[go: up one dir, main page]

WO1982003474A1 - Digital control machining method - Google Patents

Digital control machining method Download PDF

Info

Publication number
WO1982003474A1
WO1982003474A1 PCT/JP1982/000104 JP8200104W WO8203474A1 WO 1982003474 A1 WO1982003474 A1 WO 1982003474A1 JP 8200104 W JP8200104 W JP 8200104W WO 8203474 A1 WO8203474 A1 WO 8203474A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
wire
information
division
point
Prior art date
Application number
PCT/JP1982/000104
Other languages
French (fr)
Japanese (ja)
Inventor
Ltd Fanuc
Original Assignee
Kishi Hajimu
Seki Masaki
Tanaka Kunio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12873583&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1982003474(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kishi Hajimu, Seki Masaki, Tanaka Kunio filed Critical Kishi Hajimu
Priority to DE8282901009T priority Critical patent/DE3280199D1/en
Publication of WO1982003474A1 publication Critical patent/WO1982003474A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/06Control of the travel curve of the relative movement between electrode and workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35151Modeling geometric, generation or forming of curved surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/492435-D
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50334Tool offset, diameter correction
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50336Tool, probe offset for curves, surfaces, contouring

Definitions

  • the present invention relates to a numerical control machining method, and in particular, applies a curved surface created by connecting corresponding points of ⁇ on two curves to a milling machine or a wire-cut electric discharge machine. Related to a numerically controlled machining method.
  • a wire-cut electric discharge machine stretches a wire between an upper guide and a lower 10 guide, and discharges electricity between the wire and the workpiece.
  • the workpiece is produced by machining and the workpiece is fixed on a table, and is moved in the X, Y directions by the command fp to the machining shape and the numerical value illuminator. Is received.
  • wire the table (work).
  • the upper guide can be displaced in the ⁇ , ⁇ directions (U axis, V axis). For example, if the upper guide is displaced in the direction perpendicular to the direction of the work and the wire is tilted with respect to the work, the processed shape of the upper and lower surfaces of the work
  • Fig. 1 is an explanatory view of the taper machining.
  • a wire WR is stretched between the upper guide UG and the lower guide at a predetermined angle to the work WK. I have. Now, Work WK
  • each off Se Tsu preparative amount d 2 of off Se Tsu preparative amounts and the upper guide UG lower guide for the workpiece lower surface PL is
  • Se Tsu preparative amount d !, d 2 in accordance with the movement of the follower over click is Ruru constant.
  • Cormorants, in Figure 2 if the movement control guide UG on which stretched the word i ya WR As shown in the figure, taper processing with a taper angle can be performed. In the figure, the dotted line and the dot-dash line are the passages of the upper guide UG and the lower guide DG, respectively. If the command H, ii, etc., of the program path, the feed speed on the ⁇ -gram path, and the taper angle, the command H, ii, etc., are commanded, the command pass is performed.
  • the Taber angle is constant, and the processing cannot be performed so that the Taber angle changes intermittently.
  • the upper surface shape and the lower surface of the work are not removed. Machining with completely different shapes, for example, machining in which the top surface is a straight line and the bottom surface is an arc, was impossible.
  • wire electric discharge machining becomes possible, not only punching dies, but also plastic dies, etc. It can also be used for cavity machining itself, and can widely spread the application fields of NC wire-cut electric discharge machines.
  • the wire-cut electric discharge machining becomes possible, the similarity of the tool to the torso of the milling tool on a milling machine, as shown in Fig. 3 (a), due to its similarity. It is possible to machine the workpiece WK with *, and if the machining efficiency is significantly improved compared to the conventional method (Fig. 3 (b)), which only processes at the tip of the milling tool. It can be.
  • Hon-ki is a curved surface with different top and bottom shapes, and if lightning strikes, the corresponding points of the two curves are connected sequentially. To provide a numerically controlled machining method.
  • the present invention is a numerically controlled machining method for machining a created curved surface by connecting corresponding points on two curves.
  • Steps for calculating the corresponding tool offset positions mi 'and ni', respectively, the tool offset position mi ', 11 and the tool axis direction step for performing .1, and the coordinate value of the tool offset position ni' (X, ,, ⁇ ) and the tool ⁇ direction (I, J, K) to calculate each control axis movement data of the numerically controlled machine tool, based on the control axis movement data.
  • the tool has a step of moving the tool relative to the workpiece to perform the curved surface processing, and the numerically controlled processing method by the wire force release processing machine is described in the above “2.
  • Curve information for specifying the track number of the book, wire diameter information including the electric discharge gap in wire-cut electric discharge machining, wire correction direction information, and division of each of the above curves A step for inputting information and a step for dividing each curve based on the division information and calculating a division point mi, ni (').
  • a normal vector in the wire correction direction at each of the division point mi and the other division point ni corresponding to the division point mi is performed, and the wire diameter information is used using the wire diameter information.
  • the present invention it is possible to process a curved surface created by ⁇ ⁇ ⁇ , in other words, a curved surface having a different upper surface shape and lower surface shape, from the corresponding points of the two curves. Therefore, the application field of the jet electric discharge machine can be remarkably spread. Also, it is possible to perform machining on the workpiece with the body of the blade in the milling process. 3 ⁇ 4 1? Compared to the conventional machining method using the tip of the milling tool, the machining efficiency is remarkable. Can be improved.
  • FIG. 1 and 2 are explanatory diagrams of taper machining
  • FIG. S is an explanatory diagram of milling
  • FIG. 4 ' is an explanatory diagram of a brushing process according to the present invention.
  • Fig. 6 illustrates the normal vector calculation
  • Fig. 7 illustrates the offset vector and tool center axis vector
  • Figs. 8 and 9 illustrate the control axis position data.
  • theory Akirazu first 0 Figure is a schematic view of a tapered tool, first Figure 1 and the first 2 figures Hor Wa Lee ya mosquito Tsu preparative EDM illustration the present invention, the first 3 figures off La Lee Bed lock view in scan processing, first FIG. 4 is a cherub ⁇ click diagram Wa Lee Yaka Tsu preparative discharge machining.
  • FIG. 4 is an explanatory diagram in the case where the present invention is applied to a milling process.
  • ⁇ ⁇ is a tool
  • CV or CV 2 is a curve, and is composed of a series of basic shapes such as straight lines and circular arcs.
  • the desired curved surface is formed.
  • Naokyoku ⁇ CVj machining shape of the workpiece upper surface
  • CV 2 is a machining shape of the workpiece lower surface.
  • the curve information specifying the two curves CV or CV2, the tool diameter r, the tool shape information, and the tool diameter correction to the left or right in the tool advancing direction.
  • the tool radius correction direction information indicating whether the curve CV ⁇ CVz is divided.
  • the division information the number of divisions, the division pitch, or the permissible error amount is input.
  • the tool diameter compensation direction is commanded by the G function command, G42. If the offset is left, G41 is commanded. If it is right, (J42 is commanded.
  • V mi— ni (5)
  • the modulo vector N is the cross product of the tangent vector ⁇ and the bus direction vector V, 3 ⁇ 4 1? (Fig. ⁇ ),
  • the normal vector N 'of the dividing point ni is obtained.
  • the normal vector N, 1ST is created so that the offset direction of the force tractor is thickened. For example, if the tangent vector ⁇ at the division point mi of the curve CV is found in the opposite direction to the previous explanation, the normal vector ⁇
  • the tool offset vector from the tool diameter r and the normal vector N in other words, the division point mi when the tool position is corrected to the normal direction based on the tool diameter Find the position mi ', 11 (Fig. 7) of the tool center ⁇ corresponding to Hi, Hi.
  • the position of the tool center axis corresponding to the division points mi and ni is hereinafter referred to as a tool correction position.
  • the tool offset position Hi ' is defined as the tool tip position P (X, Y, Z), and the numerically controlled machine tool is calculated from the tool center vector T and the tool tip combined position P ( ⁇ , ⁇ , ⁇ ).
  • the tool ⁇ is rotated in the vertical rotation direction ( ⁇ -axis direction) and the horizontal rotation direction (C-axis direction) to control the direction of the tool center axis with respect to the workpiece, and , 5, 2:
  • the tool compensation position is described as the tool tip position P (X, Y, Z), but it is not necessary to use the tool tip position.
  • the tool is described as having a constant cutter diameter.However, even with a tapered tool TBT having a taper TP as shown in Fig. 10, the tool correction position mi 'at mi and ni 11 can be obtained from the tool radius at each position of the tapered tool.
  • FIGS. 11 and 12 illustrate the present invention.
  • W ⁇ is Wai Ya, CVi, CV 2 each work WK upper surface of the lower surface and the machining shape song ⁇ , SF is curved.
  • steps ( 3 ) and ( 4 ) are read as wires.
  • the wire correction position m, Hi ' is the coordinates of the projection point on a plane parallel to the table TB on which the work WK is located, in other words, the center line of the wire and the table TB. Calculate the coordinates of the intersection Pc, 'with the 3 ⁇ 4 plane (Fig. 12). If the upper guide of the wire-cut electric discharge machine is to be moved in the U and V axis directions along the workpiece _fc plane, the intersection PC is
  • intersection Pc It is the intersection of the wire top and the wire center.
  • intersection Pc ' is the intersection between the underside of the mark and the center of the wire.
  • the coordinates 0, ma) and (3 :,) of the intersection points Pc, P are respectively expressed by the two-axis coordinate values of the division point 111 111, d, and the obscure vector T of the wire d by ) ⁇ I catcher correction position mi ', Hi' coordinate values (S x, Sy, S z ), if (S, s, s) and
  • FIG. 13 is a block diagram when the present invention is applied to milling.
  • reference numeral 101 denotes a division point calculation unit, and the curve CVH
  • Numeral 103 denotes a division point coordinate storage register, which is the current division point mi-1, where the current tool is located, the division point mi, ni where the tool moves next, and the next next division point mi + 1 , n i + i are respectively stored.
  • 1 Q4 is the normal base-click door Le Starring ⁇ Yu - Tsu door with 'Oh] ?, Te use of the tool radius compensation direction information given by the G function instruction Sutetsu Breakfast 3-1:) to 3 - 4)] Perform the normal vector N, N ⁇ at the division point mi, ni.
  • 105 is the offset vector calculation unit] ??, the offset vector from the tool diameter r and the normal vectors ⁇ and ⁇ ', that is, the tool diameter compensation
  • Numeral 1 is a tool center axis vector plot, which calculates the tool center axis vector T (I, J, K) from equation (7).
  • each axis distribution panel Scan is input to the servo circuit respectively shown Shirui each axis, ⁇ the motor of each axis and f the tool curve CV There CV 2 B, causes connection movement.
  • FIG. 14 is a block diagram in the case where the present invention is applied to a wire-cutting system.
  • the same parts as those in FIG. 13 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • Reference numeral 201 denotes an intersection coordinate calculation unit, and the intersections Pc and Pc '(the
  • the coordinates of the pulse distributor are determined based on ⁇ and 3 ⁇ 4.
  • the pulse distributor receives Ti, v, x, and y, and receives se pulses ⁇ ⁇ , ⁇ ⁇ for the ⁇ and V axes, and X, the distribution pulse Xp for the IT axis.
  • Yp is generated, and the upper guide and the table are driven based on the divided pulse.
  • the D device is constituted by the unit for each value, however, it may be constituted by a computer.
  • the numerically controlled machining method of the present invention it is possible to machine a curved surface created by connecting the corresponding points of two curved surfaces in a cumbersome manner. Can significantly spread the field of application. Also, it is possible to carry out workpiece machining with the body of the blade in the milling process.3 ⁇ 4 Machining with the tip of the milling tool. Can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Milling Processes (AREA)

