[go: up one dir, main page]

WO1984003147A1 - Method and device for measuring the content of conducting particles - Google Patents

Method and device for measuring the content of conducting particles Download PDF

Info

Publication number
WO1984003147A1
WO1984003147A1 PCT/DE1984/000015 DE8400015W WO8403147A1 WO 1984003147 A1 WO1984003147 A1 WO 1984003147A1 DE 8400015 W DE8400015 W DE 8400015W WO 8403147 A1 WO8403147 A1 WO 8403147A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
measuring
content
voltage
conductivity
Prior art date
Application number
PCT/DE1984/000015
Other languages
German (de)
French (fr)
Inventor
Werner Gruenwald
Gerhard Holfelder
La Prieta Claudio De
Original Assignee
Bosch Gmbh Robert
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Gmbh Robert filed Critical Bosch Gmbh Robert
Publication of WO1984003147A1 publication Critical patent/WO1984003147A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/92Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating breakdown voltage

Definitions

  • the invention relates to a method for measuring the content of conductive particles in gases, in particular in exhaust gases from fossil fuels / such as the soot concentration in the exhaust gas from internal combustion engines, oil-fired systems and the like. Like., The type mentioned in the preamble of claim 1.
  • OMPI Estimate the soot concentration. This method has therefore only been used for periodic monitoring tasks in which it is to be determined whether the soot concentration has exceeded a still permissible value over a longer period of time or not. This method is not suitable for an exact measurement of the soot concentration, as is required, for example, for engine adjustment in diesel engines.
  • the method according to the invention with the characterizing features of claim 1 has, in contrast, substantial advantage without long set-up times exact information 'on Pelle ⁇ , for example, the carbon black concentration to supply the exhaust gas. Constant installation and removal of the sensor in or out of the exhaust pipe is not necessary. The sensor can be installed securely and in places that are not easily accessible in the exhaust pipe. A cleaning of the sensor from the particle deposit only needs to be carried out after several measurements and, if necessary, can be carried out without dismantling, by applying a high voltage to the electrodes, which burns off the particle deposit on the insulating support and thus burns off the leakage current surface.
  • the measuring method according to the invention delivers very good results, since the conductivity can be measured very precisely. Even small soot concentrations in the exhaust gas can be determined quantitatively from the change in conductivity.
  • the electrodes are arranged at a small distance of less than 1 mm from one another on a non-conductive ceramic plate.
  • a voltage of the order of 15 - 100 V is applied to their electrodes.
  • Soot which is deposited on the surface between the electrodes, causes a current to flow due to the electrical conductivity of the particle deposit.
  • the current represents a measure of the amount of precipitation occurring per time and thus allows an exact indication of the particle content or the soot concentration in the exhaust gas.
  • a sliding spark gap is formed between the two electrodes which are connected to high voltage and has a certain ignition or breakdown voltage. If larger quantities of particles are deposited on the ceramic substrate, the ignition voltage is reduced. The sliding spark gap breaks through at a low ignition voltage, the stronger the particle or soot accumulation per unit of time. The ignition or breakdown voltage is therefore a measure of the particle content or the soot concentration in the exhaust gas. If the particle content in the exhaust gas decreases again, the surface of the ceramic substrate burns freely in a short time, which is less than 10 s, to the extent that it corresponds to the degree of particle concentration of the exhaust gas.
