being centered on the longitudinal axis Z
  • the second magnetic field B is also oriented on the axis Z but its direction on the axis Z, shown by the second arrow 5, is contrary to the first direction 7 of the first field B n .
  • the intensity of the second field B we tend to compensate or even to cancel the first field B , particularly at the sensitive length L2.
  • the second opposing magnetic field B could also be produced in a different way, for example by one or more coils (not shown) arranged in the monitors 15, 16 themselves, or also by a solenoid (not shown) of great length which would be placed around the monitors 15, 16 or even around the console 10.
  • the flat coil 20 has an important advantage in that it is reduced footprint, and therefore presents negligible discomfort.
  • the flat coil 20 can have a circular or square section, and its plane can be parallel to that of the window 12 and even applied against the latter as in the nonlimiting example presented in FIG.
  • the flat coil 20 being particularly advantageous for presenting a reduced bulk; but the flat coil 20 could have, with respect to the monitors 15, 16, a different position, such as for example surrounding the monitors 15, 16 or even disposed on the other side of the latter relative to the MRI machine 4.
  • the monitors 15, 16 are arranged along the longitudinal axis Z so that the second sensitive length L2 is coincident or substantially parallel to the longitudinal axis Z; the flat coil
  • the magnetic field can be made almost zero over the sensitive length L2, so that it is possible to use monitors 15, 16 of the black and white type or of the color type, without the need to place these monitors 15, 16 in a shielding box as in the prior art.
  • the intense field B Q at the center 0 of the length of interest L has a value of about 5000 gauss
  • its value on the axis Z at a distance D of the order of 7 meters is about 10 gauss, i.e. the sensitive length L2 would be subjected to a magnetic field of 10 gauss in the absence of the flat coil 20, which would make it impossible to use monitors 15, 16 of black and white type not provided with shielding, and completely impossible the use of color monitors with or without shielding.
  • Figure 2 shows the flat coil 20 and the operating console 10 viewed from the front of the operating console
  • FIG. 2 shows in a first plane the operating console 10, then in a deeper second plane the flat coil 20, and finally in an even more plane deep the partition 11 which comprises the window 12.
  • the operating console
  • the operating console 10 comprises various conventional control and display members (not shown), and comprises the first and second monitors 15, 16.
  • the first monitor 15 constitutes the dialogue monitor likely to include a touch screen, (not shown); the second monitor 16 disposed above the first constitutes the image monitor.
  • These two monitors 15, 16 can each indifferently, in the MRI equipment of the invention, be of the black and white type or of the color type.
  • the entire surface 47 presented by the two monitors 15, 16 parallel to the plane of the flat coil 20, is substantially centered on the center 26 of the flat coil
  • the center 26 also represents the longitudinal axis Z of the MRI machine 4 shown in FIG. 1.
  • the flat coil 20 is formed from a conventional conductor forming turns 48 (shown in dotted lines) mounted on a frame 31 of non-magnetic material, for example wood.
  • the section 39 of the flat coil 20 given by the shape of the frame 31 is substantially square.
  • the sides 50 of the frame have a third length L3 of the order of 2 meters in the nonlimiting example described, so that the average distance has between the center 26 of the flat coil 20, and its periphery represented by the frame 31 is of the order of 1 meter, that is to say half of the third length L3 of the sides 50.
  • the rear 8 of the console 10 is preferably very close to the second face 22 of the flat coil 20, a few centimeters for example, so that the rear of the monitors 15, 16 is also very close to it and can possibly penetrate into the flat coil 20, so as for example to be at the level of the median plane 27 of the latter; the flat coil 20 having a thickness E of a few centimeters, 5 centimeters for example.
  • the console 10 and the flat coil 20 constitute an assembly which may have, relative to the MRI machine 4, a position different from that shown on the Figure 1, so as to adapt for example to the situation of existing sites: thus for example, one can optionally move the flat coil assembly 20-console 10 laterally along an axis 25 transverse to the longitudinal axis Z , so as to adapt in hospital configurations where it is not possible to have the operating console 10 facing the magnet or MRI machine 4, but this within relatively low limits of the order of 0.60 m on either side of the longitudinal axis Z.
  • the flat coil 20-console 10 assembly can be moved much more with respect to the longitudinal axis Z, provided that it is oriented so that the plane of the flat coil 20 is substantially perpendicular ular to the local direction of the magnetic field: this arrangement is shown in FIG. 1 where the operating console 10 and the flat coil 20 are shown in dotted lines and marked respectively 10a and 20a, the flat coil 20a being perpendicular to one second local direction U of the intense magnetic field B fi .
  • the value of the second magnetic field B can be adjusted to compensate, or even canceling, over the sensitive length L2, the intense magnetic field B Q , by adjusting the value of the current flowing in the conductors (not shown) of the flat coil 20; the latter being powered by an adjustable power supply, in itself conventional (not shown).
  • the average distance a between the center 26 and the frame 31 is equal to or greater than the sensitive length L2 presented by the monitors 15, 16, so that the value of the second field B generated by the coil plate 20 varies relatively relatively on its axis.
  • the possible decrease in the value of the second magnetic field B along the sensitive length L2 is appreciably compensated by the decrease which the value of the intense field B presents on the direction of the axis Z when one moves away from the apparatus of MRI 4.
  • the intense field B Q has a value of 17 gauss, while at 5.8 m, the intense field B Q is worth approximately 15 gauss. Consequently, by placing the monitors 15, 16, so that the sensitive length L2 is substantially opposite to the MRI machine 4, with respect to the median plane 26 of the flat coil 20, it is possible with a flat coil 20 whose radius or mean distance a is equal to or greater than the sensitive length L2, not only obtaining that the second opposing field B varies fairly weakly, but also obtaining that this variation is compensated by the variation of the first intense field B.
  • the calculations predict and tests have shown that the second compensation field B, produced by the flat coil 20 at a relatively short distance D from the center O of the MRI machine 4, brings only a slight modification of the value of the intense field B Q over the length of interest L, this change in value resulting in operation only a slight displacement of the central section relative to the origin, that is to say relative to the center O.
  • This modification of the value of the field B Q is caught up during the calibration operation which is conventional for an MRI apparatus, and which makes it possible to redefine the position of the central section relative to the origin.
  • the frame 31 is a square whose sides 50 have a length L3 equal to 2a equal to 2 meters, ie a square of 2 x 2 m;
  • the coil 20 comprises 100 turns traversed by a current of 16.5 amperes, that is 1650 amperes making it possible to obtain the value of the second field B necessary to compensate for the intense field B_ over the sensitive length L2;
  • the flat coil 20 is centered on the Z axis, that is to say practically coaxial with the MRI machine 4;
  • I is the current in the coil 20;
  • a is the average distance between the center 26 of the coil and the frame 31;
  • the value of the second compensation field B is 0.040 gauss, which may require d 'be compensated by the calibration of the MRI machine 4, as explained above.
  • the field gradient or inhomogeneity provides for the second field B over the length of interest L can be greater than 1 p. p. m. In this case, this inhomogeneity can be easily compensated for by an adjustment of the offset current of a gradient coil.
  • MRI machines conventionally comprise, in addition to a coil which produces the intense field B Q , coils of gradients which have the function of creating a field gradient along three orthogonal axes, one of which is the longitudinal axis Z.
  • These gradient coils are generally mounted around the cylinder that constitutes the MRI machine, in a known manner; a single gradient coil 40 intended to act along the longitudinal axis Z being shown in Figure 1 for clarity thereof.
  • the flat coil 20 is perpendicular to and centered on the longitudinal axis Z
  • This description constitutes a non-litmitative example, showing how instruments can be removed from the action of a intense magnetic field, in particular instruments of the type comprising a cathode ray tube.
  • the invention is particularly interesting in the context of a diagnostic MRI installation, but can also be applied to protect instruments in all installations using an intense magnetic field.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Details Of Measuring And Other Instruments (AREA)

