WO1981003702A1 - Procede et dispositif de surveillance acoustique de machines et/ou d'installations - Google Patents
Procede et dispositif de surveillance acoustique de machines et/ou d'installations Download PDFInfo
- Publication number
- WO1981003702A1 WO1981003702A1 PCT/DE1981/000092 DE8100092W WO8103702A1 WO 1981003702 A1 WO1981003702 A1 WO 1981003702A1 DE 8100092 W DE8100092 W DE 8100092W WO 8103702 A1 WO8103702 A1 WO 8103702A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power density
- density values
- machine
- vibrations
- vibration
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000001228 spectrum Methods 0.000 claims abstract description 23
- 238000012544 monitoring process Methods 0.000 claims abstract description 17
- 238000004458 analytical method Methods 0.000 claims abstract description 7
- 230000003595 spectral effect Effects 0.000 claims description 26
- 238000004519 manufacturing process Methods 0.000 claims description 23
- 230000015654 memory Effects 0.000 claims description 18
- 230000006870 function Effects 0.000 claims description 12
- 230000007257 malfunction Effects 0.000 claims description 7
- 238000010521 absorption reaction Methods 0.000 claims description 4
- 230000008054 signal transmission Effects 0.000 claims description 3
- 230000001960 triggered effect Effects 0.000 claims description 3
- 239000006096 absorbing agent Substances 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims description 2
- 230000035939 shock Effects 0.000 claims description 2
- 230000001360 synchronised effect Effects 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 230000010355 oscillation Effects 0.000 abstract description 5
- 238000010183 spectrum analysis Methods 0.000 abstract description 2
- 238000001514 detection method Methods 0.000 abstract 1
- 238000001845 vibrational spectrum Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 4
- 230000011664 signaling Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000012806 monitoring device Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000246 remedial effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H1/00—Measuring characteristics of vibrations in solids by using direct conduction to the detector
- G01H1/003—Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
Definitions
- the invention relates to an analytical investigation procedure for the automatic monitoring of the state of machines or systems during operation and / or production processes on the basis of the analysis of the spectrum of sound or vibration vibrations that occur during operation of the machine or system or during the production process arise and which typically differ from the state in the event of a malfunction of any cause when the machine or system has a trouble-free setpoint function or when the manufacturing process runs smoothly.
- vibrations are recorded; these vibrations are then analyzed by converting the amplitude image of the recorded vibrations into a spectral representation with identification of the spectral power density values determined in one or more frequency bands; then the determined power density values with specified performance comparing density values in each frequency band to be monitored; and finally, when the determined power density values deviate from the predetermined power density values, signals are triggered.
- the invention relates to a device for the automatic monitoring of the state of machines or systems during operation and / or production processes on the basis of the analysis of the spectrum of sound or vibration vibrations that arise during operation of the machine or system or during the production process and which typically differ from the state in the event of a fault of any cause when the machine or system or the production process runs smoothly in the event of a malfunction, and which initially have one or more vibration sensors, e.g. B.
- vibration detector or microphones which further comprises a spectrally connected to the vibration sensors spectral analyzer that converts the amplitude image of the vibrations into a spectral representation with identification of the spectral power density values determined in one or more frequency bands, which furthermore has comparison circuits for comparing the determined power density values with by setting predetermined power density values in each frequency band to be monitored and which finally has signaling and switching devices for displaying and / or triggering control commands when the determined power density values deviate from the predetermined power density values.
- the sound signal recorded in this way is not yet suitable for evaluation. It must first be examined which specific powers are emitted in the frequency ranges that are different from each other. Basically, two methods are known for this: the sequential examination of the vibration mixture with selective filters and the so-called (fast) Fourier transformation.
- the first-mentioned method using filters either uses sequentially switched or continuously tuned band filters with a certain interval width (eg octave filter or third-octave filter) and the respective output signal is displayed or recorded.
- a so-called power density spectrum which, as the envelope of a curve or as a bar chart, provides information about the different sound and vibration levels that the machine emits in the individual frequency bands.
- Such a representation on a frequency-divided recording axis is commonly referred to as a spectral representation. This representation shows which sound or vibration emissions the machine emits in the individual frequency intervals. According to the different mechanical causes of noise and vibrations in the machine - depending on whether the cause Cause z. B.
- the second method the (fast) Fourier transform, consists in digitizing the emitted sound, which is initially recorded as an analog signal, using known electronic means and storing the discrete amplitude signals obtained therewith. These values are then subjected to a known mathematical conversion known as the "Fourier transformation".
- the sound or vibration signals originally recorded over a time axis are converted into an equivalent representation, which shows the emitted power densities over an axis divided into frequencies.
- an oscilloscope or the diagram of a writing measuring instrument shows a sound or vibration spectrum of basically the same type as in the (physical) analysis of the vibration mixture by means of a bandpass filter.
- the envelope of this spectral representation describes an area that is equivalent to the total sound or vibration power.
- Measuring devices which carry out the above-mentioned spectral analysis according to one or the other method and display the result with suitable means, for example on the screen of an oscilloscope or on a writing measuring device, with representations in other informative coordinate systems, e.g. B. local curves occur.
- suitable means for example on the screen of an oscilloscope or on a writing measuring device, with representations in other informative coordinate systems, e.g. B. local curves occur.
- a specialist is always required who continuously observes these representations in order to intervene if necessary in the event of occurring or impending faults.
- the present invention is based on the object of automatically monitoring machines or systems during operation and / or the manufacturing process on the basis of the analysis of the spectrum of sound or vibration vibrations.
- the method specified in the characterizing part of claim 1 is proposed.
- a device suitable for carrying out this method is specified in claim 2.
- An alternative Solution for the device according to claim 2 is shown in claim 3; This solution concerns machines or systems or manufacturing processes in which the vibrations that occur recur cyclically.
- the time slot circuit with the associated gate circuits is suitable for releasing not only a single time window, but adjustable several within a work cycle, for example a second time window, whereby For each additional time window provided, there is a separate data memory for storing the predetermined power density values to be predetermined, which are assigned to the associated time window and together with the others via an OR logic data memories in the door circuits to the comparison circuits.
- a separate data memory for storing the predetermined power density values to be predetermined, which are assigned to the associated time window and together with the others via an OR logic data memories in the door circuits to the comparison circuits.
- frequency band switches are provided according to claim 5 for switching off the signal transmission in any of the selectable frequency bands.
- the present application also relates to a particular application of the invention explained above.
- the application relates to a press for producing bolts from wire sections or a similar working machine.
- This application described in claim 6, is characterized by the combination of the following features: the press is assigned a sound absorbing hood or a similar sound extractor and the press is assigned a device according to one or more of the preceding claims, the vibration sensors of which are located within the space enclosed by the sound absorbing hood are arranged.
- the vibration sensor and signal device be attached to the sound absorbing hood.
- FIG. 1 shows a diagram in which the sound emitted, for example, by a machine with reciprocating machine parts is shown over a time axis
- FIG. 2 shows a diagram with different spectral representations, each of which is assigned to a specific time segment of the oscillation curve according to FIG. 1,
- Fig. 3 sine device or circuit arrangement for performing the method according to the invention
- Fig. K in a schematic representation of a method according to the invention or with the device according to the invention working machine with a sound absorbing hood.
- the vibration profile 1 is recorded over a time axis 2 as the abscissa for vibrations emitted by a work machine with a cyclically recurring work sequence.
- the amplitudes of the sound pressure are shown for example.
- the vibration curve 1 shows a complete machine cycle - that is, the operation of the working machine over, for example, a complete crank revolution of the crank drive, with the total time requirement k.
- the time requirement 4 is divided, for example, into the six time segments 5, 6, 7, 8, 9 and 1, each corresponding to a 60 degree crank rotation.
- the vibration mixtures emitted by the machine are different in each of the time periods 5 to 10 than in the other time periods. This becomes clear from the illustration in FIG. 2.
- the vibration mixtures which are assigned to each of the above-mentioned periods 5 to 10, are shown in one of the power density spectra programs 13, 14, 15, 16, 17 and 18 shown there.
- the vertical axes 19 of these power density spectro grams reflect the power density
- the horizontal axes 20 are divided by frequencies or frequency bands, in the present case for eight frequency bands 21, 22, 23, 2k, 25, 26, 27 and 28.
- the spectrogram 13 and 29 show the power density within the frequency band 25, specifically in relation to the time segment 5 according to the diagram in FIG. 1, the common, so-called bar representation being used here, as in the other following spectrograms.
- the device according to the invention for monitoring a machine 30 for trouble-free function has a device 31 in the signal input for recording the vibration and / or sound spectrum, e.g. B. a microphone or an accelerometer for picking up the vibrations that are transmitted as structure-borne noise.
- the presence of conventional signal amplifiers is assumed.
- the recorded signals are then fed to a gate circuit 32 which, in the case of machines with a cyclical sequence (time requirement 4), serve to function the device or device according to the invention on one or more selectable parts 11, 12 etc. of this cycle or time requirement 4 to restrict.
- the gate circuit 32 receives opening signals from a time window circuit 33.
- the time window circuit 33 is coupled to the machine 30 via a coupling device 34.
- a cam switch can be used for a time window circuit, which is actuated by a cam on a cam disk rotating with the crank drive of the machine 30, the crank angle at which the cam actuates the cam switch being decisive for the angular range of the crank position via away the time window opens the gate circuit 32 (for example over the parts 11 and 12 of the time requirement 4).
- the cam disk can also have a plurality of cams which, in the course of a crank revolution, realize a plurality of time windows (corresponding, for example, to parts 11 and 12 of the time requirement 4), as a result of which further signals as opening signals for the gate circuit 32 (and at the same time for the gate circuit 32) which are quite different depending on the crank angle and duration to later explained goal circuits 45) can be switched.
- a time window circuit 33 realized by a cam switch is an electronic solution, for example in that the coupling device 34 drives an electro-optical or elec tromagnetic angle step encoder of sufficient resolution which feeds a counting circuit.
- the counter circuit is synchronized at a certain crank position by being set to zero.
- two adjusting devices, e.g. B. digit adjusters, 35, 36 those step numbers can be set by the operating personnel, which define the start (setting device 35) and end (setting device 36) of the time window (s) in accordance with parts 11 and 12 and thus, just as in the case of the cam switch mentioned, its crank angle and duration .
- the opening commands of the time window circuit 33 go to the gate circuit 32 and the gate circuits 45 to be described later via signal lines 37.
- a spectral analyzer is denoted by 38, it being immaterial whether the technical implementation with the band filter method described above is carried out on a physical scale or, on the other hand, mathematically by (fast) Fouriier transformation or by another method which involves the sound or vibration amplitudes converted into a power density spectrum.
- the spectral analyzer 38 At the output of the spectral analyzer 38, there is in each case in the lines 39 information about the power densities (19) contained in a plurality of adjacent or non-adjacent frequency bands 21 to 28 of the sound or vibration amplitudes recorded by the device 31.
- a spectral analyzer Basically equivalent to this is also a spectral analyzer, the circuit output 39 of which provides temporally nested serial information about the entire power density spectrum (e.g. 13 to 18) in a single channel.
- the components provided, for example, for three parallel channels would only be present once and would be designed for the processing of serially occurring information in a manner known per se. Only in the signal evaluation circuit to be described later would the serial information be converted into parallel information.
- the lines 39 at the output of the spectral analyzer 38 lead via analog-digital converter 40 to an operating mode switch 41.
- analog-digital converters 40 are only to be provided if the spectral analyzer 38 used supplies analog output signals, while such converters deliver a digital signal format this point does not apply.
- the signal lines 39 which are now fed with digital power density information, are connected to the operating mode switch 41 in such a way that the latter is shown here
- Parallel processing can switch each individual frequency channel 21 to 28 separately on two different line paths: to lines 42, as shown in FIG. 3 in the "LEARN” or “STORE” operating mode, or to lines 43 in the "MONITOR” mode.
- the power density signals reach the data memory 44 via the lines 42, in which there are (physically separated or programmed) as many memory areas 45 with read / write memories as frequency bands (21 to 28) are evaluated or evaluated should.
- the total of the power density values stored in these memory areas 45 are referred to below as the target spectrum, which is to be specified for the comparison to be described later.
- the memories are connected to gate circuits (46) which, like the gate circuit 32 described above, for the signal flow only during the cyclical time ranges defined by the setting of the time window circuit 33 on the setting devices 35 and 36, here time windows (for example parts 11 and 12) are open.
- time windows for example parts 11 and 12
- "MONITORING" signals which arrive only during "open" time windows (for example 11 and / or 12) in the time window breaks are erroneously compared with the setpoints permanently stored in the memories 45.
- the actual comparison between the target spectrum and the actual spectrum takes place in the comparison circuits 47.
- the signal lines 43 leading up to the actual spectrum open into the comparison circuits 47.
- the comparison of the digital power density values is carried out arithmetically in the example, so that the output lines 48 of the comparison circuits according to the sign and difference show the deviations of the instantaneous power densities 19 in the individual frequency bands 21 to 28 Signal evaluation circuit 49 conduct.
- the signal evaluation circuit 49 serves to quantify the power density signals obtained from the individual frequency bands 21 to 2 and to convert them for signaling or for triggering control commands. At this point, the conversion to parallel channels would take place in the case of a serial signal transmission, not shown here. However, since FIG. 3 already has this parallel processing as an example, there is no need to show this conversion circuit which is not required here.
- the signals fed through the lines 48 are conducted via switches 50 to be actuated separately for each frequency band 21 to 28; this makes it possible to exclude certain frequency bands from the monitoring, in which, for example, changes in the spectral power density take place without suggesting significant interference.
- the power density signals pass through a plurality of threshold value switching stages 51 with associated indicator lamps.
- This These switching stages 51 receive their response threshold values through the input devices 52, with which the switching stages are specified at which value and sign of the difference signals (in the comparison stages between the target and actual values) an output signal and / or a control command is to be triggered.
- two graded switching thresholds for exceeding and one for falling below the actual power densities above or below the target power densities could be set for each desired frequency band.
- the smaller deviation then serves for signaling, for example via the indicator lamps belonging to the threshold switching stages 51 and / or the acoustic alarm device 53.
- the larger deviation actuates a contactor 54 as a control command, which can be used to switch off the monitored machine 30 by cutting off their power supply lines 55.
- FIG. 4 shows a schematic representation of a work machine 60, in particular of the type of a press for producing bolts from wire sections or the like.
- the work machine 60 according to FIG. 2 is fastened on a foundation 61.
- a sound absorption hood 62 is provided which can be moved by means of rollers 63 and can be moved over the entire work machine 60 from only one side, for example.
- the required vibration sensors in the form of microphones 64 or the like, as well as the acoustic alarm device 53 and possibly other alarm devices, e.g. B. light emitter to arrange. It is advisable to arrange the relatively small-sized device according to the invention with its various circuit features on the sound absorbing hood 62 and, if necessary, to lead only one power supply line 65 to the outside.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Le procede de controle analytique, et le dispositif pour la surveillance automatique de l'etat de machines ou d'installations au cours du fonctionnement, se basent sur l'analyse spectrale d'oscillation acoustiques, respectivement de vibrations. Les amplitudes des oscillations, captees et analysees, sont converties en valeurs de densite de puissance spectrale et comparees a des valeurs de densite de puissance spectrale donnees pour produire des signaux en cas de difference. Les valeurs de densite de puissance spectrale donnees sont obtenues par detection, analyse et conversion des oscillations, respectivement des vibrations, se produisant lors d'un fonctionnement normal, sans derangements, de la machine ou de l'installation et sont memorisees de maniere que les valeurs de densite de puissance obtenues lors du fonctionnement successif de la machine ou de l'installation puissent etre comparees a ces valeurs memorisees.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3022895 | 1980-06-19 | ||
DE3022895 | 1980-06-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1981003702A1 true WO1981003702A1 (fr) | 1981-12-24 |
Family
ID=6104939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1981/000092 WO1981003702A1 (fr) | 1980-06-19 | 1981-06-16 | Procede et dispositif de surveillance acoustique de machines et/ou d'installations |
Country Status (2)
Country | Link |
---|---|
IT (1) | IT8122407A0 (fr) |
WO (1) | WO1981003702A1 (fr) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0087813A3 (en) * | 1982-03-03 | 1984-07-04 | Hitachi, Ltd. | Method and apparatus for monitoring cracks of a rotatable body |
GB2156987A (en) * | 1984-04-04 | 1985-10-16 | Molins Plc | Cigarette making machine |
FR2698470A1 (fr) * | 1992-11-26 | 1994-05-27 | Kodak Pathe | Procédé et installation de surveillance en continu et en temps réel d'un processus complexe de fabrication. |
EP0694313A3 (fr) * | 1994-07-21 | 1996-06-05 | Dideco Spa | Méthode et équipement pour contrÔler des appareils de circulation sanguine extracorporelle |
EP0838669A3 (fr) * | 1996-10-22 | 2000-12-20 | Robert Bosch Gmbh | Dispositif et procédé pour mesurer le bruit des machines et dispositifs électriques |
WO2001025631A1 (fr) * | 1999-10-06 | 2001-04-12 | Aloys Wobben | Procede de surveillance d'eoliennes |
DE19960014A1 (de) * | 1999-12-13 | 2001-06-21 | Marian Trinkel | Vorrichtung zur Bestimmung und Charakterisierung von durch Zerkleinern von Lebensmitteln erzeugten Geräuschen |
WO2002053910A1 (fr) | 2000-12-30 | 2002-07-11 | IGUS Ingenieurgemeinschaft Umweltschutz Meß- und Verfahrenstechnik GmbH | Procede et dispositif servant a surveiller l'etat de pales de rotor d'installations eoliennes |
DE10065314A1 (de) * | 2000-12-30 | 2002-07-18 | Igus Ingenieurgemeinschaft Umw | Verfahren und Einrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen |
DE10115267A1 (de) * | 2001-03-28 | 2002-10-10 | Aloys Wobben | Verfahren zur Überwachung einer Windenergieanlage |
WO2004029563A1 (fr) * | 2002-09-26 | 2004-04-08 | Siemens Aktiengesellschaft | Surveillance et diagnostic d'une installation technique au moyen d'un dispositif de signalisation a activation purement mecanique |
US6724097B1 (en) | 1999-10-06 | 2004-04-20 | Aloys Wobben | Method for operating a wind farm |
US6789030B1 (en) | 2000-06-23 | 2004-09-07 | Bently Nevada, Llc | Portable data collector and analyzer: apparatus and method |
WO2007025395A1 (fr) * | 2005-08-29 | 2007-03-08 | Bühler AG | Procede de surveillance de l'etat de fonctionnement des rouleaux rotatifs d'une installation industrielle |
WO2008152006A1 (fr) * | 2007-06-11 | 2008-12-18 | Boehringer Ingelheim International Gmbh | Procédé de dépyrogénation de corps creux en verre et tunnel à air chaud utilisé à cette fin |
EP2764806A1 (fr) | 2013-02-12 | 2014-08-13 | Wmf Württembergische Metallwarenfabrik Ag | Procédé de surveillance et/ou de commande d'un appareil de préparation de boissons et appareil de préparation de boissons destiné à mettre en 'uvre le procédé |
DE102017214598A1 (de) * | 2017-08-22 | 2019-02-28 | Robert Bosch Gmbh | Überwachungsvorrichtung für zumindest ein Hausgerät |
CN113492162A (zh) * | 2020-03-18 | 2021-10-12 | 株式会社理光 | 诊断装置、诊断方法、存储介质以及计算机装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2025050A (en) * | 1978-07-04 | 1980-01-16 | Bosch Gmbh Robert | Apparatus for detecting the vibrationsproduced during knocking of a combustion engine |
USRE30298E (en) * | 1974-07-22 | 1980-06-03 | Impact sensing detector | |
EP0022671A1 (fr) * | 1979-07-13 | 1981-01-21 | Westinghouse Electric Corporation | Procédé et appareil pour la détermination de la masse d'un objet en cours d'impact |
-
1981
- 1981-06-16 WO PCT/DE1981/000092 patent/WO1981003702A1/fr unknown
- 1981-06-18 IT IT8122407A patent/IT8122407A0/it unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE30298E (en) * | 1974-07-22 | 1980-06-03 | Impact sensing detector | |
GB2025050A (en) * | 1978-07-04 | 1980-01-16 | Bosch Gmbh Robert | Apparatus for detecting the vibrationsproduced during knocking of a combustion engine |
EP0022671A1 (fr) * | 1979-07-13 | 1981-01-21 | Westinghouse Electric Corporation | Procédé et appareil pour la détermination de la masse d'un objet en cours d'impact |
Non-Patent Citations (1)
Title |
---|
Mécanique Matériaux Electricité, Dezember 1979, No. 360 (Paris, FR) M.P. Rapin: "Les vibrations des réducteurs et multiplicateurs méthodes moderne de diagnostic remèdes possibles", Seiten 452-461 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0087813A3 (en) * | 1982-03-03 | 1984-07-04 | Hitachi, Ltd. | Method and apparatus for monitoring cracks of a rotatable body |
GB2156987A (en) * | 1984-04-04 | 1985-10-16 | Molins Plc | Cigarette making machine |
FR2698470A1 (fr) * | 1992-11-26 | 1994-05-27 | Kodak Pathe | Procédé et installation de surveillance en continu et en temps réel d'un processus complexe de fabrication. |
EP0694313A3 (fr) * | 1994-07-21 | 1996-06-05 | Dideco Spa | Méthode et équipement pour contrÔler des appareils de circulation sanguine extracorporelle |
EP0838669A3 (fr) * | 1996-10-22 | 2000-12-20 | Robert Bosch Gmbh | Dispositif et procédé pour mesurer le bruit des machines et dispositifs électriques |
WO2001025631A1 (fr) * | 1999-10-06 | 2001-04-12 | Aloys Wobben | Procede de surveillance d'eoliennes |
US6724097B1 (en) | 1999-10-06 | 2004-04-20 | Aloys Wobben | Method for operating a wind farm |
DE19960014B4 (de) * | 1999-12-13 | 2004-02-19 | Trinkel, Marian, Dipl.-Ing. | Vorrichtung zur Bestimmung und Charakterisierung von durch Zerkleinern von Lebensmitteln erzeugten Geräuschen |
DE19960014A1 (de) * | 1999-12-13 | 2001-06-21 | Marian Trinkel | Vorrichtung zur Bestimmung und Charakterisierung von durch Zerkleinern von Lebensmitteln erzeugten Geräuschen |
US6792324B2 (en) | 1999-12-13 | 2004-09-14 | Marian Trinkel | Device for determining and characterizing noises generated by mastication of food |
US6789030B1 (en) | 2000-06-23 | 2004-09-07 | Bently Nevada, Llc | Portable data collector and analyzer: apparatus and method |
DE10065314B4 (de) * | 2000-12-30 | 2007-08-16 | Igus - Innovative Technische Systeme Gmbh | Verfahren und Einrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen |
DE10065314A1 (de) * | 2000-12-30 | 2002-07-18 | Igus Ingenieurgemeinschaft Umw | Verfahren und Einrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen |
WO2002053910A1 (fr) | 2000-12-30 | 2002-07-11 | IGUS Ingenieurgemeinschaft Umweltschutz Meß- und Verfahrenstechnik GmbH | Procede et dispositif servant a surveiller l'etat de pales de rotor d'installations eoliennes |
DE10115267C2 (de) * | 2001-03-28 | 2003-06-18 | Aloys Wobben | Verfahren zur Überwachung einer Windenergieanlage |
DE10115267A1 (de) * | 2001-03-28 | 2002-10-10 | Aloys Wobben | Verfahren zur Überwachung einer Windenergieanlage |
US6966754B2 (en) | 2001-03-28 | 2005-11-22 | Aloys Wobben | System and method for monitoring a wind turbine |
WO2004029563A1 (fr) * | 2002-09-26 | 2004-04-08 | Siemens Aktiengesellschaft | Surveillance et diagnostic d'une installation technique au moyen d'un dispositif de signalisation a activation purement mecanique |
US7503219B2 (en) | 2002-09-26 | 2009-03-17 | Siemens Aktiengesellschaft | Monitoring and diagnosing a technical installation using purely mechanically activated signaling means |
WO2007025395A1 (fr) * | 2005-08-29 | 2007-03-08 | Bühler AG | Procede de surveillance de l'etat de fonctionnement des rouleaux rotatifs d'une installation industrielle |
WO2008152006A1 (fr) * | 2007-06-11 | 2008-12-18 | Boehringer Ingelheim International Gmbh | Procédé de dépyrogénation de corps creux en verre et tunnel à air chaud utilisé à cette fin |
EP2764806A1 (fr) | 2013-02-12 | 2014-08-13 | Wmf Württembergische Metallwarenfabrik Ag | Procédé de surveillance et/ou de commande d'un appareil de préparation de boissons et appareil de préparation de boissons destiné à mettre en 'uvre le procédé |
DE102017214598A1 (de) * | 2017-08-22 | 2019-02-28 | Robert Bosch Gmbh | Überwachungsvorrichtung für zumindest ein Hausgerät |
CN113492162A (zh) * | 2020-03-18 | 2021-10-12 | 株式会社理光 | 诊断装置、诊断方法、存储介质以及计算机装置 |
Also Published As
Publication number | Publication date |
---|---|
IT8122407A0 (it) | 1981-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1981003702A1 (fr) | Procede et dispositif de surveillance acoustique de machines et/ou d'installations | |
EP3436877B1 (fr) | Procédé de surveillance et de diagnostic d'une machine par analyse des oscillations | |
EP2102728B1 (fr) | Procédé et dispositif pour diagnostiquer l'état d'une pièce de machine | |
EP2937560B1 (fr) | Dispositif de diagnostic d'éoliennes pour composants du générateur | |
EP2404059B1 (fr) | Procédé de surveillance d'éoliennes | |
DE102008025596B4 (de) | Verfahren zum Betrieb einer Einrichtung | |
EP0440931B1 (fr) | Appareil de contrÔle à courants de Foucault | |
DE102018105087B3 (de) | System, Verfahren und Computerprogrammprodukt zur Erfassung physikalischer Größen von mindestens einer Komponente eines Stufentransformators und zum Monitoring der Komponenten eines Stufentransformators | |
DE102019217740B3 (de) | Verfahren und Anordnung zur Überprüfung eines Zustands eines Koordinatenmessgeräts oder eines Drehtisches | |
DE102018100424A1 (de) | Verfahren und Vorrichtung zur Steuerung und/oder Überwachung eines sich wiederholenden Prozessablaufs | |
DE4031895C2 (de) | Vorrichtung und Verfahren zur Erfassung und Verarbeitung von Ultraschall-Signalen | |
EP4584042A1 (fr) | Procédé de surveillance d'un processus d'usinage dans une machine-outil, et dispositif de surveillance et programme informatique associés | |
DE3332941A1 (de) | Verfahren und vorrichtung zur schallanalyse von maschinen und anlagen | |
DE4101985A1 (de) | Verfahren zum ermitteln von unregelmaessigkeiten zweier miteinander arbeitender elemente | |
DE102010009941A1 (de) | Verfahren zum Überwachen von Windturbinen | |
EP0194333A1 (fr) | Procédé et dispositif pour la collection et l'exploitation des données d'état de machines | |
DE10228389A1 (de) | Schwingungssensor und Verfahren zur Zustandsüberwachung von rotierenden Bauteilen und Lagern | |
DE1524701A1 (de) | Verfahren zur UEberwachung von Maschinen durch Messung von Luft- oder Koerperschall unter Verwendung eines Zwischenspeichers | |
EP3400459B1 (fr) | Procédé d'analyse électronique d'un signal variant dans le temps | |
DE202014100965U1 (de) | Vorrichtung zur Werkzeugkontrolle | |
WO2015140015A1 (fr) | Dispositif et procédé servant à identifier des anomalies dans des machines | |
DE2852157A1 (de) | Verfahren und vorrichtung zum ausrichten der achse eines zylindrischen werkstuecks | |
DE102022127965B3 (de) | Verfahren zum Schleifen einer Verzahnung oder eines Profils eines Werkstücks | |
DE102019108231A1 (de) | Resolver-Erfassungsystem für eine Welle, vorzugsweise zur Erfassung einer mehrdimensionalen, insbesondere dreidimensionalen, Erfassung der Bewegung der Welle, Wellenanordnung, Brennkraftmaschine und Verfahren zum Betrieb der Brennkraftmaschine mit einer Motorwellenanordnung und dem Resolver-Erfassungssystem | |
DE2715749C2 (de) | Verfahren zum Betrieb von im wesentlichen kontinuierlich Schallschwingungen erzeugenden Kraftanlagen, insbesondere Kesselanlagen von elektrischen Kraftwerken und Einrichtung zur Durchführung des Verfahrens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Designated state(s): BR GB JP US |