  • the device schematically shown in FIG. 1 for measuring the soot concentration in exhaust gases from a diesel engine has a sensor 10 which is exposed to the exhaust gas.
  • This sensor 10 is arranged in the exhaust pipe of the diesel engine so that, if possible, only one of the two large surfaces can be sooted.
  • the sensor 10 has an insulating carrier 11, which is designed here as a ceramic plate 12, and two electrodes 13, 14 arranged on the insulating carrier 11.
  • the electrodes 13, 14 are arranged on the same surface 15 of the ceramic plate 12 and are only a short distance apart of less than 1 mm.
  • the two electrodes 13, 14 are connected to a voltage source 16, which supplies a direct or alternating voltage in the order of 15-100 V.
  • a current meter 18 is switched on in the circuit 17 between the voltage source 16 and the electrodes 13, 14. r- 5 -
  • a leakage current surface 19 is formed between the two electrodes 13, 14 on the surface 15 of the insulating support 11 or the ceramic plate 12. With a clean surface and an applied voltage of 10-100 V, the conductivity of this leakage current surface 19 is essentially zero. If soot is deposited on the leakage current surface 19 between the two electrodes 13, 14, a current flows in the circuit 17 due to the electrical conductivity of the soot and is measured in the ammeter 18. The current is therefore a measure of the amount of soot produced per unit of time. The more soot deposits, the more the conductivity of the leakage current surface 19 increases and the current increases. The soot concentration in the exhaust gas can thus be determined from the current increase per unit of time.
  • the . Device schematically shown in FIG. 2 for measuring the soot concentration in the exhaust gas of a diesel engine also has a sensor 20 which is exposed to the exhaust gas and which is in turn arranged in the exhaust pipe of the engine.
  • An electrode 23 is located on a disk-shaped ceramic substrate 22 as an insulating carrier 21 of the sensor 20. arranged centrally, while the other electrode 24 is formed by a metal plate 2.6, which has a much larger dimension than the ceramic substrate 22 and carries the latter.
  • the two electrodes 23 and 24 are connected to an adjustable high-voltage source 27, which can be formed, for example, by a rotary transformer 28 and an AC generator 29.
  • a parallel voltmeter 30 is connected in parallel to the two electrodes 23 and 24, which detects the ignition or breakdown voltage between the electrodes 23 and 24 - 6 -
  • sliding spark gap 31 measures.
  • the sliding spark gap 31 is symbolized in FIG. 2 by schematically represented flashes.
  • the ignition voltage required for the spark gap to be ionized and consequently to break through is relatively high. If, on the other hand, electrically conductive soot particles or droplets deposit on the ceramic substrate 22, the ignition voltage required to ignite the spark gap 31 is reduced. This ignition voltage is held by the voltmeter 30. Depending on the amount of soot, the ignition voltage of the spark gap 31 is lowered to different degrees. The ignition voltage is thus a measure of the amount of soot deposited on the ceramic substrate 22 and thus a measure of the soot content of the exhaust gas. If the soot content in the exhaust gas decreases, the surface burns again in a short time, which is less than 10 s, to the extent that it corresponds to the current degree of sooting of the exhaust gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Method for measuring the content of particles in gas, for example the concentration of carbon black in exhaust gas from internal combustion engines and the like, wherein in order to simplify the measuring process and improve the accuracy of the measurements, there are used two electrodes arranged on an insulating support at a certain interval as a detector of the precipitation of particles deposited. The conductivity of the leakage current surface between the electrodes is measured and the particle content may be determined therefrom. It is possible to detect a conductivity change by measuring the current for the firing voltage in a klydonograph.