Abstract

Installation d'imagerie par résonance magnétique nucléaire dans laquelle des moniteurs (15, 16), du type à tube cathodique, sont soustraits à l'action d'un champ magnétique intense (BO). A cette fin, l'installation (1) conforme à l'invention comporte une bobine plate (20) qui engendre un second champ magnétique (Bc) de sens (5) contraire à celui du champ magnétique intense (BO).

Description

INSTALLATION D'IMAGERIE PAR RESONANCE MAGNETIQUE NUCLEAIRE
La présente invention concerne une installation d'imagerie par résonance magnétique nucléaire . L'invention concerne particulièrement des moyens pour soustraire à l'action d'un champ magnétique des instruments placés dans l'environnement de l'appareil qui produit le champ magnétique, comme c'est le cas notamment pour des moniteurs du type à écrans cathodiques qui sont utilisés dans la console d'exploitation de l'appareil d'imagerie par résonance magnétique nucléaire . Un appareil d'imagerie par résonance magnétique nucléraire, ou appareil d'IRM, comporte en particulier un aimant qui produit dans l'appareil un champ magnétique intense, constant, auquel est soumis le corps d'un patient à examiner.
La mise en oeuvre de l'appareil d'IRM est conduite par un ou des opérateurs qui agissent au niveau d'une console d'exploitation pour définir les différents paramètres, et commander les différentes opérations qui sont nécessaires à obtenir l'image désirée. A cet effet, une console d'exploitation comporte généralement deux moniteurs : un premier moniteur appelé moniteur -image et destiné à représenter l'image obtenue ; un second moniteur appelé moniteur -dialogue, permet notamment à un opérateur d'ajuster les différents paramètres . L'utilisation du moniteur -dialogue est grandement facilitée quand ce dernier est placé sous un écran tactile ; mais il est à remarquer que l'utilisation de l'écran tactile n'est réellement intéressante que si le moniteur-dialogue est lui-même un moniteur -couleur.
En général, l'appareil d'IRM lui-même est situé dans une première salle qui constitue une cage de Faraday. La console d'exploitation est située dans une salle attenante, et la cloison qui sépare les deux salles est munie d'une vitre qui permet aux opérateurs ou médecins de ne pas perdre de vue le patient durant tout le temps où ce dernier est installé dans l'appareil d'IRM, de manière à éventuellement intervenir très rapidement auprès du patient en cas d'incident. Pour cette raison, mais aussi en vue de diminuer les surfaces de locaux nécessaires, on cherche à placer la console d'exploitation à une distance relativement faible de l'appareil d'IRM, par exemple à moins de 10 mètres .
Le problème qui est alors posé est celui de l'utilisation des moniteurs, quand ces derniers sont soumis à l'action du champ magnétique produit par l'appareil d'IRM.
En effet, installé dans un champ magnétique, un moniteur présente des perturbations qui peuvent le rendre inutilisable : ainsi par exemple, avec un moniteur noir et blanc placé dans un champ magnétique de l'ordre de 3 gauss, il est impossible d'utiliser correctement un écran tactile ; avec un moniteur couleur, la contrainte est encore plus importante, et ce dernier n'est pratiquement plus exploitable quand il est dans un champ supérieur à environ 0, 5 gauss . Le champ intense produit par l'appareil d'IRM peut dans l'appareil lui-même , atteindre plusieurs milliers de gauss, de sorte que dans la salle de contrôle contigϋe à la salle d'examen, le champ de fuite de l'aimant, même à dix mètres, est encore très supérieur aux valeurs ci-dessus citées. Par suite, on constate que dans l'art antérieur, seuls des moniteurs du type noir et blanc peuvent être utilisés avec la console d'exploitation, à moins de dix mètres de l'appareil d'IRM, et encore à la condition que ces moniteurs soient contenus dans des boîtiers formant blindage. L'utilisation d'un blindage, disposé par exemple autour d'un moniteur, outre qu'elle ne permet pas l'usage d'un moniteur couleur à moins de dix mètres de l'appareil d'IRM, présente en plus comme inconvénient d'exiger un réglage des appareils noir et blanc : en effet, malgrés l'utilisation du blindage, le champ parasite résiduel exige de régler les bobines de déflection propres au moniteur afin de le rendre utilisable ; cet inconvénient est particulièrement important du fait que ce réglage ne peut s'effectuer que quand le moniteur noir et blanc est sorti de son blindage, et que le résultat du réglage n'est visible que lorsque le moniteur est à nouveau réintroduit dans son boitier de blindage ; de sorte que plusieurs opérations de réglage successives sont nécessaires avant d'obtenir le réglage optimum. La présente Invention a pour objet particulièrement de permettre l'utilisation d'au moins un moniteur, noir et blanc ou couleur, dans une installation d'imagerie par résonance magnétique nucléaire, à une distance de l'appareil d'IRM beaucoup plus faible que dans l'art antérieur pour une même intensité du champ, et de permettre la mise en service du ou des moniteurs d'une manière beaucoup plus simple et plus sûre que dans l'art antérieur. Il est à remarquer que, dans sensiblement les mêmes conditions, l'invention peut s'appliquer à la protection vis à vis du champ magnétique, d'instruments différents tels que par exemple des cassettes magnétiques dont l'utilisation et le stockage à proximité de l'appareil d'IRM peuvent poser des problèmes.
Selon l'invention, une installation d'imagerie par résonance magnétique nucléaire, comportant un appareil produisant un champ magnétique intense, l'appareil étant à une distance donnée d'au moins un instrument dont le fonctionnement peut être perturbé par le champ magnétique intense, est caractérisé en ce qu'il comporte des moyens pour produire un second champ magnétique de sens sensiblement contraire à celui du champ magnétique intense, de manière que le second champ magnétique tende à annuler le premier champ magnétique intense au niveau de l'instrument.
L'invention sera mieux comprise grâce à la description qui suit, faite à titre d'exemple non limitatif, et aux deux figures annexées, parmi lesquelles :
- la figure 1 montre de manière schématique, une installation d'imagerie par résonance magnétique nucléaire conforme à l'invention : - la figure 2 est une vue de face d'une bobine plate et d'une console d'exploitation montrées sur la figure 1.
La figure 1 montre de façon schématique une installation d'imagerie par résonance magnétique nucléaire 1 ou installation d' IRM, destinée, dans l'exemple non limitatif décrit, à une utilisation dans le cadre du diagnostic médical. Suivant une implantation courante dans un site hospitalier, l'installation d'IRM 1 est partagée entre deux salles contiguës dont la première est une salle d'examen 2 et la seconde est une salle de contrôle 3 ; la salle d'examen 2 contient l'appareil d'IRM 4 proprement dit symbolisé sur la figure 1 par un rectangle disposé selon un axe longitudinal Z ; en pratique, l'appareil d'IRM 4 peut comporter la forme générale d'un cylindre circulaire centré autour de l'axe longitudinal Z, et dont la partie intérieure le long de l'axe longitudinal Z est destinée à recevoir un patient (non représenté) . L'appareil d'IRM 4 comporte d'une manière en elle-même classique une bobine ou un aimant (non représenté) produisant un champ magnétique intense B0, homogène et constant à l'intérieur de l'appareil d'IRM 4, et particulièrement dans un volume d'intérêt matérialisé sur la figure 1 par une longueur d'intérêt L ayant un centre 0. Le sens du champ Bn, à l'intérieur de l'appareil d'IRM 4, est par exemple celui montré par la flèche 7, de sorte que l'appareil d'IRM 4 peut symboliser un aimant dont une face 8 située vers la salle de contrôle 3 constitue une face Nord N et dont la seconde face 9 opposée à la salle d'examen 3 est une face Sud S. La direction du champ Bn est celle de l'axe longitudinal Z, et son Intensité qui est constante en tous points de la longueur L est de plusieurs milliers de gauss sur cette longueur L, par exemple 5000 gauss ou 0, 5 tesla.
La salle de contrôle 3 contient une console d'exploitation 10 à l'aide de laquelle des opérateurs (non représentés) conduisent les opérations nécessaires à obtenir l'image du patient. Une cloison 11 qui sépare la salle d'examen 2 de la salle de contrôle 3 incorpore une porte de communication
60, et une vitre 12 au travers de laquelle les opérateurs surveillent le patient durant tout l'examen . Selon une implantation qui est préférée, quand la forme des locaux disponibles le permet, le plan de la vitre 12 est sensiblement perpendiculaire à celui de l'axe longitudinal Z de l'appareil d'IRM 4, et la console 10 est sensiblement parallèle à la vitre
12 ; cette disposition permet à des opérateurs situés à l'avant
13 de la console 10, de manipuler les commandes de la console 10 sans perdre de vue le patient.
Ainsi qu'il a été précédemment mentionné, une console d'exploitation 10 comporte au moins un moniteur. Dans l'exemple non limitatif décrit, la console d'exploitation 10 comporte un premier et un second moniteur 15, 16 disposés l'un au-dessus de l'autre, de sorte que le premier moniteur 15 étant sur la figure 1 dans un plan plus profond que cette dernière, il n'est que partiellement représenté . Les écrans 17 des moniteurs 15, 16 sont orientés sensiblement vers l'avant 13 de la console 10, et forment un volume particulièrement sensible au champ magnétique intense B_ , ce volume particulièrement sensible étant représenté sur la figure 1 par une longueur sensible L2 formée entre les écrans 17, et l'arrière 19 des moniteurs 15, 16.
