[go: up one dir, main page]

WO1987002946A1 - Detecteur d'acceleration - Google Patents

Detecteur d'acceleration Download PDF

Info

Publication number
WO1987002946A1
WO1987002946A1 PCT/DE1986/000420 DE8600420W WO8702946A1 WO 1987002946 A1 WO1987002946 A1 WO 1987002946A1 DE 8600420 W DE8600420 W DE 8600420W WO 8702946 A1 WO8702946 A1 WO 8702946A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation source
accelerometer
accelerometer according
disc
cylinder
Prior art date
Application number
PCT/DE1986/000420
Other languages
German (de)
English (en)
Inventor
Frieder Heintz
Peter Knoll
Winfried KÖNIG
Franz Pachner
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO1987002946A1 publication Critical patent/WO1987002946A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/093Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up

Definitions

  • the invention is based on an accelerometer according to the preamble of the main claim.
  • an accelerometer is already known in which a seismic mass is arranged in the center of a pan with rising flanks. If the seismic mass is deflected from its rest position either when a predetermined acceleration threshold is exceeded or when the motor vehicle tilts by a predetermined angle, it executes a lifting movement. With the aid of an optical method, this stroke movement can be used to generate an electrical control signal which is fed to an electronic switching device for evaluation. This makes it possible to trigger safety devices for the occupants of a motor vehicle depending on the predetermined acceleration threshold.
  • these accelerometers have the disadvantage that they can only be used within a very small acceleration range.
  • the accelerometer according to the invention with the characterizing features of the main claim has the advantage that it is simple and robust. In the idle state, its functionality can be checked continuously, so that its susceptibility to failure and probability of failure is low.
  • the accelerometer also works largely without wear. It is very important that the acceleration threshold of the acceleration sensor can be selected within a very large acceleration range depending on the dimensioning of the seismic mass.
  • the same housing and the same electronic evaluation circuit can be used for all different response thresholds.
  • the geometry of the seismic mass alone has to be changed. Since no changes to the outer shape of the housing are necessary, the acceleration sensor can be used even in series production in various motor vehicles; become. In addition, it can be inexpensive with a long service life, functional reliability and manufacturing reliability manufacture and build so small that it is suitable for use in series automobiles.
  • a signal must be generated that is used, for example, to control an automatic belt blocking device.
  • the accelerometer should also recognize the risk of an impending vehicle rollover and fold out the roll bar in good time, for example in convertible vehicles.
  • the accelerometer is expected to respond extremely quickly. This rapid response is equivalent to a very small shift in the center of gravity, that is, for example, a tilting or lifting movement of the seismic mass. For design reasons, this shift should be limited to about 0.5 mm. In particular, with 0, 4 g deviating speed values, problems have arisen with this design. In FIG.
  • 1, 10 denotes the approximately cup-shaped housing of an acceleration sensor 11, the interior 12 of which has two sections 13, 14 with different diameters.
  • a sleeve-shaped insert part 15 is arranged, which has a constantly increasing flank angle ⁇ on its inner wall.
  • an annular groove 16 is formed in the inner wall at the end of the insert part 15 facing the section 13. The length of the insert part 15 is dimensioned such that the annular groove 16 is located approximately in the middle of the interior 12.
  • the interior 12 is closed on its underside by a disk 17 with a central bore 18 on which a cylinder 20 is located centrally in the interior 12; this serves as a seismic mass. It has a thin, continuous longitudinal bore 21 which is coaxial with the bore 13 of the disc 17. Furthermore, the cylinder 20 has a cylindrical receptacle 22 on its end face facing the disk 17. Depending on the size or position of the recess 22, the position of the center of gravity of the cylinder 20 is changed. This makes it possible to determine accelerations smaller than 0.4 g.