Description

Verfahren und Vorrichtung zur Messung des Gehalts an leitfähiqen Partikeln in GasenMethod and device for measuring the content of conductive particles in gases
Stand der TechnikState of the art
Die Erfindung betrifft ein Verfahren zur Messung des Gehalts an leitfähigen Partikeln in Gasen, insbesondere in Abgasen fossiler Brennstoffe/ wie der Rußkonzentration im Abgas von Brennkraftmaschi¬ nen, Olfeuerungsanlagen u. dgl., der im Oberbegriff des Anspruchs 1 genannten Gattung.The invention relates to a method for measuring the content of conductive particles in gases, in particular in exhaust gases from fossil fuels / such as the soot concentration in the exhaust gas from internal combustion engines, oil-fired systems and the like. Like., The type mentioned in the preamble of claim 1.
Bei einem bekannten Verfahren zur Erfassung der Ru߬ konzentration im Abgas einer Brennkraftmaschine oder einer Ölfeuerungsanlage wird der Schwärzungsgrad eines vom Abgas durchströmten Filters für die Bestimmung des Rußgehalts herangezogen. Ein solches Verfahren erfordert bei jedem Meßvorgang den Ausbau des Fil¬ ters, eine vergleichende Betrachtung und wieder den Einbau des gereinigten oder eines neuen Filters. Eine solche Prozedur ist sehr umständlich und zeitraubend. Außerdem läßt der Sichtvergleich nur eine sehr ungenaueIn a known method for detecting the soot concentration in the exhaust gas of an internal combustion engine or an oil combustion system, the degree of blackening of a filter through which the exhaust gas flows is used to determine the soot content. Such a method requires the removal of the filter, a comparative analysis and the reinstallation of the cleaned or a new filter for each measurement process. Such a procedure is very cumbersome and time consuming. In addition, the visual comparison leaves only a very imprecise one
OMPI Schätzung der Rußkonzentration zu. Dieses Verfahren hat daher nur für periodische Überwachungsaufgaben Verwendung gefunden, bei denen festgestellt werden soll, ob über einen längeren Zeitraum hinweg die Rußkonzentration einen noch zulässigen Wert über¬ schritten hat oder nicht. Für eine exakte Messung der Rußkonzentration, wie sie z.B. für die Motor¬ einstellung bei Dieselmotoren erforderlich ist, ist dieses Verfahren nicht geeignet.OMPI Estimate the soot concentration. This method has therefore only been used for periodic monitoring tasks in which it is to be determined whether the soot concentration has exceeded a still permissible value over a longer period of time or not. This method is not suitable for an exact measurement of the soot concentration, as is required, for example, for engine adjustment in diesel engines.
Vorteile der ErfindungAdvantages of the invention
Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, ohne lange Rüstzeiten exakte Angaben'über den Partikel¬ gehalt, z.B. der Rußkonzentration, im Abgas zu liefern. Ein ständiges Ein- und Ausbauen des Sensors in das oder aus dem Abgasrohr ist nicht erforderlich. Der Sensor kann fest und auch an wenig leicht zugänglich Stellen im Abgasrohr montiert werden. Ein Reinigen des Sensors vom Partikelniederschlag braucht erst nach mehreren Messung vorgenommen zu werden und kann erforderlichenfalls ohne Ausbau durchgeführt werden, indem an die Elektroden eine Hochspannung gelegt wird, die ein Abbrennen des Partikelniederschlags auf dem Isolierträger und damit ein Freibrennen der Kriechstromfläche bewirkt. Das erfindungsgemäße Me߬ verfahren liefert sehr gute Ergebnisse, da die Leit¬ fähigkeit sehr exakt gemessen werden kann. Schon geringe Rußkonzentrationen im Abgas können mengen¬ mäßig aus der Änderung der Leitfähigkeit bestimmt werden.The method according to the invention with the characterizing features of claim 1 has, in contrast, substantial advantage without long set-up times exact information 'on Partikel¬, for example, the carbon black concentration to supply the exhaust gas. Constant installation and removal of the sensor in or out of the exhaust pipe is not necessary. The sensor can be installed securely and in places that are not easily accessible in the exhaust pipe. A cleaning of the sensor from the particle deposit only needs to be carried out after several measurements and, if necessary, can be carried out without dismantling, by applying a high voltage to the electrodes, which burns off the particle deposit on the insulating support and thus burns off the leakage current surface. The measuring method according to the invention delivers very good results, since the conductivity can be measured very precisely. Even small soot concentrations in the exhaust gas can be determined quantitatively from the change in conductivity.
Bezüglich der Vorrichtung zur Durchführung des er¬ findungsgemäßen Verfahrens haben sich zwei Anord- - 3 -With regard to the device for carrying out the method according to the invention, two arrangements have - 3 -
nungen besonders bewährt. .particularly proven. .