Abstract

A digital control machining method for machining a curved surface (SF) formed by connecting corresponding points (mi, ni) (i=1, 2, ..) on two curves (CV1?, CV2?) via a wire electrode of a wire cut discharge machining apparatus or the tool (BT) of a simultaneous 5-axis controlled milling machine. In this digital control machining method, curve information for specifying the two curves (CV1?, CV2?), tool or wire diameter information, tool or wire correcting direction information, and division information for dividing the respective curves input, the offset position at the next dividing point (mi, ni) of the dividing point (mi-1?, ni-1?) occupied by the tool (BT) or wire at present is obtained with the respective information, the tool (BT) or wire is moved toward the offset position, and the curved surface (SF) is machined.

Description

'#  '#
明 細 香  Incense
数 値 制 御 加 工 方 法  Numerical control processing method
技 術 分 野  Technical field
- 本発明は数値制御加工方法に係 、 特に 2本の曲線上 δ の対応点をそれぞれ結ぶこ どに よ 創成される曲面をフ ラ イ ス盤或 はワ イ ヤ カ ツ ト放電加工機に よ 加工する 数値制御加工方法に関する。  -The present invention relates to a numerical control machining method, and in particular, applies a curved surface created by connecting corresponding points of δ on two curves to a milling machine or a wire-cut electric discharge machine. Related to a numerically controlled machining method.
背 桑 技  Mulberry technique
ワ イ ヤカ ツ ト放電加工機は周知の如 く 、 上ガイ ドと下 10 ガイ ドとの間に ワ イ ヤを張設 して き、 該ワ イ ヤ と ヮ ー ク との間に放電を生 じさせて ワ ークを加工する も のであ 、 ワ ークはテー ブル上に固定され、 加工形状に fp、つて 数値輝御装置からの指令に よ 1?X,Y方向に移動せ しめ ら れる。 この場合、 テー ブル ( ワ ーク ) に対 してワ イ ヤを As is well known, a wire-cut electric discharge machine stretches a wire between an upper guide and a lower 10 guide, and discharges electricity between the wire and the workpiece. The workpiece is produced by machining and the workpiece is fixed on a table, and is moved in the X, Y directions by the command fp to the machining shape and the numerical value illuminator. Is received. In this case, wire the table (work).
15 垂直方向に張設 しておけば、 ワ ーク上面と下面 との加工 形状が同一と る ]?、 又上ガ イ ドを Χ,Υ方向 ( U軸、 V軸 とい う ) に変位可能な如 く 構成 し、 たとえばワ ーク移動 方向と直角方向に該上ガイ ドを変位してワ イ ヤを ワ ーク に対 して傾斜せ しめればワ ー ク上面と下面 との加工形状15 If it is stretched in the vertical direction, the machining shape of the upper surface and the lower surface of the work will be the same.], And the upper guide can be displaced in the Χ, Υ directions (U axis, V axis). For example, if the upper guide is displaced in the direction perpendicular to the direction of the work and the wire is tilted with respect to the work, the processed shape of the upper and lower surfaces of the work
20 は同一と らず、 ワ イ ヤ加工面が傾斜する、 いわゆるテ ーパ加工が行われる。 20 is not the same, so-called taper processing is performed, in which the wire processing surface is inclined.
第 1 図はか るテーパ加工の篛明図であ i?、 上ガイ ド U G と下ガイ ド との間に ワ イ ヤ WRがワ ーク WKに 対 し所定角度傾斜して張設されている。 今、 ワ ーク WK Fig. 1 is an explanatory view of the taper machining. A wire WR is stretched between the upper guide UG and the lower guide at a predetermined angle to the work WK. I have. Now, Work WK
25 の下面 P Lをブロ グラ ム形状 ( ワ ーク WKの上面 Q Uを プロ グラム形状と しても よい ) と し、 又、 テーパ角度な - 上ガイ ド U G と下ガイ ド D G間の钜餱 H、 下ガイ ド D G からヮー WK下面までの钜雜 h とすれば、 ワーク下面 P Lに対する下ガイ ド のオ フ セ ッ ト量 及び上ガイ ド U Gのオ フ セ ッ ト量 d2はそれぞれ、
Figure imgf000004_0001
25 lower surface PL in program shape (work WK upper surface QU And the tapered angle-H between the upper guide UG and the lower guide DG, and the h from the lower guide DG to the lower surface of the WK, each off Se Tsu preparative amount d 2 of off Se Tsu preparative amounts and the upper guide UG lower guide for the workpiece lower surface PL is
Figure imgf000004_0001
=H«tanC£— d, (2)  = H «tanC £ — d, (2)
で表わせる。 尚、 dは加工辐である。 Can be represented by In addition, d is processing 辐.
従って、 ワ ークの移動に応じてオ フ セ ッ ト量 d!, d2が 一定にるる よ.う、 ワ イ ヤ WRを張設する上ガイ ド U Gを 移動制御すれば第 2 図に示すよ う にテーパ角 なのテーパ 加工を.行な う こ とができ る。 尚、 図中、 点線及び一点鎖 線はそれぞれ上ガイ ド U G、 下ガイ ド D Gの通路である , ^上の'よ う にワ イ ヤカ ツ ト放電加工指令と してはワーク 下面或いは上面でのプ ロ グ ラ ム通路と、 該ブ πグ ラ ム通 路上での送 速度、 テーパ角な、 前記跽雜 H,ii等を指令 すれば指令通 の加工が行われる。 Therefore, it off Se Tsu preparative amount d !, d 2 in accordance with the movement of the follower over click is Ruru constant. Cormorants, in Figure 2 if the movement control guide UG on which stretched the word i ya WR As shown in the figure, taper processing with a taper angle can be performed. In the figure, the dotted line and the dot-dash line are the passages of the upper guide UG and the lower guide DG, respectively. If the command H, ii, etc., of the program path, the feed speed on the π-gram path, and the taper angle, the command H, ii, etc., are commanded, the command pass is performed.
しかし が ら、 従来よ 行われているテーバ加工に てはテーバ角度が一定であ 、 該テーバ角が違続して 変化する よ う 加工はできず、 特に ワ ー ク の上面形状と 下面の.形状が全く異 る加工、 たとえば上面形状が直線 とな 、 下面形状が円弧と ¾る よ う ¾加工は不可能であ つた。 と ころで、 も しこのよ う ¾ ワ イ ヤ放電加工が可能 に れば打抜き金型のみ らず、 ブ ラ スチック金型 ど キヤビティ加工そのも のにも利用でき N C ワ イ ヤカ ツ ト 放電加工機の応用分野を著 し く 広める こ とができ る。 又、 上記ワ イ ヤカ ッ ト放電加工が可能に れば、 その類似性 から第 3 図(a)に示すよ う にフ ライ ス盤 ¾ どにおいてフ ラ イ ス工具の刃物 Β Τの胴部でワーク WKに加工を施すこ とが可能と * 乡、 フ ラ イ ス工具の先端でのみ加工する従 来の方法 (第 3 図(b) ) に比べ加工能率を著し く 向上させ る と とができ る。 However, in the conventional Taber processing, the Taber angle is constant, and the processing cannot be performed so that the Taber angle changes intermittently.In particular, the upper surface shape and the lower surface of the work are not removed. Machining with completely different shapes, for example, machining in which the top surface is a straight line and the bottom surface is an arc, was impossible. By the way, if wire electric discharge machining becomes possible, not only punching dies, but also plastic dies, etc. It can also be used for cavity machining itself, and can widely spread the application fields of NC wire-cut electric discharge machines. Also, if the wire-cut electric discharge machining becomes possible, the similarity of the tool to the torso of the milling tool on a milling machine, as shown in Fig. 3 (a), due to its similarity. It is possible to machine the workpiece WK with *, and if the machining efficiency is significantly improved compared to the conventional method (Fig. 3 (b)), which only processes at the tip of the milling tool. It can be.
上か ら、 本癸明は上面及び下面形状が異 る曲面、 換雷すれば 2本の曲線の対応点を順次結ぶこ とに よ ]?創 成される曲面'を加工する こ とができ る数値制御加工方法 を提供する と とを 目的とする。  From the top, Hon-ki is a curved surface with different top and bottom shapes, and if lightning strikes, the corresponding points of the two curves are connected sequentially. To provide a numerically controlled machining method.