  • a bore 25 is formed in the housing diametrically opposite the bore 18 of the disk 17, in the area of which there is an optical receiver 26.
  • a radiation source 27 is arranged adjacent to the disk 17 and in the region of the bore 13, which radiation source is in operative connection with the receiver 26 via the longitudinal opening 21 in the cylinder 20.
  • the radiation source 27 and the receiver 26 have a semiconductor crystal, not shown, for example made of gallium arsenide. If the cylinder 20 is at rest, the radiation from the radiation source 27 hits the receiver 26 through the longitudinal bore 21 of the cylinder 20 and the bore 25. The radiation from the semiconductor crystal of the radiation source 27 is imaged precisely on the semiconductor crystal of the receiver 26. The photo current thus generated in the receiver 26 is fed to an electronic evaluation circuit (not shown).
  • the cylinder 20 If the cylinder 20 is moved (tilted) out of its rest position by an acceleration, the radiation from the radiation source 27 no longer completely impinges on the receiver 26. If the cylinder 20 tilts further, no more radiation hits the receiver 26. Photo stream is no longer generated. The downstream evaluation electronics now triggers the safety devices.
  • the tilt path of the cylinder 20 is limited by the geometry of the housing 10 surrounding it. The time from which the cylinder 20 tilts is tuned to the desired acceleration threshold. It depends on the geometry of the cylinder and in particular the position of its center of gravity.
  • the exemplary embodiment according to FIG. 2 differs from that according to FIG. 1 by the structural design of the seismic mass, that is to say of the cylinder 20.
  • the acceleration threshold at which these safety devices are triggered should, if possible, be set at high acceleration values, for example at 2 g.
  • the center of gravity of the seismic mass must be as deep as possible, ie as close as possible to the disk 17.
  • the seismic mass is a body 30 which has a T-shaped profile in cross section and rests with its transverse part 31 on the disk 17. The thinner the cross member 31, the deeper lies the center of gravity of the body 30.
  • the mode of operation of the acceleration sensor 11 remains unchanged and thus corresponds to that of the exemplary embodiment according to FIG. 1.
  • the housing 10 and the electronic evaluation circuit used can remain completely the same. Different acceleration thresholds are possible solely by changing the shape of the seismic mass.
  • the seismic mass is designed as a disk 35, which is arranged in the annular groove 16 of the insert part 15 and rests on the shoulder formed by the annular groove.
  • the disc 35 has an inclined lateral surface.
  • the disk 35 has a central, continuous bore 36, in which a tube 37 is arranged, which has approximately the length of the interior 12. Both sections 38, 39 of the tube 37 projecting beyond the end faces of the disk 35 have the same length, so that no additional leverage occurs when the disk 35 is tilted by the tube 37.
  • the disk 35 is located approximately in the middle between the radiation source 27 and the receiver 26.
  • the embodiment according to FIG. 3 allows the acceleration threshold to be raised to approx.
  • 4 g which are protective devices, in particular for triggering passenger, e.g. Hazard warning flashers, needed in the event of an impact. Since the seismic mass no longer rests on the disk 17, the acceleration sensor 11 must be tilted more strongly in order to move the seismic mass out of its rest position. This makes it possible to raise the acceleration threshold to 4 g, but again the same housing and the same electronic evaluation circuit can be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Dans un détecteur de l'accélération (11) utile en particulier pour déclencher des dispositifs de protection des passagers d'un véhicule lors d'un accident, l'accélération est convertie à l'aide d'un procédé optique en un signal électriquement lisible. A l'intérieur (12) d'un boîtier est agencée une masse sismique (20) formée de sorte que la position de son centre de gravité soit adaptée au seuil d'accélération. Ce détecteur de l'accélération (11) a une structure particulièrement simple et robuste et présente une sensibilité particulièrement élevée.
PCT/DE1986/000420 1985-11-19 1986-10-18 Detecteur d'acceleration WO1987002946A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3540947.9 1985-11-19
DE19853540947 DE3540947A1 (de) 1985-11-19 1985-11-19 Beschleunigungsaufnehmer