Selon une caractéristique de l'invention, l'installation d'IRM 1 comporte des moyens pour produire un second champ magnétique B , antagoniste au premier champ B . Dans l'exemple non limitatif décrit, les moyens pour produire le second champ magnétique B , antagoniste du premier champ magnétique B- , comportent une bobine 20 du type bobine plate . La bobine plate 20 est parcourue par un courant (non représenté) dont le sens est tel qu'une première face 21 de la bobine plate 20 orientée vers l'appareil d'IRM 4 constitue un pôle Nord N, et que sa seconde face 22 constitue un pôle Sud S .
Dans l'exemple non limitatif décrit, la bobine plate 20 étant centrée sur l'axe longitudinal Z, le second champ magnétique B est également orienté sur l'axe Z mais son sens sur l'axe Z, montré par la seconde flèche 5, est contraire au premier sens 7 du premier champ Bn . Il en résulte, qu'en ajustant l'intensité du second champ B , on tend à compenser voire même à annuler le premier champ B,, au niveau particulièrement de la longueur sensible L2.
II est à remarquer que dans l'esprit de l'invention, le second champ magnétique B antagoniste pourrait également être produit de manière différente, par exemple par une ou des bobines (non représentées) disposées dans les moniteurs 15, 16 eux-mêmes, ou encore par un solénoïde (non représenté) de grande longueur qui serait disposé autour des moniteurs 15, 16 ou même autour de la console 10. Parmi ces différents moyens, la bobine plate 20 présente un avantage important en ce qu'elle est d'un encombrement réduit, et par suite présente une gêne négligeable. En effet, la bobine plate 20 peut avoir une section circulaire, ou carrée , et son plan peut être parallèle à celui de la vitre 12 et même appliqué contre cette dernière comme dans l'exemple non limitatif présenté à la figure 1, cette position de la bobine plate 20 étant particulièrement intéressante pour présenter un encombrement réduit ; mais la bobine plate 20 pourrait avoir, par rapport aux moniteurs 15,16, une position différente, telle que par exemple entourant les moniteurs 15,16 ou encore disposée de l'autre côté de ces derniers par rapport à l'appareil d'IRM 4.
Dans l'exemple non limitatif décrit, les moniteurs 15, 16 sont disposés le long de l'axe longitudinal Z de manière que la seconde longueur sensible L2 soit confondue ou sensiblement parallèle à l'axe longitudinal Z ; la bobine plate
20 étant elle-même centrée sur l'axe longitudinal Z et son plan étant perpendiculaire à ce dernier. Dans ces conditions, on peut rendre quasiment nul le champ magnétique sur la longueur sensible L2, de sorte qu'il est possible d'utiliser des moniteurs 15, 16 du type noir et blanc ou du type couleur, sans qu'il y ait la nécessité de placer ces moniteurs 15, 16 dans un boitier de blindage comme dans l'art antérieur.
En effet, en supposant que le champ intense BQ au niveau du centre 0 de la longueur d'intérêt L ait une valeur d'environ 5000 gauss, sa valeur sur l'axe Z à une distance D de l'ordre de 7 mètres est environ 10 gauss, c'est-à-dire que la longueur sensible L2 serait soumise à un champ magnétique de 10 gauss en l'absence de la bobine plate 20, ce qui rendrait impossible l'utilisation des moniteurs 15, 16 de type noir et blanc non munis de blindage, et tout à fait Impossible l'utilisation de moniteurs de type couleur avec ou sans blindage.
La figure 2 montre la bobine plate 20 et la console d'exploitation 10 vues par l'avant de la console d'exploitation
10, comme il est représenté sur la figure 1 par une troisième flèche 43. La figure 2 montre dans un premier plan la console d'exploitation 10, puis dans un second plan plus profond la bobine plate 20, et enfin dans un plan encore plus profond la cloison 11 qui comporte la vitre 12. La console d'exploitation
10 est portée au-dessus du sol 45 par un socle 46. La console d'exploitation 10 comporte différents organes de commande et de visualisation classiques (non représentés) , et comporte le premier et le second moniteurs 15, 16. Le premier moniteur 15 constitue le moniteur de dialogue susceptible de comporter un écran tactile, (non représenté) ; le second moniteur 16 disposé au-dessus du premier constitue le moniteur -image . Ces deux moniteurs 15, 16 pouvant chacun indifféremment, dans l'équipement d'IRM de l'invention, être du type noir et blanc ou du type couleur. L'ensemble de la surface 47 que présente les deux moniteurs 15, 16 parallèlement au plan de la bobine plate 20, est sensiblement centré sur le centre 26 de la bobine plate
20. Dans l'exemple non limitatif décrit, le centre 26 représente en outre l'axe longitudinal Z de l'appareil d'IRM 4 montré sur la figure 1.
La bobine plate 20 est constituée à partir d'un conducteur classique formant des spires 48 (représentées en traits pointillés) montées sur un cadre 31 en matériau amagnétique, en bois par exemple . Dans l'exemple non limitatif décrit, la section 39 de la bobine plate 20 donnée par la forme du cadre 31 est sensiblement carrée . Les côtés 50 du cadre ont une troisième longueur L3 de l'ordre de 2 mètres dans l'exemple non limitatif décrit, de sorte que la distance moyenne a entre le centre 26 de la bobine plate 20, et sa périphérie représentée par le cadre 31 est de l'ordre de 1 mètre, soit la moitié de la troisième longueur L3 des côtés 50.
En référence à nouveau à la figure 1, l'arrière 8 de la console 10 est de préférence très près de la seconde face 22 de la bobine plate 20, à quelques centimètres par exemple, de sorte que l'arrière des moniteurs 15, 16 en est très près également et peut éventuellement pénétrer dans la bobine plate 20, de manière par exemple à être au niveau du plan médian 27 de cette dernière ; la bobine plate 20 ayant une épaiseur E de quelques centimètres, 5 centimètres par exemple. Les moniteurs 15, 16 étant en général toujours à une même position dans la console 10, la console 10 et la bobine plate 20 constituent un ensemble qui peut avoir par rapport à l'appareil d'IRM 4 une position différente de celle représentée sur la figure 1, de manière à s'adapter par exemple à la situation de sites existants : ainsi par exemple, on peut éventuellement déplacer l'ensemble bobine plate 20-console 10 latéralement le long d'un axe 25 transversal à l'axe longitudinal Z, de sorte à s'adapter dans des configurations hospitalières où il n'est pas possible de disposer la console d'exploitation 10 face à l'aimant ou appareil d'IRM 4, mais ceci dans des limites relativement faibles de l'ordre de 0, 60 m de part et d'autre de l'axe longitudinal Z. On peut néanmoins déplacer beaucoup plus l'ensemble bobine plate 20-console 10 par rapport à l'axe longitudinal Z, à condition de l'orienter de manière que le plan de la bobine plate 20 soit sensiblement perpendiculaire à la direction locale du champ magnétique : cette disposition est montrée sur la figure 1 où la console d'exploitation 10 et la bobine plate 20 sont représentées en traits pointillés et repérées respectivement 10a et 20a, la bobine plate 20a étant perpendiculaire à une seconde direction locale U du champ magnétique intense Bfi. Dans tous les cas, la valeur du second champ magnétique B peut être ajustée pour compenser, voire même annuler, sur la longueur sensible L2, le champ magnétique intense BQ, en ajustant la valeur du courant qui circule dans les conducteurs (non représentés) de la bobine plate 20 ; cette dernière étant alimentée par une alimentation ajustable, en elle- même classique (non représentée) .
Selon une caractéristique de l'invention, la distance moyenne a entre le centre 26 et le cadre 31 est égale ou supérieure à la longueur sensible L2 présentée par les moniteurs 15, 16, de manière que la valeur du second champ B engendrée par la bobine plate 20 varie sur son axe de manière relativement faible . D'autre part, il est à remarquer en outre qu'en plaçant la bobine plate 20 entre l'appareil d'IRM 4 et les moniteurs 15, 16, l'éventuelle diminution de la valeur du second champ magnétique B le long de la longueur sensible L2 est sensiblement compensée par la diminution que présente la valeur du champ intense B sur la direction de l'axe Z quand on s'éloigne de l'appareil d'IRM 4. En effet, on constate que sur l'axe longitudinal Z, à distance D du centre O de l'appareil d'IRM 4 de l'ordre de 5, 5 m, le champ intense BQ a une valeur de 17 gauss, alors qu'à 5, 8 m, le champ intense BQ vaut environ 15 gauss . Par suite, en plaçant les moniteurs 15, 16, pour que la longueur sensible L2 soit sensiblement à l' opposée de l'appareil d'IRM 4, par rapport au plan médiant 26 de la bobine plate 20, on peut avec une bobine plate 20 dont le rayon ou distance moyenne a est égale ou supérieure à la longueur sensible L2, non seulement obtenir que le second champ B antagoniste varie de manière assez faible, mais obtenir aussi que cette variation soit compensée par la variation du premier champ intense B . u est à remarquer que pour un spécialiste en imagerie par résonance magnétique nucléaire , la solution de l'invention, au problème de l'utilisation des moniteurs soumis à un champ magnétique intense, peut surprendre et même inquiéter, du fait que pour ce spécialiste tout champ magnétique produit dans l'environnement d'un appareil d'IRM peut se superposer au champ intense BQ et risque d'en détruire l'homogénéité sur la première longueur d'intérêt L.
Mais les calculs prévoient et des essais ont montrés que le second champ B de compensation, produit par la bobine plate 20 à une distance D relativement faible du centre O de l'appareil d'IRM 4, n'apporte qu'une faible modification de la valeur du champ intense BQ sur la longueur d'intérêt L, cette modification de valeur n'entraînant en fonctionnement qu'un faible déplacement de la coupe centrale par rapport à l'origine, c'est-à-dire par rapport au centre O. Cette modification de la valeur du champ BQ est rattrapée lors de l'opération de calibration qui est classique pour un appareil d'IRM, et qui permet de redéfinir la position de la coupe centrale par rapport à l'origine. En effet, en considérant que la distance D est de 6,8 mètres entre la bobine plate 20 et le centre 0 de la longueur d'intérêt L, et que la bobine plate 20 a les caractéristiques suivantes données uniquement à titre d'exemple : le cadre 31 est un carré dont les côtés 50 ont une longueur L3 égale à 2a égale à 2 mètres, soit un carré de 2 x 2 m ;
- la bobine 20 comporte 100 spires parcourues par un courant de 16,5 ampères, soit 1650 ampères permettant d'obtenir la valeur du second champ B nécessaire à compenser le champ intense B_ sur la longueur sensible L2 ; la bobine plate 20 est centrée sur l'axe Z, c'est-à-dire pratiquement coaxiale à l'appareil d'IRM 4 ;
- dans ces conditions, le champ B produit par la bobine 20 sur son axe Z à une distance D est donnée par la formule suivante :
Figure imgf000012_0001
où μc est la perméabilité du vide, = 4 x lθ"7 ; I est le courant dans la bobine 20 ; a est la distance moyenne entre le centre 26 de la bobine et le cadre 31 ; D la distance depuis le centre 26 de la bobine plate 20. On trouve que pour une distance D = 0, c'est-à-dire au centre 26 de la bobine 20, le champ B est égal à 9,3 gauss. On trouve que pour une distance D = 6,8 mètres, c'est- à-dire au niveau du centre 0 de la longueur d'intérêt L, la valeur du second champ B de compensation est de 0,040 gauss, qui peut exiger d'être compensée par la calibration de l'appareil d'IRM 4, comme il a été expliqué ci-dessus. En ce qui concerne un éventuel défaut de premier ordre de l'homogénéité du champ BQ, mesuré par exemple selon l'axe longitudinal Z, qui peut être apporté par le second champ de compensation B , sa valeur est donnée par la dérivée du second champ B sur l'axe Z, déterminée par la seconde formule qui suit :
T/m
Figure imgf000013_0001
-7 où ( 0 = 4 l .10 ; 1 = 1650 ampères ; a est la distance moyenne égale à 1 ; D est de 6, 8 mètres et correpond à la distance entre le centre de la bobine plate et le centre de la longueur d'intérêt ; T/m = tesla par mètre .
On trouve , _,c = 17. 10 T/m : ce résultat indique du que la variation de champ sur un mètre au niveau du centre O de l'appareil d'IRM 4 est de 0, 017 gauss de sorte que le gradient de champ apporté sur l'axe Z est inférieur à une partie par million ou 1 p. p. m. dans un appareil d'IRM courant, donc inférieur à la limite des possibilités de mesure et peut être négligé .
Si la bobine plate 20 est encore plus près du centre O de l'appareil d'IRM 4, le gradient de champ ou inhomogénéïté apporte pour le second champ B sur la longueur d'intérêt L peut être supérieur à 1 p . p. m. Dans ce cas, cette inhomogénéïté peut être aisément compensée par un réglage du courant d'offset d'une bobine de gradient.
Il est en effet connu que les appareils d'IRM comportent de manière classique, en plus d'une bobine qui produit le champ intense BQ , des bobines de gradients qui ont pour fonction de créer un gradient de champ selon trois axes orthogonaux, dont l'un est l'axe longitudinal Z. Ces bobines de gradient sont généralement montées autour du cylindre que constitue l'appareil d'IRM, d'une manière connue ; une unique bobine de gradient 40 destinée à agir selon l'axe longitudinal Z étant représentée sur la figure 1 pour plus de clarté de cette dernière .
Les gradients de champ ne sont établis que durant une phase de l'examen, de sorte qu'ils sont établis selon une impulsion. En appliquant à une ou plusieurs de ces bobines de gradient un courant de manière continue, appelé courant d'offset, auquel peuvent se superposer les impulsions, on peut corriger des inhomogénéïtés du premier ordre du champ intense BQ, par un réglage approprié de ce courant, de sorte que chacune de ces bobines de gradient peut constituer un moyen pour compenser une inhomogénéïté du champ BQ engendrée dans l'appareil d'IRM 4 par la bobine plate 20. Ainsi, en reprenant l'exemple non limitatif décrit où la bobine plate 20 est perpendiculaire à l'axe longitudinal Z et centrée sur ce dernier, il est possible d'utiliser la bobine de gradient 40 et de lui appliquer un courant d'offset qui permet de corriger les défauts d'homogénéité du premier ordre du champ Bn selon l'axe Z, y compris ceux engendrés par le fonctionnement de la bobine plate 20. Cette description constitue un exemple non litmitatif, montrant comment on peut soustraire des Instruments à l'action d'un champ magnétique intense, notamment des instruments du type comportant un tube cathodique. L*inven.tïon est particulièrement intéressante dans le cadre d'une installation d'IRM de diagnostic, mais peut s'appliquer également pour protéger des instruments dans toutes installations utilisant un champ magnétique intense.

Claims

REVENDICATIONS
1. Installation d'imagerie par résonance magnétique nucléaire, comportant un appareil (4) produisant un champ magnétique intense (BQ) , l' appareil (4) étant situé à une distance (D) donnée d'au moins un instrument (15, 16) à protéger du champ magnétique intense (B„) , le champ magnétique intense (BQ) ayant un sens (7) donné au niveau de l'instrument (15, 16) , caractérisé en ce qu'il comporte des moyens (20) pour produire un second champ magnétique (B ) ayant un second sens (5) sensiblement contraire au sens (7) du premier champ magnétique intense (BQ) afin de tendre à annuler le champ magnétique (BO) au niveau de l'instrument (15, 16) .
2. Installation selon la revendication 1, caractérisée en ce que l'instrument (15, 16) est un moniteur du type à tube cathodique .
3. Installation selon la revendication 2, caractérisée en ce que le moniteur (15, 16) est du type moniteur-couleur.
4. Installation selon la revendication 1, caractérisée en ce que les moyens (20) pour produire un second champ magnétique (B ) comportent une bobine (20) du type bobine plate .
5. Installation selon la revendication 4 , l'instrument (15, 16) ayant une longueur (L2) sensible au champ magnétique, caractérisée en ce qu'une distance moyenne (a) entre un centre (26) de la bobine plate (24) et une partie périphérique (31) de la bobine plate (20) est égale ou supérieure à la longueur sensible (L2) .
6. Installation selon la revendication 4, caractérisée en ce que le plan de la bobine plate (20) est sensiblement perpendiculaire à une direction (Z, U) du champ magnétique intense (BQ) au niveau de l'instrument (15, 16) .
7. Installation selon la revendication 4, caractérisée en ce que l'instrument (15, 16) est sensiblement centré sur un axe (Z) de la bobine plate (20) .
8. Installation selon la revendication 5, caractérisée en ce que la bobine plate (20) est disposée sensiblement entre l'appareil (4) et la longueur sensible (L2) .
9. Installation selon l'une des revendications 5, ou 6, ou 7, caractérisée en ce que la bobine plate (20) a une section sensiblement carrée.
10. Installation selon la revendication 6, caractérisée en ce qu'une première direction (Z) du champ magnétique intense (BQ) est confondue avec l'axe longitudinal (Z) de l'appareil (4) , et en ce que le plan de la bobine plate (20) est sensiblement centré sur ledit axe longitudinal (Z)
11. Installation selon la revendication 1, caractérisée en ce qu'elle comporte en outre des moyens (40) pour compenser une inhomogénéïté du champ intense (BQ) engendrée dans l'appareil (4) par le second champ magnétique
(Bc)
PCT/FR1987/000449 1986-11-14 1987-11-13 Installation d'imagerie par resonance magnetique nucleaire WO1988003646A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8615867A FR2606624A1 (fr) 1986-11-14 1986-11-14 Installation d'imagerie par resonance magnetique nucleaire
FR86/15867 1986-11-14

Publications (1)

Publication Number Publication Date
WO1988003646A1 true WO1988003646A1 (fr) 1988-05-19

Family

ID=9340820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1987/000449 WO1988003646A1 (fr) 1986-11-14 1987-11-13 Installation d'imagerie par resonance magnetique nucleaire

Country Status (6)

Country Link
US (1) US5029287A (fr)
EP (1) EP0324797A1 (fr)
JP (1) JPH02500957A (fr)
CA (1) CA1287106C (fr)
FR (1) FR2606624A1 (fr)
WO (1) WO1988003646A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4101481C2 (de) * 1991-01-19 1994-01-13 Bruker Analytische Messtechnik Anordnung zum Kompensieren externer Magnetfeldstörungen bei einem Kernresonanzspektrometer mit supraleitender Magnetspule
JPH0669027A (ja) * 1991-10-24 1994-03-11 Hitachi Ltd 磁場発生装置
JPH0626542B2 (ja) * 1992-02-10 1994-04-13 株式会社日立メディコ 磁気共鳴イメージング装置
DE4217122A1 (de) * 1992-05-23 1993-11-25 Mahle Gmbh Wickelbarer Aluminiumdraht, insbesondere zur Verwendung als Schweißdraht
JPH1020974A (ja) 1996-07-03 1998-01-23 Fujitsu Ltd バス構造及び入出力バッファ
JP2003180646A (ja) * 2001-12-19 2003-07-02 Hitachi High-Technologies Corp 生体磁気計測システム
US6960914B2 (en) * 2003-06-27 2005-11-01 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for imaging systems
US7116535B2 (en) * 2004-04-16 2006-10-03 General Electric Company Methods and apparatus for protecting an MR imaging system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2146071A1 (de) * 1971-09-15 1973-03-22 Foerster Inst Dr Friedrich Anordnung zum erzielen eines von magnetischen stoerfeldern freien raumes
EP0039502A1 (fr) * 1980-05-06 1981-11-11 Siemens Aktiengesellschaft Dispositif pour la compensation de champs perturbateurs magnétiques agissant sur des tubes d'image couleurs
EP0167243A2 (fr) * 1984-07-06 1986-01-08 The Board Of Trustees Of The Leland Stanford Junior University Structure magnétique

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3389333A (en) * 1964-02-10 1968-06-18 Sperry Rand Corp Control system for maintaining a desired magnetic field in a given space
JPS6032304B2 (ja) * 1978-02-17 1985-07-27 日本電気株式会社 カラ−受像管
DE3123493A1 (de) * 1981-06-13 1982-12-30 Bruker Analytische Meßtechnik GmbH, 7512 Rheinstetten Elektromagnet fuer die nmr-tomographie
NL8203621A (nl) * 1982-09-20 1984-04-16 Philips Nv Kernspintomograaf met faraday kooi.
US4585994A (en) * 1983-07-15 1986-04-29 Henry Ford Hospital Nuclear magnetic resonance imaging system
US4587504A (en) * 1983-11-11 1986-05-06 Oxford Magnet Technology Limited Magnet assembly for use in NMR apparatus
US4613820A (en) * 1984-04-06 1986-09-23 General Electric Company RF shielded room for NMR imaging system
US4595899A (en) * 1984-07-06 1986-06-17 The Board Of Trustees Of The Leland Stanford Junior University Magnetic structure for NMR applications and the like
EP0299325B1 (fr) * 1987-07-17 1991-12-18 Siemens Aktiengesellschaft Aimant supraconducteur activement blindé d'un appareil tomographique à spin nucléaire
US4724412A (en) * 1987-08-03 1988-02-09 General Electric Company Method of determining coil arrangement of an actively shielded magnetic resonance magnet
US4864192A (en) * 1987-11-09 1989-09-05 General Electric Company CRT magnetic field compensation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2146071A1 (de) * 1971-09-15 1973-03-22 Foerster Inst Dr Friedrich Anordnung zum erzielen eines von magnetischen stoerfeldern freien raumes
EP0039502A1 (fr) * 1980-05-06 1981-11-11 Siemens Aktiengesellschaft Dispositif pour la compensation de champs perturbateurs magnétiques agissant sur des tubes d'image couleurs
EP0167243A2 (fr) * 1984-07-06 1986-01-08 The Board Of Trustees Of The Leland Stanford Junior University Structure magnétique

Also Published As

Publication number Publication date
CA1287106C (fr) 1991-07-30
US5029287A (en) 1991-07-02
JPH02500957A (ja) 1990-04-05
EP0324797A1 (fr) 1989-07-26
FR2606624A1 (fr) 1988-05-20

Similar Documents

Publication Publication Date Title
EP0695139B1 (fr) Dispositif capteur pour electrocardiogramme
EP0315631B1 (fr) Fantome de machine de rmn et procede de mesure des caracteristiques d'un champ magnetique utilisant un tel fantome
EP0346333B1 (fr) Dispositif correcteur par elements magnetiques d'inhomogeneites du champ magnetique dans un aimant
EP2776853B1 (fr) Dispositif de mesure de courants dans les conducteurs d'un cable gaine d'un reseau polyphase
EP0170558A1 (fr) Dispositif de création et/ou de réception d'un champ magnétique alternatif pour appareil exploitant la résonance magnétique nucléaire
WO1988003646A1 (fr) Installation d'imagerie par resonance magnetique nucleaire
EP1752794A1 (fr) Detecteur d'objets non autorises dans une zone a acces protege
EP0320347A1 (fr) Dispositif de surveillance du patient dans un appareil d'examen médical
EP0170551A1 (fr) Dispositif radiologique à asservissement en position de foyer
FR2911212A1 (fr) Detecteur de produits non autorises dans une zone a acces protege
WO1989003031A1 (fr) Systeme de bobines de gradient pour machine de rmn
EP2649464A1 (fr) Procédé de caractérisation d'échantillon solide par spectrométrie rmn et appareil pour la mise en oeuvre du procédé
EP0941501B1 (fr) Appareil de radiographie avec une cassette de prise d'images
EP1952171A2 (fr) Machine de rmn a bobines de gradient solenoidales incorporees dans des tubes
CA2157334A1 (fr) Procede et dispositif pour tester l'efficacite d'un paratonnerre
CA2044756A1 (fr) Magnetometre directionnel a resonance
FR2769370A1 (fr) Procede et appareil pour le test d'un echantillon
EP0964260A1 (fr) Dispositif de mesure des composantes d'un champ magnétique à l'aide d'un magnétomètre scalaire
FR2660074A1 (fr) Magnetometre a blindage perfectionne.
FR2925702A1 (fr) Vehicule d'inspection teleguide pour la localisation et la mesure d'activite de sources radioactives
EP0888520A1 (fr) Procede et dispositif pour mesurer un ecart axial dans un systeme d'alignement a fil tendu
EP0246137B1 (fr) Bloc correcteur d'homogénéité de champ magnétique, et aimant muni de tels blocs
WO2019145518A1 (fr) Systeme de bobines pour utilisation en resonance magnetique nucleaire et imagerie par resonance magnetique nucleaire
EP0364645A1 (fr) Dynamomètre à tarage électromagnétique
EP3846595A1 (fr) Détecteur de position d'un faisceau de particules chargées traversant une enceinte

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DK JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1987907622

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1987907622

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1987907622

Country of ref document: EP