発 明 の 開 '示  Disclosure of the invention
本発明は 2本の曲線上の対応点をそれぞれ結ぶこ と に よ ]?創成される曲面を加工する数値制御加工方法である。 との数値制御加工方法の う ちフ ラ イ ス盤に よ る数値制御 加工方法は 2 本の曲線を特定する 曲線情報と、 工具径 どの工具形状情報と、 工具径蒱正方向情報と、 前記各曲 艤を分割する分割情報とを入力するス テ ッ プ、 前記分割 情報に基いて各曲線を分割 し、 分割点 mi , ni ( i=1, 2^··) を求めるス テ ッ プ、 一方の曲線の分割点 mi と、 該分割点 miに対応する他方の曲線の分割点. ni'とにおける前記工具 径補正方向の法線べク ト ルをそれぞれ求める と共に、 前 記工具形状情報を用 て工具オ フ セ ッ ト べク ト ル或いは 該法耪方向へ工具位置補正 したと きの分割点 mi , niに対 応する工具補正位置 mi', ni'をそれぞれ演算するステ ッ プ, 前記工具補正位置 mi', 11 よ 工具軸方向(.1, を演 箕するステ ッ プ、 工具補正位置 ni'の座標値 (X, Υ , Ζ ) と前記工具轴方向 ( I ,J,K) を用いて数値制御工作機械 の各制御軸移動デー タを演算するス テ ッ プ、 該制御軸移 動データに基 て工具をワ ークに対し相対的に移動させ て曲面加工を施すス テ ッ プを有している。 又、 ワ イ ヤ力 ッ ト放鼋加工機に よ る数値制御加工方法は前記' 2本の曲 鎳を特定する曲線情報と、 ワ イ ヤカ ッ ト放電加工におけ る放電ギャ ッ プを含むワ イ ヤ径情報と、 ワ イ ヤ補正方向 情報と、 前記'各曲線を分割する分割情報とを入力するス テツ ブ、 前記分割情報に基 て各曲線を分割 し、 分割点 mi,ni ( '···)を演算するステッ プ、 一方の曲線の 分割点 mi と、 該分割点 mi に対応する他方の分割点 ni と における前記ワ イ ャ補正方向の法線べク ト ルをそれぞれ 演箕する と共に、 前記ワ イ ヤ径情報を用 てワ イ ヤオ フ セ ッ ト べク ト ル或 は該法鎳方向へワ イ ヤ位置を箱正し たと きの該分割点 mi, niに対応する ヮ ィ ャ補正位置 mi, (Sx, Sy, S2 ), ni ( Sx' , S , Sz')をそれぞれ滇箕するス テ ツ ブ、 前記ワ イ ヤ補正位置 mi ni ' よ !? ワイ ヤ轴方向 The present invention is a numerically controlled machining method for machining a created curved surface by connecting corresponding points on two curves. Among the numerically controlled machining methods described above, the numerical control machining method using a milling machine uses two types of curves: curve information that specifies two curves, tool shape information such as tool diameter, tool diameter / forward direction information, and A step of inputting division information for dividing each piece of music, and a step of dividing each curve based on the division information and obtaining division points mi and ni (i = 1 , 2 ^). And a dividing point mi of one curve and a dividing point of the other curve corresponding to the dividing point mi.A normal vector in the tool radius correction direction at ni ′ is obtained, and the tool shape information described above is obtained. The tool offset vector or the division points mi and ni when the tool position is corrected in the normal direction. Steps for calculating the corresponding tool offset positions mi 'and ni', respectively, the tool offset position mi ', 11 and the tool axis direction (step for performing .1, and the coordinate value of the tool offset position ni' (X, ,, Ζ) and the tool 轴 direction (I, J, K) to calculate each control axis movement data of the numerically controlled machine tool, based on the control axis movement data. The tool has a step of moving the tool relative to the workpiece to perform the curved surface processing, and the numerically controlled processing method by the wire force release processing machine is described in the above “2. Curve information for specifying the track number of the book, wire diameter information including the electric discharge gap in wire-cut electric discharge machining, wire correction direction information, and division of each of the above curves A step for inputting information and a step for dividing each curve based on the division information and calculating a division point mi, ni ('...). A normal vector in the wire correction direction at each of the division point mi and the other division point ni corresponding to the division point mi is performed, and the wire diameter information is used using the wire diameter information. When the wire position is corrected in the yaw offset vector or the normal direction, the gyro correction position mi, (S x , S y) corresponding to the division point mi, ni , S 2 ), ni (S x ', S, Sz'), respectively, the wire correction position mini '!?
( I , J,K) を演算する ステ ッ プ、 前記ワ イ ヤ軸方向及び ヮ ィ ャ補正位置等を用 て該ヮ ィ ャ補正位置 m^ni^に対 応するボイ ン ト であってワークを载置するテー ブル面に 平行 平面上のボイ ン ト mi* ( u , V ), ni* ( , y ) の位置 を演算する ステ ッ プ、 : s , y , τι , νに基 てテー ブルを: Χ,Υ  A step for calculating (I, J, K), a point corresponding to the wire correction position m ^ ni ^ using the wire axis direction and the wire correction position, etc. Steps for calculating the positions of the points mi * (u, V), ni * (, y) on a plane parallel to the table surface on which the workpiece is placed: based on s, y, τι, ν Tables: Χ, Υ
C---PI 方向に懕動す; έ> と共に、 ワ イ ヤを υ , ν方向に駆動 してヮ 一夕に曲面加工を施すス テ ッ プを有 している。 C --- PI It has a step of driving the wire in the υ and ν directions together with έ> to perform curved surface processing overnight.
このよ う に本発明に よれば 2本の曲線の対応点を頫次 粽ぶこ とによ 創成される曲面、 換言すれば上面形状と 下面形状が異るる曲面を加工する と とができ るから、 ヮ ィ ャカ ツ ト放電加工機の応用分野を著 し く広める こ とが でき る。 又、 フ ラ イ ス加工においては刃物の胴部でヮ — クに加工を施すこ とが可能と ¾ 1? フ ラ イ ス工具の先端で 加工する従来の加工方法に比べ加工能率を著 し ぐ向上さ せるこ とができ る。  As described above, according to the present invention, it is possible to process a curved surface created by 頫 粽 粽, in other words, a curved surface having a different upper surface shape and lower surface shape, from the corresponding points of the two curves. Therefore, the application field of the jet electric discharge machine can be remarkably spread. Also, it is possible to perform machining on the workpiece with the body of the blade in the milling process. ¾ 1? Compared to the conventional machining method using the tip of the milling tool, the machining efficiency is remarkable. Can be improved.
' 図面の籣単な説明  '' Brief description of the drawing
第 1 図及び第 2 図はテーパ加工の説明図、 第 S 図はフ ラ イ ス加工の説明図、 第 4'図は本発明に係る ブ ラ イ ス加 ェ説明図で、 第 5 図及び第 6 図は法線べク トル演算説明 図、 第 7 図はオ フセ ッ ト べク ト ル及び工具中心軸べク ト ル説明図、 第 8 図及び第 9 図は制御軸位置データ演箕説 明図、 第 1 0 図はテーパ付工具の概略図、 第 1 1 図及び 第 1 2 図は本発明に保る ワ イ ヤ カ ッ ト放電加工説明図、 第 1 3 図はフ ラ イ ス加工における ブ ロ ッ ク図、 第 1 4 図 はワ イ ヤカ ツ ト放電加工に けるブ Ο ック図である。 1 and 2 are explanatory diagrams of taper machining, FIG. S is an explanatory diagram of milling, and FIG. 4 'is an explanatory diagram of a brushing process according to the present invention. Fig. 6 illustrates the normal vector calculation, Fig. 7 illustrates the offset vector and tool center axis vector, and Figs. 8 and 9 illustrate the control axis position data. theory Akirazu, first 0 Figure is a schematic view of a tapered tool, first Figure 1 and the first 2 figures Hor Wa Lee ya mosquito Tsu preparative EDM illustration the present invention, the first 3 figures off La Lee Bed lock view in scan processing, first FIG. 4 is a cherub Ο click diagram Wa Lee Yaka Tsu preparative discharge machining.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を図面に従って詳細に説明する。 第 4 図は本発明をフ ラ ィ ス加工に適用 した場合の説明 図である。 図中、 Β Τは工具、 C Vい C V2はそれぞれ曲線 であ 、 直線、 円弧 どの基本形状の連続で構成され、 各曲鎳上の対応点 mi, ni ( i = 1, 2,…:)を穎次結ぶことに よ 1?所望の曲面 が形成される。 尚曲鎳 CVjはワーク 上面の加工形状、 CV2はワーク下面の加工形状である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 4 is an explanatory diagram in the case where the present invention is applied to a milling process. In the figure, Τ 工具 is a tool, CV or CV 2 is a curve, and is composed of a series of basic shapes such as straight lines and circular arcs. By connecting the corresponding points mi, ni (i = 1, 2, ... :) on each song 穎, the desired curved surface is formed. Naokyoku鎳CVj machining shape of the workpiece upper surface, CV 2 is a machining shape of the workpiece lower surface.
(1) まず、 曲面の加工に先立って前記 2本の曲線 CVい CV2を特定する曲線情報と、 工具径 r どの工具形状情 報と、 工具進行方向の左側或いは右側に工具径補正をす るかを示す工具径補正方向情報と、 前記各曲線 CV^ CVz を分割する分割情報を入力する。 尚、 分割情報と しては 分割数、 分割ピッ チ或いは許容誤差量が入力される。 又、 工具径補正方向は G機能命令 , G42によ 1?指令され、 左側オ フセ ッ 'トであれば G 41、 右側であれば(J 42が指令 される。 (1) First, prior to the machining of a curved surface, the curve information specifying the two curves CV or CV2, the tool diameter r, the tool shape information, and the tool diameter correction to the left or right in the tool advancing direction. Is input as the tool radius correction direction information indicating whether the curve CV ^ CVz is divided. As the division information, the number of divisions, the division pitch, or the permissible error amount is input. The tool diameter compensation direction is commanded by the G function command, G42. If the offset is left, G41 is commanded. If it is right, (J42 is commanded.
(2) つ で、 前記ステッ プ Ί で入力した分割情報に基 て各曲線 CVi, CV2をそれぞれ分割し、 分割点 mi, ni を求 める。 たとえぱ分割情報と して分割数 Mが入力されて れば各曲籙を a '* bに分割する分割点は以下の 2— 1 )〜2— 4 )の手展によ 1?求められる ( 尚、 a + b=Mとする)。 (2) one by the steps each curve Te based on division information input in I CVi, the CV 2 divides each division point mi, determined Mel the ni. If the number of divisions M is input as the division information, the number of division points that divide each song into a '* b can be obtained by the following handicraft from 2-1) to 2-4). (Note that a + b = M).
2-1 ) 与曲線 CVi或いは CV2の各要素 (与曲籙を構成 する線分ある は円弧を要素と称する ) の長さを求め、 それ等を合計して曲線の長さ Dを求める。 a 2-1) is a line segment constituting elements (given song籙the given curve CVi or CV 2 obtains the length of the called arc as element), sums it like finding the length D of the curve. a
2—2 ) D==D'を求める O  2−2) Find D == D 'O
( a-j-b )  (a-j-b)
2-3 ) 分割の基点と る一方の端よ ]? D'の長さの位置 を含む要素を抽出する。 この要素の抽出は最初の要素の 長さを Γ 、 次の要素の長さを D2、 以下同様に! )3, ···, Di, 2-3) One end which is the starting point of the division]? Extract the elements including the position of the length of D '. The extraction of this element is を the length of the first element, D 2 the length of the next element, and so on! ) 3 ,
、 …とする と き , … And
k k
Figure imgf000009_0001
Figure imgf000009_0001
と ¾る 1£を求めるこ とによ 行われる o  Done by asking for 1 £
δ 2-4) k番目の要素に対 、 その始点よ び- 一 ∑ Di (4) δ 2-4) For the k-th element, its starting point and-1 ∑ Di (4)
1=1  1 = 1
と る k番目の要素上の'点を求める。 この求めた点が与 曲籙を一方の端点から a:bに分割する点である。 尚、 2 一 3 k— 1 Find the 'point on the kth element. This point is the point at which the given song 籙 is divided into a: b from one end point. 2 1 3 k— 1
一 3 )にお て k= 1 のと き ∑ Di = 0 とする。  In 1) 3) When k = 1, ∑ Di = 0.
• i =1  • i = 1
又、 分割情報と して分割ピッチ N Cw) が与えられ ^ば 以下の手煩によ ]?分割点 mi, niを求める。  If the division pitch N Cw) is given as the division information, the following troubles are required.
2-1 )' 与曲鎳 及び CV2の長さ D!Ow) 、 D2 Oro) を 求める。 2-1) 'Azukakyoku鎳and length D! Ow of CV 2), obtaining the D 2 Oro).
2-2 )' M» =Dl N , M2 Ι32ノ Nの演箕を行な う。 2-2) 'M »= D l N, M 2 Ι 32 2 N
2- δ)' Μ,と Μ2の大小を比較し、. 大き 方を分割数と して前記 22 )〜24 ) のス テ ッ プを実行すれば分割点 mi , niが求ま る。 2-[delta]) 'Micromax, and compares the Micromax 2 of large and small, the as the number of divisions the size how 2 -. 2) to 2 - 4) S Te Tsu dividing point mi If you run up of, ni is Be asked.
(3) 曲線 CVi, CV2上の対応する分割点 mi , niが求まれば 該分割点における工具径補正方向側の法線ぺク ト ル Ν,Ι^ を演箕する。 この法線ベク トルは第 5 図、 第 ό 図を参照 して以下の手煩で求め られる。 (3) curve CVi, corresponding division points mi on CV 2, ni is Ν normal Bae click preparative Le Cutter Compensation direction in said division point if obtained, to演箕the iota ^. This normal vector can be obtained by the following steps with reference to FIGS. 5 and 5 .
3- 1) 分割点 miの 1つ手前及び 1 つ後の分割点 3-1) division points immediately preceding and one after the dividing point of the mi
mi + iを求める。 尚、 1 つ手前の分割点 は既に工具 B Find m i + i. The previous dividing point is already set to tool B
C.V.P! が mi , iii-.,に移動する際に演算されているから、 分 割点 mi + 1を求めればよい。 CVP! Is calculated when moving to mi, iii-., So the dividing point mi + 1 may be obtained.
3-2) 上記 S点 mi-i , mi , mi + 1を通る円弧 C R! (第 5 図 ) を求めると共に、 分割点 miにおける接線べク ト ル ϋ を求める。 3-2) Find the arc CR! (Fig. 5) passing through the above S points mi-i, mi, mi + 1 and also find the tangent vector ϋ at the division point mi.
δ-δ) 次に、 曲面 S Fの母線方向ベク ト ル Vを  δ-δ) Next, the vector V of the surface S F
V=mi— ni (5)  V = mi— ni (5)
よ D求めれば、 法鎳べク ト ル Nは接線べク ト ル ϋと母線 方向ベク ト ル Vの外積と ¾ 1? (第 ό 図 ) 、 If we find D, the modulo vector N is the cross product of the tangent vector ϋ and the bus direction vector V, ¾ 1? (Fig. Ό),
N = V X U (6)  N = V X U (6)
よ !?分割点 mi'における法線べク ト ル Nが求まる。 Yo! ? The normal vector N at the division point mi 'is obtained.
3-4) 同様に して分割点 niの法線べク ト ル N'が求まる。 尚、 法線べク ト ル N, 1STは力クタのオ フ セ ッ ト方向を肉 く よ うに作成する。 たとえば、 曲線 CV の分割点 miに け る接線べク ト ル ϋをさきの説明と逆方向に求めた場合に は法線べク ト ル Νを  3-4) Similarly, the normal vector N 'of the dividing point ni is obtained. Note that the normal vector N, 1ST is created so that the offset direction of the force tractor is thickened. For example, if the tangent vector 分割 at the division point mi of the curve CV is found in the opposite direction to the previous explanation, the normal vector Ν
Ν = ϋ X V (6/  Ν = ϋ X V (6 /
よ 求める。 I ask.
(4) つ で、 工具径 r と法線べク トル N, から工具ォ フ セ ッ ト ベク ト ル、 換言すれば工具径に基 て法線方 へ 工具位置を補正したとき の分割点 mi, Hiに対応する工具 中心轴の位置 mi', 11 (第 7 図 ) を求める。 この分割点 mi, niに対応する工具中心軸の位置.は以後工具補正位置 という。  (4) Then, the tool offset vector from the tool diameter r and the normal vector N, in other words, the division point mi when the tool position is corrected to the normal direction based on the tool diameter Find the position mi ', 11 (Fig. 7) of the tool center 轴 corresponding to Hi, Hi. The position of the tool center axis corresponding to the division points mi and ni is hereinafter referred to as a tool correction position.
(5) 2 つの工具補正位置 mi',ni'が求まれば工具中心軸べ ク ト ル Tを (5) If two tool offsets mi 'and ni' are determined, C
T = mi'— Hi' (7)  T = mi'—Hi '(7)
よ 求め、 ついで工具補正位置 Hi'を工具先端位置 P (X, Y, Z )とし、 工具中心轴べク ト ル T と工具先餾位置 P (Χ,Υ, Ζ )とから数値制御工作機械の各制御軸の位置デ ータを演算する。 たとえば、 第 8図に示すよ うに工具 Β Τを垂直回転方向 ( Β軸方向 ) 及び水平回転方向 ( C軸 方向 ) に回転してワークに対する工具中心軸方向を制御 し、 且つ該工具を: Χ,Υ , 2:の 3軸方向に移動させてヮー クに所望の加工を施す同時 5軸のフ ラ ィス盤を考える と 工具中心軸べ'ク ト ル ( I , J ,Κ)と、 工具先端位箧座標 Then, the tool offset position Hi 'is defined as the tool tip position P (X, Y, Z), and the numerically controlled machine tool is calculated from the tool center vector T and the tool tip combined position P (Χ, Υ, Ζ). Calculate the position data of each control axis. For example, as shown in FIG. 8, the tool Β is rotated in the vertical rotation direction (Β-axis direction) and the horizontal rotation direction (C-axis direction) to control the direction of the tool center axis with respect to the workpiece, and , 5, 2: Consider a simultaneous 5- axis machine that moves the workpiece in the desired three axes by moving in three axis directions: Tool center axis vectors (I, J, Κ); Tool tip position 箧 coordinates
(X, Υ , Ζ ) と、 工具長^ とから工具回転中心 Qの直交座 標值(3c,y, z) と、 工具 B Tの回転角位置を示'す球座標 値 (b , c ) は次式から演箕でき る。  From (X, Υ, Ζ) and the tool length ^, the orthogonal coordinate 值 (3c, y, z) of the tool rotation center Q and the spherical coordinate value (b, c) indicating the rotation angle position of the tool BT Can be performed from the following equation.
■0 (8) ■ 0 (8)
VI2 + J2+ 3 VI 2 + J 2 + 3
J J
y=Y+ (9)  y = Y + (9)
VI2+J2-fK! VI 2 + J 2 -fK !
Figure imgf000011_0001
c =tan一1 ( ) 尚、 ^ , 式は直交座標系から球座標系への変換式で
Figure imgf000011_0001
c = tan- 1 () where ^ and are the conversion formulas from the rectangular coordinate system to the spherical coordinate system.
C.V.PIC.V.PI
' ある。 即ち、 第 9 図に示すよ うに工具 Β Τの回転中心 Q を原点と して直交座標系と球座標系を想定し、 長さ^の 工具を Β軸方向 (垂直回転方向へ b , c轴方向 (水平回転 方向 )へ C 回転させると工具先端の直交座標 ( 10, , ' is there. That is, as shown in Fig. 9, the orthogonal coordinate system and the spherical coordinate system are assumed with the rotation center Q of the tool Β as the origin, and the tool of length ^ is moved in the Β axis direction (b, c, in the vertical rotation direction). direction (horizontal rotation) to be C rotate the tool tip Cartesian coordinates (1 0,,
Κ0 ) は Κ 0 ) is
Ιο · sk b · cos c (L$  Ιο · sk b · cos c (L $
Jo · sin b · sin c ^ Jo · sin b · sin c ^
o— J^∞s b  o— J ^ ∞s b
で表わせ、 これ等 0$〜^式から! , cを求めると , 式 と ¾る o From these 0 $ ~ ^ formula! , C, the formula is
(6) 最後に、 (8)〜^式から求めた x,3r, z , b , Cを用いて 工具 B Tを曲線 CViの分割点 から miへ及び曲線 (6) Finally, using the x, 3r, z, b, and C obtained from equations (8) to ^, the tool BT is moved from the dividing point of CVi to mi and the curve
CV2の分割点 n卜 1から Hi へ移動させる。 Move from CV 2 division point n 1 to Hi.
お後1、 上記(1)〜(6)を操 ^返えして、 工具 B Tを曲線 Goto 1 , repeat steps (1) to (6) above and curve tool BT
CVい CV2に つて移動させれば所望の曲面 S Fのフ ラ イ ス加ェが行われる。 If you ask to be go-between moving CV have CV 2 off La Lee scan pressure E of the desired curved surface SF is performed.
尚、 ステ ッ プ (5)において工具補正位置 を工具先端位 置 P (X , Y , Z )と して説明 したが必らずしも工具先端位 量とする必要は い。 又、 工具と してはカツタ径一定の ものにつ て説明 したが第 1 0 図に示すよ う テーパ T Pを有するテーバ付工具 TBTであっても mi 及び niにお ける工具補正位置 mi', 11 はテーパー付工具のそれぞれの 位置における工具半径から求める ことができる。  In step (5), the tool compensation position is described as the tool tip position P (X, Y, Z), but it is not necessary to use the tool tip position. In addition, the tool is described as having a constant cutter diameter.However, even with a tapered tool TBT having a taper TP as shown in Fig. 10, the tool correction position mi 'at mi and ni 11 can be obtained from the tool radius at each position of the tapered tool.
更に、 これまでの実施例では工具旋回釉の B、 C勒を 持つ 5軸工作機械で説明 しているが、 回転テーブル とェ  Furthermore, in the embodiments described so far, the description has been given of a 5-axis machine tool having B and C bridles with a tool turning glaze.
0: PI ?0 具旋回の組合せある は 2つの回転テー ブルを持つ 5軸 工作機械にも適用が可能で る。 0: PI? 0 It can also be applied to a 5-axis machine tool with a combination of tool rotation or two rotating tables.
^上はフ ライ ス加工に本発明を適用した場合の例であ るが、 次にワイ ヤカツ ト放琶加工に本発明を適用 ϋた場 δ 合について説明する。 第 1 1 図、 第 1 2 図は本発明をヮ  ^ The above is an example of the case where the present invention is applied to rice processing. Next, a case where the present invention is applied to wire cutting baking processing will be described. FIGS. 11 and 12 illustrate the present invention.
ィ ャカツ ト放電加工に適用 した場合の説明図であ 、 W ϋはワイ ヤ、 CVi, CV2はそれぞれワーク WK上面及び下 面の加工形状曲鎳、 S Fは曲面である。 Illustration der when applied to the I Yakatsu preparative EDM, W ϋ is Wai Ya, CVi, CV 2 each work WK upper surface of the lower surface and the machining shape song鎳, SF is curved.
(1/ まず、 曲面 S Fの加工に先立って曲線情報、 放電 ギャ ッ プを含むワ イ ヤ径情報、 ワ イ ヤ補正方向、 分割情 報を入カナる'。  (1 / First, input the curve information, the wire diameter information including the discharge gap, the wire correction direction, and the division information before machining the curved surface SF. '
(2) ' ついで、 前記ス テップ (1 で入力 した分割情報に基 て各曲線 CVい CV2を分割し、 分割点 m^iiiを求める。 (2) 'then dividing the step (1 had the curves CV Te based on division information input in CV 2, obtains division points m ^ iii.
(3) ' 以後フ ラ イ ス加工の場合におけるス テ ッ プ (3) , (4) と同様の手法によ !? ワ イ ャ補正位置 mi', (第 1 2図 ) を求める。 尚、 ス テ ッ プ (3) , (4)に ける工具をワ イ ヤと 読み巷える。 (3) 'After that, use the same method as steps ( 3 ) and ( 4 ) in the case of milling! ? Find the wire correction position mi ', (Fig. 12). Note that the tools in steps ( 3 ) and ( 4 ) are read as wires.
(4) ' 2 つの ワ イ ャ補正位置 m^, n が求まれば(7)式から ワ イ ヤの傾斜ベク ト ル Tを求める。 (4) 'If the two wire correction positions m ^, n are found, the wire tilt vector T is found from Eq. ( 7 ).
(5)' つ で、 ワ イ ヤ補正位置 m , Hi 'をワー ク WKを载 置するテー ブル T Bに平行な平面への投影点座標、 換言 すればヮ ィ ャ の中心線とテー ブル T Bに平行 ¾平面 との交点 Pc ,' の座標を演算する (第 1 2 図 ) 。 尚、 ワ イ ヤカツ ト放電加工機の上ガイ ドを ワーク _fc面に沿つ て U,V軸方向に移動させる ものとすれば、 交点 PCは該ヮ  (5) The wire correction position m, Hi 'is the coordinates of the projection point on a plane parallel to the table TB on which the work WK is located, in other words, the center line of the wire and the table TB. Calculate the coordinates of the intersection Pc, 'with the ¾ plane (Fig. 12). If the upper guide of the wire-cut electric discharge machine is to be moved in the U and V axis directions along the workpiece _fc plane, the intersection PC is
O.V.PI ーク上面と ワイ ヤ中心の交点となる。 一方、 交点 Pc'はヮ ーク下面と ワ イ ヤ中心の交点である。 さて、 交点 Pc,P の座標 0,マ),(3:, )は、 それぞれ分割点111 111の 2軸 座標値を d, d ワイヤの煩斜ベク ト ル Tを (I , J , K: ) 、 ^ィ ャ補正位置 mi', Hi'の座標値を (Sx,Sy, Sz ) , (S , s ,s ) とすれば OVPI It is the intersection of the wire top and the wire center. On the other hand, the intersection Pc 'is the intersection between the underside of the mark and the center of the wire. Now, the coordinates 0, ma) and (3 :,) of the intersection points Pc, P are respectively expressed by the two-axis coordinate values of the division point 111 111, d, and the obscure vector T of the wire d by ) ^ I catcher correction position mi ', Hi' coordinate values (S x, Sy, S z ), if (S, s, s) and
u = Sx + t · I u = S x + tI
}  }
V = Sy + t . J  V = Sy + t. J
x = Sx + t' · I x = S x + t'I
y == Sy'+ t' · J  y == Sy '+ t'J
よ ]?求ま る。 徂し、 t , t は Yo]? So, t and t are
t = ( d - Sz )/Κ である。 t = (d-S z ) / Κ.
(6)' 最後に^式から求めた (u,v)によ ワ イ ヤカッ ト 放電加工機の上ガイ ドを υ,ν軸方向に移動させ、 又^式 から求めた(x,y)によ テー ブルを: Χ,Υ軸方向に移動さ せればワ イ ヤを曲線 CV!の分割点 から mi へ、 及び 曲線 CV2の分割点 から Hi移動させるこ とができ る。 (6) 'Finally, the upper guide of the wire-cut electric discharge machine was moved in the υ and ν axis directions by (u, v) obtained from the ^ equation, and the (x, y) was obtained from the ^ equation. the'll table to:! Χ, Υ is moved in the axial direction to mi the sum Yi ya from the curve CV dividing point of, and Ru can trigger Hi moved from the dividing point of the curve CV 2.
そして、 以後上記(1)〜 (6)'のス テ ッ プを操 返えしてワイ ャを曲籙 CV,, CVzに ¾つて移動させれば所望の曲面 S F の ワ イ ヤ カ ッ ト加工が行われる。. Thereafter, by repeating the steps (1) to (6) ′ and moving the wire along the tracks CV, CVz, the wire cut of the desired curved surface SF can be obtained. Processing is performed. .
第 1 3 図は本発明をフ ラ イ ス加工に適用 した場合のブ ロ ック図である。  FIG. 13 is a block diagram when the present invention is applied to milling.
図中、 101は分割点演算ユニ ッ ト であ 、 曲線 CVH  In the figure, reference numeral 101 denotes a division point calculation unit, and the curve CVH
0.V.PI CV2を特定する曲線デー タ DC , DCVt 及び分割数 M並 びに分割比 a: bを入力されて分割点 mi , Hiの座標値を演 算する。 1 02は分割比記億レ ジス タであ 、 前述の(1)〜 (6)のステッ プが完了する毎に 0.V.PI Curve data DC identifying the CV 2, DCVt and split ratio division number M parallel Beauty a: b is input division points mi, and to computation of the coordinate values of Hi. 102 is a division ratio register, which is registered each time the above-mentioned steps (1) to (6) are completed.
i + 1→ &、 M— a→ b  i + 1 → &, M—a → b
の演算が行われ、 その内容は更新される。 尚、 初期時 i = 1 である。 103は分割点座標記億レ ジス タであ 、 現 在工具が位置している現分割点 mi一 , 、 次に工具が 移動する分割点 mi , ni及び次の次の分割点 mi +1 , ni + i の座標値がそれぞれ記憶される。 1 Q4は法線べク ト ル演 箅ュ -ッ ト で'あ ]?、 G機能命令で与えられる工具径補正 方向情報を用 てステツ ブ 3— 1 :)〜 34 ) に よ ]?分割点 mi,niにおける法線ぺク ト ル N, N^を演箕する。 105はォ フ セ ッ トべク ト ル演算ュ - ッ トであ ]?、 工具径 r と法線 べク ト ル Ν ,Ν'からオフ セ ッ トべク ト ル、 即ち工具径補正 したときの分割点 mi, niに対応する工具補正位置 m , の座標値を演箕する。 1 は工具中心軸ベ ク ト ル演箕 ュ -ッ トであ 、 (7)式よ 工具中心軸ベ ク ト ル T ( I , J, K ) を演算する。 107は制御軸位置デー タ演箕ュ -ッ ト であ 、 工具中心賴ベ ク ト ル ( I , J , K )及び工具先端位 置座標 (Χ, Υ) を入力され、 (8)〜 式から Χ , Υ , Ζ軸及 び B,C軸の位置データ x,.y, z ,b., c を演箕して出力する。 Is performed, and the content is updated. Note that i = 1 at the beginning. Numeral 103 denotes a division point coordinate storage register, which is the current division point mi-1, where the current tool is located, the division point mi, ni where the tool moves next, and the next next division point mi + 1 , n i + i are respectively stored. 1 Q4 is the normal base-click door Le Starring箅Yu - Tsu door with 'Oh] ?, Te use of the tool radius compensation direction information given by the G function instruction Sutetsu Breakfast 3-1:) to 3 - 4)] Perform the normal vector N, N ^ at the division point mi, ni. 105 is the offset vector calculation unit] ??, the offset vector from the tool diameter r and the normal vectors Ν and Ν ', that is, the tool diameter compensation The coordinate value of the tool correction position m, corresponding to the division point mi, ni at the time is displayed. Numeral 1 is a tool center axis vector plot, which calculates the tool center axis vector T (I, J, K) from equation (7). 1 07 control axis position data演箕Interview - entered Tsu preparative der, tool center賴Be click preparative Le (I, J, K) and the tool tip position location coordinates (chi, Upsilon) and (8) - The position data x, .y, z, b., C of the Χ, Υ, Ζ axis and B, C axis are calculated and output from the formula.
108はパ ル ス分配器であ !)、 位置データ x,y, z , b , c を 入力され、 周知のパル ス分配演算を実行して各軸の分配 パルス Xp,Yp,Zp, Bp,Cnを発生する。 尚、 各軸分配パ ル スはそれぞれ図示しるい各軸のサーボ回路に入力され、 各軸のモータを军動 し工具を曲線 CVい CV2に fB、つて移動 させる。 108 is a pulse distributor! ), The position data x, y, z, b, is inputted to c, distribution pulses Xp of each axis by performing the operation known pulse distribution, Yp, Zp, Bp, generates C n. In addition, each axis distribution panel Scan is input to the servo circuit respectively shown Shirui each axis,军動the motor of each axis and f the tool curve CV There CV 2 B, causes connexion movement.
第 1 4 図は本発明をワ イ ヤカツ ト放鷲加 Ϊ に適用 した 場合のブロ ック図であ 、 第 1 3 図と同一部分には同一 符号を付し、 その詳細 説明は省略する。  FIG. 14 is a block diagram in the case where the present invention is applied to a wire-cutting system. The same parts as those in FIG. 13 are denoted by the same reference numerals, and detailed description thereof will be omitted.
201は交点座標演算ュ - ッ トであ 、 交点 Pc ,Pc' (第  Reference numeral 201 denotes an intersection coordinate calculation unit, and the intersections Pc and Pc '(the
1 2 図 ) の座標を^ , ¾に基 て滇箕し、 パ ル ス分配器  1 2) The coordinates of the pulse distributor are determined based on ^ and ¾.
108に入力する。 パ ル ス分配器は Ti , v , x , yを入力され、 υ , V軸の分 seバ ル ス ϋρ , νρ及び: X, IT軸の分配パルス Xp,Enter 108. The pulse distributor receives Ti, v, x, and y, and receives se pulses ρ ρ , ν ρ for the υ and V axes, and X, the distribution pulse Xp for the IT axis.
Ypを発生し、 ^分記パルス に基 て上ガイ ド及びテ一ブ ルを駆動する。 Yp is generated, and the upper guide and the table are driven based on the divided pulse.
尚、 第 1 3 図、 第 1 4 図においては値別のユニッ ト に よ D装置を構成したがコ ンビュータ構成と しても よ 。  In addition, in FIGS. 13 and 14, the D device is constituted by the unit for each value, however, it may be constituted by a computer.
産業上の利用可能性  Industrial applicability
¾上の よ う に、 本発明の数値制御加工方法に よれば 2 本の曲鎳の対応点を煩次結ぶこ とに よ 創成される曲面 の加工ができ、 ワ イ ヤカ ツ ト放電加工機の応用分野を著 しく 広める こ とができ る。 又、 フ ラ イ ス加工にお ては 刃物の胴部でワーク 加工を施すこ とが可能に ¾ フ ラ イ ス工具の先端で加工する.従来の加工方法に比べ加工能 率を著し く 向上させる こ とができる。  As described above, according to the numerically controlled machining method of the present invention, it is possible to machine a curved surface created by connecting the corresponding points of two curved surfaces in a cumbersome manner. Can significantly spread the field of application. Also, it is possible to carry out workpiece machining with the body of the blade in the milling process.¾ Machining with the tip of the milling tool. Can be improved.
O.V.PI O.V.PI

Claims

請 求 の 範 囲  The scope of the claims
1 2本の曲線上の対応点をそれぞれ結ぶことによ !)創 成される曲面を加工する数値制御加工方法において、 前 記 2本の曲線を特定する曲線情報と、 工具径¾どの工具 形状情報と、 工具径補正方向情報と、 前記各曲線を分割 する分割情報とを入力する ス テ ッ プ、 前記分割情報に基 いて各曲艤を分割 し、 分割点 mi,ni ( i = 1, 2,…;)を求め るス テ ッ プ、 一方の曲線の分割点 miと、 該分割点 miに対 応する他方の曲繚の分割点 ni とにおける前記工具径補正 方向の法線べク ト ルをそれぞれ求める と共に、 前記工具 形状情報を用 て工具オ フ セ ッ トべク ト ル或 は該法線 方向へ工具位置補正したと き の分割点 mi, niに対応する 工具補正位置 mi', ni' をそれぞれ演箕するス テ ッ プ、 前 記工具補正位置 mi', ni' よ 工具軸方向( 1, J, K) を演' 算するス テ ッ プ、 工具補正位置 ni'の座標値(Χ,Υ,Ζ ) と 前記工具軸方向( I , J,K ) を用いて数値制御工作機械の 各制御軸移動デー タを演箕するステ ッ プ、 該制御軸移動 データに基 て工具をヮ一クに対し相対的に移動させて 曲面加工を施すステッ ブを有する こ とを特徵とする数値 制御加工方法。 1 By connecting the corresponding points on two curves! In the numerical control machining method for machining a curved surface to be created, the curve information for specifying the two curves, the tool diameter information, the tool shape information, the tool diameter correction direction information, and the curves are divided. A step for inputting the division information; a step for dividing each fitting based on the division information to obtain a division point mi, ni (i = 1 , 2,...); One curve The normal vector in the tool radius correction direction at the division point mi of the above and the division point ni of the other piece corresponding to the division point mi is obtained, and the tool shape information is used using the tool shape information. Steps for executing the tool offset positions mi 'and ni' corresponding to the division points mi and ni when the tool position is offset in the vector or the normal direction, respectively, as described above. Step for calculating the tool axis direction (1, J, K) from the tool compensation position mi ', ni', coordinates of the tool compensation position ni ' A step of executing the control axis movement data of the numerically controlled machine tool using (Χ, Υ, Ζ) and the tool axis direction (I, J, K), and a tool based on the control axis movement data A numerically controlled machining method characterized by having a step for performing a curved surface processing by moving a tool relatively to a workpiece.
前記制御軸移動デー タ の う ち直交座標軸の移動デー タを x,y, z、 垂直回転及び水平 la転の移動データをそれ ぞれ b , c、 工具長を^ とする と き、
Figure imgf000017_0001
Of the control axis movement data, the movement data of the orthogonal coordinate axes is x, y, z, the movement data of vertical rotation and horizontal la rotation are b, c, and the tool length is ^, respectively.
Figure imgf000017_0001
OfiPI · y=Y+ /— ±====- '-e OfiPI · y = Y + / — ± ====-'-e
I2+J2+K2 I 2 + J 2 + K 2
z · b zb
Figure imgf000018_0001
Figure imgf000018_0001
c -tan一1 (丁 ) によ !)、 x,y, z, b , c を滇算する と とを特徵とする請求 の範囲第 1 項記載の数値制御加工方法。 c -tan to one 1 (Ding)! ), And x, y, z, b, c are calculated, and the numerically controlled machining method according to claim 1, wherein
i 2本の曲镲上の対応点をそれぞれ結ぶこ とに よ 創 成される曲面を加工する数値制御加工方法に いて、 前 記 2本の曲鎳を特定する曲線情報と、 ワ イ ヤカ ッ ト放電 加工における放電ギャ ッ プを含むワ イ ヤ径情報と、 ワ イ ャ補正方向情報と、 前記各曲鎳を分割する分割情報とを 入力するス テ ッ プ、 前記分割情報に基 て各曲艤を分割 し、 分割点 mi,ni (i = 1, 2, …:)を演算するス テ ッ プ、 一 方の曲線の分割点 mi と、 該分割点 miに対応する他方の分 割点 ni とにおける前記ワ イ ヤ補正方向の法線べク ト ルを それぞれ演箕する と共に、 前記ワ イ ヤ径情報を用いてヮ ィ ャオ フ セ ッ トべク ト ル或 は該法線方向へワ イ ヤ位置 を補正 したと きの該分割点 mi, に対応する ヮ ィ ャ補正 位置 mi', ni'をそれぞれ演箕するス テ ッ プ、 前記ワ イ ヤ補 正位置 mi', ni'よ ワイ ヤ軸方向を演算するス テ ッ プ、 前 記ワ イ ヤ軸方向及びワ イ ヤ補正位置等を用 て該ワ イ ヤ i In a numerically controlled machining method for machining a curved surface created by connecting corresponding points on two tracks, the curve information for specifying the two tracks and the wire Steps for inputting wire diameter information including an electric discharge gap in wire electric discharge machining, wire correction direction information, and division information for dividing each of the tracks, and based on the division information, Step for dividing the fitting and calculating the division points mi, ni (i = 1 , 2,… :), the division point mi of one curve, and the other division corresponding to the division point mi The normal vector in the wire correction direction at the point ni is performed, and the wire offset vector or the normal vector is obtained by using the wire diameter information. When the wire position is corrected in the direction, the steps for performing the 補正 -corrected positions mi 'and ni' corresponding to the division point mi, respectively. The word i ya compensation position mi ', ni' scan STEP for calculating the wire Ya axis yo, 該Wa Lee Ya prior Te use the Kiwa Lee Ya axis direction and the word i ya corrected position or the like
r _ ΓOι. :V·.P orI 補正位置 mi',,ni'に対応するボイ ン トであってワークを載 置するテーブル面に平行な平面上のボイ ン ト m (ϋ,ν), ni (X, Υ )の位 gを演箕するステ ッ プ、 X, Υ, ϋ, V,に基 てテーブルを: Χ,Υ方向に鬆動する と共に、 ワ イ ヤを ϋ, V方向に駆動してワークに曲面加工を施すステ ッ プを有 するこ とを特徴とする数値制御加工方法。 r _ ΓOι.: V The position g of the point m (ϋ, ν), ni (X, Υ) on a plane parallel to the table surface on which the workpiece is placed, corresponding to the correction positions mi ', and ni' The table is performed based on the steps to be performed, X, ϋ, ϋ, and V: Steps for opening and closing the table in the 、 and directions, and driving the wire in the 曲 and V directions. A numerically controlled machining method characterized by having a loop.
4. 前記分割点 mi, niの Ζ轴座標値をそれぞれ d,d'とす る と き前記ボイ ン ト mi*, ni,の座標値(u,v) , (x,y)を  4. When the Ζ 轴 coordinate values of the division points mi and ni are d and d ', respectively, the coordinate values (u, v) and (x, y) of the points mi * and ni are
u = Sx+ t · I  u = Sx + tI
v = Sy+ t . J  v = Sy + t. J
x = Sx'- t, · I  x = Sx'- t, I
7 = Sy' - · J  7 = Sy '-J
但し、 t == (d— SZ)ZK によ u,v, 3c,yを演箕することを特徵とする請求の範囲 第 3項記載の数値制御加工方法。 4. The numerical control machining method according to claim 3, wherein u, v, 3c, y are performed by t == (d−S Z ) ZK.
c:r.pi c: r .pi
PCT/JP1982/000104 1981-04-04 1982-04-05 Digital control machining method WO1982003474A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8282901009T DE3280199D1 (en) 1981-04-04 1982-04-05 NUMERICALLY CONTROLLED TOOL.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP56050967A JPS57166606A (en) 1981-04-04 1981-04-04 Numerical control working method
JP81/50967810404 1981-04-04

Publications (1)

Publication Number Publication Date
WO1982003474A1 true WO1982003474A1 (en) 1982-10-14

Family

ID=12873583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1982/000104 WO1982003474A1 (en) 1981-04-04 1982-04-05 Digital control machining method

Country Status (6)

Country Link
US (1) US4559601A (en)
EP (1) EP0075030B1 (en)
JP (1) JPS57166606A (en)
KR (1) KR880002554B1 (en)
DE (1) DE3280199D1 (en)
WO (1) WO1982003474A1 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056824A (en) * 1983-09-06 1985-04-02 Fanuc Ltd Wire electric discharge machining method
JPS6099524A (en) * 1983-11-01 1985-06-03 Inoue Japax Res Inc Method of wire-cut electric spark machining
JPS60155322A (en) * 1984-01-17 1985-08-15 Mitsubishi Electric Corp Method of wire-cut electric discharge machining
JPS60213426A (en) * 1984-04-07 1985-10-25 Fanuc Ltd Machined shape displaying method in wire-cut electric discharge machining device
US4675825A (en) * 1984-10-30 1987-06-23 Dementhon Daniel F Computer-controlled peripheral shaping system
US4703143A (en) * 1984-12-25 1987-10-27 Amada Company, Limited Wire EDM method for preventing wire lagging during machining of an angular corner and workpiece position control
JPS61182729A (en) * 1985-02-09 1986-08-15 Fanuc Ltd Tapering controller of wire-cut electric discharge machine
JPS61288929A (en) * 1985-06-15 1986-12-19 Fanuc Ltd Wire-cut electric discharge machine
JPS62264307A (en) * 1986-05-13 1987-11-17 Fanuc Ltd Normal line vector arithmetic method
JPH0782554B2 (en) * 1986-09-10 1995-09-06 フアナツク株式会社 Curved surface processing method
JPS63118805A (en) * 1986-11-06 1988-05-23 Mitsubishi Electric Corp Automatic programming device
JPS63188206A (en) * 1987-01-30 1988-08-03 Okuma Mach Works Ltd Processing system for digitization data
CA1339155C (en) * 1987-07-28 1997-07-29 David M. Dundorf Computer produced carved signs and method and apparatus for making same
EP0310106A3 (en) * 1987-10-02 1989-05-24 Mitsubishi Denki Kabushiki Kaisha Method of forming configuration data for cnc machining apparatus
JPH01102604A (en) * 1987-10-15 1989-04-20 Fanuc Ltd Nc data generation system
WO1989006585A1 (en) * 1988-01-20 1989-07-27 Mitsubishi Denki Kabushiki Kaisha Method for preparing offset shape
JPH0271928A (en) * 1988-09-01 1990-03-12 Mitsubishi Electric Corp Enumeration of correction magnitude of wire diameter in wire electric discharge machining
JPH02279220A (en) * 1989-04-19 1990-11-15 Mitsubishi Electric Corp Wire electric discharge machining apparatus
JPH047707A (en) * 1990-04-26 1992-01-13 Fanuc Ltd Tool axis correcting system
JP2667563B2 (en) * 1990-08-09 1997-10-27 ファナック株式会社 Tool axis direction calculation method
US5363309A (en) * 1993-02-25 1994-11-08 International Business Machines Corp. Normal distance construction for machining edges of solid models
KR100306236B1 (en) * 1996-03-26 2001-11-22 와다 아끼히로 Method and apparatus for preparating data on tool moving path, and machining method and system
DE19846426A1 (en) * 1998-10-08 2000-04-13 Open Mind Software Technologie Multi axis machining center with independent control of the axes of the cutting tool
JP4210056B2 (en) * 2001-12-25 2009-01-14 株式会社日立製作所 Tool path creation apparatus and method
SE525235C2 (en) * 2002-01-10 2005-01-11 Anders Reyier An arrangement and method for producing a three-dimensional object from a series of scanned values
US6836741B2 (en) * 2003-01-30 2004-12-28 Industrial Technology Reseach Institute Vertical calibration method for a wire cut electric discharge machine
DE10322340B4 (en) * 2003-05-17 2006-09-14 Mtu Aero Engines Gmbh Method and device for milling free-form surfaces
JP4472558B2 (en) * 2005-03-03 2010-06-02 株式会社ソディック Wire-cut EDM method
ES2376317T3 (en) * 2005-03-30 2012-03-12 Agie Charmilles Sa METHOD FOR MEASURING AND ADJUSTING THE ELECTRODE FOR A CONICAL MACHINING IN AN ELECTRICAL SHOCK MACHINE.
DE112008003926B4 (en) * 2008-07-03 2019-09-05 Mitsubishi Electric Corp. ELECTRICAL WIRE EDMATING MACHINE, CONTROL DEVICE THEREFOR AND ELECTRICAL WIRE DIRECT PROCESSING METHOD
JP5088975B2 (en) * 2010-10-19 2012-12-05 株式会社ソディック Wire electrical discharge machine
JP4938137B1 (en) * 2011-03-03 2012-05-23 ファナック株式会社 Wire-cut electric discharge machine with a function to detect the upper surface of the workpiece
CN105171077B (en) * 2015-08-28 2017-10-10 湖北三江航天险峰电子信息有限公司 A kind of composite bevel milling method of high-precision control surface roughness
CN113741349B (en) * 2021-08-06 2023-02-24 广州奇芯机器人技术有限公司 Gap compensation method and device for five-axis water cutting
CN114985857B (en) * 2022-06-30 2024-05-14 青岛高测科技股份有限公司 Linear cutting control method, linear cutting control device and linear cutting machine
CN115502581B (en) * 2022-11-22 2023-02-03 深圳市睿达科技有限公司 Closed wire cutting control method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4971572A (en) * 1972-11-14 1974-07-10
JPS49101790A (en) * 1973-02-02 1974-09-26
JPS5383192A (en) * 1976-12-28 1978-07-22 Mitsubishi Electric Corp Control of wire-cut electric discharge machining
JPS53132895A (en) * 1977-04-25 1978-11-20 Inoue Japax Res Inc Method of tapering in wire-cutting discharge processings

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB843469A (en) * 1956-01-27 1960-08-04 Inductosyn Ltd Machine tool control apparatus
GB843468A (en) * 1956-02-02 1960-08-04 Inductosyn Ltd An automatic machine control system
JPS55120934A (en) * 1979-03-13 1980-09-17 Mitsubishi Electric Corp Wire cut-type electric current machining
CH639308A5 (en) * 1979-04-26 1983-11-15 Agie Ag Ind Elektronik METHOD AND DEVICE FOR ORIENTING THE WIRE GUIDE HEADS ON SPARKLESS EDM CUTTING MACHINES FOR EDMING WITH A LARGE SLOPE OF THE WIRE.
CH632693A5 (en) * 1979-12-21 1982-10-29 Charmilles Sa Ateliers MACHINE FOR CUTTING BY EROSIVE SPARKING.
JPS5773410A (en) * 1980-10-23 1982-05-08 Fanuc Ltd Numerical control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4971572A (en) * 1972-11-14 1974-07-10
JPS49101790A (en) * 1973-02-02 1974-09-26
JPS5383192A (en) * 1976-12-28 1978-07-22 Mitsubishi Electric Corp Control of wire-cut electric discharge machining
JPS53132895A (en) * 1977-04-25 1978-11-20 Inoue Japax Res Inc Method of tapering in wire-cutting discharge processings

Also Published As

Publication number Publication date
EP0075030B1 (en) 1990-06-27
DE3280199D1 (en) 1990-08-02
US4559601A (en) 1985-12-17
EP0075030A4 (en) 1985-09-16
KR830009888A (en) 1983-12-24
JPS57166606A (en) 1982-10-14
EP0075030A1 (en) 1983-03-30
JPS6336524B2 (en) 1988-07-20
KR880002554B1 (en) 1988-11-29

Similar Documents

Publication Publication Date Title
WO1982003474A1 (en) Digital control machining method
WO1982004336A1 (en) Tool diameter correcting method for numerical control device
WO1982003473A1 (en) Tool diameter compensation system
US9904270B2 (en) Numerical control apparatus for multi-axial machine
WO1985001001A1 (en) Wire type electric discharge machining method
WO1996035980A1 (en) Method and device for interpolating free-form surface
EP0356522A1 (en) Involute interpolating method
JPS61125754A (en) NC data creation device for mold processing
JPS62163109A (en) Numerical controller
JP3004651B2 (en) Numerical control unit
WO1988006312A1 (en) Method of generating curved surfaces
KR0161010B1 (en) Moving path correction method according to tool diameter
US5200906A (en) Wire-cut electric discharge machining method
JP3288799B2 (en) Wire electric discharge machine
JPS6351811B2 (en)
JPS6311231A (en) Control method for wire electrical discharge machining device
JP2007172325A (en) Method of machining free curve and numerical control device
JPS58219606A (en) Automatic shape working system
JPH01100606A (en) Numerical controller
JPS6238096B2 (en)
JPS63191518A (en) Automatic programming device for numerical control for wire electric discharge machine
JPS60239804A (en) Correcting method of positional error
JPS6223324B2 (en)
JP2704124B2 (en) Wire electric discharge machining method and apparatus
JPH04148308A (en) Designating method for pressing direction for force control robot

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): US

AL Designated countries for regional patents

Designated state(s): CH DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 1982901009

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1982901009

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1982901009

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1982901009

Country of ref document: EP