Bei der ersten Ausführungsform gemäß Anspruch 2 sind die Elektroden in geringem Abstand von weniger als 1 mm voneinander auf einem nicht leitenden Kera ikplättchen angeordnet. An ihren Elektroden liegt eine Spannung in der Größenordnung von 15 - 100 V. Schlagen sich Partikel, wie z.B. Ruß, auf der Fläche zwischen den Elektroden nieder, so fließt, bedingt durch die elektrische Leitf higkeit des Partikelniederschlags, ein Strom. Der Strom stellt ein Maß für die pro Zeit anfallende Niederschlags¬ menge dar und läßt damit eine genaue Angabe des Partikelgehalts oder der Rußkonzentration im Abgas zu.In the first embodiment according to claim 2, the electrodes are arranged at a small distance of less than 1 mm from one another on a non-conductive ceramic plate. A voltage of the order of 15 - 100 V is applied to their electrodes. Soot, which is deposited on the surface between the electrodes, causes a current to flow due to the electrical conductivity of the particle deposit. The current represents a measure of the amount of precipitation occurring per time and thus allows an exact indication of the particle content or the soot concentration in the exhaust gas.
Bei der zweiten Ausführungsform gemäß Anspruch 4 bildet sich zwischen den beiden an Hochspannung gelegten Elektroden eine Gleitfunkenstrecke aus, die eine bestimmte Zünd- oder DurchbruchsSpannung aufweist. Schlagen sich größere Partikelmengen auf dem Keramik- substrat nieder, so wird die Zündspannung erniedrigt. Die Gleitfunkenstrecke bricht bei umso niedriger Zündspannung durch, je stärker der Partikel- oder Ru߬ anfall pro Zeiteinheit ist. Die Zünd- bzw. Durchbruch- spannung ist damit ein Maß für den Partikelgehalt bzw. die Rußkonzentration im Abgas. Geht der Partikelge¬ halt im Abgas wieder zurück, so brennt die Oberfläche des Keramiksubstrats in kurzer Zeit, die weniger als 10 s beträgt, wieder soweit frei, wie es dem Partikel¬ konzentrationsgrad des Abgases entspricht. - 4 -In the second embodiment according to claim 4, a sliding spark gap is formed between the two electrodes which are connected to high voltage and has a certain ignition or breakdown voltage. If larger quantities of particles are deposited on the ceramic substrate, the ignition voltage is reduced. The sliding spark gap breaks through at a low ignition voltage, the stronger the particle or soot accumulation per unit of time. The ignition or breakdown voltage is therefore a measure of the particle content or the soot concentration in the exhaust gas. If the particle content in the exhaust gas decreases again, the surface of the ceramic substrate burns freely in a short time, which is less than 10 s, to the extent that it corresponds to the degree of particle concentration of the exhaust gas. - 4 -
Zeichnungdrawing
Die Erfindung ist anhand von in der Zeichnung darge¬ stellten Ausführungsbeispielen in der nachfolgenden Beschreibung näher erläutert. Es zeigen:The invention is explained in more detail in the following description on the basis of exemplary embodiments illustrated in the drawing. Show it:
Fig. 1 jeweils eine Darstellung einer Vorrich- und 2 tung zur Messung des Rußgehalts im Abgas einer Brennkraftmaschine mit in Drauf¬ sicht (jeweils oben) und in Seitenan¬ sicht (jeweils unten) gezeigtem Sensor.1 each shows a device and a device for measuring the soot content in the exhaust gas of an internal combustion engine with a sensor shown in a top view (in each case above) and in a side view (in each case below).
Beschreibung der AusführungsbeispieleDescription of the embodiments
Die in Fig. 1 schematisch dargestellte Vorrichtung zur Messung der Rußkonzentration in Abgasen eines Dieselmotors weist einen dem Abgas ausgesetzten Sensor 10 auf. Dieser Sensor 10 wird im Auspuffrohr des Dieselmotors so angeordnet, daß möglichst nur eine der beiden großflächigen Oberflächen berußt werden kann.The device schematically shown in FIG. 1 for measuring the soot concentration in exhaust gases from a diesel engine has a sensor 10 which is exposed to the exhaust gas. This sensor 10 is arranged in the exhaust pipe of the diesel engine so that, if possible, only one of the two large surfaces can be sooted.
Der Sensor 10 weist einen Isolierträger 11, der hier als Keramikplatte 12 ausgebildet ist, und zwei auf dem Isolierträger 11 angeordnete Elektroden 13, 14 auf. Die Elektroden 13, 14 sind auf der gleichen Fläche 15 der Keramikplatte 12 angeordnet und liegen sich in nur sehr geringem Abstand von kleiner als 1 mm gegenüber. Die beiden Elektroden 13, 14 sind an eine Spannungsquelle 16 angeschlossen, die eine Gleich- oder Wechselspannung in einer Größenordnung von 15 - 100 V liefert. In dem Stromkreis 17 zwischen Spannungsquelle 16 und den Elektroden 13, 14 ist ein Strommesser 18 eingeschaltet. r- 5 -The sensor 10 has an insulating carrier 11, which is designed here as a ceramic plate 12, and two electrodes 13, 14 arranged on the insulating carrier 11. The electrodes 13, 14 are arranged on the same surface 15 of the ceramic plate 12 and are only a short distance apart of less than 1 mm. The two electrodes 13, 14 are connected to a voltage source 16, which supplies a direct or alternating voltage in the order of 15-100 V. A current meter 18 is switched on in the circuit 17 between the voltage source 16 and the electrodes 13, 14. r- 5 -
Bei dieser Vorrichtung wird zwischen den beiden Elek¬ troden 13, 14 auf der Oberfläche 15 des Isolierträ¬ gers 11 bzw. der Keramikplatte 12 eine Kriechstrom¬ fläche 19 gebildet. Bei sauberer Oberfläche ist bei einer angelegten Spannung von 10 - 100 V die Leit¬ fähigkeit dieser Kriechstromfläche 19 im wesentlichen Null. Schlägt sich Ruß auf der Kriechstromfläche 19 zwischen den beiden Elektroden 13, 14 nieder, so fließt bedingt durch die elektrische Leitfähigkeit des Rußes ein Strom im Stromkreis 17, der im Strom¬ messer 18 gemessen wird. Der Strom ist somit ein Maß für die pro Zeiteinheit anfallende Rußmenge. Je mehr Ruß sich niederschlägt, umso stärker nimmt die Leit¬ fähigkeit der Kriechstromfläche 19 zu und der Strom steigt an. Aus der Stromzunahme pro Zeiteinheit kann damit die Rußkonzentration im Abgas bestimmt werden.In this device, a leakage current surface 19 is formed between the two electrodes 13, 14 on the surface 15 of the insulating support 11 or the ceramic plate 12. With a clean surface and an applied voltage of 10-100 V, the conductivity of this leakage current surface 19 is essentially zero. If soot is deposited on the leakage current surface 19 between the two electrodes 13, 14, a current flows in the circuit 17 due to the electrical conductivity of the soot and is measured in the ammeter 18. The current is therefore a measure of the amount of soot produced per unit of time. The more soot deposits, the more the conductivity of the leakage current surface 19 increases and the current increases. The soot concentration in the exhaust gas can thus be determined from the current increase per unit of time.
Die .in Fig. 2 schematisch dargestellte Vorrichtung zur Messung der Rußkonzentration im Abgas eines Dieselmotors weist ebenfalls einen dem Abgas aus- gesetzten Sensor 20 auf, der wiederum im Auspuffrohr des Motors angeordnet wird. Auf einem scheibenförmig ausgebildeten Keramiksubstrat 22 als Isoliersträger 21 des Sensors 20 ist eine Elektrode 23 . zentrisch angeordnet, während die -andere Elektrode 24 von einer Metallplatte 2.6 ge- bildet wird, die eine wesentlich größere Abmessung als das Keramiksubstrat 22 aufweist und letzteres trägt. Die beiden Elektroden 23 und 24 sind an eine einstellbare Hochspannungsquelle 27 angeschlossen, die z.B. durch einen Drehtransformator 28 und einem Wechselstromgenerator 29 gebildet sein kann. Den bei¬ den Elektroden 23 und 24 ist -ein Spannungsmesser 30 parallel geschaltet, der die Zünd- oder Durchbruch- spannung der zwischen den Elektroden 23 und 24 sich - 6 -The . Device schematically shown in FIG. 2 for measuring the soot concentration in the exhaust gas of a diesel engine also has a sensor 20 which is exposed to the exhaust gas and which is in turn arranged in the exhaust pipe of the engine. An electrode 23 is located on a disk-shaped ceramic substrate 22 as an insulating carrier 21 of the sensor 20. arranged centrally, while the other electrode 24 is formed by a metal plate 2.6, which has a much larger dimension than the ceramic substrate 22 and carries the latter. The two electrodes 23 and 24 are connected to an adjustable high-voltage source 27, which can be formed, for example, by a rotary transformer 28 and an AC generator 29. A parallel voltmeter 30 is connected in parallel to the two electrodes 23 and 24, which detects the ignition or breakdown voltage between the electrodes 23 and 24 - 6 -
bildenden Gleitfunkenstrecke 31 mißt. Die Gleit¬ funkenstrecke 31 ist in Fig. 2 durch schematisch dargestellte Blitze symbolisiert.forming sliding spark gap 31 measures. The sliding spark gap 31 is symbolized in FIG. 2 by schematically represented flashes.
Bei einer sauberen Oberfläche im Bereich der Gleit- funkenstrecke 31 ist deren Leitfähigkeit sehr gering und die Zündspannung, die erforderlich ist, damit die Gleitfunkenstrecke ionisiert wird und als Folge dessen durchbricht, ist relativ hoch. Schlagen sich dagegen elektrisch leitfähige Rußteilchen oder -tropfchen auf dem Keramiksubstrat 22 nieder, so erniedrigt sich die Zündspannung die zum Durchzünden der Gleitfunkenstrecke 31 erforderlich ist. Diese Zündspannung wird mit dem Spannungsmesser 30 fest¬ gehalten. Je nach Rußanfall wird die Zündspannung der Gleitfunkenstrecke 31 unterschiedlich stark abgesenkt. Die Zündspannung ist somit ein Maß für die sich auf dem Keramiksubstrat 22 niederschlagen¬ den Rußmenge und damit ein Maß für den Rußgehalt des Abgases. Geht der Rußanteil im Abgas zurück, so brennt die Oberfläche in kurzer Zeit, die kleiner als 10 s ist, wieder soweit frei, wie es dem momen¬ tanen Verrußungsgrad des Abgases entspricht.If the surface in the area of the spark gap 31 is clean, its conductivity is very low and the ignition voltage required for the spark gap to be ionized and consequently to break through is relatively high. If, on the other hand, electrically conductive soot particles or droplets deposit on the ceramic substrate 22, the ignition voltage required to ignite the spark gap 31 is reduced. This ignition voltage is held by the voltmeter 30. Depending on the amount of soot, the ignition voltage of the spark gap 31 is lowered to different degrees. The ignition voltage is thus a measure of the amount of soot deposited on the ceramic substrate 22 and thus a measure of the soot content of the exhaust gas. If the soot content in the exhaust gas decreases, the surface burns again in a short time, which is less than 10 s, to the extent that it corresponds to the current degree of sooting of the exhaust gas.
Die Temperaturabhängigkeit der mit den Vorrichtungen in Fig. 1 und 2 ermittelten Meßwerte als Maß für die Rußkonzentration läßt sich in beiden Fällen mitThe temperature dependency of the measured values determined with the devices in FIGS. 1 and 2 as a measure of the soot concentration can be in both cases with
Hilfe eines integrierten Temperatursensors und ent¬ sprechender Schaltungsanordnung kompensieren.Compensate with the help of an integrated temperature sensor and corresponding circuit arrangement.
sφ- wπo sφ- wπo

Claims

- 7 -Ansprüche - 7 claims
1. Verfahren zur Messung des Gehalts an leitfähigen Partikeln in Gasen, insbesondere in Abgasen fossiler Brennstoffe, wie der Rußkonzentration im Abgas von Brennkraftmaschinen, Ölfeuerungs- anlagen u. dgl., bei welchem mittels eines im Gasstrom angeordneten Sensors ein darauf sich bildender Partikelniederschlag erfaßt wird, d a d u r c h g e k e n n z e i c h n e t, daß als Sensor (10;20) zwei im Abstand auf einem1. Method for measuring the content of conductive particles in gases, especially in exhaust gases from fossil fuels, such as the soot concentration in the exhaust gas from internal combustion engines, oil firing systems and. Like., in which a particle precipitation formed thereon is detected by means of a sensor arranged in the gas flow, that is, that as sensor (10; 20) two at a distance on one
Isolierträger (11;21) angeordnete Elektroden (13,14; 23,24) verwendet werden, daß die Leitfähigkeit der zwischen den Elektroden aufgespannten Kriech¬ stromfläche (19;31) gemessen wird und daß aus der Änderung der Leitfähigkeit in einem vorge¬ gebenen Zeitintervall der Partikelgehalt be¬ stimmt wird.Insulating carriers (11; 21) arranged electrodes (13, 14; 23, 24) are used so that the conductivity of the leakage current surface (19; 31) spanned between the electrodes is measured and that the change in conductivity in a given one Time interval of the particle content is determined.
O PI O PI
2. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, d a d u r c h g e k e n n ¬ z e i c h n e t, daß die Elektroden (13,14) auf der gleichen Fläche (15) einer Keramikplatte (12)2. Device for carrying out the method according to claim 1, so that the electrodes (13, 14) on the same surface (15) of a ceramic plate (12)
5 angeordnet sind und sich in sehr geringem Ab¬ stand gegenüberstehen, daß die Elektroden (13,14) an eine Spannungsquelle (16) angeschlossen sind und daß im Stromkreis (17) von Spannungsquelle (16) und Elektroden (13,14) ein Strommesser (18) 10 angeordnet ist.5 are arranged and are at a very short distance from each other that the electrodes (13, 14) are connected to a voltage source (16) and that in the circuit (17) of the voltage source (16) and electrodes (13, 14) there is a current meter (18) 10 is arranged.
3. Vorrichtung nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, daß der Abstand der beiden Elektroden (13,14) voneinander3. Device according to claim 2, d a d u r c h g e k e n n z e i c h n e t that the distance of the two electrodes (13,14) from each other
- kleiner als 1 mm ist.- is less than 1 mm.
15 4. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, d a d u r c h g e k e n n ¬ z e i c h n e t, daß die eine Elektrode (23) auf einem Keramiksubstrat (22) angeordnet ist, das seinerseits auf einer die zweite Elektrode15 4. Device for performing the method according to claim 1, d a d u r c h g e k e n n ¬ z e i c h n e t that the one electrode (23) is arranged on a ceramic substrate (22), which in turn on a the second electrode
20 (24) bildenden Metallplatte. (26) mit demgegen¬ über größeren Abmessungen sitzt, daß die beiden Elektroden (23,24) an eine einstellbare Hochspannungsquelle (27) angeschlossen sind und daß den Elektroden (23,24) ein Spannungs-20 (24) forming metal plate. (26) with larger dimensions, in contrast, that the two electrodes (23, 24) are connected to an adjustable high-voltage source (27) and that the electrodes (23, 24) have a voltage
25 messer (30) zum Messen der Durchbruch- oder25 knives (30) for measuring breakthrough or
Zündspannung der zwischen den Elektroden (23,24) sich bildenden Gleitfunkenstrecke (31) parallel geschaltet ist.Ignition voltage of the sliding spark gap (31) forming between the electrodes (23, 24) is connected in parallel.
5. Vorrichtung nach Anspruch 4, d a d u r c h *30 g e k e n n z e i c h n e t, daß die Abmessun¬ gen des Keramiksubstrats (22) so gewählt sind,5. Device according to claim 4, characterized * 30 that the Abmessun¬ are selected gene of the ceramic substrate (22) in such a way
OMPI - 9 -OMPI - 9 -
daß die Gleitfunkenstrecke (31) eine Länge von etwa 1 - 2 cm aufweist.that the sliding spark gap (31) has a length of about 1-2 cm.
6. Vorrichtung nach Anspruch 4 oder 5, d a d u r c h g e k e n n z e i c h n e t, daß das Keramik- Substrat (22) scheibenförmig ausgebildet und die Elektrode (23) darauf zentrisch angeordnet ist. 6. Apparatus according to claim 4 or 5, that the ceramic substrate (22) is disc-shaped and the electrode (23) is arranged centrally thereon.
PCT/DE1984/000015 1983-02-10 1984-01-21 Method and device for measuring the content of conducting particles WO1984003147A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19833304548 DE3304548A1 (en) 1983-02-10 1983-02-10 METHOD AND DEVICE FOR MEASURING THE CONTENT OF CONDUCTIVE PARTICLES IN GASES

Publications (1)

Publication Number Publication Date
WO1984003147A1 true WO1984003147A1 (en) 1984-08-16

Family

ID=6190486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1984/000015 WO1984003147A1 (en) 1983-02-10 1984-01-21 Method and device for measuring the content of conducting particles

Country Status (2)

Country Link
DE (1) DE3304548A1 (en)
WO (1) WO1984003147A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449791A2 (en) * 1990-03-30 1991-10-02 SAES GETTERS S.p.A. A method for determining the end of useful life of a gas purifier and apparatus therefor
EP0541895A1 (en) * 1991-11-09 1993-05-19 Till Keesmann Particle sensor probe
WO2005080941A1 (en) * 2004-02-17 2005-09-01 Siemens Aktiengesellschaft Method and device for monitoring the particle concentration in a gas flow
WO2008138659A1 (en) * 2007-05-10 2008-11-20 Robert Bosch Gmbh Sensor and method for detecting particles in a gas flow
EP2116837A1 (en) * 2007-02-09 2009-11-11 NGK Insulators, Ltd. Instrument for measuring concentration of particulates in fluid, measuring method, and measuring program
DE102007047614B4 (en) * 2007-10-04 2018-04-12 Continental Automotive Gmbh Sensor for detecting particles

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3608801A1 (en) * 1986-03-15 1987-09-17 Fev Forsch Energietech Verbr METHOD AND DEVICE FOR REGENERATING PARTICLE FILTER SYSTEMS
DE4139325C1 (en) * 1991-11-29 1993-01-07 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De Function monitoring soot filter in exhaust pipe of IC engine
DE19747088B4 (en) * 1997-10-25 2004-03-11 Agr Abfallentsorgungs-Gesellschaft Ruhrgebiet Mbh Method for the analysis of compact, electrically non-conductive materials
DE10133384A1 (en) * 2001-07-10 2003-01-30 Bosch Gmbh Robert Particle detection sensor and method for checking its function
DE10156946A1 (en) * 2001-11-20 2003-05-28 Bosch Gmbh Robert Sensor used for detecting soot particles in exhaust gas stream, comprises measuring electrodes arranged on substrate consisting of solid body electrolyte containing oxygen pump cells to which electrode pair is assigned
FR2847671B1 (en) * 2002-11-22 2005-12-02 Inst Francais Du Petrole DEVICE FOR MEASURING THE QUANTITY OF PARTICLES CONTAINED IN A FLUID, ESPECIALLY IN EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE
DE10353860B4 (en) 2003-11-18 2023-03-30 Robert Bosch Gmbh Sensor for detecting particles in a gas stream and method for its manufacture
DE102004007038A1 (en) * 2004-02-12 2005-09-01 Daimlerchrysler Ag Method for monitoring the state of a carbon filter especially for a diesel engine has parts of electrodes near to or on the inner walls of the filter to monitor changes in resistance or impedance
DE102004029523A1 (en) 2004-06-18 2006-01-12 Robert Bosch Gmbh Method, particle sensor and particle sensor system for measuring particles
DE102004029524B4 (en) 2004-06-18 2007-12-06 Robert Bosch Gmbh Method and device for the defined regeneration of sooty surfaces
DE102004059650B4 (en) * 2004-12-10 2006-09-28 Robert Bosch Gmbh Resistive particle sensors with measuring electrodes
DE102005010263A1 (en) * 2005-03-07 2006-09-21 Robert Bosch Gmbh Sensor element and sensor containing this
DE102005016395B4 (en) * 2005-04-18 2012-08-23 Andreas Hauser Rußimpedanzsensor
DE102007021913A1 (en) * 2007-05-10 2008-11-20 Robert Bosch Gmbh Method and sensor for detecting particles in a gas stream and their use
DE102011089299A1 (en) * 2011-12-20 2013-06-20 Continental Automotive Gmbh Method for thermal rejuvenation of resistive soot sensor utilized for monitoring particulate filter of diesel car, involves thermally rejuvenating soot sensor by removing matured soot particles, when soot concentration exceeds preset load

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE792969A (en) * 1972-12-19 1973-06-19 Metrobel S A IONIC DETECTOR FOR GAS, VAPORS, FUMES AND AEROSOLS WITH IONIZATION CHAMBER WITH INTENSE ELECTRIC FIELD
DE2445004A1 (en) * 1974-09-20 1976-04-01 Bosch Gmbh Robert Measurement of dust content in moving gases - involves monitoring current discharge through corona discharge electrodes
FR2317652A1 (en) * 1975-07-10 1977-02-04 Hunziker Richard DEVICE FOR THE DETECTION OF UNBURNT FUEL CONSTITUENTS IN THE EXHAUST GASES OF A HEATING INSTALLATION AND METHOD FOR OPERATING THIS DEVICE
US4158610A (en) * 1978-03-28 1979-06-19 Bethlehem Steel Corporation Method and apparatus for determining and controlling amount of carbon deposited on a surface by a gas
FR2433745A1 (en) * 1978-08-17 1980-03-14 Bosch Gmbh Robert DETECTOR FOR MONITORING THAT THE EXHAUST GASES DO NOT CONTAIN SOOT
EP0032209A2 (en) * 1979-12-11 1981-07-22 Fernand Raoul Charles Murtin Electric arc-discharge probe for the proportional measurement of the concentration of oxygen in a composite gas, in particular in gases issuing from a chemical air-fuel combustion
JPS57147043A (en) * 1981-03-09 1982-09-10 Nissan Motor Co Ltd Detector for deposition amount of soot

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE792969A (en) * 1972-12-19 1973-06-19 Metrobel S A IONIC DETECTOR FOR GAS, VAPORS, FUMES AND AEROSOLS WITH IONIZATION CHAMBER WITH INTENSE ELECTRIC FIELD
DE2445004A1 (en) * 1974-09-20 1976-04-01 Bosch Gmbh Robert Measurement of dust content in moving gases - involves monitoring current discharge through corona discharge electrodes
FR2317652A1 (en) * 1975-07-10 1977-02-04 Hunziker Richard DEVICE FOR THE DETECTION OF UNBURNT FUEL CONSTITUENTS IN THE EXHAUST GASES OF A HEATING INSTALLATION AND METHOD FOR OPERATING THIS DEVICE
US4158610A (en) * 1978-03-28 1979-06-19 Bethlehem Steel Corporation Method and apparatus for determining and controlling amount of carbon deposited on a surface by a gas
FR2433745A1 (en) * 1978-08-17 1980-03-14 Bosch Gmbh Robert DETECTOR FOR MONITORING THAT THE EXHAUST GASES DO NOT CONTAIN SOOT
EP0032209A2 (en) * 1979-12-11 1981-07-22 Fernand Raoul Charles Murtin Electric arc-discharge probe for the proportional measurement of the concentration of oxygen in a composite gas, in particular in gases issuing from a chemical air-fuel combustion
JPS57147043A (en) * 1981-03-09 1982-09-10 Nissan Motor Co Ltd Detector for deposition amount of soot

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Patents Abstracts of Japan, Vol. 6, No. 248, page (P-160)(1126), 7 December 1982; & JP-A-57 147 043 (NISSAN JIDOSHA) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449791A2 (en) * 1990-03-30 1991-10-02 SAES GETTERS S.p.A. A method for determining the end of useful life of a gas purifier and apparatus therefor
EP0449791A3 (en) * 1990-03-30 1993-02-03 Saes Getters S.P.A. A method for determining the end of useful life of a gas purifier and apparatus therefor
EP0541895A1 (en) * 1991-11-09 1993-05-19 Till Keesmann Particle sensor probe
WO2005080941A1 (en) * 2004-02-17 2005-09-01 Siemens Aktiengesellschaft Method and device for monitoring the particle concentration in a gas flow
DE102004007647B4 (en) * 2004-02-17 2006-04-27 Siemens Ag Method and device for monitoring the particle concentration in a gas stream
EP2116837A1 (en) * 2007-02-09 2009-11-11 NGK Insulators, Ltd. Instrument for measuring concentration of particulates in fluid, measuring method, and measuring program
EP2116837A4 (en) * 2007-02-09 2014-05-14 Ngk Insulators Ltd Instrument for measuring concentration of particulates in fluid, measuring method, and measuring program
WO2008138659A1 (en) * 2007-05-10 2008-11-20 Robert Bosch Gmbh Sensor and method for detecting particles in a gas flow
DE102007047614B4 (en) * 2007-10-04 2018-04-12 Continental Automotive Gmbh Sensor for detecting particles

Also Published As

Publication number Publication date
DE3304548A1 (en) 1984-08-16

Similar Documents

Publication Publication Date Title
WO1984003147A1 (en) Method and device for measuring the content of conducting particles
EP1623217B1 (en) Sensor for detecting particles
EP1899706B1 (en) Device and method for measuring exhaust gas with charged particles
DE3414542C2 (en) Device for measuring the proportion of soot particles in the exhaust gas of diesel engines
DE2836002A1 (en) SENSOR FOR MONITORING THE EXHAUST SOURCE
DE102009028239A1 (en) Method and device for self-diagnosis of a particle sensor
DE102007021758A1 (en) Russ sensor
EP0193015A2 (en) Probe for measuring electrical conductivity
EP1792170A1 (en) Sensor element for particle sensors and method for operating the sensor element
DE2636406A1 (en) METHOD AND DEVICE FOR DETERMINING CONDUCTIVE PARTICLES IN A FLOW SYSTEM
EP2577253A1 (en) Method and particle sensor for detecting particles in an exhaust gas stream
DE102009028283A1 (en) Method for on-board-diagnosis of particulate sensor for determining particulate content in gas stream in exhaust channel of diesel engine to e.g. monitor soot emission of engine, involves evaluating changes in output signal of sensor
WO1984003148A1 (en) Method and device for detecting and/or measuring the particle content in gas
EP2171437B1 (en) Sensor unit for the detection of conductive particles in a flow of gas and methods for the production and use thereof
EP0495804A1 (en) Process and measuring device for determining the soot content of exhaust gases.
DE10244702A1 (en) Method for the detection of particles in a gas stream and sensor therefor
EP2145173B1 (en) Sensor for detecting particles in a gas flow
DE102007046099A1 (en) Sensor element for detection of sooty particles emitted from vehicle, has supply lines comprising measuring electrode supply line insulation, which surrounds supply lines and is arranged over and/or adjacent and below supply lines
DE102005016395B4 (en) Rußimpedanzsensor
DE10209755B4 (en) Method and arrangement for monitoring the operation of a particulate filter arranged in the exhaust gas of a diesel internal combustion engine
DE102006042361A1 (en) Sensor for detecting particles comprising a test device for checking the nature of an insulating layer
DE102007046097B4 (en) Method for self-diagnosis of a sensor element for the detection of particles in a gas stream
DE4236711A1 (en) Particulate soot determination e.g. for combustion gases - from EMF variation induced by deposition on an electrode in a solid electrolyte cell
WO2003034053A2 (en) Method for detecting particles in a gas stream and detector
EP3532831B1 (en) Sensor element for determining particles in a fluid medium

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AT CH JP US