Publications (1)

Publication Number Publication Date
WO1987002946A1 true WO1987002946A1 (fr) 1987-05-21

Family

ID=6286346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1986/000420 WO1987002946A1 (fr) 1985-11-19 1986-10-18 Detecteur d'acceleration

Country Status (3)

Country Link
EP (1) EP0245316A1 (fr)
DE (1) DE3540947A1 (fr)
WO (1) WO1987002946A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3819759C1 (fr) * 1988-06-10 1990-02-15 Gebr. Schmidt Fabrik Fuer Feinmechanik, 7742 St Georgen, De
DE4036224A1 (de) * 1990-11-14 1992-05-21 Bosch Gmbh Robert Sensor
DE4036567A1 (de) * 1990-11-16 1992-05-21 Bosch Gmbh Robert Sensor
DE4129801A1 (de) * 1991-09-07 1993-03-11 Bosch Gmbh Robert Sensor zum selbsttaetigen ausloesen von sicherheitseinrichtungen in kraftfahrzeugen
DE4209272A1 (de) * 1992-03-21 1993-09-23 Bosch Gmbh Robert Sensor
DE19825298C2 (de) * 1998-06-05 2003-02-13 Fraunhofer Ges Forschung Verfahren zur Herstellung einer Sensoranordnung und Sensoranordnung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2341637A1 (de) * 1973-08-17 1975-02-27 Janssens Stossabhaengige automatische zuendabschaltung fuer kraftfahrzeuge
US3967135A (en) * 1974-04-11 1976-06-29 Eaton Corporation Acceleration change sensor
FR2316977A1 (fr) * 1975-07-07 1977-02-04 Repa Feinstanzwerk Gmbh Dispositif de verrouillage d'urgence pour enrouleurs de ceintures de securite
WO1985001217A1 (fr) * 1983-08-08 1985-03-28 Hanafi Ameur Dispositif pour ceintures de securite
WO1985004627A1 (fr) * 1984-04-13 1985-10-24 Autoliv Development Aktiebolag Dispositif pour detecter la position d'un corps d'inertie mobile dans un systeme de securite pour vehicule
US4592235A (en) * 1983-11-18 1986-06-03 Fink Lawrence E Optical accelerometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2341637A1 (de) * 1973-08-17 1975-02-27 Janssens Stossabhaengige automatische zuendabschaltung fuer kraftfahrzeuge
US3967135A (en) * 1974-04-11 1976-06-29 Eaton Corporation Acceleration change sensor
FR2316977A1 (fr) * 1975-07-07 1977-02-04 Repa Feinstanzwerk Gmbh Dispositif de verrouillage d'urgence pour enrouleurs de ceintures de securite
WO1985001217A1 (fr) * 1983-08-08 1985-03-28 Hanafi Ameur Dispositif pour ceintures de securite
US4592235A (en) * 1983-11-18 1986-06-03 Fink Lawrence E Optical accelerometer
WO1985004627A1 (fr) * 1984-04-13 1985-10-24 Autoliv Development Aktiebolag Dispositif pour detecter la position d'un corps d'inertie mobile dans un systeme de securite pour vehicule

Also Published As

Publication number Publication date
EP0245316A1 (fr) 1987-11-19
DE3540947A1 (de) 1987-05-21

Similar Documents

Publication Publication Date Title
DE2228683C2 (de) Beschleunigungs- und verzögerungsabhängige, elektrische Schaltvorrichtung zum Einbau in Fahrzeuge
EP0261152B1 (fr) Dispositif de liberation automatique de dispositifs de protection de passagers dans le cas d'un accident
DE4005598C2 (de) Schutzverfahren für Fahrzeuginsassen und Einrichtung zur Durchführung des Verfahrens
DE4236328C1 (en) Acceleration and inclination sensor for vehicle automatic transmission - detects position and deformation of freely movable mercury drop within arcuate hollow space contg. contact electrodes
DE3231800A1 (de) Sensor
DE102015109160A1 (de) Fahrerassistenzsystem für ein Kraftfahrzeug, Kraftfahrzeug sowie Verfahren
DE3728382A1 (de) Vorrichtung zum selbsttaetigen ausloesen von insassenschutzvorrichtungen bei einem unfall
DE4114992C1 (en) Acceleration and inclination sensor for motor vehicle - has contact piece(s) in cavity responding to change in vertical extension of main contact
EP1383663B1 (fr) Siege de vehicule
DE19650629A1 (de) Verfahren zum Messen der Neigung eines Fahrzeugs
WO1987002946A1 (fr) Detecteur d'acceleration
EP1140564A1 (fr) Systeme de commande pour moyens de protection pour passagers d'une automobile
DE3816588C2 (fr)
EP0349730B1 (fr) Détecteur d'accélération pour véhicules
DE4436379A1 (de) Sensoranordnung zur Neigungsdetektierung
EP0546451A1 (fr) Contacteur mécanique sensible aux mouvements d'un véhicule
DE3540948C2 (fr)
EP0585424B1 (fr) Capteur
DE4101060C2 (de) Neigungssensor
WO1987005569A1 (fr) Detecteur pour la liberation automatique de dispositifs de protection de passagers dans des vehicules
DE19547608B4 (de) Sensoranordnung
DE2844646A1 (de) Beschleunigungsaufnehmer, insbesondere als sensor fuer sicherheitseinrichtungen in personenbefoerderungsmitteln
DE3513113C2 (de) Sicherheitsgurt-Rückhaltevorrichtung
DE29508086U1 (de) Sensoranordnung
WO2003016109A1 (fr) Dispositif de detection de mouvement d'automobile

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE